1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Support PCI/PCIe on PowerNV platforms
4  *
5  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/pci.h>
10 #include <linux/delay.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/irq.h>
14 #include <linux/io.h>
15 #include <linux/msi.h>
16 #include <linux/iommu.h>
17 #include <linux/sched/mm.h>
18 
19 #include <asm/sections.h>
20 #include <asm/io.h>
21 #include <asm/prom.h>
22 #include <asm/pci-bridge.h>
23 #include <asm/machdep.h>
24 #include <asm/msi_bitmap.h>
25 #include <asm/ppc-pci.h>
26 #include <asm/pnv-pci.h>
27 #include <asm/opal.h>
28 #include <asm/iommu.h>
29 #include <asm/tce.h>
30 #include <asm/firmware.h>
31 #include <asm/eeh_event.h>
32 #include <asm/eeh.h>
33 
34 #include "powernv.h"
35 #include "pci.h"
36 
37 static DEFINE_MUTEX(tunnel_mutex);
38 
39 int pnv_pci_get_slot_id(struct device_node *np, uint64_t *id)
40 {
41 	struct device_node *parent = np;
42 	u32 bdfn;
43 	u64 phbid;
44 	int ret;
45 
46 	ret = of_property_read_u32(np, "reg", &bdfn);
47 	if (ret)
48 		return -ENXIO;
49 
50 	bdfn = ((bdfn & 0x00ffff00) >> 8);
51 	while ((parent = of_get_parent(parent))) {
52 		if (!PCI_DN(parent)) {
53 			of_node_put(parent);
54 			break;
55 		}
56 
57 		if (!of_device_is_compatible(parent, "ibm,ioda2-phb") &&
58 		    !of_device_is_compatible(parent, "ibm,ioda3-phb")) {
59 			of_node_put(parent);
60 			continue;
61 		}
62 
63 		ret = of_property_read_u64(parent, "ibm,opal-phbid", &phbid);
64 		if (ret) {
65 			of_node_put(parent);
66 			return -ENXIO;
67 		}
68 
69 		*id = PCI_SLOT_ID(phbid, bdfn);
70 		return 0;
71 	}
72 
73 	return -ENODEV;
74 }
75 EXPORT_SYMBOL_GPL(pnv_pci_get_slot_id);
76 
77 int pnv_pci_get_device_tree(uint32_t phandle, void *buf, uint64_t len)
78 {
79 	int64_t rc;
80 
81 	if (!opal_check_token(OPAL_GET_DEVICE_TREE))
82 		return -ENXIO;
83 
84 	rc = opal_get_device_tree(phandle, (uint64_t)buf, len);
85 	if (rc < OPAL_SUCCESS)
86 		return -EIO;
87 
88 	return rc;
89 }
90 EXPORT_SYMBOL_GPL(pnv_pci_get_device_tree);
91 
92 int pnv_pci_get_presence_state(uint64_t id, uint8_t *state)
93 {
94 	int64_t rc;
95 
96 	if (!opal_check_token(OPAL_PCI_GET_PRESENCE_STATE))
97 		return -ENXIO;
98 
99 	rc = opal_pci_get_presence_state(id, (uint64_t)state);
100 	if (rc != OPAL_SUCCESS)
101 		return -EIO;
102 
103 	return 0;
104 }
105 EXPORT_SYMBOL_GPL(pnv_pci_get_presence_state);
106 
107 int pnv_pci_get_power_state(uint64_t id, uint8_t *state)
108 {
109 	int64_t rc;
110 
111 	if (!opal_check_token(OPAL_PCI_GET_POWER_STATE))
112 		return -ENXIO;
113 
114 	rc = opal_pci_get_power_state(id, (uint64_t)state);
115 	if (rc != OPAL_SUCCESS)
116 		return -EIO;
117 
118 	return 0;
119 }
120 EXPORT_SYMBOL_GPL(pnv_pci_get_power_state);
121 
122 int pnv_pci_set_power_state(uint64_t id, uint8_t state, struct opal_msg *msg)
123 {
124 	struct opal_msg m;
125 	int token, ret;
126 	int64_t rc;
127 
128 	if (!opal_check_token(OPAL_PCI_SET_POWER_STATE))
129 		return -ENXIO;
130 
131 	token = opal_async_get_token_interruptible();
132 	if (unlikely(token < 0))
133 		return token;
134 
135 	rc = opal_pci_set_power_state(token, id, (uint64_t)&state);
136 	if (rc == OPAL_SUCCESS) {
137 		ret = 0;
138 		goto exit;
139 	} else if (rc != OPAL_ASYNC_COMPLETION) {
140 		ret = -EIO;
141 		goto exit;
142 	}
143 
144 	ret = opal_async_wait_response(token, &m);
145 	if (ret < 0)
146 		goto exit;
147 
148 	if (msg) {
149 		ret = 1;
150 		memcpy(msg, &m, sizeof(m));
151 	}
152 
153 exit:
154 	opal_async_release_token(token);
155 	return ret;
156 }
157 EXPORT_SYMBOL_GPL(pnv_pci_set_power_state);
158 
159 int pnv_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type)
160 {
161 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
162 	struct pnv_phb *phb = hose->private_data;
163 	struct msi_desc *entry;
164 	struct msi_msg msg;
165 	int hwirq;
166 	unsigned int virq;
167 	int rc;
168 
169 	if (WARN_ON(!phb) || !phb->msi_bmp.bitmap)
170 		return -ENODEV;
171 
172 	if (pdev->no_64bit_msi && !phb->msi32_support)
173 		return -ENODEV;
174 
