1 // SPDX-License-Identifier: GPL-2.0-or-later 2 3 #include <linux/kernel.h> 4 #include <linux/ioport.h> 5 #include <linux/bitmap.h> 6 #include <linux/pci.h> 7 8 #include <asm/opal.h> 9 10 #include "pci.h" 11 12 /* for pci_dev_is_added() */ 13 #include "../../../../drivers/pci/pci.h" 14 15 /* 16 * The majority of the complexity in supporting SR-IOV on PowerNV comes from 17 * the need to put the MMIO space for each VF into a separate PE. Internally 18 * the PHB maps MMIO addresses to a specific PE using the "Memory BAR Table". 19 * The MBT historically only applied to the 64bit MMIO window of the PHB 20 * so it's common to see it referred to as the "M64BT". 21 * 22 * An MBT entry stores the mapped range as an <base>,<mask> pair. This forces 23 * the address range that we want to map to be power-of-two sized and aligned. 24 * For conventional PCI devices this isn't really an issue since PCI device BARs 25 * have the same requirement. 26 * 27 * For a SR-IOV BAR things are a little more awkward since size and alignment 28 * are not coupled. The alignment is set based on the the per-VF BAR size, but 29 * the total BAR area is: number-of-vfs * per-vf-size. The number of VFs 30 * isn't necessarily a power of two, so neither is the total size. To fix that 31 * we need to finesse (read: hack) the Linux BAR allocator so that it will 32 * allocate the SR-IOV BARs in a way that lets us map them using the MBT. 33 * 34 * The changes to size and alignment that we need to do depend on the "mode" 35 * of MBT entry that we use. We only support SR-IOV on PHB3 (IODA2) and above, 36 * so as a baseline we can assume that we have the following BAR modes 37 * available: 38 * 39 * NB: $PE_COUNT is the number of PEs that the PHB supports. 40 * 41 * a) A segmented BAR that splits the mapped range into $PE_COUNT equally sized 42 * segments. The n'th segment is mapped to the n'th PE. 43 * b) An un-segmented BAR that maps the whole address range to a specific PE. 44 * 45 * 46 * We prefer to use mode a) since it only requires one MBT entry per SR-IOV BAR 47 * For comparison b) requires one entry per-VF per-BAR, or: 48 * (num-vfs * num-sriov-bars) in total. To use a) we need the size of each segment 49 * to equal the size of the per-VF BAR area. So: 50 * 51 * new_size = per-vf-size * number-of-PEs 52 * 53 * The alignment for the SR-IOV BAR also needs to be changed from per-vf-size 54 * to "new_size", calculated above. Implementing this is a convoluted process 55 * which requires several hooks in the PCI core: 56 * 57 * 1. In pcibios_add_device() we call pnv_pci_ioda_fixup_iov(). 58 * 59 * At this point the device has been probed and the device's BARs are sized, 60 * but no resource allocations have been done. The SR-IOV BARs are sized 61 * based on the maximum number of VFs supported by the device and we need 62 * to increase that to new_size. 63 * 64 * 2. Later, when Linux actually assigns resources it tries to make the resource 65 * allocations for each PCI bus as compact as possible. As a part of that it 66 * sorts the BARs on a bus by their required alignment, which is calculated 67 * using pci_resource_alignment(). 68 * 69 * For IOV resources this goes: 70 * pci_resource_alignment() 71 * pci_sriov_resource_alignment() 72 * pcibios_sriov_resource_alignment() 73 * pnv_pci_iov_resource_alignment() 74 * 75 * Our hook overrides the default alignment, equal to the per-vf-size, with 76 * new_size computed above. 