1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 #include <linux/kernel.h>
4 #include <linux/ioport.h>
5 #include <linux/bitmap.h>
6 #include <linux/pci.h>
7 
8 #include <asm/opal.h>
9 
10 #include "pci.h"
11 
12 /* for pci_dev_is_added() */
13 #include "../../../../drivers/pci/pci.h"
14 
15 /*
16  * The majority of the complexity in supporting SR-IOV on PowerNV comes from
17  * the need to put the MMIO space for each VF into a separate PE. Internally
18  * the PHB maps MMIO addresses to a specific PE using the "Memory BAR Table".
19  * The MBT historically only applied to the 64bit MMIO window of the PHB
20  * so it's common to see it referred to as the "M64BT".
21  *
22  * An MBT entry stores the mapped range as an <base>,<mask> pair. This forces
23  * the address range that we want to map to be power-of-two sized and aligned.
24  * For conventional PCI devices this isn't really an issue since PCI device BARs
25  * have the same requirement.
26  *
27  * For a SR-IOV BAR things are a little more awkward since size and alignment
28  * are not coupled. The alignment is set based on the the per-VF BAR size, but
29  * the total BAR area is: number-of-vfs * per-vf-size. The number of VFs
30  * isn't necessarily a power of two, so neither is the total size. To fix that
31  * we need to finesse (read: hack) the Linux BAR allocator so that it will
32  * allocate the SR-IOV BARs in a way that lets us map them using the MBT.
33  *
34  * The changes to size and alignment that we need to do depend on the "mode"
35  * of MBT entry that we use. We only support SR-IOV on PHB3 (IODA2) and above,
36  * so as a baseline we can assume that we have the following BAR modes
37  * available:
38  *
39  *   NB: $PE_COUNT is the number of PEs that the PHB supports.
40  *
41  * a) A segmented BAR that splits the mapped range into $PE_COUNT equally sized
42  *    segments. The n'th segment is mapped to the n'th PE.
43  * b) An un-segmented BAR that maps the whole address range to a specific PE.
44  *
45  *
46  * We prefer to use mode a) since it only requires one MBT entry per SR-IOV BAR
47  * For comparison b) requires one entry per-VF per-BAR, or:
48  * (num-vfs * num-sriov-bars) in total. To use a) we need the size of each segment
49  * to equal the size of the per-VF BAR area. So:
50  *
51  *	new_size = per-vf-size * number-of-PEs
52  *
53  * The alignment for the SR-IOV BAR also needs to be changed from per-vf-size
54  * to "new_size", calculated above. Implementing this is a convoluted process
55  * which requires several hooks in the PCI core:
56  *
57  * 1. In pcibios_add_device() we call pnv_pci_ioda_fixup_iov().
58  *
59  *    At this point the device has been probed and the device's BARs are sized,
60  *    but no resource allocations have been done. The SR-IOV BARs are sized
61  *    based on the maximum number of VFs supported by the device and we need
62  *    to increase that to new_size.
63  *
64  * 2. Later, when Linux actually assigns resources it tries to make the resource
65  *    allocations for each PCI bus as compact as possible. As a part of that it
66  *    sorts the BARs on a bus by their required alignment, which is calculated
67  *    using pci_resource_alignment().
68  *
69  *    For IOV resources this goes:
70  *    pci_resource_alignment()
71  *        pci_sriov_resource_alignment()
72  *            pcibios_sriov_resource_alignment()
73  *                pnv_pci_iov_resource_alignment()
74  *
75  *    Our hook overrides the default alignment, equal to the per-vf-size, with
76  *    new_size computed above.
77  *
78  * 3. When userspace enables VFs for a device:
79  *
80  *    sriov_enable()
81  *       pcibios_sriov_enable()
82  *           pnv_pcibios_sriov_enable()
83  *
84  *    This is where we actually allocate PE numbers for each VF and setup the
85  *    MBT mapping for each SR-IOV BAR. In steps 1) and 2) we setup an "arena"
86  *    where each MBT segment is equal in size to the VF BAR so we can shift
87  *    around the actual SR-IOV BAR location within this arena. We need this
88  *    ability because the PE space is shared by all devices on the same PHB.