175 	for_each_pci_msi_entry(entry, pdev) {
176 		if (!entry->msi_attrib.is_64 && !phb->msi32_support) {
177 			pr_warn("%s: Supports only 64-bit MSIs\n",
178 				pci_name(pdev));
179 			return -ENXIO;
180 		}
181 		hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, 1);
182 		if (hwirq < 0) {
183 			pr_warn("%s: Failed to find a free MSI\n",
184 				pci_name(pdev));
185 			return -ENOSPC;
186 		}
187 		virq = irq_create_mapping(NULL, phb->msi_base + hwirq);
188 		if (!virq) {
189 			pr_warn("%s: Failed to map MSI to linux irq\n",
190 				pci_name(pdev));
191 			msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq, 1);
192 			return -ENOMEM;
193 		}
194 		rc = phb->msi_setup(phb, pdev, phb->msi_base + hwirq,
195 				    virq, entry->msi_attrib.is_64, &msg);
196 		if (rc) {
197 			pr_warn("%s: Failed to setup MSI\n", pci_name(pdev));
198 			irq_dispose_mapping(virq);
199 			msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq, 1);
200 			return rc;
201 		}
202 		irq_set_msi_desc(virq, entry);
203 		pci_write_msi_msg(virq, &msg);
204 	}
205 	return 0;
206 }
207 
208 void pnv_teardown_msi_irqs(struct pci_dev *pdev)
209 {
210 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
211 	struct pnv_phb *phb = hose->private_data;
212 	struct msi_desc *entry;
213 	irq_hw_number_t hwirq;
214 
215 	if (WARN_ON(!phb))
216 		return;
217 
218 	for_each_pci_msi_entry(entry, pdev) {
219 		if (!entry->irq)
220 			continue;
221 		hwirq = virq_to_hw(entry->irq);
222 		irq_set_msi_desc(entry->irq, NULL);
223 		irq_dispose_mapping(entry->irq);
224 		msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, 1);
225 	}
226 }
227 
228 /* Nicely print the contents of the PE State Tables (PEST). */
229 static void pnv_pci_dump_pest(__be64 pestA[], __be64 pestB[], int pest_size)
230 {
231 	__be64 prevA = ULONG_MAX, prevB = ULONG_MAX;
232 	bool dup = false;
233 	int i;
234 
235 	for (i = 0; i < pest_size; i++) {
236 		__be64 peA = be64_to_cpu(pestA[i]);
237 		__be64 peB = be64_to_cpu(pestB[i]);
238 
239 		if (peA != prevA || peB != prevB) {
240 			if (dup) {
241 				pr_info("PE[..%03x] A/B: as above\n", i-1);
242 				dup = false;
243 			}
244 			prevA = peA;
245 			prevB = peB;
246 			if (peA & PNV_IODA_STOPPED_STATE ||
247 			    peB & PNV_IODA_STOPPED_STATE)
248 				pr_info("PE[%03x] A/B: %016llx %016llx\n",
249 					i, peA, peB);
250 		} else if (!dup && (peA & PNV_IODA_STOPPED_STATE ||
251 				    peB & PNV_IODA_STOPPED_STATE)) {
252 			dup = true;
253 		}
254 	}
255 }
256 
257 static void pnv_pci_dump_p7ioc_diag_data(struct pci_controller *hose,
258 					 struct OpalIoPhbErrorCommon *common)
259 {
260 	struct OpalIoP7IOCPhbErrorData *data;
261 
262 	data = (struct OpalIoP7IOCPhbErrorData *)common;
263 	pr_info("P7IOC PHB#%x Diag-data (Version: %d)\n",
264 		hose->global_number, be32_to_cpu(common->version));
265 
266 	if (data->brdgCtl)
267 		pr_info("brdgCtl:     %08x\n",
268 			be32_to_cpu(data->brdgCtl));
269 	if (data->portStatusReg || data->rootCmplxStatus ||
270 	    data->busAgentStatus)
271 		pr_info("UtlSts:      %08x %08x %08x\n",
272 			be32_to_cpu(data->portStatusReg),
273 			be32_to_cpu(data->rootCmplxStatus),
274 			be32_to_cpu(data->busAgentStatus));
275 	if (data->deviceStatus || data->slotStatus   ||
276 	    data->linkStatus   || data->devCmdStatus ||
277 	    data->devSecStatus)
278 		pr_info("RootSts:     %08x %08x %08x %08x %08x\n",
279 			be32_to_cpu(data->deviceStatus),
280 			be32_to_cpu(data->slotStatus),
281 			be32_to_cpu(data->linkStatus),
282 			be32_to_cpu(data->devCmdStatus),
283 			be32_to_cpu(data->devSecStatus));
284 	if (data->rootErrorStatus   || data->uncorrErrorStatus ||
285 	    data->corrErrorStatus)
286 		pr_info("RootErrSts:  %08x %08x %08x\n",
287 			be32_to_cpu(data->rootErrorStatus),
288 			be32_to_cpu(data->uncorrErrorStatus),
289 			be32_to_cpu(data->corrErrorStatus));
290 	if (data->tlpHdr1 || data->tlpHdr2 ||
291 	    data->tlpHdr3 || data->tlpHdr4)
292 		pr_info("RootErrLog:  %08x %08x %08x %08x\n",
293 			be32_to_cpu(data->tlpHdr1),
294 			be32_to_cpu(data->tlpHdr2),
