1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 
27 #include <asm/sections.h>
28 #include <asm/io.h>
29 #include <asm/prom.h>
30 #include <asm/pci-bridge.h>
31 #include <asm/machdep.h>
32 #include <asm/msi_bitmap.h>
33 #include <asm/ppc-pci.h>
34 #include <asm/opal.h>
35 #include <asm/iommu.h>
36 #include <asm/tce.h>
37 #include <asm/xics.h>
38 #include <asm/debug.h>
39 #include <asm/firmware.h>
40 #include <asm/pnv-pci.h>
41 
42 #include <misc/cxl.h>
43 
44 #include "powernv.h"
45 #include "pci.h"
46 
47 /* 256M DMA window, 4K TCE pages, 8 bytes TCE */
48 #define TCE32_TABLE_SIZE	((0x10000000 / 0x1000) * 8)
49 
50 static void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
51 			    const char *fmt, ...)
52 {
53 	struct va_format vaf;
54 	va_list args;
55 	char pfix[32];
56 
57 	va_start(args, fmt);
58 
59 	vaf.fmt = fmt;
60 	vaf.va = &args;
61 
62 	if (pe->flags & PNV_IODA_PE_DEV)
63 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
64 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
65 		sprintf(pfix, "%04x:%02x     ",
66 			pci_domain_nr(pe->pbus), pe->pbus->number);
67 #ifdef CONFIG_PCI_IOV
68 	else if (pe->flags & PNV_IODA_PE_VF)
69 		sprintf(pfix, "%04x:%02x:%2x.%d",
70 			pci_domain_nr(pe->parent_dev->bus),
71 			(pe->rid & 0xff00) >> 8,
72 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
73 #endif /* CONFIG_PCI_IOV*/
74 
75 	printk("%spci %s: [PE# %.3d] %pV",
76 	       level, pfix, pe->pe_number, &vaf);
77 
78 	va_end(args);
79 }
80 
81 #define pe_err(pe, fmt, ...)					\
82 	pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
83 #define pe_warn(pe, fmt, ...)					\
84 	pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
85 #define pe_info(pe, fmt, ...)					\
86 	pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
87 
88 static bool pnv_iommu_bypass_disabled __read_mostly;
89 
90 static int __init iommu_setup(char *str)
91 {
92 	if (!str)
93 		return -EINVAL;
94 
95 	while (*str) {
96 		if (!strncmp(str, "nobypass", 8)) {
97 			pnv_iommu_bypass_disabled = true;
98 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
99 			break;
100 		}
101 		str += strcspn(str, ",");
102 		if (*str == ',')
103 			str++;
104 	}
105 
106 	return 0;
107 }
108 early_param("iommu", iommu_setup);
109 
110 /*
111  * stdcix is only supposed to be used in hypervisor real mode as per
112  * the architecture spec
113  */
114 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
115 {
116 	__asm__ __volatile__("stdcix %0,0,%1"
117 		: : "r" (val), "r" (paddr) : "memory");
118 }
119 
120 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
121 {
122 	return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
123 		(IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
124 }
125 
126 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
127 {
128 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe)) {
129 		pr_warn("%s: Invalid PE %d on PHB#%x\n",
130 			__func__, pe_no, phb->hose->global_number);
131 		return;
132 	}
133 
134 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc)) {
135 		pr_warn("%s: PE %d was assigned on PHB#%x\n",
136 			__func__, pe_no, phb->hose->global_number);
137 		return;
138 	}
139 
140 	phb->ioda.pe_array[pe_no].phb = phb;
141 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
142 }
143 
144 static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
145 {
146 	unsigned long pe;
147 
148 	do {
149 		pe = find_next_zero_bit(phb->ioda.pe_alloc,
150 					phb->ioda.total_pe, 0);
151 		if (pe >= phb->ioda.total_pe)
152 			return IODA_INVALID_PE;
153 	} while(test_and_set_bit(pe, phb->ioda.pe_alloc));
154 
155 	phb->ioda.pe_array[pe].phb = phb;
156 	phb->ioda.pe_array[pe].pe_number = pe;
157 	return pe;
158 }
159 
160 static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