77 * 78 * 3. When userspace enables VFs for a device: 79 * 80 * sriov_enable() 81 * pcibios_sriov_enable() 82 * pnv_pcibios_sriov_enable() 83 * 84 * This is where we actually allocate PE numbers for each VF and setup the 85 * MBT mapping for each SR-IOV BAR. In steps 1) and 2) we setup an "arena" 86 * where each MBT segment is equal in size to the VF BAR so we can shift 87 * around the actual SR-IOV BAR location within this arena. We need this 88 * ability because the PE space is shared by all devices on the same PHB. 89 * When using mode a) described above segment 0 in maps to PE#0 which might 90 * be already being used by another device on the PHB. 91 * 92 * As a result we need allocate a contigious range of PE numbers, then shift 93 * the address programmed into the SR-IOV BAR of the PF so that the address 94 * of VF0 matches up with the segment corresponding to the first allocated 95 * PE number. This is handled in pnv_pci_vf_resource_shift(). 96 * 97 * Once all that is done we return to the PCI core which then enables VFs, 98 * scans them and creates pci_devs for each. The init process for a VF is 99 * largely the same as a normal device, but the VF is inserted into the IODA 100 * PE that we allocated for it rather than the PE associated with the bus. 101 * 102 * 4. When userspace disables VFs we unwind the above in 103 * pnv_pcibios_sriov_disable(). Fortunately this is relatively simple since 104 * we don't need to validate anything, just tear down the mappings and 105 * move SR-IOV resource back to its "proper" location. 106 * 107 * That's how mode a) works. In theory mode b) (single PE mapping) is less work 108 * since we can map each individual VF with a separate BAR. However, there's a 109 * few limitations: 110 * 111 * 1) For IODA2 mode b) has a minimum alignment requirement of 32MB. This makes 112 * it only usable for devices with very large per-VF BARs. Such devices are 113 * similar to Big Foot. They definitely exist, but I've never seen one. 114 * 115 * 2) The number of MBT entries that we have is limited. PHB3 and PHB4 only 116 * 16 total and some are needed for. Most SR-IOV capable network cards can support 117 * more than 16 VFs on each port. 118 * 119 * We use b) when using a) would use more than 1/4 of the entire 64 bit MMIO 120 * window of the PHB. 121 * 122 * 123 * 124 * PHB4 (IODA3) added a few new features that would be useful for SR-IOV. It 125 * allowed the MBT to map 32bit MMIO space in addition to 64bit which allows 126 * us to support SR-IOV BARs in the 32bit MMIO window. This is useful since 127 * the Linux BAR allocation will place any BAR marked as non-prefetchable into 128 * the non-prefetchable bridge window, which is 32bit only. It also added two 129 * new modes: 130 * 131 * c) A segmented BAR similar to a), but each segment can be individually 132 * mapped to any PE. This is matches how the 32bit MMIO window worked on 133 * IODA1&2. 134 * 135 * d) A segmented BAR with 8, 64, or 128 segments. This works similarly to a), 136 * but with fewer segments and configurable base PE. 137 * 138 * i.e. The n'th segment maps to the (n + base)'th PE. 139 * 140 * The base PE is also required to be a multiple of the window size. 141 * 142 * Unfortunately, the OPAL API doesn't currently (as of skiboot v6.6) allow us 143 * to exploit any of the IODA3 features. 