295 			be32_to_cpu(data->tlpHdr3),
296 			be32_to_cpu(data->tlpHdr4));
297 	if (data->sourceId || data->errorClass ||
298 	    data->correlator)
299 		pr_info("RootErrLog1: %08x %016llx %016llx\n",
300 			be32_to_cpu(data->sourceId),
301 			be64_to_cpu(data->errorClass),
302 			be64_to_cpu(data->correlator));
303 	if (data->p7iocPlssr || data->p7iocCsr)
304 		pr_info("PhbSts:      %016llx %016llx\n",
305 			be64_to_cpu(data->p7iocPlssr),
306 			be64_to_cpu(data->p7iocCsr));
307 	if (data->lemFir)
308 		pr_info("Lem:         %016llx %016llx %016llx\n",
309 			be64_to_cpu(data->lemFir),
310 			be64_to_cpu(data->lemErrorMask),
311 			be64_to_cpu(data->lemWOF));
312 	if (data->phbErrorStatus)
313 		pr_info("PhbErr:      %016llx %016llx %016llx %016llx\n",
314 			be64_to_cpu(data->phbErrorStatus),
315 			be64_to_cpu(data->phbFirstErrorStatus),
316 			be64_to_cpu(data->phbErrorLog0),
317 			be64_to_cpu(data->phbErrorLog1));
318 	if (data->mmioErrorStatus)
319 		pr_info("OutErr:      %016llx %016llx %016llx %016llx\n",
320 			be64_to_cpu(data->mmioErrorStatus),
321 			be64_to_cpu(data->mmioFirstErrorStatus),
322 			be64_to_cpu(data->mmioErrorLog0),
323 			be64_to_cpu(data->mmioErrorLog1));
324 	if (data->dma0ErrorStatus)
325 		pr_info("InAErr:      %016llx %016llx %016llx %016llx\n",
326 			be64_to_cpu(data->dma0ErrorStatus),
327 			be64_to_cpu(data->dma0FirstErrorStatus),
328 			be64_to_cpu(data->dma0ErrorLog0),
329 			be64_to_cpu(data->dma0ErrorLog1));
330 	if (data->dma1ErrorStatus)
331 		pr_info("InBErr:      %016llx %016llx %016llx %016llx\n",
332 			be64_to_cpu(data->dma1ErrorStatus),
333 			be64_to_cpu(data->dma1FirstErrorStatus),
334 			be64_to_cpu(data->dma1ErrorLog0),
335 			be64_to_cpu(data->dma1ErrorLog1));
336 
337 	pnv_pci_dump_pest(data->pestA, data->pestB, OPAL_P7IOC_NUM_PEST_REGS);
338 }
339 
340 static void pnv_pci_dump_phb3_diag_data(struct pci_controller *hose,
341 					struct OpalIoPhbErrorCommon *common)
342 {
343 	struct OpalIoPhb3ErrorData *data;
344 
345 	data = (struct OpalIoPhb3ErrorData*)common;
346 	pr_info("PHB3 PHB#%x Diag-data (Version: %d)\n",
347 		hose->global_number, be32_to_cpu(common->version));
348 	if (data->brdgCtl)
349 		pr_info("brdgCtl:     %08x\n",
350 			be32_to_cpu(data->brdgCtl));
351 	if (data->portStatusReg || data->rootCmplxStatus ||
352 	    data->busAgentStatus)
353 		pr_info("UtlSts:      %08x %08x %08x\n",
354 			be32_to_cpu(data->portStatusReg),
355 			be32_to_cpu(data->rootCmplxStatus),
356 			be32_to_cpu(data->busAgentStatus));
357 	if (data->deviceStatus || data->slotStatus   ||
358 	    data->linkStatus   || data->devCmdStatus ||
359 	    data->devSecStatus)
360 		pr_info("RootSts:     %08x %08x %08x %08x %08x\n",
361 			be32_to_cpu(data->deviceStatus),
362 			be32_to_cpu(data->slotStatus),
363 			be32_to_cpu(data->linkStatus),
364 			be32_to_cpu(data->devCmdStatus),
365 			be32_to_cpu(data->devSecStatus));
366 	if (data->rootErrorStatus || data->uncorrErrorStatus ||
367 	    data->corrErrorStatus)
368 		pr_info("RootErrSts:  %08x %08x %08x\n",
369 			be32_to_cpu(data->rootErrorStatus),
370 			be32_to_cpu(data->uncorrErrorStatus),
371 			be32_to_cpu(data->corrErrorStatus));
372 	if (data->tlpHdr1 || data->tlpHdr2 ||
373 	    data->tlpHdr3 || data->tlpHdr4)
374 		pr_info("RootErrLog:  %08x %08x %08x %08x\n",
375 			be32_to_cpu(data->tlpHdr1),
376 			be32_to_cpu(data->tlpHdr2),
377 			be32_to_cpu(data->tlpHdr3),
378 			be32_to_cpu(data->tlpHdr4));
379 	if (data->sourceId || data->errorClass ||
380 	    data->correlator)
381 		pr_info("RootErrLog1: %08x %016llx %016llx\n",
382 			be32_to_cpu(data->sourceId),
383 			be64_to_cpu(data->errorClass),
384 			be64_to_cpu(data->correlator));
385 	if (data->nFir)
386 		pr_info("nFir:        %016llx %016llx %016llx\n",
387 			be64_to_cpu(data->nFir),
388 			be64_to_cpu(data->nFirMask),
389 			be64_to_cpu(data->nFirWOF));
390 	if (data->phbPlssr || data->phbCsr)
391 		pr_info("PhbSts:      %016llx %016llx\n",
392 			be64_to_cpu(data->phbPlssr),
393 			be64_to_cpu(data->phbCsr));