161 {
162 	WARN_ON(phb->ioda.pe_array[pe].pdev);
163 
164 	memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
165 	clear_bit(pe, phb->ioda.pe_alloc);
166 }
167 
168 /* The default M64 BAR is shared by all PEs */
169 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
170 {
171 	const char *desc;
172 	struct resource *r;
173 	s64 rc;
174 
175 	/* Configure the default M64 BAR */
176 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
177 					 OPAL_M64_WINDOW_TYPE,
178 					 phb->ioda.m64_bar_idx,
179 					 phb->ioda.m64_base,
180 					 0, /* unused */
181 					 phb->ioda.m64_size);
182 	if (rc != OPAL_SUCCESS) {
183 		desc = "configuring";
184 		goto fail;
185 	}
186 
187 	/* Enable the default M64 BAR */
188 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
189 				      OPAL_M64_WINDOW_TYPE,
190 				      phb->ioda.m64_bar_idx,
191 				      OPAL_ENABLE_M64_SPLIT);
192 	if (rc != OPAL_SUCCESS) {
193 		desc = "enabling";
194 		goto fail;
195 	}
196 
197 	/* Mark the M64 BAR assigned */
198 	set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
199 
200 	/*
201 	 * Strip off the segment used by the reserved PE, which is
202 	 * expected to be 0 or last one of PE capabicity.
203 	 */
204 	r = &phb->hose->mem_resources[1];
205 	if (phb->ioda.reserved_pe == 0)
206 		r->start += phb->ioda.m64_segsize;
207 	else if (phb->ioda.reserved_pe == (phb->ioda.total_pe - 1))
208 		r->end -= phb->ioda.m64_segsize;
209 	else
210 		pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
211 			phb->ioda.reserved_pe);
212 
213 	return 0;
214 
215 fail:
216 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
217 		rc, desc, phb->ioda.m64_bar_idx);
218 	opal_pci_phb_mmio_enable(phb->opal_id,
219 				 OPAL_M64_WINDOW_TYPE,
220 				 phb->ioda.m64_bar_idx,
221 				 OPAL_DISABLE_M64);
222 	return -EIO;
223 }
224 
225 static void pnv_ioda2_reserve_m64_pe(struct pnv_phb *phb)
226 {
227 	resource_size_t sgsz = phb->ioda.m64_segsize;
228 	struct pci_dev *pdev;
229 	struct resource *r;
230 	int base, step, i;
231 
232 	/*
233 	 * Root bus always has full M64 range and root port has
234 	 * M64 range used in reality. So we're checking root port
235 	 * instead of root bus.
236 	 */
237 	list_for_each_entry(pdev, &phb->hose->bus->devices, bus_list) {
238 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
239 			r = &pdev->resource[PCI_BRIDGE_RESOURCES + i];
240 			if (!r->parent ||
241 			    !pnv_pci_is_mem_pref_64(r->flags))
242 				continue;
243 
244 			base = (r->start - phb->ioda.m64_base) / sgsz;
245 			for (step = 0; step < resource_size(r) / sgsz; step++)
246 				pnv_ioda_reserve_pe(phb, base + step);
247 		}
248 	}
249 }
250 
251 static int pnv_ioda2_pick_m64_pe(struct pnv_phb *phb,
252 				 struct pci_bus *bus, int all)
253 {
254 	resource_size_t segsz = phb->ioda.m64_segsize;
255 	struct pci_dev *pdev;
256 	struct resource *r;
257 	struct pnv_ioda_pe *master_pe, *pe;
258 	unsigned long size, *pe_alloc;
259 	bool found;
260 	int start, i, j;
261 
262 	/* Root bus shouldn't use M64 */
263 	if (pci_is_root_bus(bus))
264 		return IODA_INVALID_PE;
265 
266 	/* We support only one M64 window on each bus */
267 	found = false;
268 	pci_bus_for_each_resource(bus, r, i) {
269 		if (r && r->parent &&
270 		    pnv_pci_is_mem_pref_64(r->flags)) {
271 			found = true;
272 			break;
273 		}
274 	}
275 
276 	/* No M64 window found ? */
277 	if (!found)
278 		return IODA_INVALID_PE;
279 
280 	/* Allocate bitmap */
281 	size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
282 	pe_alloc = kzalloc(size, GFP_KERNEL);
283 	if (!pe_alloc) {
284 		pr_warn("%s: Out of memory !\n",
285 			__func__);
286 		return IODA_INVALID_PE;
287 	}
288 
289 	/*
290 	 * Figure out reserved PE numbers by the PE
291 	 * the its child PEs.
