1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/kernel.h>
4 #include <linux/ioport.h>
5 #include <linux/bitmap.h>
6 #include <linux/pci.h>
7 
8 #include <asm/opal.h>
9 
10 #include "pci.h"
11 
12 /* for pci_dev_is_added() */
13 #include "../../../../drivers/pci/pci.h"
14 
15 /*
16  * The majority of the complexity in supporting SR-IOV on PowerNV comes from
17  * the need to put the MMIO space for each VF into a separate PE. Internally
18  * the PHB maps MMIO addresses to a specific PE using the "Memory BAR Table".
19  * The MBT historically only applied to the 64bit MMIO window of the PHB
20  * so it's common to see it referred to as the "M64BT".
21  *
22  * An MBT entry stores the mapped range as an <base>,<mask> pair. This forces
23  * the address range that we want to map to be power-of-two sized and aligned.
24  * For conventional PCI devices this isn't really an issue since PCI device BARs
25  * have the same requirement.
26  *
27  * For a SR-IOV BAR things are a little more awkward since size and alignment
28  * are not coupled. The alignment is set based on the the per-VF BAR size, but
29  * the total BAR area is: number-of-vfs * per-vf-size. The number of VFs
30  * isn't necessarily a power of two, so neither is the total size. To fix that
31  * we need to finesse (read: hack) the Linux BAR allocator so that it will
32  * allocate the SR-IOV BARs in a way that lets us map them using the MBT.
33  *
34  * The changes to size and alignment that we need to do depend on the "mode"
35  * of MBT entry that we use. We only support SR-IOV on PHB3 (IODA2) and above,
36  * so as a baseline we can assume that we have the following BAR modes
37  * available:
38  *
39  *   NB: $PE_COUNT is the number of PEs that the PHB supports.
40  *
41  * a) A segmented BAR that splits the mapped range into $PE_COUNT equally sized
42  *    segments. The n'th segment is mapped to the n'th PE.
43  * b) An un-segmented BAR that maps the whole address range to a specific PE.
44  *
45  *
46  * We prefer to use mode a) since it only requires one MBT entry per SR-IOV BAR
47  * For comparison b) requires one entry per-VF per-BAR, or:
48  * (num-vfs * num-sriov-bars) in total. To use a) we need the size of each segment
49  * to equal the size of the per-VF BAR area. So:
50  *
51  *	new_size = per-vf-size * number-of-PEs
52  *
53  * The alignment for the SR-IOV BAR also needs to be changed from per-vf-size
54  * to "new_size", calculated above. Implementing this is a convoluted process
55  * which requires several hooks in the PCI core:
56  *
57  * 1. In pcibios_add_device() we call pnv_pci_ioda_fixup_iov().
58  *
59  *    At this point the device has been probed and the device's BARs are sized,
60  *    but no resource allocations have been done. The SR-IOV BARs are sized
61  *    based on the maximum number of VFs supported by the device and we need
62  *    to increase that to new_size.
63  *
64  * 2. Later, when Linux actually assigns resources it tries to make the resource
65  *    allocations for each PCI bus as compact as possible. As a part of that it
66  *    sorts the BARs on a bus by their required alignment, which is calculated
67  *    using pci_resource_alignment().
68  *
69  *    For IOV resources this goes:
70  *    pci_resource_alignment()
71  *        pci_sriov_resource_alignment()
72  *            pcibios_sriov_resource_alignment()
73  *                pnv_pci_iov_resource_alignment()
74  *
75  *    Our hook overrides the default alignment, equal to the per-vf-size, with
76  *    new_size computed above.
77  *
78  * 3. When userspace enables VFs for a device:
79  *
80  *    sriov_enable()
81  *       pcibios_sriov_enable()
82  *           pnv_pcibios_sriov_enable()
83  *
84  *    This is where we actually allocate PE numbers for each VF and setup the
85  *    MBT mapping for each SR-IOV BAR. In steps 1) and 2) we setup an "arena"
86  *    where each MBT segment is equal in size to the VF BAR so we can shift
87  *    around the actual SR-IOV BAR location within this arena. We need this
88  *    ability because the PE space is shared by all devices on the same PHB.