394 	if (data->lemFir)
395 		pr_info("Lem:         %016llx %016llx %016llx\n",
396 			be64_to_cpu(data->lemFir),
397 			be64_to_cpu(data->lemErrorMask),
398 			be64_to_cpu(data->lemWOF));
399 	if (data->phbErrorStatus)
400 		pr_info("PhbErr:      %016llx %016llx %016llx %016llx\n",
401 			be64_to_cpu(data->phbErrorStatus),
402 			be64_to_cpu(data->phbFirstErrorStatus),
403 			be64_to_cpu(data->phbErrorLog0),
404 			be64_to_cpu(data->phbErrorLog1));
405 	if (data->mmioErrorStatus)
406 		pr_info("OutErr:      %016llx %016llx %016llx %016llx\n",
407 			be64_to_cpu(data->mmioErrorStatus),
408 			be64_to_cpu(data->mmioFirstErrorStatus),
409 			be64_to_cpu(data->mmioErrorLog0),
410 			be64_to_cpu(data->mmioErrorLog1));
411 	if (data->dma0ErrorStatus)
412 		pr_info("InAErr:      %016llx %016llx %016llx %016llx\n",
413 			be64_to_cpu(data->dma0ErrorStatus),
414 			be64_to_cpu(data->dma0FirstErrorStatus),
415 			be64_to_cpu(data->dma0ErrorLog0),
416 			be64_to_cpu(data->dma0ErrorLog1));
417 	if (data->dma1ErrorStatus)
418 		pr_info("InBErr:      %016llx %016llx %016llx %016llx\n",
419 			be64_to_cpu(data->dma1ErrorStatus),
420 			be64_to_cpu(data->dma1FirstErrorStatus),
421 			be64_to_cpu(data->dma1ErrorLog0),
422 			be64_to_cpu(data->dma1ErrorLog1));
423 
424 	pnv_pci_dump_pest(data->pestA, data->pestB, OPAL_PHB3_NUM_PEST_REGS);
425 }
426 
427 static void pnv_pci_dump_phb4_diag_data(struct pci_controller *hose,
428 					struct OpalIoPhbErrorCommon *common)
429 {
430 	struct OpalIoPhb4ErrorData *data;
431 
432 	data = (struct OpalIoPhb4ErrorData*)common;
433 	pr_info("PHB4 PHB#%d Diag-data (Version: %d)\n",
434 		hose->global_number, be32_to_cpu(common->version));
435 	if (data->brdgCtl)
436 		pr_info("brdgCtl:    %08x\n",
437 			be32_to_cpu(data->brdgCtl));
438 	if (data->deviceStatus || data->slotStatus   ||
439 	    data->linkStatus   || data->devCmdStatus ||
440 	    data->devSecStatus)
441 		pr_info("RootSts:    %08x %08x %08x %08x %08x\n",
442 			be32_to_cpu(data->deviceStatus),
443 			be32_to_cpu(data->slotStatus),
444 			be32_to_cpu(data->linkStatus),
445 			be32_to_cpu(data->devCmdStatus),
446 			be32_to_cpu(data->devSecStatus));
447 	if (data->rootErrorStatus || data->uncorrErrorStatus ||
448 	    data->corrErrorStatus)
449 		pr_info("RootErrSts: %08x %08x %08x\n",
450 			be32_to_cpu(data->rootErrorStatus),
451 			be32_to_cpu(data->uncorrErrorStatus),
452 			be32_to_cpu(data->corrErrorStatus));
453 	if (data->tlpHdr1 || data->tlpHdr2 ||
454 	    data->tlpHdr3 || data->tlpHdr4)
455 		pr_info("RootErrLog: %08x %08x %08x %08x\n",
456 			be32_to_cpu(data->tlpHdr1),
457 			be32_to_cpu(data->tlpHdr2),
458 			be32_to_cpu(data->tlpHdr3),
459 			be32_to_cpu(data->tlpHdr4));
460 	if (data->sourceId)
461 		pr_info("sourceId:   %08x\n", be32_to_cpu(data->sourceId));
462 	if (data->nFir)
463 		pr_info("nFir:       %016llx %016llx %016llx\n",
464 			be64_to_cpu(data->nFir),
465 			be64_to_cpu(data->nFirMask),
466 			be64_to_cpu(data->nFirWOF));
467 	if (data->phbPlssr || data->phbCsr)
468 		pr_info("PhbSts:     %016llx %016llx\n",
469 			be64_to_cpu(data->phbPlssr),
470 			be64_to_cpu(data->phbCsr));
471 	if (data->lemFir)
472 		pr_info("Lem:        %016llx %016llx %016llx\n",
473 			be64_to_cpu(data->lemFir),
474 			be64_to_cpu(data->lemErrorMask),
475 			be64_to_cpu(data->lemWOF));
476 	if (data->phbErrorStatus)
477 		pr_info("PhbErr:     %016llx %016llx %016llx %016llx\n",
478 			be64_to_cpu(data->phbErrorStatus),
479 			be64_to_cpu(data->phbFirstErrorStatus),
480 			be64_to_cpu(data->phbErrorLog0),
481 			be64_to_cpu(data->phbErrorLog1));
482 	if (data->phbTxeErrorStatus)
483 		pr_info("PhbTxeErr:  %016llx %016llx %016llx %016llx\n",
484 			be64_to_cpu(data->phbTxeErrorStatus),
485 			be64_to_cpu(data->phbTxeFirstErrorStatus),
486 			be64_to_cpu(data->phbTxeErrorLog0),
487 			be64_to_cpu(data->phbTxeErrorLog1));
488 	if (data->phbRxeArbErrorStatus)
489 		pr_info("RxeArbErr:  %016llx %016llx %016llx %016llx\n",
490 			be64_to_cpu(data->phbRxeArbErrorStatus),
491 			be64_to_cpu(data->phbRxeArbFirstErrorStatus),