292 	 */
293 	start = (r->start - phb->ioda.m64_base) / segsz;
294 	for (i = 0; i < resource_size(r) / segsz; i++)
295 		set_bit(start + i, pe_alloc);
296 
297 	if (all)
298 		goto done;
299 
300 	/*
301 	 * If the PE doesn't cover all subordinate buses,
302 	 * we need subtract from reserved PEs for children.
303 	 */
304 	list_for_each_entry(pdev, &bus->devices, bus_list) {
305 		if (!pdev->subordinate)
306 			continue;
307 
308 		pci_bus_for_each_resource(pdev->subordinate, r, i) {
309 			if (!r || !r->parent ||
310 			    !pnv_pci_is_mem_pref_64(r->flags))
311 				continue;
312 
313 			start = (r->start - phb->ioda.m64_base) / segsz;
314 			for (j = 0; j < resource_size(r) / segsz ; j++)
315 				clear_bit(start + j, pe_alloc);
316                 }
317         }
318 
319 	/*
320 	 * the current bus might not own M64 window and that's all
321 	 * contributed by its child buses. For the case, we needn't
322 	 * pick M64 dependent PE#.
323 	 */
324 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe)) {
325 		kfree(pe_alloc);
326 		return IODA_INVALID_PE;
327 	}
328 
329 	/*
330 	 * Figure out the master PE and put all slave PEs to master
331 	 * PE's list to form compound PE.
332 	 */
333 done:
334 	master_pe = NULL;
335 	i = -1;
336 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe, i + 1)) <
337 		phb->ioda.total_pe) {
338 		pe = &phb->ioda.pe_array[i];
339 
340 		if (!master_pe) {
341 			pe->flags |= PNV_IODA_PE_MASTER;
342 			INIT_LIST_HEAD(&pe->slaves);
343 			master_pe = pe;
344 		} else {
345 			pe->flags |= PNV_IODA_PE_SLAVE;
346 			pe->master = master_pe;
347 			list_add_tail(&pe->list, &master_pe->slaves);
348 		}
349 	}
350 
351 	kfree(pe_alloc);
352 	return master_pe->pe_number;
353 }
354 
355 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
356 {
357 	struct pci_controller *hose = phb->hose;
358 	struct device_node *dn = hose->dn;
359 	struct resource *res;
360 	const u32 *r;
361 	u64 pci_addr;
362 
363 	/* FIXME: Support M64 for P7IOC */
364 	if (phb->type != PNV_PHB_IODA2) {
365 		pr_info("  Not support M64 window\n");
366 		return;
367 	}
368 
369 	if (!firmware_has_feature(FW_FEATURE_OPALv3)) {
370 		pr_info("  Firmware too old to support M64 window\n");
371 		return;
372 	}
373 
374 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
375 	if (!r) {
376 		pr_info("  No <ibm,opal-m64-window> on %s\n",
377 			dn->full_name);
378 		return;
379 	}
380 
381 	res = &hose->mem_resources[1];
382 	res->start = of_translate_address(dn, r + 2);
383 	res->end = res->start + of_read_number(r + 4, 2) - 1;
384 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
385 	pci_addr = of_read_number(r, 2);
386 	hose->mem_offset[1] = res->start - pci_addr;
387 
388 	phb->ioda.m64_size = resource_size(res);
389 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe;
390 	phb->ioda.m64_base = pci_addr;
391 
392 	pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n",
393 			res->start, res->end, pci_addr);
394 
395 	/* Use last M64 BAR to cover M64 window */
396 	phb->ioda.m64_bar_idx = 15;
397 	phb->init_m64 = pnv_ioda2_init_m64;
398 	phb->reserve_m64_pe = pnv_ioda2_reserve_m64_pe;
399 	phb->pick_m64_pe = pnv_ioda2_pick_m64_pe;
400 }
401 
402 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
403 {
404 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
405 	struct pnv_ioda_pe *slave;
406 	s64 rc;
407 
408 	/* Fetch master PE */
409 	if (pe->flags & PNV_IODA_PE_SLAVE) {
410 		pe = pe->master;
411 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
412 			return;
413 
414 		pe_no = pe->pe_number;