89  *    When using mode a) described above segment 0 in maps to PE#0 which might
90  *    be already being used by another device on the PHB.
91  *
92  *    As a result we need allocate a contigious range of PE numbers, then shift
93  *    the address programmed into the SR-IOV BAR of the PF so that the address
94  *    of VF0 matches up with the segment corresponding to the first allocated
95  *    PE number. This is handled in pnv_pci_vf_resource_shift().
96  *
97  *    Once all that is done we return to the PCI core which then enables VFs,
98  *    scans them and creates pci_devs for each. The init process for a VF is
99  *    largely the same as a normal device, but the VF is inserted into the IODA
100  *    PE that we allocated for it rather than the PE associated with the bus.
101  *
102  * 4. When userspace disables VFs we unwind the above in
103  *    pnv_pcibios_sriov_disable(). Fortunately this is relatively simple since
104  *    we don't need to validate anything, just tear down the mappings and
105  *    move SR-IOV resource back to its "proper" location.
106  *
107  * That's how mode a) works. In theory mode b) (single PE mapping) is less work
108  * since we can map each individual VF with a separate BAR. However, there's a
109  * few limitations:
110  *
111  * 1) For IODA2 mode b) has a minimum alignment requirement of 32MB. This makes
112  *    it only usable for devices with very large per-VF BARs. Such devices are
113  *    similar to Big Foot. They definitely exist, but I've never seen one.
114  *
115  * 2) The number of MBT entries that we have is limited. PHB3 and PHB4 only
116  *    16 total and some are needed for. Most SR-IOV capable network cards can support
117  *    more than 16 VFs on each port.
118  *
119  * We use b) when using a) would use more than 1/4 of the entire 64 bit MMIO
120  * window of the PHB.
121  *
122  *
123  *
124  * PHB4 (IODA3) added a few new features that would be useful for SR-IOV. It
125  * allowed the MBT to map 32bit MMIO space in addition to 64bit which allows
126  * us to support SR-IOV BARs in the 32bit MMIO window. This is useful since
127  * the Linux BAR allocation will place any BAR marked as non-prefetchable into
128  * the non-prefetchable bridge window, which is 32bit only. It also added two
129  * new modes:
130  *
131  * c) A segmented BAR similar to a), but each segment can be individually
132  *    mapped to any PE. This is matches how the 32bit MMIO window worked on
133  *    IODA1&2.
134  *
135  * d) A segmented BAR with 8, 64, or 128 segments. This works similarly to a),
136  *    but with fewer segments and configurable base PE.
137  *
138  *    i.e. The n'th segment maps to the (n + base)'th PE.
139  *
140  *    The base PE is also required to be a multiple of the window size.
141  *
142  * Unfortunately, the OPAL API doesn't currently (as of skiboot v6.6) allow us
143  * to exploit any of the IODA3 features.
144  */
145 
146 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
147 {
148 	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
149 	const resource_size_t gate = phb->ioda.m64_segsize >> 2;
150 	struct resource *res;
151 	int i;
152 	resource_size_t size, total_vf_bar_sz;
153 	struct pnv_iov_data *iov;
154 	int mul, total_vfs;
155 
156 	iov = kzalloc(sizeof(*iov), GFP_KERNEL);
157 	if (!iov)
158 		goto truncate_iov;
159 	pdev->dev.archdata.iov_data = iov;
160 
161 	total_vfs = pci_sriov_get_totalvfs(pdev);
162 	mul = phb->ioda.total_pe_num;
163 	total_vf_bar_sz = 0;
164 
165 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
166 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
167 		if (!res->flags || res->parent)
168 			continue;
169 		if (!pnv_pci_is_m64_flags(res->flags)) {
170 			dev_warn(&pdev->dev, "Don't support SR-IOV with non M64 VF BAR%d: %pR. \n",
171 				 i, res);
172 			goto truncate_iov;
173 		}
174 
175 		total_vf_bar_sz += pci_iov_resource_size(pdev,
176 				i + PCI_IOV_RESOURCES);
177 
178 		/*
179 		 * If bigger than quarter of M64 segment size, just round up
180 		 * power of two.