89  *    When using mode a) described above segment 0 in maps to PE#0 which might
90  *    be already being used by another device on the PHB.
91  *
92  *    As a result we need allocate a contigious range of PE numbers, then shift
93  *    the address programmed into the SR-IOV BAR of the PF so that the address
94  *    of VF0 matches up with the segment corresponding to the first allocated
95  *    PE number. This is handled in pnv_pci_vf_resource_shift().
96  *
97  *    Once all that is done we return to the PCI core which then enables VFs,
98  *    scans them and creates pci_devs for each. The init process for a VF is
99  *    largely the same as a normal device, but the VF is inserted into the IODA
100  *    PE that we allocated for it rather than the PE associated with the bus.
101  *
102  * 4. When userspace disables VFs we unwind the above in
103  *    pnv_pcibios_sriov_disable(). Fortunately this is relatively simple since
104  *    we don't need to validate anything, just tear down the mappings and
105  *    move SR-IOV resource back to its "proper" location.
106  *
107  * That's how mode a) works. In theory mode b) (single PE mapping) is less work
108  * since we can map each individual VF with a separate BAR. However, there's a
109  * few limitations:
110  *
111  * 1) For IODA2 mode b) has a minimum alignment requirement of 32MB. This makes
112  *    it only usable for devices with very large per-VF BARs. Such devices are
113  *    similar to Big Foot. They definitely exist, but I've never seen one.
114  *
115  * 2) The number of MBT entries that we have is limited. PHB3 and PHB4 only
116  *    16 total and some are needed for. Most SR-IOV capable network cards can support
117  *    more than 16 VFs on each port.
118  *
119  * We use b) when using a) would use more than 1/4 of the entire 64 bit MMIO
120  * window of the PHB.
121  *
122  *
123  *
124  * PHB4 (IODA3) added a few new features that would be useful for SR-IOV. It
125  * allowed the MBT to map 32bit MMIO space in addition to 64bit which allows
126  * us to support SR-IOV BARs in the 32bit MMIO window. This is useful since
127  * the Linux BAR allocation will place any BAR marked as non-prefetchable into
128  * the non-prefetchable bridge window, which is 32bit only. It also added two
129  * new modes:
130  *
131  * c) A segmented BAR similar to a), but each segment can be individually
132  *    mapped to any PE. This is matches how the 32bit MMIO window worked on
133  *    IODA1&2.
134  *
135  * d) A segmented BAR with 8, 64, or 128 segments. This works similarly to a),
136  *    but with fewer segments and configurable base PE.
137  *
138  *    i.e. The n'th segment maps to the (n + base)'th PE.
139  *
140  *    The base PE is also required to be a multiple of the window size.
141  *
142  * Unfortunately, the OPAL API doesn't currently (as of skiboot v6.6) allow us
143  * to exploit any of the IODA3 features.
144  */
145 
146 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
147 {
148 	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
149 	struct resource *res;
150 	int i;
151 	resource_size_t vf_bar_sz;
152 	struct pnv_iov_data *iov;
153 	int mul;
154 
155 	iov = kzalloc(sizeof(*iov), GFP_KERNEL);
156 	if (!iov)
157 		goto disable_iov;
158 	pdev->dev.archdata.iov_data = iov;
159 	mul = phb->ioda.total_pe_num;
160 
161 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
162 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
163 		if (!res->flags || res->parent)
164 			continue;
165 		if (!pnv_pci_is_m64_flags(res->flags)) {
166 			dev_warn(&pdev->dev, "Don't support SR-IOV with non M64 VF BAR%d: %pR. \n",
167 				 i, res);
168 			goto disable_iov;
169 		}
170 
171 		vf_bar_sz = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
172 
173 		/*
174 		 * Generally, one segmented M64 BAR maps one IOV BAR. However,
175 		 * if a VF BAR is too large we end up wasting a lot of space.
176 		 * If each VF needs more than 1/4 of the default m64 segment
177 		 * then each VF BAR should be mapped in single-PE mode to reduce
178 		 * the amount of space required. This does however limit the
179 		 * number of VFs we can support.
