1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Support PCI/PCIe on PowerNV platforms 4 * 5 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp. 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/pci.h> 10 #include <linux/delay.h> 11 #include <linux/string.h> 12 #include <linux/init.h> 13 #include <linux/irq.h> 14 #include <linux/io.h> 15 #include <linux/msi.h> 16 #include <linux/iommu.h> 17 #include <linux/sched/mm.h> 18 19 #include <asm/sections.h> 20 #include <asm/io.h> 21 #include <asm/prom.h> 22 #include <asm/pci-bridge.h> 23 #include <asm/machdep.h> 24 #include <asm/msi_bitmap.h> 25 #include <asm/ppc-pci.h> 26 #include <asm/pnv-pci.h> 27 #include <asm/opal.h> 28 #include <asm/iommu.h> 29 #include <asm/tce.h> 30 #include <asm/firmware.h> 31 #include <asm/eeh_event.h> 32 #include <asm/eeh.h> 33 34 #include "powernv.h" 35 #include "pci.h" 36 37 static DEFINE_MUTEX(tunnel_mutex); 38 39 int pnv_pci_get_slot_id(struct device_node *np, uint64_t *id) 40 { 41 struct device_node *node = np; 42 u32 bdfn; 43 u64 phbid; 44 int ret; 45 46 ret = of_property_read_u32(np, "reg", &bdfn); 47 if (ret) 48 return -ENXIO; 49 50 bdfn = ((bdfn & 0x00ffff00) >> 8); 51 for (node = np; node; node = of_get_parent(node)) { 52 if (!PCI_DN(node)) { 53 of_node_put(node); 54 break; 55 } 56 57 if (!of_device_is_compatible(node, "ibm,ioda2-phb") && 58 !of_device_is_compatible(node, "ibm,ioda3-phb") && 59 !of_device_is_compatible(node, "ibm,ioda2-npu2-opencapi-phb")) { 60 of_node_put(node); 61 continue; 62 } 63 64 ret = of_property_read_u64(node, "ibm,opal-phbid", &phbid); 65 if (ret) { 66 of_node_put(node); 67 return -ENXIO; 68 } 69 70 if (of_device_is_compatible(node, "ibm,ioda2-npu2-opencapi-phb")) 71 *id = PCI_PHB_SLOT_ID(phbid); 72 else 73 *id = PCI_SLOT_ID(phbid, bdfn); 74 return 0; 75 } 76 77 return -ENODEV; 78 } 79 EXPORT_SYMBOL_GPL(pnv_pci_get_slot_id); 80 81 int pnv_pci_get_device_tree(uint32_t phandle, void *buf, uint64_t len) 82 { 83 int64_t rc; 84 85 if (!opal_check_token(OPAL_GET_DEVICE_TREE)) 86 return -ENXIO; 87 88 rc = opal_get_device_tree(phandle, (uint64_t)buf, len); 89 if (rc < OPAL_SUCCESS) 90 return -EIO; 91 92 return rc; 93 } 94 EXPORT_SYMBOL_GPL(pnv_pci_get_device_tree); 95 96 int pnv_pci_get_presence_state(uint64_t id, uint8_t *state) 97 { 98 int64_t rc; 99 100 if (!opal_check_token(OPAL_PCI_GET_PRESENCE_STATE)) 101 return -ENXIO; 102 103 rc = opal_pci_get_presence_state(id, (uint64_t)state); 104 if (rc != OPAL_SUCCESS) 105 return -EIO; 106 107 return 0; 108 } 109 EXPORT_SYMBOL_GPL(pnv_pci_get_presence_state); 110 111 int pnv_pci_get_power_state(uint64_t id, uint8_t *state) 112 { 113 int64_t rc; 114 115 if (!opal_check_token(OPAL_PCI_GET_POWER_STATE)) 116 return -ENXIO; 117 118 rc = opal_pci_get_power_state(id, (uint64_t)state); 119 if (rc != OPAL_SUCCESS) 120 return -EIO; 121 122 return 0; 123 } 124 EXPORT_SYMBOL_GPL(pnv_pci_get_power_state); 125 126 int pnv_pci_set_power_state(uint64_t id, uint8_t state, struct opal_msg *msg) 127 { 128 struct opal_msg m; 129 int token, ret; 130 int64_t rc; 131 132 if (!opal_check_token(OPAL_PCI_SET_POWER_STATE)) 133 return -ENXIO; 134 135 token = opal_async_get_token_interruptible(); 136 if (unlikely(token < 0)) 137 return token; 138 139 rc = opal_pci_set_power_state(token, id, (uint64_t)&state); 140 if (rc == OPAL_SUCCESS) { 141 ret = 0; 142 goto exit; 143 } else if (rc != OPAL_ASYNC_COMPLETION) { 144 ret = -EIO; 145 goto exit; 146 } 147 148 ret = opal_async_wait_response(token, &m); 149 if (ret < 0) 150 goto exit; 151 152 if (msg) { 153 ret = 1; 154 