181 		 *
182 		 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
183 		 * with other devices, IOV BAR size is expanded to be
184 		 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
185 		 * segment size , the expanded size would equal to half of the
186 		 * whole M64 space size, which will exhaust the M64 Space and
187 		 * limit the system flexibility.  This is a design decision to
188 		 * set the boundary to quarter of the M64 segment size.
189 		 */
190 		if (total_vf_bar_sz > gate) {
191 			mul = roundup_pow_of_two(total_vfs);
192 			dev_info(&pdev->dev,
193 				"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
194 				total_vf_bar_sz, gate, mul);
195 			iov->m64_single_mode = true;
196 			break;
197 		}
198 	}
199 
200 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
201 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
202 		if (!res->flags || res->parent)
203 			continue;
204 
205 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
206 		/*
207 		 * On PHB3, the minimum size alignment of M64 BAR in single
208 		 * mode is 32MB.
209 		 */
210 		if (iov->m64_single_mode && (size < SZ_32M))
211 			goto truncate_iov;
212 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
213 		res->end = res->start + size * mul - 1;
214 		dev_dbg(&pdev->dev, "                       %pR\n", res);
215 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
216 			 i, res, mul);
217 	}
218 	iov->vfs_expanded = mul;
219 
220 	return;
221 
222 truncate_iov:
223 	/* To save MMIO space, IOV BAR is truncated. */
224 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
225 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
226 		res->flags = 0;
227 		res->end = res->start - 1;
228 	}
229 
230 	pdev->dev.archdata.iov_data = NULL;
231 	kfree(iov);
232 }
233 
234 void pnv_pci_ioda_fixup_iov(struct pci_dev *pdev)
235 {
236 	if (WARN_ON(pci_dev_is_added(pdev)))
237 		return;
238 
239 	if (pdev->is_virtfn) {
240 		struct pnv_ioda_pe *pe = pnv_ioda_get_pe(pdev);
241 
242 		/*
243 		 * VF PEs are single-device PEs so their pdev pointer needs to
244 		 * be set. The pdev doesn't exist when the PE is allocated (in
245 		 * (pcibios_sriov_enable()) so we fix it up here.
246 		 */
247 		pe->pdev = pdev;
248 		WARN_ON(!(pe->flags & PNV_IODA_PE_VF));
249 	} else if (pdev->is_physfn) {
250 		/*
251 		 * For PFs adjust their allocated IOV resources to match what
252 		 * the PHB can support using it's M64 BAR table.
253 		 */
254 		pnv_pci_ioda_fixup_iov_resources(pdev);
255 	}
256 }
257 
258 resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
259 						      int resno)
260 {
261 	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
262 	struct pnv_iov_data *iov = pnv_iov_get(pdev);
263 	resource_size_t align;
264 
265 	/*
266 	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
267 	 * SR-IOV. While from hardware perspective, the range mapped by M64
268 	 * BAR should be size aligned.
269 	 *
270 	 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
271 	 * powernv-specific hardware restriction is gone. But if just use the
272 	 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
273 	 * in one segment of M64 #15, which introduces the PE conflict between
274 	 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
275 	 * m64_segsize.
276 	 *
277 	 * This function returns the total IOV BAR size if M64 BAR is in
278 	 * Shared PE mode or just VF BAR size if not.
279 	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
280 	 * M64 segment size if IOV BAR size is less.
281 	 */
282 	align = pci_iov_resource_size(pdev, resno);
283 
284 	/*
285 	 * iov can be null if we have an SR-IOV device with IOV BAR that can't
286 	 * be placed in the m64 space (i.e. The BAR is 32bit or non-prefetch).
287 	 * In that case we don't allow VFs to be enabled so just return the
288 	 * default alignment.