180 		 *
181 		 * The 1/4 limit is arbitrary and can be tweaked.
182 		 */
183 		if (vf_bar_sz > (phb->ioda.m64_segsize >> 2)) {
184 			/*
185 			 * On PHB3, the minimum size alignment of M64 BAR in
186 			 * single mode is 32MB. If this VF BAR is smaller than
187 			 * 32MB, but still too large for a segmented window
188 			 * then we can't map it and need to disable SR-IOV for
189 			 * this device.
190 			 */
191 			if (vf_bar_sz < SZ_32M) {
192 				pci_err(pdev, "VF BAR%d: %pR can't be mapped in single PE mode\n",
193 					i, res);
194 				goto disable_iov;
195 			}
196 
197 			iov->m64_single_mode[i] = true;
198 			continue;
199 		}
200 
201 		/*
202 		 * This BAR can be mapped with one segmented window, so adjust
203 		 * te resource size to accommodate.
204 		 */
205 		pci_dbg(pdev, " Fixing VF BAR%d: %pR to\n", i, res);
206 		res->end = res->start + vf_bar_sz * mul - 1;
207 		pci_dbg(pdev, "                       %pR\n", res);
208 
209 		pci_info(pdev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
210 			 i, res, mul);
211 
212 		iov->need_shift = true;
213 	}
214 
215 	iov->vfs_expanded = mul;
216 
217 	return;
218 
219 disable_iov:
220 	/* Save ourselves some MMIO space by disabling the unusable BARs */
221 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
222 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
223 		res->flags = 0;
224 		res->end = res->start - 1;
225 	}
226 
227 	pdev->dev.archdata.iov_data = NULL;
228 	kfree(iov);
229 }
230 
231 void pnv_pci_ioda_fixup_iov(struct pci_dev *pdev)
232 {
233 	if (WARN_ON(pci_dev_is_added(pdev)))
234 		return;
235 
236 	if (pdev->is_virtfn) {
237 		struct pnv_ioda_pe *pe = pnv_ioda_get_pe(pdev);
238 
239 		/*
240 		 * VF PEs are single-device PEs so their pdev pointer needs to
241 		 * be set. The pdev doesn't exist when the PE is allocated (in
242 		 * (pcibios_sriov_enable()) so we fix it up here.
243 		 */
244 		pe->pdev = pdev;
245 		WARN_ON(!(pe->flags & PNV_IODA_PE_VF));
246 	} else if (pdev->is_physfn) {
247 		/*
248 		 * For PFs adjust their allocated IOV resources to match what
249 		 * the PHB can support using it's M64 BAR table.
250 		 */
251 		pnv_pci_ioda_fixup_iov_resources(pdev);
252 	}
253 }
254 
255 resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
256 						      int resno)
257 {
258 	struct pnv_iov_data *iov = pnv_iov_get(pdev);
259 	resource_size_t align;
260 
261 	/*
262 	 * iov can be null if we have an SR-IOV device with IOV BAR that can't
263 	 * be placed in the m64 space (i.e. The BAR is 32bit or non-prefetch).
264 	 * In that case we don't allow VFs to be enabled since one of their
265 	 * BARs would not be placed in the correct PE.
266 	 */
267 	if (!iov)
268 		return align;
269 	if (!iov->vfs_expanded)
270 		return align;
271 
272 	align = pci_iov_resource_size(pdev, resno);
273 
274 	/*
275 	 * If we're using single mode then we can just use the native VF BAR
276 	 * alignment. We validated that it's possible to use a single PE
277 	 * window above when we did the fixup.
278 	 */
279 	if (iov->m64_single_mode[resno - PCI_IOV_RESOURCES])
280 		return align;
281 
282 	/*
283 	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
284 	 * SR-IOV. While from hardware perspective, the range mapped by M64
285 	 * BAR should be size aligned.
286 	 *
287 	 * This function returns the total IOV BAR size if M64 BAR is in
288 	 * Shared PE mode or just VF BAR size if not.
289 	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
290 	 * M64 segment size if IOV BAR size is less.