415 	}
416 
417 	/* Freeze master PE */
418 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
419 				     pe_no,
420 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
421 	if (rc != OPAL_SUCCESS) {
422 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
423 			__func__, rc, phb->hose->global_number, pe_no);
424 		return;
425 	}
426 
427 	/* Freeze slave PEs */
428 	if (!(pe->flags & PNV_IODA_PE_MASTER))
429 		return;
430 
431 	list_for_each_entry(slave, &pe->slaves, list) {
432 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
433 					     slave->pe_number,
434 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
435 		if (rc != OPAL_SUCCESS)
436 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
437 				__func__, rc, phb->hose->global_number,
438 				slave->pe_number);
439 	}
440 }
441 
442 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
443 {
444 	struct pnv_ioda_pe *pe, *slave;
445 	s64 rc;
446 
447 	/* Find master PE */
448 	pe = &phb->ioda.pe_array[pe_no];
449 	if (pe->flags & PNV_IODA_PE_SLAVE) {
450 		pe = pe->master;
451 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
452 		pe_no = pe->pe_number;
453 	}
454 
455 	/* Clear frozen state for master PE */
456 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
457 	if (rc != OPAL_SUCCESS) {
458 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
459 			__func__, rc, opt, phb->hose->global_number, pe_no);
460 		return -EIO;
461 	}
462 
463 	if (!(pe->flags & PNV_IODA_PE_MASTER))
464 		return 0;
465 
466 	/* Clear frozen state for slave PEs */
467 	list_for_each_entry(slave, &pe->slaves, list) {
468 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
469 					     slave->pe_number,
470 					     opt);
471 		if (rc != OPAL_SUCCESS) {
472 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
473 				__func__, rc, opt, phb->hose->global_number,
474 				slave->pe_number);
475 			return -EIO;
476 		}
477 	}
478 
479 	return 0;
480 }
481 
482 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
483 {
484 	struct pnv_ioda_pe *slave, *pe;
485 	u8 fstate, state;
486 	__be16 pcierr;
487 	s64 rc;
488 
489 	/* Sanity check on PE number */
490 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe)
491 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
492 
493 	/*
494 	 * Fetch the master PE and the PE instance might be
495 	 * not initialized yet.
496 	 */
497 	pe = &phb->ioda.pe_array[pe_no];
498 	if (pe->flags & PNV_IODA_PE_SLAVE) {
499 		pe = pe->master;
500 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
501 		pe_no = pe->pe_number;
502 	}
503 
504 	/* Check the master PE */
505 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
506 					&state, &pcierr, NULL);
507 	if (rc != OPAL_SUCCESS) {
508 		pr_warn("%s: Failure %lld getting "
509 			"PHB#%x-PE#%x state\n",
510 			__func__, rc,
511 			phb->hose->global_number, pe_no);
512 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
513 	}
514 
515 	/* Check the slave PE */
516 	if (!(pe->flags & PNV_IODA_PE_MASTER))
517 		return state;
518 
519 	list_for_each_entry(slave, &pe->slaves, list) {
520 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
521 						slave->pe_number,
522 						&fstate,
523 						&pcierr,
524 						NULL);
525 		if (rc != OPAL_SUCCESS) {
526 			pr_warn("%s: Failure %lld getting "
527 				"PHB#%x-PE#%x state\n",
528 				__func__, rc,
529 				phb->hose->global_number, slave->pe_number);
530 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
531 		}
532 
533 		/*
534 		 * Override the result based on the ascending
535 		 * priority.