memcpy(msg, &m, sizeof(m)); 155 } 156 157 exit: 158 opal_async_release_token(token); 159 return ret; 160 } 161 EXPORT_SYMBOL_GPL(pnv_pci_set_power_state); 162 163 int pnv_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type) 164 { 165 struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus); 166 struct msi_desc *entry; 167 struct msi_msg msg; 168 int hwirq; 169 unsigned int virq; 170 int rc; 171 172 if (WARN_ON(!phb) || !phb->msi_bmp.bitmap) 173 return -ENODEV; 174 175 if (pdev->no_64bit_msi && !phb->msi32_support) 176 return -ENODEV; 177 178 for_each_pci_msi_entry(entry, pdev) { 179 if (!entry->msi_attrib.is_64 && !phb->msi32_support) { 180 pr_warn("%s: Supports only 64-bit MSIs\n", 181 pci_name(pdev)); 182 return -ENXIO; 183 } 184 hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, 1); 185 if (hwirq < 0) { 186 pr_warn("%s: Failed to find a free MSI\n", 187 pci_name(pdev)); 188 return -ENOSPC; 189 } 190 virq = irq_create_mapping(NULL, phb->msi_base + hwirq); 191 if (!virq) { 192 pr_warn("%s: Failed to map MSI to linux irq\n", 193 pci_name(pdev)); 194 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq, 1); 195 return -ENOMEM; 196 } 197 rc = phb->msi_setup(phb, pdev, phb->msi_base + hwirq, 198 virq, entry->msi_attrib.is_64, &msg); 199 if (rc) { 200 pr_warn("%s: Failed to setup MSI\n", pci_name(pdev)); 201 irq_dispose_mapping(virq); 202 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq, 1); 203 return rc; 204 } 205 irq_set_msi_desc(virq, entry); 206 pci_write_msi_msg(virq, &msg); 207 } 208 return 0; 209 } 210 211 void pnv_teardown_msi_irqs(struct pci_dev *pdev) 212 { 213 struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus); 214 struct msi_desc *entry; 215 irq_hw_number_t hwirq; 216 217 if (WARN_ON(!phb)) 218 return; 219 220 for_each_pci_msi_entry(entry, pdev) { 221 if (!entry->irq) 222 continue; 223 hwirq = virq_to_hw(entry->irq); 224 irq_set_msi_desc(entry->irq, NULL); 225 irq_dispose_mapping(entry->irq); 226 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, 1); 227 } 228 } 229 230 /* Nicely print the contents of the PE State Tables (PEST). */ 231 static void pnv_pci_dump_pest(__be64 pestA[], __be64 pestB[], int pest_size) 232 { 233 __be64 prevA = ULONG_MAX, prevB = ULONG_MAX; 234 bool dup = false; 235 int i; 236 237 for (i = 0; i < pest_size; i++) { 238 __be64 peA = be64_to_cpu(pestA[i]); 239 __be64 peB = be64_to_cpu(pestB[i]); 240 241 if (peA != prevA || peB != prevB) { 242 if (dup) { 243 pr_info("PE[..%03x] A/B: as above\n", i-1); 244 dup = false; 245 } 246 prevA = peA; 247 prevB = peB; 248 if (peA & PNV_IODA_STOPPED_STATE || 249 peB & PNV_IODA_STOPPED_STATE) 250 pr_info("PE[%03x] A/B: %016llx %016llx\n", 251 i, peA, peB); 252 } else if (!dup && (peA & PNV_IODA_STOPPED_STATE || 253 peB & PNV_IODA_STOPPED_STATE)) { 254 dup = true; 255 } 256 } 257 } 258 259 static void pnv_pci_dump_p7ioc_diag_data(struct pci_controller *hose, 260 struct OpalIoPhbErrorCommon *common) 261 { 262 struct OpalIoP7IOCPhbErrorData *data; 263 264 data = (struct OpalIoP7IOCPhbErrorData *)common; 265 pr_info("P7IOC PHB#%x Diag-data (Version: %d)\n", 266 hose->global_number, be32_to_cpu(common->version)); 267 268 if (data->brdgCtl) 269 pr_info("brdgCtl: %08x\n", 270 be32_to_cpu(data->brdgCtl)); 271 if (data->portStatusReg || data->rootCmplxStatus || 272 data->busAgentStatus) 273 pr_info("UtlSts: %08x %08x %08x\n", 274 be32_to_cpu(data->portStatusReg), 275 be32_to_cpu(data->rootCmplxStatus), 276 be32_to_cpu(data->busAgentStatus)); 277 if (data->deviceStatus || data->slotStatus || 278 