289 	 */
290 	if (!iov)
291 		return align;
292 	if (!iov->vfs_expanded)
293 		return align;
294 	if (iov->m64_single_mode)
295 		return max(align, (resource_size_t)phb->ioda.m64_segsize);
296 
297 	return iov->vfs_expanded * align;
298 }
299 
300 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
301 {
302 	struct pnv_iov_data   *iov;
303 	struct pnv_phb        *phb;
304 	int                    i, j;
305 	int                    m64_bars;
306 
307 	phb = pci_bus_to_pnvhb(pdev->bus);
308 	iov = pnv_iov_get(pdev);
309 
310 	if (iov->m64_single_mode)
311 		m64_bars = num_vfs;
312 	else
313 		m64_bars = 1;
314 
315 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
316 		for (j = 0; j < m64_bars; j++) {
317 			if (iov->m64_map[j][i] == IODA_INVALID_M64)
318 				continue;
319 			opal_pci_phb_mmio_enable(phb->opal_id,
320 				OPAL_M64_WINDOW_TYPE, iov->m64_map[j][i], 0);
321 			clear_bit(iov->m64_map[j][i], &phb->ioda.m64_bar_alloc);
322 			iov->m64_map[j][i] = IODA_INVALID_M64;
323 		}
324 
325 	kfree(iov->m64_map);
326 	return 0;
327 }
328 
329 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
330 {
331 	struct pnv_iov_data   *iov;
332 	struct pnv_phb        *phb;
333 	unsigned int           win;
334 	struct resource       *res;
335 	int                    i, j;
336 	int64_t                rc;
337 	int                    total_vfs;
338 	resource_size_t        size, start;
339 	int                    pe_num;
340 	int                    m64_bars;
341 
342 	phb = pci_bus_to_pnvhb(pdev->bus);
343 	iov = pnv_iov_get(pdev);
344 	total_vfs = pci_sriov_get_totalvfs(pdev);
345 
346 	if (iov->m64_single_mode)
347 		m64_bars = num_vfs;
348 	else
349 		m64_bars = 1;
350 
351 	iov->m64_map = kmalloc_array(m64_bars,
352 				     sizeof(*iov->m64_map),
353 				     GFP_KERNEL);
354 	if (!iov->m64_map)
355 		return -ENOMEM;
356 	/* Initialize the m64_map to IODA_INVALID_M64 */
357 	for (i = 0; i < m64_bars ; i++)
358 		for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
359 			iov->m64_map[i][j] = IODA_INVALID_M64;
360 
361 
362 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
363 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
364 		if (!res->flags || !res->parent)
365 			continue;
366 
367 		for (j = 0; j < m64_bars; j++) {
368 			do {
369 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
370 						phb->ioda.m64_bar_idx + 1, 0);
371 
372 				if (win >= phb->ioda.m64_bar_idx + 1)
373 					goto m64_failed;
374 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
375 
376 			iov->m64_map[j][i] = win;
377 
378 			if (iov->m64_single_mode) {
379 				size = pci_iov_resource_size(pdev,
380 							PCI_IOV_RESOURCES + i);
381 				start = res->start + size * j;
382 			} else {
383 				size = resource_size(res);
384 				start = res->start;
385 			}
386 
387 			/* Map the M64 here */
388 			if (iov->m64_single_mode) {
389 				pe_num = iov->pe_num_map[j];
390 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
391 						pe_num, OPAL_M64_WINDOW_TYPE,
392 						iov->m64_map[j][i], 0);
393 			}
394 
395 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
396 						 OPAL_M64_WINDOW_TYPE,
397 						 iov->m64_map[j][i],
398 						 start,
399 						 0, /* unused */
400 						 size);
401 
402 
403 			if (rc != OPAL_SUCCESS) {
404 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
405 					win, rc);
406 				goto m64_failed;
407 			}
408 
409 			if (iov->m64_single_mode)
410 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
411 				     OPAL_M64_WINDOW_TYPE, iov->m64_map[j][i], 2);
412 			else
413 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
414 				     OPAL_M64_WINDOW_TYPE, iov->m64_map[j][i], 1);
415 
416 			if (rc != OPAL_SUCCESS) {