144 */ 145 146 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev) 147 { 148 struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus); 149 struct resource *res; 150 int i; 151 resource_size_t vf_bar_sz; 152 struct pnv_iov_data *iov; 153 int mul; 154 155 iov = kzalloc(sizeof(*iov), GFP_KERNEL); 156 if (!iov) 157 goto disable_iov; 158 pdev->dev.archdata.iov_data = iov; 159 mul = phb->ioda.total_pe_num; 160 161 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 162 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 163 if (!res->flags || res->parent) 164 continue; 165 if (!pnv_pci_is_m64_flags(res->flags)) { 166 dev_warn(&pdev->dev, "Don't support SR-IOV with non M64 VF BAR%d: %pR. \n", 167 i, res); 168 goto disable_iov; 169 } 170 171 vf_bar_sz = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES); 172 173 /* 174 * Generally, one segmented M64 BAR maps one IOV BAR. However, 175 * if a VF BAR is too large we end up wasting a lot of space. 176 * If each VF needs more than 1/4 of the default m64 segment 177 * then each VF BAR should be mapped in single-PE mode to reduce 178 * the amount of space required. This does however limit the 179 * number of VFs we can support. 180 * 181 * The 1/4 limit is arbitrary and can be tweaked. 182 */ 183 if (vf_bar_sz > (phb->ioda.m64_segsize >> 2)) { 184 /* 185 * On PHB3, the minimum size alignment of M64 BAR in 186 * single mode is 32MB. If this VF BAR is smaller than 187 * 32MB, but still too large for a segmented window 188 * then we can't map it and need to disable SR-IOV for 189 * this device. 190 */ 191 if (vf_bar_sz < SZ_32M) { 192 pci_err(pdev, "VF BAR%d: %pR can't be mapped in single PE mode\n", 193 i, res); 194 goto disable_iov; 195 } 196 197 iov->m64_single_mode[i] = true; 198 continue; 199 } 200 201 /* 202 * This BAR can be mapped with one segmented window, so adjust 203 * te resource size to accommodate. 204 */ 205 pci_dbg(pdev, " Fixing VF BAR%d: %pR to\n", i, res); 206 res->end = res->start + vf_bar_sz * mul - 1; 207 pci_dbg(pdev, " %pR\n", res); 208 209 pci_info(pdev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)", 210 i, res, mul); 211 212 iov->need_shift = true; 213 } 214 215 return; 216 217 disable_iov: 218 /* Save ourselves some MMIO space by disabling the unusable BARs */ 219 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 220 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 221 res->flags = 0; 222 res->end = res->start - 1; 223 } 224 225 pdev->dev.archdata.iov_data = NULL; 226 kfree(iov); 227 } 228 229 void pnv_pci_ioda_fixup_iov(struct pci_dev *pdev) 230 { 231 if (WARN_ON(pci_dev_is_added(pdev))) 232 return; 233 234 if (pdev->is_virtfn) { 235 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(pdev); 236 237 /* 238 * VF PEs are single-device PEs so their pdev pointer needs to 239 * be set. The pdev doesn't exist when the PE is allocated (in 240 * (pcibios_sriov_enable()) so we fix it up here. 241 */ 242 pe->pdev = pdev; 243 WARN_ON(!(pe->flags & PNV_IODA_PE_VF)); 244 } else if (pdev->is_physfn) { 245 /* 246 * For PFs adjust their allocated IOV resources to match what 247 * the PHB can support using it's M64 BAR table. 248 */ 249 pnv_pci_ioda_fixup_iov_resources(pdev); 250 } 251 } 252 253 resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev, 254 int resno) 255 { 256 resource_size_t align = pci_iov_resource_size(pdev, resno); 257 struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus); 258 struct pnv_iov_data *iov = pnv_iov_get(pdev); 259 260 /* 261 * iov can be null if we have an SR-IOV device with IOV BAR that can't 262 * be placed in the m64 space (i.e. The BAR is 32bit or non-prefetch). 