536 		 */
537 		if (fstate > state)
538 			state = fstate;
539 	}
540 
541 	return state;
542 }
543 
544 /* Currently those 2 are only used when MSIs are enabled, this will change
545  * but in the meantime, we need to protect them to avoid warnings
546  */
547 #ifdef CONFIG_PCI_MSI
548 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
549 {
550 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
551 	struct pnv_phb *phb = hose->private_data;
552 	struct pci_dn *pdn = pci_get_pdn(dev);
553 
554 	if (!pdn)
555 		return NULL;
556 	if (pdn->pe_number == IODA_INVALID_PE)
557 		return NULL;
558 	return &phb->ioda.pe_array[pdn->pe_number];
559 }
560 #endif /* CONFIG_PCI_MSI */
561 
562 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
563 				  struct pnv_ioda_pe *parent,
564 				  struct pnv_ioda_pe *child,
565 				  bool is_add)
566 {
567 	const char *desc = is_add ? "adding" : "removing";
568 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
569 			      OPAL_REMOVE_PE_FROM_DOMAIN;
570 	struct pnv_ioda_pe *slave;
571 	long rc;
572 
573 	/* Parent PE affects child PE */
574 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
575 				child->pe_number, op);
576 	if (rc != OPAL_SUCCESS) {
577 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
578 			rc, desc);
579 		return -ENXIO;
580 	}
581 
582 	if (!(child->flags & PNV_IODA_PE_MASTER))
583 		return 0;
584 
585 	/* Compound case: parent PE affects slave PEs */
586 	list_for_each_entry(slave, &child->slaves, list) {
587 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
588 					slave->pe_number, op);
589 		if (rc != OPAL_SUCCESS) {
590 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
591 				rc, desc);
592 			return -ENXIO;
593 		}
594 	}
595 
596 	return 0;
597 }
598 
599 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
600 			      struct pnv_ioda_pe *pe,
601 			      bool is_add)
602 {
603 	struct pnv_ioda_pe *slave;
604 	struct pci_dev *pdev = NULL;
605 	int ret;
606 
607 	/*
608 	 * Clear PE frozen state. If it's master PE, we need
609 	 * clear slave PE frozen state as well.
610 	 */
611 	if (is_add) {
612 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
613 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
614 		if (pe->flags & PNV_IODA_PE_MASTER) {
615 			list_for_each_entry(slave, &pe->slaves, list)
616 				opal_pci_eeh_freeze_clear(phb->opal_id,
617 							  slave->pe_number,
618 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
619 		}
620 	}
621 
622 	/*
623 	 * Associate PE in PELT. We need add the PE into the
624 	 * corresponding PELT-V as well. Otherwise, the error
625 	 * originated from the PE might contribute to other
626 	 * PEs.