417 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
418 					win, rc);
419 				goto m64_failed;
420 			}
421 		}
422 	}
423 	return 0;
424 
425 m64_failed:
426 	pnv_pci_vf_release_m64(pdev, num_vfs);
427 	return -EBUSY;
428 }
429 
430 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
431 {
432 	struct pnv_phb        *phb;
433 	struct pnv_ioda_pe    *pe, *pe_n;
434 
435 	phb = pci_bus_to_pnvhb(pdev->bus);
436 
437 	if (!pdev->is_physfn)
438 		return;
439 
440 	/* FIXME: Use pnv_ioda_release_pe()? */
441 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
442 		if (pe->parent_dev != pdev)
443 			continue;
444 
445 		pnv_pci_ioda2_release_pe_dma(pe);
446 
447 		/* Remove from list */
448 		mutex_lock(&phb->ioda.pe_list_mutex);
449 		list_del(&pe->list);
450 		mutex_unlock(&phb->ioda.pe_list_mutex);
451 
452 		pnv_ioda_deconfigure_pe(phb, pe);
453 
454 		pnv_ioda_free_pe(pe);
455 	}
456 }
457 
458 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
459 {
460 	struct resource *res, res2;
461 	struct pnv_iov_data *iov;
462 	resource_size_t size;
463 	u16 num_vfs;
464 	int i;
465 
466 	if (!dev->is_physfn)
467 		return -EINVAL;
468 	iov = pnv_iov_get(dev);
469 
470 	/*
471 	 * "offset" is in VFs.  The M64 windows are sized so that when they
472 	 * are segmented, each segment is the same size as the IOV BAR.
473 	 * Each segment is in a separate PE, and the high order bits of the
474 	 * address are the PE number.  Therefore, each VF's BAR is in a
475 	 * separate PE, and changing the IOV BAR start address changes the
476 	 * range of PEs the VFs are in.
477 	 */
478 	num_vfs = iov->num_vfs;
479 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
480 		res = &dev->resource[i + PCI_IOV_RESOURCES];
481 		if (!res->flags || !res->parent)
482 			continue;
483 
484 		/*
485 		 * The actual IOV BAR range is determined by the start address
486 		 * and the actual size for num_vfs VFs BAR.  This check is to
487 		 * make sure that after shifting, the range will not overlap
488 		 * with another device.
489 		 */
490 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
491 		res2.flags = res->flags;
492 		res2.start = res->start + (size * offset);
493 		res2.end = res2.start + (size * num_vfs) - 1;
494 
495 		if (res2.end > res->end) {
496 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
497 				i, &res2, res, num_vfs, offset);
498 			return -EBUSY;
499 		}
500 	}
501 
502 	/*
503 	 * Since M64 BAR shares segments among all possible 256 PEs,
504 	 * we have to shift the beginning of PF IOV BAR to make it start from
505 	 * the segment which belongs to the PE number assigned to the first VF.
506 	 * This creates a "hole" in the /proc/iomem which could be used for
507 	 * allocating other resources so we reserve this area below and
508 	 * release when IOV is released.
509 	 */
510 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
511 		res = &dev->resource[i + PCI_IOV_RESOURCES];
512 		if (!res->flags || !res->parent)
513 			continue;
514 
515 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
516 		res2 = *res;
517 		res->start += size * offset;
518 
519 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
520 			 i, &res2, res, (offset > 0) ? "En" : "Dis",
521 			 num_vfs, offset);
522 
523 		if (offset < 0) {
524 			devm_release_resource(&dev->dev, &iov->holes[i]);
525 			memset(&iov->holes[i], 0, sizeof(iov->holes[i]));
526 		}
527 
528 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
529 
530 		if (offset > 0) {
531 			iov->holes[i].start = res2.start;
532 			iov->holes[i].end = res2.start + size * offset - 1;
533 			iov->holes[i].flags = IORESOURCE_BUS;
534 			iov->holes[i].name = "pnv_iov_reserved";