492 			be64_to_cpu(data->phbRxeArbErrorLog0),
493 			be64_to_cpu(data->phbRxeArbErrorLog1));
494 	if (data->phbRxeMrgErrorStatus)
495 		pr_info("RxeMrgErr:  %016llx %016llx %016llx %016llx\n",
496 			be64_to_cpu(data->phbRxeMrgErrorStatus),
497 			be64_to_cpu(data->phbRxeMrgFirstErrorStatus),
498 			be64_to_cpu(data->phbRxeMrgErrorLog0),
499 			be64_to_cpu(data->phbRxeMrgErrorLog1));
500 	if (data->phbRxeTceErrorStatus)
501 		pr_info("RxeTceErr:  %016llx %016llx %016llx %016llx\n",
502 			be64_to_cpu(data->phbRxeTceErrorStatus),
503 			be64_to_cpu(data->phbRxeTceFirstErrorStatus),
504 			be64_to_cpu(data->phbRxeTceErrorLog0),
505 			be64_to_cpu(data->phbRxeTceErrorLog1));
506 
507 	if (data->phbPblErrorStatus)
508 		pr_info("PblErr:     %016llx %016llx %016llx %016llx\n",
509 			be64_to_cpu(data->phbPblErrorStatus),
510 			be64_to_cpu(data->phbPblFirstErrorStatus),
511 			be64_to_cpu(data->phbPblErrorLog0),
512 			be64_to_cpu(data->phbPblErrorLog1));
513 	if (data->phbPcieDlpErrorStatus)
514 		pr_info("PcieDlp:    %016llx %016llx %016llx\n",
515 			be64_to_cpu(data->phbPcieDlpErrorLog1),
516 			be64_to_cpu(data->phbPcieDlpErrorLog2),
517 			be64_to_cpu(data->phbPcieDlpErrorStatus));
518 	if (data->phbRegbErrorStatus)
519 		pr_info("RegbErr:    %016llx %016llx %016llx %016llx\n",
520 			be64_to_cpu(data->phbRegbErrorStatus),
521 			be64_to_cpu(data->phbRegbFirstErrorStatus),
522 			be64_to_cpu(data->phbRegbErrorLog0),
523 			be64_to_cpu(data->phbRegbErrorLog1));
524 
525 
526 	pnv_pci_dump_pest(data->pestA, data->pestB, OPAL_PHB4_NUM_PEST_REGS);
527 }
528 
529 void pnv_pci_dump_phb_diag_data(struct pci_controller *hose,
530 				unsigned char *log_buff)
531 {
532 	struct OpalIoPhbErrorCommon *common;
533 
534 	if (!hose || !log_buff)
535 		return;
536 
537 	common = (struct OpalIoPhbErrorCommon *)log_buff;
538 	switch (be32_to_cpu(common->ioType)) {
539 	case OPAL_PHB_ERROR_DATA_TYPE_P7IOC:
540 		pnv_pci_dump_p7ioc_diag_data(hose, common);
541 		break;
542 	case OPAL_PHB_ERROR_DATA_TYPE_PHB3:
543 		pnv_pci_dump_phb3_diag_data(hose, common);
544 		break;
545 	case OPAL_PHB_ERROR_DATA_TYPE_PHB4:
546 		pnv_pci_dump_phb4_diag_data(hose, common);
547 		break;
548 	default:
549 		pr_warn("%s: Unrecognized ioType %d\n",
550 			__func__, be32_to_cpu(common->ioType));
551 	}
552 }
553 
554 static void pnv_pci_handle_eeh_config(struct pnv_phb *phb, u32 pe_no)
555 {
556 	unsigned long flags, rc;
557 	int has_diag, ret = 0;
558 
559 	spin_lock_irqsave(&phb->lock, flags);
560 
561 	/* Fetch PHB diag-data */
562 	rc = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
563 					 phb->diag_data_size);
564 	has_diag = (rc == OPAL_SUCCESS);
565 
566 	/* If PHB supports compound PE, to handle it */
567 	if (phb->unfreeze_pe) {
568 		ret = phb->unfreeze_pe(phb,
569 				       pe_no,
570 				       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
571 	} else {
572 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
573 					     pe_no,
574 					     OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
575 		if (rc) {
576 			pr_warn("%s: Failure %ld clearing frozen "
577 				"PHB#%x-PE#%x\n",
578 				__func__, rc, phb->hose->global_number,
579 				pe_no);
580 			ret = -EIO;
581 		}
582 	}
583 
584 	/*
585 	 * For now, let's only display the diag buffer when we fail to clear
586 	 * the EEH status. We'll do more sensible things later when we have
587 	 * proper EEH support. We need to make sure we don't pollute ourselves
588 	 * with the normal errors generated when probing empty slots
589 	 */
590 	if (has_diag && ret)
591 		pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
592 
593 	spin_unlock_irqrestore(&phb->lock, flags);
594 }
595 
596 static void pnv_pci_config_check_eeh(struct pci_dn *pdn)
597 {
598 	struct pnv_phb *phb = pdn->phb->private_data;
599 	u8	fstate = 0;
600 	__be16	pcierr = 0;
601 	unsigned int pe_no;
602 	s64	rc;
603 
604 	/*
605 	 * Get the PE#. During the PCI probe stage, we might not
606 	 * setup that yet. So all ER errors should be mapped to
607 	 * reserved PE.