263 * In that case we don't allow VFs to be enabled since one of their 264 * BARs would not be placed in the correct PE. 265 */ 266 if (!iov) 267 return align; 268 269 /* 270 * If we're using single mode then we can just use the native VF BAR 271 * alignment. We validated that it's possible to use a single PE 272 * window above when we did the fixup. 273 */ 274 if (iov->m64_single_mode[resno - PCI_IOV_RESOURCES]) 275 return align; 276 277 /* 278 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the 279 * SR-IOV. While from hardware perspective, the range mapped by M64 280 * BAR should be size aligned. 281 * 282 * This function returns the total IOV BAR size if M64 BAR is in 283 * Shared PE mode or just VF BAR size if not. 284 * If the M64 BAR is in Single PE mode, return the VF BAR size or 285 * M64 segment size if IOV BAR size is less. 286 */ 287 return phb->ioda.total_pe_num * align; 288 } 289 290 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs) 291 { 292 struct pnv_iov_data *iov; 293 struct pnv_phb *phb; 294 int window_id; 295 296 phb = pci_bus_to_pnvhb(pdev->bus); 297 iov = pnv_iov_get(pdev); 298 299 for_each_set_bit(window_id, iov->used_m64_bar_mask, MAX_M64_BARS) { 300 opal_pci_phb_mmio_enable(phb->opal_id, 301 OPAL_M64_WINDOW_TYPE, 302 window_id, 303 0); 304 305 clear_bit(window_id, &phb->ioda.m64_bar_alloc); 306 } 307 308 return 0; 309 } 310 311 312 /* 313 * PHB3 and beyond support segmented windows. The window's address range 314 * is subdivided into phb->ioda.total_pe_num segments and there's a 1-1 315 * mapping between PEs and segments. 316 */ 317 static int64_t pnv_ioda_map_m64_segmented(struct pnv_phb *phb, 318 int window_id, 319 resource_size_t start, 320 resource_size_t size) 321 { 322 int64_t rc; 323 324 rc = opal_pci_set_phb_mem_window(phb->opal_id, 325 OPAL_M64_WINDOW_TYPE, 326 window_id, 327 start, 328 0, /* unused */ 329 size); 330 if (rc) 331 goto out; 332 333 rc = opal_pci_phb_mmio_enable(phb->opal_id, 334 OPAL_M64_WINDOW_TYPE, 335 window_id, 336 OPAL_ENABLE_M64_SPLIT); 337 out: 338 if (rc) 339 pr_err("Failed to map M64 window #%d: %lld\n", window_id, rc); 340 341 return rc; 342 } 343 344 static int64_t pnv_ioda_map_m64_single(struct pnv_phb *phb, 345 int pe_num, 346 int window_id, 347 resource_size_t start, 348 resource_size_t size) 349 { 350 int64_t rc; 351 352 /* 353 * The API for setting up m64 mmio windows seems to have been designed 354 * with P7-IOC in mind. For that chip each M64 BAR (window) had a fixed 355 * split of 8 equally sized segments each of which could individually 356 * assigned to a PE. 357 * 358 * The problem with this is that the API doesn't have any way to 359 * communicate the number of segments we want on a BAR. This wasn't 360 * a problem for p7-ioc since you didn't have a choice, but the 361 * single PE windows added in PHB3 don't map cleanly to this API. 362 * 363 * As a result we've got this slightly awkward process where we 364 * call opal_pci_map_pe_mmio_window() to put the single in single 365 * PE mode, and set the PE for the window before setting the address 366 * bounds. We need to do it this way because the single PE windows 367 * for PHB3 have different alignment requirements on PHB3. 