535 			devm_request_resource(&dev->dev, res->parent,
536 					&iov->holes[i]);
537 		}
538 	}
539 	return 0;
540 }
541 
542 static void pnv_pci_sriov_disable(struct pci_dev *pdev)
543 {
544 	struct pnv_phb        *phb;
545 	struct pnv_ioda_pe    *pe;
546 	struct pnv_iov_data   *iov;
547 	u16                    num_vfs, i;
548 
549 	phb = pci_bus_to_pnvhb(pdev->bus);
550 	iov = pnv_iov_get(pdev);
551 	num_vfs = iov->num_vfs;
552 
553 	/* Release VF PEs */
554 	pnv_ioda_release_vf_PE(pdev);
555 
556 	if (phb->type == PNV_PHB_IODA2) {
557 		if (!iov->m64_single_mode)
558 			pnv_pci_vf_resource_shift(pdev, -*iov->pe_num_map);
559 
560 		/* Release M64 windows */
561 		pnv_pci_vf_release_m64(pdev, num_vfs);
562 
563 		/* Release PE numbers */
564 		if (iov->m64_single_mode) {
565 			for (i = 0; i < num_vfs; i++) {
566 				if (iov->pe_num_map[i] == IODA_INVALID_PE)
567 					continue;
568 
569 				pe = &phb->ioda.pe_array[iov->pe_num_map[i]];
570 				pnv_ioda_free_pe(pe);
571 			}
572 		} else
573 			bitmap_clear(phb->ioda.pe_alloc, *iov->pe_num_map, num_vfs);
574 		/* Releasing pe_num_map */
575 		kfree(iov->pe_num_map);
576 	}
577 }
578 
579 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
580 {
581 	struct pnv_phb        *phb;
582 	struct pnv_ioda_pe    *pe;
583 	int                    pe_num;
584 	u16                    vf_index;
585 	struct pnv_iov_data   *iov;
586 	struct pci_dn         *pdn;
587 
588 	if (!pdev->is_physfn)
589 		return;
590 
591 	phb = pci_bus_to_pnvhb(pdev->bus);
592 	pdn = pci_get_pdn(pdev);
593 	iov = pnv_iov_get(pdev);
594 
595 	/* Reserve PE for each VF */
596 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
597 		int vf_devfn = pci_iov_virtfn_devfn(pdev, vf_index);
598 		int vf_bus = pci_iov_virtfn_bus(pdev, vf_index);
599 		struct pci_dn *vf_pdn;
600 
601 		if (iov->m64_single_mode)
602 			pe_num = iov->pe_num_map[vf_index];
603 		else
604 			pe_num = *iov->pe_num_map + vf_index;
605 
606 		pe = &phb->ioda.pe_array[pe_num];
607 		pe->pe_number = pe_num;
608 		pe->phb = phb;
609 		pe->flags = PNV_IODA_PE_VF;
610 		pe->pbus = NULL;
611 		pe->parent_dev = pdev;
612 		pe->mve_number = -1;
613 		pe->rid = (vf_bus << 8) | vf_devfn;
614 
615 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
616 			pci_domain_nr(pdev->bus), pdev->bus->number,
617 			PCI_SLOT(vf_devfn), PCI_FUNC(vf_devfn), pe_num);
618 
619 		if (pnv_ioda_configure_pe(phb, pe)) {
620 			/* XXX What do we do here ? */
621 			pnv_ioda_free_pe(pe);
622 			pe->pdev = NULL;
623 			continue;
624 		}
625 
626 		/* Put PE to the list */
627 		mutex_lock(&phb->ioda.pe_list_mutex);
628 		list_add_tail(&pe->list, &phb->ioda.pe_list);
629 		mutex_unlock(&phb->ioda.pe_list_mutex);
630 
631 		/* associate this pe to it's pdn */
632 		list_for_each_entry(vf_pdn, &pdn->parent->child_list, list) {
633 			if (vf_pdn->busno == vf_bus &&
634 			    vf_pdn->devfn == vf_devfn) {
635 				vf_pdn->pe_number = pe_num;
636 				break;
637 			}
638 		}
639 
640 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
641 	}
642 }
643 
644 static int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
645 {
646 	struct pnv_iov_data   *iov;
647 	struct pnv_phb        *phb;
648 	struct pnv_ioda_pe    *pe;
649 	int                    ret;
650 	u16                    i;
651 
652 	phb = pci_bus_to_pnvhb(pdev->bus);
653 	iov = pnv_iov_get(pdev);
654 
655 	if (phb->type == PNV_PHB_IODA2) {
656 		if (!iov->vfs_expanded) {
657 			dev_info(&pdev->dev,
658 				 "don't support this SRIOV device with non 64bit-prefetchable IOV BAR\n");
659 			return -ENOSPC;
660 		}
661 
662 		/*
663 		 * When M64 BARs functions in Single PE mode, the number of VFs
664 		 * could be enabled must be less than the number of M64 BARs.