608 	 */
609 	pe_no = pdn->pe_number;
610 	if (pe_no == IODA_INVALID_PE) {
611 		pe_no = phb->ioda.reserved_pe_idx;
612 	}
613 
614 	/*
615 	 * Fetch frozen state. If the PHB support compound PE,
616 	 * we need handle that case.
617 	 */
618 	if (phb->get_pe_state) {
619 		fstate = phb->get_pe_state(phb, pe_no);
620 	} else {
621 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
622 						pe_no,
623 						&fstate,
624 						&pcierr,
625 						NULL);
626 		if (rc) {
627 			pr_warn("%s: Failure %lld getting PHB#%x-PE#%x state\n",
628 				__func__, rc, phb->hose->global_number, pe_no);
629 			return;
630 		}
631 	}
632 
633 	pr_devel(" -> EEH check, bdfn=%04x PE#%x fstate=%x\n",
634 		 (pdn->busno << 8) | (pdn->devfn), pe_no, fstate);
635 
636 	/* Clear the frozen state if applicable */
637 	if (fstate == OPAL_EEH_STOPPED_MMIO_FREEZE ||
638 	    fstate == OPAL_EEH_STOPPED_DMA_FREEZE  ||
639 	    fstate == OPAL_EEH_STOPPED_MMIO_DMA_FREEZE) {
640 		/*
641 		 * If PHB supports compound PE, freeze it for
642 		 * consistency.
643 		 */
644 		if (phb->freeze_pe)
645 			phb->freeze_pe(phb, pe_no);
646 
647 		pnv_pci_handle_eeh_config(phb, pe_no);
648 	}
649 }
650 
651 int pnv_pci_cfg_read(struct pci_dn *pdn,
652 		     int where, int size, u32 *val)
653 {
654 	struct pnv_phb *phb = pdn->phb->private_data;
655 	u32 bdfn = (pdn->busno << 8) | pdn->devfn;
656 	s64 rc;
657 
658 	switch (size) {
659 	case 1: {
660 		u8 v8;
661 		rc = opal_pci_config_read_byte(phb->opal_id, bdfn, where, &v8);
662 		*val = (rc == OPAL_SUCCESS) ? v8 : 0xff;
663 		break;
664 	}
665 	case 2: {
666 		__be16 v16;
667 		rc = opal_pci_config_read_half_word(phb->opal_id, bdfn, where,
668 						   &v16);
669 		*val = (rc == OPAL_SUCCESS) ? be16_to_cpu(v16) : 0xffff;
670 		break;
671 	}
672 	case 4: {
673 		__be32 v32;
674 		rc = opal_pci_config_read_word(phb->opal_id, bdfn, where, &v32);
675 		*val = (rc == OPAL_SUCCESS) ? be32_to_cpu(v32) : 0xffffffff;
676 		break;
677 	}
678 	default:
679 		return PCIBIOS_FUNC_NOT_SUPPORTED;
680 	}
681 
682 	pr_devel("%s: bus: %x devfn: %x +%x/%x -> %08x\n",
683 		 __func__, pdn->busno, pdn->devfn, where, size, *val);
684 	return PCIBIOS_SUCCESSFUL;
685 }
686 
687 int pnv_pci_cfg_write(struct pci_dn *pdn,
688 		      int where, int size, u32 val)
689 {
690 	struct pnv_phb *phb = pdn->phb->private_data;
691 	u32 bdfn = (pdn->busno << 8) | pdn->devfn;
692 
693 	pr_devel("%s: bus: %x devfn: %x +%x/%x -> %08x\n",
694 		 __func__, pdn->busno, pdn->devfn, where, size, val);
695 	switch (size) {
696 	case 1:
697 		opal_pci_config_write_byte(phb->opal_id, bdfn, where, val);
698 		break;
699 	case 2:
700 		opal_pci_config_write_half_word(phb->opal_id, bdfn, where, val);
701 		break;
702 	case 4:
703 		opal_pci_config_write_word(phb->opal_id, bdfn, where, val);
704 		break;
705 	default:
706 		return PCIBIOS_FUNC_NOT_SUPPORTED;
707 	}
708 
709 	return PCIBIOS_SUCCESSFUL;
710 }
711 
712 #if CONFIG_EEH
713 static bool pnv_pci_cfg_check(struct pci_dn *pdn)
714 {
715 	struct eeh_dev *edev = NULL;
716 	struct pnv_phb *phb = pdn->phb->private_data;
717 
718 	/* EEH not enabled ? */
719 	if (!(phb->flags & PNV_PHB_FLAG_EEH))
720 		return true;
721 
722 	/* PE reset or device removed ? */
723 	edev = pdn->edev;
724 	if (edev) {
725 		if (edev->pe &&
726 		    (edev->pe->state & EEH_PE_CFG_BLOCKED))
727 			return false;
728 
729 		if (edev->mode & EEH_DEV_REMOVED)
730 			return false;
731 	}
732 
733 	return true;
734 }
735 #else
736 static inline pnv_pci_cfg_check(struct pci_dn *pdn)
737 {
738 	return true;
739 }
740 #endif /* CONFIG_EEH */
741 
742 static int pnv_pci_read_config(struct pci_bus *bus,
743 			       unsigned int devfn,
744 			       int where, int size, u32 *val)
745 {
746 	struct pci_dn *pdn;
747 	struct pnv_phb *phb;
748 	int ret;
749 
750 	*val = 0xFFFFFFFF;
751 	pdn = pci_get_pdn_by_devfn(bus, devfn);
752 	if (!pdn)
753 		return PCIBIOS_DEVICE_NOT_FOUND;
754 
755 	if (!pnv_pci_cfg_check(pdn))