291 	 */
292 	return iov->vfs_expanded * align;
293 }
294 
295 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
296 {
297 	struct pnv_iov_data   *iov;
298 	struct pnv_phb        *phb;
299 	int window_id;
300 
301 	phb = pci_bus_to_pnvhb(pdev->bus);
302 	iov = pnv_iov_get(pdev);
303 
304 	for_each_set_bit(window_id, iov->used_m64_bar_mask, MAX_M64_BARS) {
305 		opal_pci_phb_mmio_enable(phb->opal_id,
306 					 OPAL_M64_WINDOW_TYPE,
307 					 window_id,
308 					 0);
309 
310 		clear_bit(window_id, &phb->ioda.m64_bar_alloc);
311 	}
312 
313 	return 0;
314 }
315 
316 
317 /*
318  * PHB3 and beyond support segmented windows. The window's address range
319  * is subdivided into phb->ioda.total_pe_num segments and there's a 1-1
320  * mapping between PEs and segments.
321  */
322 static int64_t pnv_ioda_map_m64_segmented(struct pnv_phb *phb,
323 					  int window_id,
324 					  resource_size_t start,
325 					  resource_size_t size)
326 {
327 	int64_t rc;
328 
329 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
330 					 OPAL_M64_WINDOW_TYPE,
331 					 window_id,
332 					 start,
333 					 0, /* unused */
334 					 size);
335 	if (rc)
336 		goto out;
337 
338 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
339 				      OPAL_M64_WINDOW_TYPE,
340 				      window_id,
341 				      OPAL_ENABLE_M64_SPLIT);
342 out:
343 	if (rc)
344 		pr_err("Failed to map M64 window #%d: %lld\n", window_id, rc);
345 
346 	return rc;
347 }
348 
349 static int64_t pnv_ioda_map_m64_single(struct pnv_phb *phb,
350 				       int pe_num,
351 				       int window_id,
352 				       resource_size_t start,
353 				       resource_size_t size)
354 {
355 	int64_t rc;
356 
357 	/*
358 	 * The API for setting up m64 mmio windows seems to have been designed
359 	 * with P7-IOC in mind. For that chip each M64 BAR (window) had a fixed
360 	 * split of 8 equally sized segments each of which could individually
361 	 * assigned to a PE.
362 	 *
363 	 * The problem with this is that the API doesn't have any way to
364 	 * communicate the number of segments we want on a BAR. This wasn't
365 	 * a problem for p7-ioc since you didn't have a choice, but the
366 	 * single PE windows added in PHB3 don't map cleanly to this API.
367 	 *
368 	 * As a result we've got this slightly awkward process where we
369 	 * call opal_pci_map_pe_mmio_window() to put the single in single
370 	 * PE mode, and set the PE for the window before setting the address
371 	 * bounds. We need to do it this way because the single PE windows
372 	 * for PHB3 have different alignment requirements on PHB3.
373 	 */
374 	rc = opal_pci_map_pe_mmio_window(phb->opal_id,
375 					 pe_num,
376 					 OPAL_M64_WINDOW_TYPE,
377 					 window_id,
378 					 0);
379 	if (rc)
380 		goto out;
381 
382 	/*
383 	 * NB: In single PE mode the window needs to be aligned to 32MB
384 	 */
385 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
386 					 OPAL_M64_WINDOW_TYPE,
387 					 window_id,
388 					 start,
389 					 0, /* ignored by FW, m64 is 1-1 */
390 					 size);
391 	if (rc)
392 		goto out;
393 
394 	/*
395 	 * Now actually enable it. We specified the BAR should be in "non-split"
396 	 * mode so FW will validate that the BAR is in single PE mode.