665 		 */
666 		if (iov->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
667 			dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
668 			return -EBUSY;
669 		}
670 
671 		/* Allocating pe_num_map */
672 		if (iov->m64_single_mode)
673 			iov->pe_num_map = kmalloc_array(num_vfs,
674 							sizeof(*iov->pe_num_map),
675 							GFP_KERNEL);
676 		else
677 			iov->pe_num_map = kmalloc(sizeof(*iov->pe_num_map), GFP_KERNEL);
678 
679 		if (!iov->pe_num_map)
680 			return -ENOMEM;
681 
682 		if (iov->m64_single_mode)
683 			for (i = 0; i < num_vfs; i++)
684 				iov->pe_num_map[i] = IODA_INVALID_PE;
685 
686 		/* Calculate available PE for required VFs */
687 		if (iov->m64_single_mode) {
688 			for (i = 0; i < num_vfs; i++) {
689 				pe = pnv_ioda_alloc_pe(phb);
690 				if (!pe) {
691 					ret = -EBUSY;
692 					goto m64_failed;
693 				}
694 
695 				iov->pe_num_map[i] = pe->pe_number;
696 			}
697 		} else {
698 			mutex_lock(&phb->ioda.pe_alloc_mutex);
699 			*iov->pe_num_map = bitmap_find_next_zero_area(
700 				phb->ioda.pe_alloc, phb->ioda.total_pe_num,
701 				0, num_vfs, 0);
702 			if (*iov->pe_num_map >= phb->ioda.total_pe_num) {
703 				mutex_unlock(&phb->ioda.pe_alloc_mutex);
704 				dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
705 				kfree(iov->pe_num_map);
706 				return -EBUSY;
707 			}
708 			bitmap_set(phb->ioda.pe_alloc, *iov->pe_num_map, num_vfs);
709 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
710 		}
711 		iov->num_vfs = num_vfs;
712 
713 		/* Assign M64 window accordingly */
714 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
715 		if (ret) {
716 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
717 			goto m64_failed;
718 		}
719 
720 		/*
721 		 * When using one M64 BAR to map one IOV BAR, we need to shift
722 		 * the IOV BAR according to the PE# allocated to the VFs.
723 		 * Otherwise, the PE# for the VF will conflict with others.
724 		 */
725 		if (!iov->m64_single_mode) {
726 			ret = pnv_pci_vf_resource_shift(pdev, *iov->pe_num_map);
727 			if (ret)
728 				goto m64_failed;
729 		}
730 	}
731 
732 	/* Setup VF PEs */
733 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
734 
735 	return 0;
736 
737 m64_failed:
738 	if (iov->m64_single_mode) {
739 		for (i = 0; i < num_vfs; i++) {
740 			if (iov->pe_num_map[i] == IODA_INVALID_PE)
741 				continue;
742 
743 			pe = &phb->ioda.pe_array[iov->pe_num_map[i]];
744 			pnv_ioda_free_pe(pe);
745 		}
746 	} else
747 		bitmap_clear(phb->ioda.pe_alloc, *iov->pe_num_map, num_vfs);
748 
749 	/* Releasing pe_num_map */
750 	kfree(iov->pe_num_map);
751 
752 	return ret;
753 }
754 
755 int pnv_pcibios_sriov_disable(struct pci_dev *pdev)
756 {
757 	pnv_pci_sriov_disable(pdev);
758 
759 	/* Release PCI data */
760 	remove_sriov_vf_pdns(pdev);
761 	return 0;
762 }
763 
764 int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
765 {
766 	/* Allocate PCI data */
767 	add_sriov_vf_pdns(pdev);
768 
769 	return pnv_pci_sriov_enable(pdev, num_vfs);
770 }
771