756 		return PCIBIOS_DEVICE_NOT_FOUND;
757 
758 	ret = pnv_pci_cfg_read(pdn, where, size, val);
759 	phb = pdn->phb->private_data;
760 	if (phb->flags & PNV_PHB_FLAG_EEH && pdn->edev) {
761 		if (*val == EEH_IO_ERROR_VALUE(size) &&
762 		    eeh_dev_check_failure(pdn->edev))
763                         return PCIBIOS_DEVICE_NOT_FOUND;
764 	} else {
765 		pnv_pci_config_check_eeh(pdn);
766 	}
767 
768 	return ret;
769 }
770 
771 static int pnv_pci_write_config(struct pci_bus *bus,
772 				unsigned int devfn,
773 				int where, int size, u32 val)
774 {
775 	struct pci_dn *pdn;
776 	struct pnv_phb *phb;
777 	int ret;
778 
779 	pdn = pci_get_pdn_by_devfn(bus, devfn);
780 	if (!pdn)
781 		return PCIBIOS_DEVICE_NOT_FOUND;
782 
783 	if (!pnv_pci_cfg_check(pdn))
784 		return PCIBIOS_DEVICE_NOT_FOUND;
785 
786 	ret = pnv_pci_cfg_write(pdn, where, size, val);
787 	phb = pdn->phb->private_data;
788 	if (!(phb->flags & PNV_PHB_FLAG_EEH))
789 		pnv_pci_config_check_eeh(pdn);
790 
791 	return ret;
792 }
793 
794 struct pci_ops pnv_pci_ops = {
795 	.read  = pnv_pci_read_config,
796 	.write = pnv_pci_write_config,
797 };
798 
799 struct iommu_table *pnv_pci_table_alloc(int nid)
800 {
801 	struct iommu_table *tbl;
802 
803 	tbl = kzalloc_node(sizeof(struct iommu_table), GFP_KERNEL, nid);
804 	if (!tbl)
805 		return NULL;
806 
807 	INIT_LIST_HEAD_RCU(&tbl->it_group_list);
808 	kref_init(&tbl->it_kref);
809 
810 	return tbl;
811 }
812 
813 void pnv_pci_dma_dev_setup(struct pci_dev *pdev)
814 {
815 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
816 	struct pnv_phb *phb = hose->private_data;
817 #ifdef CONFIG_PCI_IOV
818 	struct pnv_ioda_pe *pe;
819 	struct pci_dn *pdn;
820 
821 	/* Fix the VF pdn PE number */
822 	if (pdev->is_virtfn) {
823 		pdn = pci_get_pdn(pdev);
824 		WARN_ON(pdn->pe_number != IODA_INVALID_PE);
825 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
826 			if (pe->rid == ((pdev->bus->number << 8) |
827 			    (pdev->devfn & 0xff))) {
828 				pdn->pe_number = pe->pe_number;
829 				pe->pdev = pdev;
830 				break;
831 			}
832 		}
833 	}
834 #endif /* CONFIG_PCI_IOV */
835 
836 	if (phb && phb->dma_dev_setup)
837 		phb->dma_dev_setup(phb, pdev);
838 }
839 
840 void pnv_pci_dma_bus_setup(struct pci_bus *bus)
841 {
842 	struct pci_controller *hose = bus->sysdata;
843 	struct pnv_phb *phb = hose->private_data;
844 	struct pnv_ioda_pe *pe;
845 
846 	list_for_each_entry(pe, &phb->ioda.pe_list, list) {
847 		if (!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)))
848 			continue;
849 
850 		if (!pe->pbus)
851 			continue;
852 
853 		if (bus->number == ((pe->rid >> 8) & 0xFF)) {
854 			pe->pbus = bus;
855 			break;
856 		}
857 	}
858 }
859 
860 struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev)
861 {
862 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
863 
864 	return of_node_get(hose->dn);
865 }
866 EXPORT_SYMBOL(pnv_pci_get_phb_node);
867 
868 int pnv_pci_set_tunnel_bar(struct pci_dev *dev, u64 addr, int enable)
869 {
870 	__be64 val;
871 	struct pci_controller *hose;
872 	struct pnv_phb *phb;
873 	u64 tunnel_bar;
874 	int rc;
875 
876 	if (!opal_check_token(OPAL_PCI_GET_PBCQ_TUNNEL_BAR))
877 		return -ENXIO;
878 	if (!opal_check_token(OPAL_PCI_SET_PBCQ_TUNNEL_BAR))
879 		return -ENXIO;
880 
881 	hose = pci_bus_to_host(dev->bus);
882 	phb = hose->private_data;
883 
884 	mutex_lock(&tunnel_mutex);
885 	rc = opal_pci_get_pbcq_tunnel_bar(phb->opal_id, &val);
886 	if (rc != OPAL_SUCCESS) {
887 		rc = -EIO;
888 		goto out;
889 	}
890 	tunnel_bar = be64_to_cpu(val);
891 	if (enable) {
892 		/*
893 		* Only one device per PHB can use atomics.
894 		* Our policy is first-come, first-served.
895 		*/
896 		if (tunnel_bar) {
897 			if (tunnel_bar != addr)
898 				rc = -EBUSY;
899 			else
900 				rc = 0;	/* Setting same address twice is ok */
901 			goto out;
902 		}
903 	} else {
904 		/*
905 		* The device that owns atomics and wants to release
906 		* them must pass the same address with enable == 0.