627 	 */
628 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
629 	if (ret)
630 		return ret;
631 
632 	/* For compound PEs, any one affects all of them */
633 	if (pe->flags & PNV_IODA_PE_MASTER) {
634 		list_for_each_entry(slave, &pe->slaves, list) {
635 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
636 			if (ret)
637 				return ret;
638 		}
639 	}
640 
641 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
642 		pdev = pe->pbus->self;
643 	else if (pe->flags & PNV_IODA_PE_DEV)
644 		pdev = pe->pdev->bus->self;
645 #ifdef CONFIG_PCI_IOV
646 	else if (pe->flags & PNV_IODA_PE_VF)
647 		pdev = pe->parent_dev->bus->self;
648 #endif /* CONFIG_PCI_IOV */
649 	while (pdev) {
650 		struct pci_dn *pdn = pci_get_pdn(pdev);
651 		struct pnv_ioda_pe *parent;
652 
653 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
654 			parent = &phb->ioda.pe_array[pdn->pe_number];
655 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
656 			if (ret)
657 				return ret;
658 		}
659 
660 		pdev = pdev->bus->self;
661 	}
662 
663 	return 0;
664 }
665 
666 #ifdef CONFIG_PCI_IOV
667 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
668 {
669 	struct pci_dev *parent;
670 	uint8_t bcomp, dcomp, fcomp;
671 	int64_t rc;
672 	long rid_end, rid;
673 
674 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
675 	if (pe->pbus) {
676 		int count;
677 
678 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
679 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
680 		parent = pe->pbus->self;
681 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
682 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
683 		else
684 			count = 1;
685 
686 		switch(count) {
687 		case  1: bcomp = OpalPciBusAll;         break;
688 		case  2: bcomp = OpalPciBus7Bits;       break;
689 		case  4: bcomp = OpalPciBus6Bits;       break;
690 		case  8: bcomp = OpalPciBus5Bits;       break;
691 		case 16: bcomp = OpalPciBus4Bits;       break;
692 		case 32: bcomp = OpalPciBus3Bits;       break;
693 		default:
694 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
695 			        count);
696 			/* Do an exact match only */
697 			bcomp = OpalPciBusAll;
698 		}
699 		rid_end = pe->rid + (count << 8);
700 	} else {
701 		if (pe->flags & PNV_IODA_PE_VF)
702 			parent = pe->parent_dev;
703 		else
704 			parent = pe->pdev->bus->self;
705 		bcomp = OpalPciBusAll;
706 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
707 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
708 		rid_end = pe->rid + 1;
709 	}
710 
711 	/* Clear the reverse map */
712 	for (rid = pe->rid; rid < rid_end; rid++)
713 		phb->ioda.pe_rmap[rid] = 0;
714 
715 	/* Release from all parents PELT-V */
716 	while (parent) {
717 		struct pci_dn *pdn = pci_get_pdn(parent);
718 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
719 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
720 						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
721 			/* XXX What to do in case of error ? */
722 		}
723 		parent = parent->bus->self;
724 	}
725 
726 	opal_pci_eeh_freeze_set(phb->opal_id, pe->pe_number,
727 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
728 
729 	/* Disassociate PE in PELT */
730 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
731 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
732 	if (rc)
733 		pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
734 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
735 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
736 	if (rc)
737 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
738 
739 	pe->pbus = NULL;
740 	pe->pdev = NULL;
741 	pe->parent_dev = NULL;
742 
743 	return 0;
744 }
745 #endif /* CONFIG_PCI_IOV */
746 
747 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
748 {
749 	struct pci_dev *parent;
750 	uint8_t bcomp, dcomp, fcomp;
751 	long rc, rid_end, rid;
752 
753 	/* Bus validation ? */
754 	if (pe->pbus) {
755 		int count;
756 
757 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
758 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
759 		parent = pe->pbus->self;
760 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
761 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
762 		else
763 			count = 1;
764 
765 		switch(count) {
766 		case  1: bcomp = OpalPciBusAll;		break;
767 		case  2: bcomp = OpalPciBus7Bits;	break;
768 		case  4: bcomp = OpalPciBus6Bits;	break;
769 		case  8: bcomp = OpalPciBus5Bits;	break;
770 		case 16: bcomp = OpalPciBus4Bits;	break;
771 		case 32: bcomp = OpalPciBus3Bits;	break;
772 		default:
773 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
774 			        count);
775 			/* Do an exact match only */
776 			bcomp = OpalPciBusAll;
777 		}
778 		rid_end = pe->rid + (count << 8);
779 	} else {
780 #ifdef CONFIG_PCI_IOV
781 		if (pe->flags & PNV_IODA_PE_VF)
782 			parent = pe->parent_dev;
783 		else
784 #endif /* CONFIG_PCI_IOV */
785 			parent = pe->pdev->bus->self;
786 		bcomp = OpalPciBusAll;
787 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
788 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
789 		rid_end = pe->rid + 1;
790 	}
791 
792 	/*
793 	 * Associate PE in PELT. We need add the PE into the
794 	 * corresponding PELT-V as well. Otherwise, the error
795 	 * originated from the PE might contribute to other
796 	 * PEs.