data->linkStatus || data->devCmdStatus || 279 data->devSecStatus) 280 pr_info("RootSts: %08x %08x %08x %08x %08x\n", 281 be32_to_cpu(data->deviceStatus), 282 be32_to_cpu(data->slotStatus), 283 be32_to_cpu(data->linkStatus), 284 be32_to_cpu(data->devCmdStatus), 285 be32_to_cpu(data->devSecStatus)); 286 if (data->rootErrorStatus || data->uncorrErrorStatus || 287 data->corrErrorStatus) 288 pr_info("RootErrSts: %08x %08x %08x\n", 289 be32_to_cpu(data->rootErrorStatus), 290 be32_to_cpu(data->uncorrErrorStatus), 291 be32_to_cpu(data->corrErrorStatus)); 292 if (data->tlpHdr1 || data->tlpHdr2 || 293 data->tlpHdr3 || data->tlpHdr4) 294 pr_info("RootErrLog: %08x %08x %08x %08x\n", 295 be32_to_cpu(data->tlpHdr1), 296 be32_to_cpu(data->tlpHdr2), 297 be32_to_cpu(data->tlpHdr3), 298 be32_to_cpu(data->tlpHdr4)); 299 if (data->sourceId || data->errorClass || 300 data->correlator) 301 pr_info("RootErrLog1: %08x %016llx %016llx\n", 302 be32_to_cpu(data->sourceId), 303 be64_to_cpu(data->errorClass), 304 be64_to_cpu(data->correlator)); 305 if (data->p7iocPlssr || data->p7iocCsr) 306 pr_info("PhbSts: %016llx %016llx\n", 307 be64_to_cpu(data->p7iocPlssr), 308 be64_to_cpu(data->p7iocCsr)); 309 if (data->lemFir) 310 pr_info("Lem: %016llx %016llx %016llx\n", 311 be64_to_cpu(data->lemFir), 312 be64_to_cpu(data->lemErrorMask), 313 be64_to_cpu(data->lemWOF)); 314 if (data->phbErrorStatus) 315 pr_info("PhbErr: %016llx %016llx %016llx %016llx\n", 316 be64_to_cpu(data->phbErrorStatus), 317 be64_to_cpu(data->phbFirstErrorStatus), 318 be64_to_cpu(data->phbErrorLog0), 319 be64_to_cpu(data->phbErrorLog1)); 320 if (data->mmioErrorStatus) 321 pr_info("OutErr: %016llx %016llx %016llx %016llx\n", 322 be64_to_cpu(data->mmioErrorStatus), 323 be64_to_cpu(data->mmioFirstErrorStatus), 324 be64_to_cpu(data->mmioErrorLog0), 325 be64_to_cpu(data->mmioErrorLog1)); 326 if (data->dma0ErrorStatus) 327 pr_info("InAErr: %016llx %016llx %016llx %016llx\n", 328 be64_to_cpu(data->dma0ErrorStatus), 329 be64_to_cpu(data->dma0FirstErrorStatus), 330 be64_to_cpu(data->dma0ErrorLog0), 331 be64_to_cpu(data->dma0ErrorLog1)); 332 if (data->dma1ErrorStatus) 333 pr_info("InBErr: %016llx %016llx %016llx %016llx\n", 334 be64_to_cpu(data->dma1ErrorStatus), 335 be64_to_cpu(data->dma1FirstErrorStatus), 336 be64_to_cpu(data->dma1ErrorLog0), 337 be64_to_cpu(data->dma1ErrorLog1)); 338 339 pnv_pci_dump_pest(data->pestA, data->pestB, OPAL_P7IOC_NUM_PEST_REGS); 340 } 341 342 static void pnv_pci_dump_phb3_diag_data(struct pci_controller *hose, 343 struct OpalIoPhbErrorCommon *common) 344 { 345 struct OpalIoPhb3ErrorData *data; 346 347 data = (struct OpalIoPhb3ErrorData*)common; 348 pr_info("PHB3 PHB#%x Diag-data (Version: %d)\n", 349 hose->global_number, be32_to_cpu(common->version)); 350 if (data->brdgCtl) 351 pr_info("brdgCtl: %08x\n", 352 be32_to_cpu(data->brdgCtl)); 353 if (data->portStatusReg || data->rootCmplxStatus || 354 data->busAgentStatus) 355 pr_info("UtlSts: %08x %08x %08x\n", 356 be32_to_cpu(data->portStatusReg), 357 be32_to_cpu(data->rootCmplxStatus), 358 be32_to_cpu(data->busAgentStatus)); 359 if (data->deviceStatus || data->slotStatus || 360 data->linkStatus || data->devCmdStatus || 361 data->devSecStatus) 362 pr_info("RootSts: %08x %08x %08x %08x %08x\n", 363 be32_to_cpu(data->deviceStatus), 364 be32_to_cpu(data->slotStatus), 365 be32_to_cpu(data->linkStatus), 366 be32_to_cpu(data->devCmdStatus), 367 be32_to_cpu(data->devSecStatus)); 368 if (data->rootErrorStatus || data->uncorrErrorStatus || 369 data->corrErrorStatus) 370 pr_info("RootErrSts: %08x %08x %08x\n", 