368 */ 369 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 370 pe_num, 371 OPAL_M64_WINDOW_TYPE, 372 window_id, 373 0); 374 if (rc) 375 goto out; 376 377 /* 378 * NB: In single PE mode the window needs to be aligned to 32MB 379 */ 380 rc = opal_pci_set_phb_mem_window(phb->opal_id, 381 OPAL_M64_WINDOW_TYPE, 382 window_id, 383 start, 384 0, /* ignored by FW, m64 is 1-1 */ 385 size); 386 if (rc) 387 goto out; 388 389 /* 390 * Now actually enable it. We specified the BAR should be in "non-split" 391 * mode so FW will validate that the BAR is in single PE mode. 392 */ 393 rc = opal_pci_phb_mmio_enable(phb->opal_id, 394 OPAL_M64_WINDOW_TYPE, 395 window_id, 396 OPAL_ENABLE_M64_NON_SPLIT); 397 out: 398 if (rc) 399 pr_err("Error mapping single PE BAR\n"); 400 401 return rc; 402 } 403 404 static int pnv_pci_alloc_m64_bar(struct pnv_phb *phb, struct pnv_iov_data *iov) 405 { 406 int win; 407 408 do { 409 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc, 410 phb->ioda.m64_bar_idx + 1, 0); 411 412 if (win >= phb->ioda.m64_bar_idx + 1) 413 return -1; 414 } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc)); 415 416 set_bit(win, iov->used_m64_bar_mask); 417 418 return win; 419 } 420 421 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs) 422 { 423 struct pnv_iov_data *iov; 424 struct pnv_phb *phb; 425 unsigned int win; 426 struct resource *res; 427 int i, j; 428 int64_t rc; 429 resource_size_t size, start; 430 int base_pe_num; 431 432 phb = pci_bus_to_pnvhb(pdev->bus); 433 iov = pnv_iov_get(pdev); 434 435 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 436 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 437 if (!res->flags || !res->parent) 438 continue; 439 440 /* don't need single mode? map everything in one go! */ 441 if (!iov->m64_single_mode[i]) { 442 win = pnv_pci_alloc_m64_bar(phb, iov); 443 if (win < 0) 444 goto m64_failed; 445 446 size = resource_size(res); 447 start = res->start; 448 449 rc = pnv_ioda_map_m64_segmented(phb, win, start, size); 450 if (rc) 451 goto m64_failed; 452 453 continue; 454 } 455 456 /* otherwise map each VF with single PE BARs */ 457 size = pci_iov_resource_size(pdev, PCI_IOV_RESOURCES + i); 458 base_pe_num = iov->vf_pe_arr[0].pe_number; 459 460 for (j = 0; j < num_vfs; j++) { 461 win = pnv_pci_alloc_m64_bar(phb, iov); 462 if (win < 0) 463 goto m64_failed; 464 465 start = res->start + size * j; 466 rc = pnv_ioda_map_m64_single(phb, win, 467 base_pe_num + j, 468 start, 469 size); 470 if (rc) 471 goto m64_failed; 472 } 473 } 474 return 0; 475 476 m64_failed: 477 pnv_pci_vf_release_m64(pdev, num_vfs); 478 return -EBUSY; 479 } 480 481 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev) 482 { 483 struct pnv_phb *phb; 484 struct pnv_ioda_pe *pe, *pe_n; 485 486 phb = pci_bus_to_pnvhb(pdev->bus); 487 488 if (!pdev->is_physfn) 489 return; 490 491 /* FIXME: Use pnv_ioda_release_pe()? */ 492 list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) { 493 if (pe->parent_dev != pdev) 494 continue; 495 496 pnv_pci_ioda2_release_pe_dma(pe); 497 498 /* Remove from list */ 499 mutex_lock(&phb->ioda.pe_list_mutex); 500 list_del(&pe->list); 501 mutex_unlock(&phb->ioda.pe_list_mutex); 502 503 pnv_ioda_deconfigure_pe(phb, pe); 504 505 pnv_ioda_free_pe(pe); 506 } 507 } 508 509 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset) 510 { 511 struct resource *res, res2; 512 struct pnv_iov_data *iov; 513 resource_size_t size; 514 u16 num_vfs; 515 int i; 516 517 if (!dev->is_physfn) 518 return -EINVAL; 519 iov = pnv_iov_get(dev); 520 521 /* 522 * "offset" is in VFs. The M64 windows are sized so that when they 