397 	 */
398 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
399 				      OPAL_M64_WINDOW_TYPE,
400 				      window_id,
401 				      OPAL_ENABLE_M64_NON_SPLIT);
402 out:
403 	if (rc)
404 		pr_err("Error mapping single PE BAR\n");
405 
406 	return rc;
407 }
408 
409 static int pnv_pci_alloc_m64_bar(struct pnv_phb *phb, struct pnv_iov_data *iov)
410 {
411 	int win;
412 
413 	do {
414 		win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
415 				phb->ioda.m64_bar_idx + 1, 0);
416 
417 		if (win >= phb->ioda.m64_bar_idx + 1)
418 			return -1;
419 	} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
420 
421 	set_bit(win, iov->used_m64_bar_mask);
422 
423 	return win;
424 }
425 
426 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
427 {
428 	struct pnv_iov_data   *iov;
429 	struct pnv_phb        *phb;
430 	unsigned int           win;
431 	struct resource       *res;
432 	int                    i, j;
433 	int64_t                rc;
434 	resource_size_t        size, start;
435 	int                    base_pe_num;
436 
437 	phb = pci_bus_to_pnvhb(pdev->bus);
438 	iov = pnv_iov_get(pdev);
439 
440 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
441 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
442 		if (!res->flags || !res->parent)
443 			continue;
444 
445 		/* don't need single mode? map everything in one go! */
446 		if (!iov->m64_single_mode[i]) {
447 			win = pnv_pci_alloc_m64_bar(phb, iov);
448 			if (win < 0)
449 				goto m64_failed;
450 
451 			size = resource_size(res);
452 			start = res->start;
453 
454 			rc = pnv_ioda_map_m64_segmented(phb, win, start, size);
455 			if (rc)
456 				goto m64_failed;
457 
458 			continue;
459 		}
460 
461 		/* otherwise map each VF with single PE BARs */
462 		size = pci_iov_resource_size(pdev, PCI_IOV_RESOURCES + i);
463 		base_pe_num = iov->vf_pe_arr[0].pe_number;
464 
465 		for (j = 0; j < num_vfs; j++) {
466 			win = pnv_pci_alloc_m64_bar(phb, iov);
467 			if (win < 0)
468 				goto m64_failed;
469 
470 			start = res->start + size * j;
471 			rc = pnv_ioda_map_m64_single(phb, win,
472 						     base_pe_num + j,
473 						     start,
474 						     size);
475 			if (rc)
476 				goto m64_failed;
477 		}
478 	}
479 	return 0;
480 
481 m64_failed:
482 	pnv_pci_vf_release_m64(pdev, num_vfs);
483 	return -EBUSY;
484 }
485 
486 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
487 {
488 	struct pnv_phb        *phb;
489 	struct pnv_ioda_pe    *pe, *pe_n;
490 
491 	phb = pci_bus_to_pnvhb(pdev->bus);
492 
493 	if (!pdev->is_physfn)
494 		return;
495 
496 	/* FIXME: Use pnv_ioda_release_pe()? */
497 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
498 		if (pe->parent_dev != pdev)
499 			continue;
500 
501 		pnv_pci_ioda2_release_pe_dma(pe);
502 
503 		/* Remove from list */
504 		mutex_lock(&phb->ioda.pe_list_mutex);
505 		list_del(&pe->list);
506 		mutex_unlock(&phb->ioda.pe_list_mutex);
507 
508 		pnv_ioda_deconfigure_pe(phb, pe);
509 
510 		pnv_ioda_free_pe(pe);
511 	}
512 }
513 
514 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
515 {
516 	struct resource *res, res2;
517 	struct pnv_iov_data *iov;
518 	resource_size_t size;
519 	u16 num_vfs;
520 	int i;
521 
522 	if (!dev->is_physfn)
523 		return -EINVAL;
524 	iov = pnv_iov_get(dev);
525 
526 	/*
527 	 * "offset" is in VFs.  The M64 windows are sized so that when they
528 	 * are segmented, each segment is the same size as the IOV BAR.
529 	 * Each segment is in a separate PE, and the high order bits of the
530 	 * address are the PE number.  Therefore, each VF's BAR is in a
531 	 * separate PE, and changing the IOV BAR start address changes the
532 	 * range of PEs the VFs are in.
533 	 */
534 	num_vfs = iov->num_vfs;
535 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
536 		res = &dev->resource[i + PCI_IOV_RESOURCES];
537 		if (!res->flags || !res->parent)
538 			continue;
539 		if (iov->m64_single_mode[i])
540 			continue;
541 
542 		/*
543 		 * The actual IOV BAR range is determined by the start address
544 		 * and the actual size for num_vfs VFs BAR.  This check is to
545 		 * make sure that after shifting, the range will not overlap
546 		 * with another device.