371 be32_to_cpu(data->rootErrorStatus), 372 be32_to_cpu(data->uncorrErrorStatus), 373 be32_to_cpu(data->corrErrorStatus)); 374 if (data->tlpHdr1 || data->tlpHdr2 || 375 data->tlpHdr3 || data->tlpHdr4) 376 pr_info("RootErrLog: %08x %08x %08x %08x\n", 377 be32_to_cpu(data->tlpHdr1), 378 be32_to_cpu(data->tlpHdr2), 379 be32_to_cpu(data->tlpHdr3), 380 be32_to_cpu(data->tlpHdr4)); 381 if (data->sourceId || data->errorClass || 382 data->correlator) 383 pr_info("RootErrLog1: %08x %016llx %016llx\n", 384 be32_to_cpu(data->sourceId), 385 be64_to_cpu(data->errorClass), 386 be64_to_cpu(data->correlator)); 387 if (data->nFir) 388 pr_info("nFir: %016llx %016llx %016llx\n", 389 be64_to_cpu(data->nFir), 390 be64_to_cpu(data->nFirMask), 391 be64_to_cpu(data->nFirWOF)); 392 if (data->phbPlssr || data->phbCsr) 393 pr_info("PhbSts: %016llx %016llx\n", 394 be64_to_cpu(data->phbPlssr), 395 be64_to_cpu(data->phbCsr)); 396 if (data->lemFir) 397 pr_info("Lem: %016llx %016llx %016llx\n", 398 be64_to_cpu(data->lemFir), 399 be64_to_cpu(data->lemErrorMask), 400 be64_to_cpu(data->lemWOF)); 401 if (data->phbErrorStatus) 402 pr_info("PhbErr: %016llx %016llx %016llx %016llx\n", 403 be64_to_cpu(data->phbErrorStatus), 404 be64_to_cpu(data->phbFirstErrorStatus), 405 be64_to_cpu(data->phbErrorLog0), 406 be64_to_cpu(data->phbErrorLog1)); 407 if (data->mmioErrorStatus) 408 pr_info("OutErr: %016llx %016llx %016llx %016llx\n", 409 be64_to_cpu(data->mmioErrorStatus), 410 be64_to_cpu(data->mmioFirstErrorStatus), 411 be64_to_cpu(data->mmioErrorLog0), 412 be64_to_cpu(data->mmioErrorLog1)); 413 if (data->dma0ErrorStatus) 414 pr_info("InAErr: %016llx %016llx %016llx %016llx\n", 415 be64_to_cpu(data->dma0ErrorStatus), 416 be64_to_cpu(data->dma0FirstErrorStatus), 417 be64_to_cpu(data->dma0ErrorLog0), 418 be64_to_cpu(data->dma0ErrorLog1)); 419 if (data->dma1ErrorStatus) 420 pr_info("InBErr: %016llx %016llx %016llx %016llx\n", 421 be64_to_cpu(data->dma1ErrorStatus), 422 be64_to_cpu(data->dma1FirstErrorStatus), 423 be64_to_cpu(data->dma1ErrorLog0), 424 be64_to_cpu(data->dma1ErrorLog1)); 425 426 pnv_pci_dump_pest(data->pestA, data->pestB, OPAL_PHB3_NUM_PEST_REGS); 427 } 428 429 static void pnv_pci_dump_phb4_diag_data(struct pci_controller *hose, 430 struct OpalIoPhbErrorCommon *common) 431 { 432 struct OpalIoPhb4ErrorData *data; 433 434 data = (struct OpalIoPhb4ErrorData*)common; 435 pr_info("PHB4 PHB#%d Diag-data (Version: %d)\n", 436 hose->global_number, be32_to_cpu(common->version)); 437 if (data->brdgCtl) 438 pr_info("brdgCtl: %08x\n", 439 be32_to_cpu(data->brdgCtl)); 440 if (data->deviceStatus || data->slotStatus || 441 data->linkStatus || data->devCmdStatus || 442 data->devSecStatus) 443 pr_info("RootSts: %08x %08x %08x %08x %08x\n", 444 be32_to_cpu(data->deviceStatus), 445 be32_to_cpu(data->slotStatus), 446 be32_to_cpu(data->linkStatus), 447 be32_to_cpu(data->devCmdStatus), 448 be32_to_cpu(data->devSecStatus)); 449 if (data->rootErrorStatus || data->uncorrErrorStatus || 450 data->corrErrorStatus) 451 pr_info("RootErrSts: %08x %08x %08x\n", 452 be32_to_cpu(data->rootErrorStatus), 453 be32_to_cpu(data->uncorrErrorStatus), 454 be32_to_cpu(data->corrErrorStatus)); 455 if (data->tlpHdr1 || data->tlpHdr2 || 456 data->tlpHdr3 || data->tlpHdr4) 457 pr_info("RootErrLog: %08x %08x %08x %08x\n", 458 be32_to_cpu(data->tlpHdr1), 459 be32_to_cpu(data->tlpHdr2), 460 be32_to_cpu(data->tlpHdr3), 461 be32_to_cpu(data->tlpHdr4)); 462 if (data->sourceId) 463 pr_info("sourceId: %08x\n", be32_to_cpu(data->sourceId)); 464 if (data->nFir) 465 pr_info("nFir: %016llx %016llx %016llx\n", 466 be64_to_cpu(data->nFir), 467 be64_to_cpu(data->nFirMask), 468 be64_to_cpu(data->nFirWOF)); 469 if (data->phbPlssr || data->phbCsr) 470 pr_info("PhbSts: %016llx %016llx\n", 471 be64_to_cpu(data->phbPlssr), 472 be64_to_cpu(data->phbCsr)); 473 if (data->lemFir) 474 pr_info("Lem: %016llx %016llx %016llx\n", 475 be64_to_cpu(data->lemFir), 476 be64_to_cpu(data->lemErrorMask), 477 be64_to_cpu(data->lemWOF)); 478 if (data->phbErrorStatus) 479 pr_info("PhbErr: %016llx %016llx %016llx %016llx\n", 480 be64_to_cpu(data->phbErrorStatus), 481 be64_to_cpu(data->phbFirstErrorStatus), 482 be64_to_cpu(data->phbErrorLog0), 483 be64_to_cpu(data->phbErrorLog1)); 484 if (data->phbTxeErrorStatus) 485 pr_info("PhbTxeErr: %016llx %016llx %016llx %016llx\n", 486 be64_to_cpu(data->phbTxeErrorStatus), 487 be64_to_cpu(data->phbTxeFirstErrorStatus), 488 be64_to_cpu(data->phbTxeErrorLog0), 489 be64_to_cpu(data->phbTxeErrorLog1)); 490 if (data->phbRxeArbErrorStatus) 491 pr_info("RxeArbErr: %016llx %016llx %016llx %016llx\n", 492 be64_to_cpu(data->phbRxeArbErrorStatus), 493 be64_to_cpu(data->phbRxeArbFirstErrorStatus), 494 be64_to_cpu(data->phbRxeArbErrorLog0), 495 be64_to_cpu(data->phbRxeArbErrorLog1)); 496 if (data->phbRxeMrgErrorStatus) 497 pr_info("RxeMrgErr: %016llx %016llx %016llx %016llx\n", 498 be64_to_cpu(data->phbRxeMrgErrorStatus), 499 be64_to_cpu(data->phbRxeMrgFirstErrorStatus), 500 be64_to_cpu(data->phbRxeMrgErrorLog0), 501 be64_to_cpu(data->phbRxeMrgErrorLog1)); 502 if (data->phbRxeTceErrorStatus) 503 pr_info("RxeTceErr: %016llx %016llx %016llx %016llx\n", 504 be64_to_cpu(data->phbRxeTceErrorStatus), 505 be64_to_cpu(data->phbRxeTceFirstErrorStatus), 506 be64_to_cpu(data->phbRxeTceErrorLog0), 507 be64_to_cpu(data->phbRxeTceErrorLog1)); 508 509 if (data->phbPblErrorStatus) 510 pr_info("PblErr: %016llx %016llx %016llx %016llx\n", 511 be64_to_cpu(data->phbPblErrorStatus), 512 be64_to_cpu(data->phbPblFirstErrorStatus), 513 be64_to_cpu(data->phbPblErrorLog0), 514 be64_to_cpu(data->phbPblErrorLog1)); 515 if (data->phbPcieDlpErrorStatus) 516 pr_info("PcieDlp: %016llx %016llx %016llx\n", 517 be64_to_cpu(data->phbPcieDlpErrorLog1), 518 be64_to_cpu(data->phbPcieDlpErrorLog2), 519 be64_to_cpu(data->phbPcieDlpErrorStatus)); 520 if (data->phbRegbErrorStatus) 521 pr_info("RegbErr: %016llx %016llx %016llx %016llx\n", 522 be64_to_cpu(data->phbRegbErrorStatus), 523 be64_to_cpu(data->phbRegbFirstErrorStatus), 524 be64_to_cpu(data->phbRegbErrorLog0), 525 be64_to_cpu(data->phbRegbErrorLog1)); 526 527 528 pnv_pci_dump_pest(data->pestA, data->pestB, OPAL_PHB4_NUM_PEST_REGS); 529 } 530 531 void pnv_pci_dump_phb_diag_data(struct pci_controller *hose, 532 unsigned char *log_buff) 533 { 534 struct OpalIoPhbErrorCommon *common; 535 536 if (!hose || !log_buff) 537 return; 538 539 common = (struct OpalIoPhbErrorCommon *)log_buff; 540 switch (be32_to_cpu(common->ioType)) { 541 case OPAL_PHB_ERROR_DATA_TYPE_P7IOC: 542 pnv_pci_dump_p7ioc_diag_data(hose, common); 543 break; 544 case OPAL_PHB_ERROR_DATA_TYPE_PHB3: 545 pnv_pci_dump_phb3_diag_data(hose, common); 546 break; 547 case OPAL_PHB_ERROR_DATA_TYPE_PHB4: 548 pnv_pci_dump_phb4_diag_data(hose, common); 549 break; 550 default: 551 pr_warn("%s: Unrecognized ioType %d\n", 552 __func__, be32_to_cpu(common->ioType)); 553 } 554 } 555 556 static void pnv_pci_handle_eeh_config(struct pnv_phb *phb, u32 pe_no) 557 { 558 unsigned long flags, rc; 559 int has_diag, ret = 0; 560 561 spin_lock_irqsave(&phb->lock, flags); 562 563 /* Fetch PHB diag-data */ 564 rc = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data, 565 phb->diag_data_size); 566 has_diag = (rc == OPAL_SUCCESS); 567 568 /* If PHB supports compound PE, to handle it */ 569 if (phb->unfreeze_pe) { 570 ret = phb->unfreeze_pe(phb, 571 pe_no, 572 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 573 } else { 574 rc = opal_pci_eeh_freeze_clear(phb->opal_id, 575 pe_no, 576 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 577 if (rc) { 578 pr_warn("%s: Failure %ld clearing frozen " 579 "PHB#%x-PE#%x\n", 580 __func__, rc, phb->hose->global_number, 581 pe_no); 582 ret = -EIO; 583 } 584 } 585 586 /* 587 * For now, let's only display the diag buffer when we fail to clear 588 * the EEH status. We'll do more sensible things later when we have 589 * proper EEH support. We need to make sure we don't pollute ourselves 590 * with the normal errors generated when probing empty slots 591 */ 592 if (has_diag && ret) 593 pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data); 594 595 spin_unlock_irqrestore(&phb->lock, flags); 596 } 597 598 static void pnv_pci_config_check_eeh(struct pci_dn *pdn) 599 { 600 struct pnv_phb *phb = pdn->phb->private_data; 601 u8 fstate = 0; 602 __be16 pcierr = 0; 603 unsigned int pe_no; 604 s64 rc; 605 606 /* 607 * Get the PE#. During the PCI probe stage, we might not 608 * setup that yet. So all ER errors should be mapped to 609 * reserved PE. 610 */ 611 pe_no = pdn->pe_number; 612 if (pe_no == IODA_INVALID_PE) { 613 pe_no = phb->ioda.reserved_pe_idx; 614 } 615 616 /* 617 * Fetch frozen state. If the PHB support compound PE, 618 * we need handle that case. 619 */ 620 if (phb->get_pe_state) { 621 fstate = phb->get_pe_state(phb, pe_no); 622 } else { 623 rc = opal_pci_eeh_freeze_status(phb->opal_id, 624 pe_no, 625 &fstate, 626 &pcierr, 627 NULL); 628 if (rc) { 629 pr_warn("%s: Failure %lld getting PHB#%x-PE#%x state\n", 630 __func__, rc, phb->hose->global_number, pe_no); 631 return; 632 } 633 } 634 635 pr_devel(" -> EEH check, bdfn=%04x PE#%x fstate=%x\n", 636 (pdn->busno << 8) | (pdn->devfn), pe_no, fstate); 637 638 /* Clear the frozen state if applicable */ 639 if (fstate == OPAL_EEH_STOPPED_MMIO_FREEZE || 640 fstate == OPAL_EEH_STOPPED_DMA_FREEZE || 641 fstate == OPAL_EEH_STOPPED_MMIO_DMA_FREEZE) { 642 /* 643 * If PHB supports compound PE, freeze it for 644 * consistency. 645 */ 646 if (phb->freeze_pe) 647 phb->freeze_pe(phb, pe_no); 648 649 pnv_pci_handle_eeh_config(phb, pe_no); 650 } 651 } 652 653 int pnv_pci_cfg_read(struct pci_dn *pdn, 654 int where, int size, u32 *val) 655 { 656 struct pnv_phb *phb = pdn->phb->private_data; 657 u32 bdfn = (pdn->busno << 8) | pdn->devfn; 658 s64 rc; 659 660 switch (size) { 661 case 1: { 662 u8 v8; 663 rc = opal_pci_config_read_byte(phb->opal_id, bdfn, where, &v8); 664 *val = (rc == OPAL_SUCCESS) ? v8 : 0xff; 665 break; 666 } 667 case 2: { 668 __be16 v16; 669 rc = opal_pci_config_read_half_word(phb->opal_id, bdfn, where, 670 &v16); 671 *val = (rc == OPAL_SUCCESS) ? be16_to_cpu(v16) : 0xffff; 672 break; 673 } 674 case 4: { 675 __be32 v32; 676 rc = opal_pci_config_read_word(phb->opal_id, bdfn, where, &v32); 677 *val = (rc == OPAL_SUCCESS) ? be32_to_cpu(v32) : 0xffffffff; 678 break; 679 } 680 default: 681 return PCIBIOS_FUNC_NOT_SUPPORTED; 682 } 683 684 pr_devel("%s: bus: %x devfn: %x +%x/%x -> %08x\n", 685 __func__, pdn->busno, pdn->devfn, where, size, *val); 686 return PCIBIOS_SUCCESSFUL; 687 } 688 689 int pnv_pci_cfg_write(struct pci_dn *pdn, 690 int where, int size, u32 val) 691 { 692 struct pnv_phb *phb = pdn->phb->private_data; 693 u32 bdfn = (pdn->busno << 8) | pdn->devfn; 694 695 pr_devel("%s: bus: %x devfn: %x +%x/%x -> %08x\n", 696 __func__, pdn->busno, pdn->devfn, where, size, val); 697 switch (size) { 698 case 1: 699 opal_pci_config_write_byte(phb->opal_id, bdfn, where, val); 700 break; 701 case 2: 702 opal_pci_config_write_half_word(phb->opal_id, bdfn, where, val); 703 break; 704 case 4: 705 opal_pci_config_write_word(phb->opal_id, bdfn, where, val); 706 break; 707 default: 708 return PCIBIOS_FUNC_NOT_SUPPORTED; 709 } 710 711 return PCIBIOS_SUCCESSFUL; 712 } 713 714 #if CONFIG_EEH 715 static bool pnv_pci_cfg_check(struct pci_dn *pdn) 716 { 717 struct eeh_dev *edev = NULL; 718 struct pnv_phb *phb = pdn->phb->private_data; 719 720 /* EEH not enabled ? */ 721 if (!(phb->flags & PNV_PHB_FLAG_EEH)) 722 return true; 723 724 /* PE reset or device removed ? */ 725 edev = pdn->edev; 726 if (edev) { 727 if (edev->pe && 728 (edev->pe->state & EEH_PE_CFG_BLOCKED)) 729 return false; 730 731 if (edev->mode & EEH_DEV_REMOVED) 732 return false; 733 } 734 735 return true; 736 } 737 #else 738 static inline pnv_pci_cfg_check(struct pci_dn *pdn) 739 { 740 return true; 741 } 742 #endif /* CONFIG_EEH */ 743 744 static int pnv_pci_read_config(struct pci_bus *bus, 745 unsigned int devfn, 746 int where, int size, u32 *val) 747 { 748 struct pci_dn *pdn; 749 struct pnv_phb *phb; 750 int ret; 751 752 *val = 0xFFFFFFFF; 753 pdn = pci_get_pdn_by_devfn(bus, devfn); 754 if (!pdn) 755 return PCIBIOS_DEVICE_NOT_FOUND; 756 757 if (!pnv_pci_cfg_check(pdn)) 758 return PCIBIOS_DEVICE_NOT_FOUND; 759 760 ret = pnv_pci_cfg_read(pdn, where, size, val); 761 phb = pdn->phb->private_data; 762 if (phb->flags & PNV_PHB_FLAG_EEH && pdn->edev) { 763 if (*val == EEH_IO_ERROR_VALUE(size) && 764 eeh_dev_check_failure(pdn->edev)) 765 return PCIBIOS_DEVICE_NOT_FOUND; 766 } else { 767 pnv_pci_config_check_eeh(pdn); 768 } 769 770 return ret; 771 } 772 773 static int pnv_pci_write_config(struct pci_bus *bus, 774 unsigned int devfn, 775 int where, int size, u32 val) 776 { 777 struct pci_dn *pdn; 778 struct pnv_phb *phb; 779 int ret; 780 781 pdn = pci_get_pdn_by_devfn(bus, devfn); 782 if (!pdn) 783 return PCIBIOS_DEVICE_NOT_FOUND; 784 785 if (!pnv_pci_cfg_check(pdn)) 786 return PCIBIOS_DEVICE_NOT_FOUND; 787 788 ret = pnv_pci_cfg_write(pdn, where, size, val); 789 phb = pdn->phb->private_data; 790 if (!(phb->flags & PNV_PHB_FLAG_EEH)) 791 pnv_pci_config_check_eeh(pdn); 792 793 return ret; 794 } 795 796 struct pci_ops pnv_pci_ops = { 797 .read = pnv_pci_read_config, 798 .write = pnv_pci_write_config, 799 }; 800 801 struct iommu_table *pnv_pci_table_alloc(int nid) 802 { 803 struct iommu_table *tbl; 804 805 tbl = kzalloc_node(sizeof(struct iommu_table), GFP_KERNEL, nid); 806 if (!tbl) 807 return NULL; 808 809 INIT_LIST_HEAD_RCU(&tbl->it_group_list); 810 kref_init(&tbl->it_kref); 811 812 return tbl; 813 } 814 815 struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev) 816 { 817 struct pci_controller *hose = pci_bus_to_host(dev->bus); 818 819 return of_node_get(hose->dn); 820 } 821 EXPORT_SYMBOL(pnv_pci_get_phb_node); 822 823 int pnv_pci_set_tunnel_bar(struct pci_dev *dev, u64 addr, int enable) 824 { 825 struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus); 826 u64 tunnel_bar; 827 __be64 val; 828 int rc; 829 830 if (!opal_check_token(OPAL_PCI_GET_PBCQ_TUNNEL_BAR)) 831 return -ENXIO; 832 if (!opal_check_token(OPAL_PCI_SET_PBCQ_TUNNEL_BAR)) 833 return -ENXIO; 834 835 mutex_lock(&tunnel_mutex); 836 rc = opal_pci_get_pbcq_tunnel_bar(phb->opal_id, &val); 837 if (rc != OPAL_SUCCESS) { 838 rc = -EIO; 839 goto out; 840 } 841 tunnel_bar = be64_to_cpu(val); 842 if (enable) { 843 /* 844 * Only one device per PHB can use atomics. 