523 * are segmented, each segment is the same size as the IOV BAR. 524 * Each segment is in a separate PE, and the high order bits of the 525 * address are the PE number. Therefore, each VF's BAR is in a 526 * separate PE, and changing the IOV BAR start address changes the 527 * range of PEs the VFs are in. 528 */ 529 num_vfs = iov->num_vfs; 530 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 531 res = &dev->resource[i + PCI_IOV_RESOURCES]; 532 if (!res->flags || !res->parent) 533 continue; 534 if (iov->m64_single_mode[i]) 535 continue; 536 537 /* 538 * The actual IOV BAR range is determined by the start address 539 * and the actual size for num_vfs VFs BAR. This check is to 540 * make sure that after shifting, the range will not overlap 541 * with another device. 542 */ 543 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES); 544 res2.flags = res->flags; 545 res2.start = res->start + (size * offset); 546 res2.end = res2.start + (size * num_vfs) - 1; 547 548 if (res2.end > res->end) { 549 dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n", 550 i, &res2, res, num_vfs, offset); 551 return -EBUSY; 552 } 553 } 554 555 /* 556 * Since M64 BAR shares segments among all possible 256 PEs, 557 * we have to shift the beginning of PF IOV BAR to make it start from 558 * the segment which belongs to the PE number assigned to the first VF. 559 * This creates a "hole" in the /proc/iomem which could be used for 560 * allocating other resources so we reserve this area below and 561 * release when IOV is released. 562 */ 563 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 564 res = &dev->resource[i + PCI_IOV_RESOURCES]; 565 if (!res->flags || !res->parent) 566 continue; 567 if (iov->m64_single_mode[i]) 568 continue; 569 570 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES); 571 res2 = *res; 572 res->start += size * offset; 573 574 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n", 575 i, &res2, res, (offset > 0) ? "En" : "Dis", 576 num_vfs, offset); 577 578 if (offset < 0) { 579 devm_release_resource(&dev->dev, &iov->holes[i]); 580 memset(&iov->holes[i], 0, sizeof(iov->holes[i])); 581 } 582 583 pci_update_resource(dev, i + PCI_IOV_RESOURCES); 584 585 if (offset > 0) { 586 iov->holes[i].start = res2.start; 587 iov->holes[i].end = res2.start + size * offset - 1; 588 iov->holes[i].flags = IORESOURCE_BUS; 589 iov->holes[i].name = "pnv_iov_reserved"; 590 devm_request_resource(&dev->dev, res->parent, 591 &iov->holes[i]); 592 } 593 } 594 return 0; 595 } 596 597 static void pnv_pci_sriov_disable(struct pci_dev *pdev) 598 { 599 u16 num_vfs, base_pe; 600 struct pnv_iov_data *iov; 601 602 iov = pnv_iov_get(pdev); 603 num_vfs = iov->num_vfs; 604 base_pe = iov->vf_pe_arr[0].pe_number; 605 606 if (WARN_ON(!iov)) 607 return; 608 609 /* Release VF PEs */ 610 pnv_ioda_release_vf_PE(pdev); 611 612 /* Un-shift the IOV BARs if we need to */ 613 if (iov->need_shift) 614 pnv_pci_vf_resource_shift(pdev, -base_pe); 615 616 /* Release M64 windows */ 617 pnv_pci_vf_release_m64(pdev, num_vfs); 618 } 619 620 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs) 621 { 622 struct pnv_phb *phb; 623 struct pnv_ioda_pe *pe; 624 int pe_num; 625 u16 vf_index; 626 struct pnv_iov_data *iov; 627 struct pci_dn *pdn; 628 629 if (!pdev->is_physfn) 630 return; 631 632 phb = pci_bus_to_pnvhb(pdev->bus); 633 pdn = pci_get_pdn(pdev); 634 iov = pnv_iov_get(pdev); 635 636 /* Reserve PE for each VF */ 637 for (vf_index = 0; vf_index < num_vfs; vf_index++) { 638 int vf_devfn = pci_iov_virtfn_devfn(pdev, vf_index); 639 int vf_bus = pci_iov_virtfn_bus(pdev, vf_index); 640 struct pci_dn *vf_pdn; 641 642 pe = &iov->vf_pe_arr[vf_index]; 643 pe->phb = phb; 644 pe->flags = PNV_IODA_PE_VF; 645 pe->pbus = NULL; 646 pe->parent_dev = pdev; 647 pe->mve_number = -1; 648 pe->rid = (vf_bus << 8) | vf_devfn; 649 650 pe_num = pe->pe_number; 651 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n", 652 pci_domain_nr(pdev->bus), pdev->bus->number, 653 PCI_SLOT(vf_devfn), PCI_FUNC(vf_devfn), pe_num); 654 655 if (pnv_ioda_configure_pe(phb, pe)) { 656 /* XXX What do we do here ? */ 657 pnv_ioda_free_pe(pe); 658 pe->pdev = NULL; 659 continue; 660 } 661 662 /* Put PE to the list */ 663 mutex_lock(&phb->ioda.pe_list_mutex); 664 list_add_tail(&pe->list, &phb->ioda.pe_list); 665 mutex_unlock(&phb->ioda.pe_list_mutex); 666 667 /* associate this pe to it's pdn */ 668 list_for_each_entry(vf_pdn, &pdn->parent->child_list, list) { 669 if (vf_pdn->busno == vf_bus && 670 vf_pdn->devfn == vf_devfn) { 671 vf_pdn->pe_number = pe_num; 672 break; 673 } 674 } 675 676 pnv_pci_ioda2_setup_dma_pe(phb, pe); 677 } 678 } 679 680 static int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs) 681 { 682 struct pnv_ioda_pe *base_pe; 683 struct pnv_iov_data *iov; 684 struct pnv_phb *phb; 685 int ret; 686 u16 i; 687 688 phb = pci_bus_to_pnvhb(pdev->bus); 689 iov = pnv_iov_get(pdev); 690 691 /* 692 * There's a calls to IODA2 PE setup code littered throughout. We could 693 * probably fix that, but we'd still have problems due to the 694 * restriction inherent on IODA1 PHBs. 695 * 696 * NB: We class IODA3 as IODA2 since they're very similar. 697 */ 698 if (phb->type != PNV_PHB_IODA2) { 699 pci_err(pdev, "SR-IOV is not supported on this PHB\n"); 700 return -ENXIO; 701 } 702 703 if (!iov) { 704 dev_info(&pdev->dev, "don't support this SRIOV device with non 64bit-prefetchable IOV BAR\n"); 705 return -ENOSPC; 706 } 707 708 /* allocate a contigious block of PEs for our VFs */ 709 base_pe = pnv_ioda_alloc_pe(phb, num_vfs); 710 if (!base_pe) { 711 pci_err(pdev, "Unable to allocate PEs for %d VFs\n", num_vfs); 712 return -EBUSY; 713 } 714 715 iov->vf_pe_arr = base_pe; 716 iov->num_vfs = num_vfs; 717 718 /* Assign M64 window accordingly */ 719 ret = pnv_pci_vf_assign_m64(pdev, num_vfs); 720 if (ret) { 721 dev_info(&pdev->dev, "Not enough M64 window resources\n"); 722 goto m64_failed; 723 } 724 725 /* 726 * When using one M64 BAR to map one IOV BAR, we need to shift 727 * the IOV BAR according to the PE# allocated to the VFs. 728 * Otherwise, the PE# for the VF will conflict with others. 729 */ 730 if (iov->need_shift) { 731 ret = pnv_pci_vf_resource_shift(pdev, base_pe->pe_number); 732 if (ret) 733 goto shift_failed; 734 } 735 736 /* Setup VF PEs */ 737 pnv_ioda_setup_vf_PE(pdev, num_vfs); 738 739 return 0; 740 741 shift_failed: 742 pnv_pci_vf_release_m64(pdev, num_vfs); 743 744 m64_failed: 745 for (i = 0; i < num_vfs; i++) 746 pnv_ioda_free_pe(&iov->vf_pe_arr[i]); 747 748 return ret; 749 } 750 751 int pnv_pcibios_sriov_disable(struct pci_dev *pdev) 752 { 753 pnv_pci_sriov_disable(pdev); 754 755 /* Release PCI data */ 756 remove_sriov_vf_pdns(pdev); 757 return 0; 758 } 759 760 int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs) 761 { 762 /* Allocate PCI data */ 763 add_sriov_vf_pdns(pdev); 764 765 return pnv_pci_sriov_enable(pdev, num_vfs); 766 } 767