547 		 */
548 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
549 		res2.flags = res->flags;
550 		res2.start = res->start + (size * offset);
551 		res2.end = res2.start + (size * num_vfs) - 1;
552 
553 		if (res2.end > res->end) {
554 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
555 				i, &res2, res, num_vfs, offset);
556 			return -EBUSY;
557 		}
558 	}
559 
560 	/*
561 	 * Since M64 BAR shares segments among all possible 256 PEs,
562 	 * we have to shift the beginning of PF IOV BAR to make it start from
563 	 * the segment which belongs to the PE number assigned to the first VF.
564 	 * This creates a "hole" in the /proc/iomem which could be used for
565 	 * allocating other resources so we reserve this area below and
566 	 * release when IOV is released.
567 	 */
568 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
569 		res = &dev->resource[i + PCI_IOV_RESOURCES];
570 		if (!res->flags || !res->parent)
571 			continue;
572 		if (iov->m64_single_mode[i])
573 			continue;
574 
575 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
576 		res2 = *res;
577 		res->start += size * offset;
578 
579 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
580 			 i, &res2, res, (offset > 0) ? "En" : "Dis",
581 			 num_vfs, offset);
582 
583 		if (offset < 0) {
584 			devm_release_resource(&dev->dev, &iov->holes[i]);
585 			memset(&iov->holes[i], 0, sizeof(iov->holes[i]));
586 		}
587 
588 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
589 
590 		if (offset > 0) {
591 			iov->holes[i].start = res2.start;
592 			iov->holes[i].end = res2.start + size * offset - 1;
593 			iov->holes[i].flags = IORESOURCE_BUS;
594 			iov->holes[i].name = "pnv_iov_reserved";
595 			devm_request_resource(&dev->dev, res->parent,
596 					&iov->holes[i]);
597 		}
598 	}
599 	return 0;
600 }
601 
602 static void pnv_pci_sriov_disable(struct pci_dev *pdev)
603 {
604 	u16                    num_vfs, base_pe;
605 	struct pnv_phb        *phb;
606 	struct pnv_iov_data   *iov;
607 
608 	phb = pci_bus_to_pnvhb(pdev->bus);
609 	iov = pnv_iov_get(pdev);
610 	num_vfs = iov->num_vfs;
611 	base_pe = iov->vf_pe_arr[0].pe_number;
612 
613 	if (WARN_ON(!iov))
614 		return;
615 
616 	/* Release VF PEs */
617 	pnv_ioda_release_vf_PE(pdev);
618 
619 	/* Un-shift the IOV BARs if we need to */
620 	if (iov->need_shift)
621 		pnv_pci_vf_resource_shift(pdev, -base_pe);
622 
623 	/* Release M64 windows */
624 	pnv_pci_vf_release_m64(pdev, num_vfs);
625 }
626 
627 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
628 {
629 	struct pnv_phb        *phb;
630 	struct pnv_ioda_pe    *pe;
631 	int                    pe_num;
632 	u16                    vf_index;
633 	struct pnv_iov_data   *iov;
634 	struct pci_dn         *pdn;
635 
636 	if (!pdev->is_physfn)
637 		return;
638 
639 	phb = pci_bus_to_pnvhb(pdev->bus);
640 	pdn = pci_get_pdn(pdev);
641 	iov = pnv_iov_get(pdev);
642 
643 	/* Reserve PE for each VF */
644 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
645 		int vf_devfn = pci_iov_virtfn_devfn(pdev, vf_index);
646 		int vf_bus = pci_iov_virtfn_bus(pdev, vf_index);
647 		struct pci_dn *vf_pdn;
648 
649 		pe = &iov->vf_pe_arr[vf_index];
650 		pe->phb = phb;
651 		pe->flags = PNV_IODA_PE_VF;
652 		pe->pbus = NULL;
653 		pe->parent_dev = pdev;
654 		pe->mve_number = -1;
655 		pe->rid = (vf_bus << 8) | vf_devfn;