845 * Our policy is first-come, first-served. 846 */ 847 if (tunnel_bar) { 848 if (tunnel_bar != addr) 849 rc = -EBUSY; 850 else 851 rc = 0; /* Setting same address twice is ok */ 852 goto out; 853 } 854 } else { 855 /* 856 * The device that owns atomics and wants to release 857 * them must pass the same address with enable == 0. 858 */ 859 if (tunnel_bar != addr) { 860 rc = -EPERM; 861 goto out; 862 } 863 addr = 0x0ULL; 864 } 865 rc = opal_pci_set_pbcq_tunnel_bar(phb->opal_id, addr); 866 rc = opal_error_code(rc); 867 out: 868 mutex_unlock(&tunnel_mutex); 869 return rc; 870 } 871 EXPORT_SYMBOL_GPL(pnv_pci_set_tunnel_bar); 872 873 void pnv_pci_shutdown(void) 874 { 875 struct pci_controller *hose; 876 877 list_for_each_entry(hose, &hose_list, list_node) 878 if (hose->controller_ops.shutdown) 879 hose->controller_ops.shutdown(hose); 880 } 881 882 /* Fixup wrong class code in p7ioc and p8 root complex */ 883 static void pnv_p7ioc_rc_quirk(struct pci_dev *dev) 884 { 885 dev->class = PCI_CLASS_BRIDGE_PCI << 8; 886 } 887 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_IBM, 0x3b9, pnv_p7ioc_rc_quirk); 888 889 void __init pnv_pci_init(void) 890 { 891 struct device_node *np; 892 893 pci_add_flags(PCI_CAN_SKIP_ISA_ALIGN); 894 895 /* If we don't have OPAL, eg. in sim, just skip PCI probe */ 896 if (!firmware_has_feature(FW_FEATURE_OPAL)) 897 return; 898 899 #ifdef CONFIG_PCIEPORTBUS 900 /* 901 * On PowerNV PCIe devices are (currently) managed in cooperation 902 * with firmware. This isn't *strictly* required, but there's enough 903 * assumptions baked into both firmware and the platform code that 904 * it's unwise to allow the portbus services to be used. 905 * 906 * We need to fix this eventually, but for now set this flag to disable 907 * the portbus driver. The AER service isn't required since that AER 908 * events are handled via EEH. The pciehp hotplug driver can't work 909 * without kernel changes (and portbus binding breaks pnv_php). The 910 * other services also require some thinking about how we're going 911 * to integrate them. 912 */ 913 pcie_ports_disabled = true; 914 #endif 915 916 /* Look for IODA IO-Hubs. */ 917 for_each_compatible_node(np, NULL, "ibm,ioda-hub") { 918 pnv_pci_init_ioda_hub(np); 919 } 920 921 /* Look for ioda2 built-in PHB3's */ 922 for_each_compatible_node(np, NULL, "ibm,ioda2-phb") 923 pnv_pci_init_ioda2_phb(np); 924 925 /* Look for ioda3 built-in PHB4's, we treat them as IODA2 */ 926 for_each_compatible_node(np, NULL, "ibm,ioda3-phb") 927 pnv_pci_init_ioda2_phb(np); 928 929 /* Look for NPU2 OpenCAPI PHBs */ 930 for_each_compatible_node(np, NULL, "ibm,ioda2-npu2-opencapi-phb") 931 pnv_pci_init_npu2_opencapi_phb(np); 932 933 /* Configure IOMMU DMA hooks */ 934 set_pci_dma_ops(&dma_iommu_ops); 935 } 936 937 static int pnv_tce_iommu_bus_notifier(struct notifier_block *nb, 938 unsigned long action, void *data) 939 { 940 struct device *dev = data; 941 942 switch (action) { 943 case BUS_NOTIFY_DEL_DEVICE: 944 iommu_del_device(dev); 945 return 0; 946 default: 947 return 0; 948 } 949 } 950 951 static struct notifier_block pnv_tce_iommu_bus_nb = { 952 .notifier_call = pnv_tce_iommu_bus_notifier, 953 }; 954 955 static int __init pnv_tce_iommu_bus_notifier_init(void) 956 { 957 bus_register_notifier(&pci_bus_type, &pnv_tce_iommu_bus_nb); 958 return 0; 959 } 960 machine_subsys_initcall_sync(powernv, pnv_tce_iommu_bus_notifier_init); 961