907 		*/
908 		if (tunnel_bar != addr) {
909 			rc = -EPERM;
910 			goto out;
911 		}
912 		addr = 0x0ULL;
913 	}
914 	rc = opal_pci_set_pbcq_tunnel_bar(phb->opal_id, addr);
915 	rc = opal_error_code(rc);
916 out:
917 	mutex_unlock(&tunnel_mutex);
918 	return rc;
919 }
920 EXPORT_SYMBOL_GPL(pnv_pci_set_tunnel_bar);
921 
922 void pnv_pci_shutdown(void)
923 {
924 	struct pci_controller *hose;
925 
926 	list_for_each_entry(hose, &hose_list, list_node)
927 		if (hose->controller_ops.shutdown)
928 			hose->controller_ops.shutdown(hose);
929 }
930 
931 /* Fixup wrong class code in p7ioc and p8 root complex */
932 static void pnv_p7ioc_rc_quirk(struct pci_dev *dev)
933 {
934 	dev->class = PCI_CLASS_BRIDGE_PCI << 8;
935 }
936 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_IBM, 0x3b9, pnv_p7ioc_rc_quirk);
937 
938 void __init pnv_pci_init(void)
939 {
940 	struct device_node *np;
941 
942 	pci_add_flags(PCI_CAN_SKIP_ISA_ALIGN);
943 
944 	/* If we don't have OPAL, eg. in sim, just skip PCI probe */
945 	if (!firmware_has_feature(FW_FEATURE_OPAL))
946 		return;
947 
948 #ifdef CONFIG_PCIEPORTBUS
949 	/*
950 	 * On PowerNV PCIe devices are (currently) managed in cooperation
951 	 * with firmware. This isn't *strictly* required, but there's enough
952 	 * assumptions baked into both firmware and the platform code that
953 	 * it's unwise to allow the portbus services to be used.
954 	 *
955 	 * We need to fix this eventually, but for now set this flag to disable
956 	 * the portbus driver. The AER service isn't required since that AER
957 	 * events are handled via EEH. The pciehp hotplug driver can't work
958 	 * without kernel changes (and portbus binding breaks pnv_php). The
959 	 * other services also require some thinking about how we're going
960 	 * to integrate them.
961 	 */
962 	pcie_ports_disabled = true;
963 #endif
964 
965 	/* Look for IODA IO-Hubs. */
966 	for_each_compatible_node(np, NULL, "ibm,ioda-hub") {
967 		pnv_pci_init_ioda_hub(np);
968 	}
969 
970 	/* Look for ioda2 built-in PHB3's */
971 	for_each_compatible_node(np, NULL, "ibm,ioda2-phb")
972 		pnv_pci_init_ioda2_phb(np);
973 
974 	/* Look for ioda3 built-in PHB4's, we treat them as IODA2 */
975 	for_each_compatible_node(np, NULL, "ibm,ioda3-phb")
976 		pnv_pci_init_ioda2_phb(np);
977 
978 	/* Look for NPU PHBs */
979 	for_each_compatible_node(np, NULL, "ibm,ioda2-npu-phb")
980 		pnv_pci_init_npu_phb(np);
981 
982 	/*
983 	 * Look for NPU2 PHBs which we treat mostly as NPU PHBs with
984 	 * the exception of TCE kill which requires an OPAL call.
985 	 */
986 	for_each_compatible_node(np, NULL, "ibm,ioda2-npu2-phb")
987 		pnv_pci_init_npu_phb(np);
988 
989 	/* Look for NPU2 OpenCAPI PHBs */
990 	for_each_compatible_node(np, NULL, "ibm,ioda2-npu2-opencapi-phb")
991 		pnv_pci_init_npu2_opencapi_phb(np);
992 
993 	/* Configure IOMMU DMA hooks */
994 	set_pci_dma_ops(&dma_iommu_ops);
995 }
996 
997 static int pnv_tce_iommu_bus_notifier(struct notifier_block *nb,
998 		unsigned long action, void *data)
999 {
1000 	struct device *dev = data;
1001 	struct pci_dev *pdev;
1002 	struct pci_dn *pdn;
1003 	struct pnv_ioda_pe *pe;
1004 	struct pci_controller *hose;
1005 	struct pnv_phb *phb;
1006 
1007 	switch (action) {
1008 	case BUS_NOTIFY_ADD_DEVICE:
1009 		pdev = to_pci_dev(dev);
1010 		pdn = pci_get_pdn(pdev);
1011 		hose = pci_bus_to_host(pdev->bus);
1012 		phb = hose->private_data;
1013 
1014 		WARN_ON_ONCE(!phb);
1015 		if (!pdn || pdn->pe_number == IODA_INVALID_PE || !phb)
1016 			return 0;
1017 
1018 		pe = &phb->ioda.pe_array[pdn->pe_number];
1019 		if (!pe->table_group.group)
1020 			return 0;
1021 		iommu_add_device(&pe->table_group, dev);
1022 		return 0;
1023 	case BUS_NOTIFY_DEL_DEVICE:
1024 		iommu_del_device(dev);
1025 		return 0;
1026 	default:
1027 		return 0;
1028 	}
1029 }
1030 
1031 static struct notifier_block pnv_tce_iommu_bus_nb = {
1032 	.notifier_call = pnv_tce_iommu_bus_notifier,
1033 };
1034 
1035 static int __init pnv_tce_iommu_bus_notifier_init(void)
1036 {
1037 	bus_register_notifier(&pci_bus_type, &pnv_tce_iommu_bus_nb);
1038 	return 0;
1039 }
1040 machine_subsys_initcall_sync(powernv, pnv_tce_iommu_bus_notifier_init);
1041