656 
657 		pe_num = pe->pe_number;
658 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
659 			pci_domain_nr(pdev->bus), pdev->bus->number,
660 			PCI_SLOT(vf_devfn), PCI_FUNC(vf_devfn), pe_num);
661 
662 		if (pnv_ioda_configure_pe(phb, pe)) {
663 			/* XXX What do we do here ? */
664 			pnv_ioda_free_pe(pe);
665 			pe->pdev = NULL;
666 			continue;
667 		}
668 
669 		/* Put PE to the list */
670 		mutex_lock(&phb->ioda.pe_list_mutex);
671 		list_add_tail(&pe->list, &phb->ioda.pe_list);
672 		mutex_unlock(&phb->ioda.pe_list_mutex);
673 
674 		/* associate this pe to it's pdn */
675 		list_for_each_entry(vf_pdn, &pdn->parent->child_list, list) {
676 			if (vf_pdn->busno == vf_bus &&
677 			    vf_pdn->devfn == vf_devfn) {
678 				vf_pdn->pe_number = pe_num;
679 				break;
680 			}
681 		}
682 
683 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
684 	}
685 }
686 
687 static int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
688 {
689 	struct pnv_ioda_pe    *base_pe;
690 	struct pnv_iov_data   *iov;
691 	struct pnv_phb        *phb;
692 	int                    ret;
693 	u16                    i;
694 
695 	phb = pci_bus_to_pnvhb(pdev->bus);
696 	iov = pnv_iov_get(pdev);
697 
698 	/*
699 	 * There's a calls to IODA2 PE setup code littered throughout. We could
700 	 * probably fix that, but we'd still have problems due to the
701 	 * restriction inherent on IODA1 PHBs.
702 	 *
703 	 * NB: We class IODA3 as IODA2 since they're very similar.
704 	 */
705 	if (phb->type != PNV_PHB_IODA2) {
706 		pci_err(pdev, "SR-IOV is not supported on this PHB\n");
707 		return -ENXIO;
708 	}
709 
710 	if (!iov->vfs_expanded) {
711 		dev_info(&pdev->dev, "don't support this SRIOV device with non 64bit-prefetchable IOV BAR\n");
712 		return -ENOSPC;
713 	}
714 
715 	/* allocate a contigious block of PEs for our VFs */
716 	base_pe = pnv_ioda_alloc_pe(phb, num_vfs);
717 	if (!base_pe) {
718 		pci_err(pdev, "Unable to allocate PEs for %d VFs\n", num_vfs);
719 		return -EBUSY;
720 	}
721 
722 	iov->vf_pe_arr = base_pe;
723 	iov->num_vfs = num_vfs;
724 
725 	/* Assign M64 window accordingly */
726 	ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
727 	if (ret) {
728 		dev_info(&pdev->dev, "Not enough M64 window resources\n");
729 		goto m64_failed;
730 	}
731 
732 	/*
733 	 * When using one M64 BAR to map one IOV BAR, we need to shift
734 	 * the IOV BAR according to the PE# allocated to the VFs.
735 	 * Otherwise, the PE# for the VF will conflict with others.
736 	 */
737 	if (iov->need_shift) {
738 		ret = pnv_pci_vf_resource_shift(pdev, base_pe->pe_number);
739 		if (ret)
740 			goto shift_failed;
741 	}
742 
743 	/* Setup VF PEs */
744 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
745 
746 	return 0;
747 
748 shift_failed:
749 	pnv_pci_vf_release_m64(pdev, num_vfs);
750 
751 m64_failed:
752 	for (i = 0; i < num_vfs; i++)
753 		pnv_ioda_free_pe(&iov->vf_pe_arr[i]);
754 
755 	return ret;
756 }
757 
758 int pnv_pcibios_sriov_disable(struct pci_dev *pdev)
759 {
760 	pnv_pci_sriov_disable(pdev);
761 
762 	/* Release PCI data */
763 	remove_sriov_vf_pdns(pdev);
764 	return 0;
765 }
766 
767 int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
768 {
769 	/* Allocate PCI data */
770 	add_sriov_vf_pdns(pdev);
771 
772 	return pnv_pci_sriov_enable(pdev, num_vfs);
773 }
774