797 	 */
798 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
799 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
800 	if (rc) {
801 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
802 		return -ENXIO;
803 	}
804 
805 	/* Configure PELTV */
806 	pnv_ioda_set_peltv(phb, pe, true);
807 
808 	/* Setup reverse map */
809 	for (rid = pe->rid; rid < rid_end; rid++)
810 		phb->ioda.pe_rmap[rid] = pe->pe_number;
811 
812 	/* Setup one MVTs on IODA1 */
813 	if (phb->type != PNV_PHB_IODA1) {
814 		pe->mve_number = 0;
815 		goto out;
816 	}
817 
818 	pe->mve_number = pe->pe_number;
819 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
820 	if (rc != OPAL_SUCCESS) {
821 		pe_err(pe, "OPAL error %ld setting up MVE %d\n",
822 		       rc, pe->mve_number);
823 		pe->mve_number = -1;
824 	} else {
825 		rc = opal_pci_set_mve_enable(phb->opal_id,
826 					     pe->mve_number, OPAL_ENABLE_MVE);
827 		if (rc) {
828 			pe_err(pe, "OPAL error %ld enabling MVE %d\n",
829 			       rc, pe->mve_number);
830 			pe->mve_number = -1;
831 		}
832 	}
833 
834 out:
835 	return 0;
836 }
837 
838 static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
839 				       struct pnv_ioda_pe *pe)
840 {
841 	struct pnv_ioda_pe *lpe;
842 
843 	list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
844 		if (lpe->dma_weight < pe->dma_weight) {
845 			list_add_tail(&pe->dma_link, &lpe->dma_link);
846 			return;
847 		}
848 	}
849 	list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
850 }
851 
852 static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
853 {
854 	/* This is quite simplistic. The "base" weight of a device
855 	 * is 10. 0 means no DMA is to be accounted for it.
856 	 */
857 
858 	/* If it's a bridge, no DMA */
859 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
860 		return 0;
861 
862 	/* Reduce the weight of slow USB controllers */
863 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
864 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
865 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
866 		return 3;
867 
868 	/* Increase the weight of RAID (includes Obsidian) */
869 	if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
870 		return 15;
871 
872 	/* Default */
873 	return 10;
874 }
875 
876 #ifdef CONFIG_PCI_IOV
877 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
878 {
879 	struct pci_dn *pdn = pci_get_pdn(dev);
880 	int i;
881 	struct resource *res, res2;
882 	resource_size_t size;
883 	u16 num_vfs;
884 
885 	if (!dev->is_physfn)
886 		return -EINVAL;
887 
888 	/*
889 	 * "offset" is in VFs.  The M64 windows are sized so that when they
890 	 * are segmented, each segment is the same size as the IOV BAR.
891 	 * Each segment is in a separate PE, and the high order bits of the
892 	 * address are the PE number.  Therefore, each VF's BAR is in a
893 	 * separate PE, and changing the IOV BAR start address changes the
894 	 * range of PEs the VFs are in.
895 	 */
896 	num_vfs = pdn->num_vfs;
897 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
898 		res = &dev->resource[i + PCI_IOV_RESOURCES];
899 		if (!res->flags || !res->parent)
900 			continue;
901 
902 		if (!pnv_pci_is_mem_pref_64(res->flags))
903 			continue;
904 
905 		/*
906 		 * The actual IOV BAR range is determined by the start address
907 		 * and the actual size for num_vfs VFs BAR.  This check is to
908 		 * make sure that after shifting, the range will not overlap
909 		 * with another device.
910 		 */
911 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
912 		res2.flags = res->flags;
913 		res2.start = res->start + (size * offset);
914 		res2.end = res2.start + (size * num_vfs) - 1;
915 
916 		if (res2.end > res->end) {
917 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
918 				i, &res2, res, num_vfs, offset);
919 			return -EBUSY;
920 		}
921 	}
922 
923 	/*
924 	 * After doing so, there would be a "hole" in the /proc/iomem when
925 	 * offset is a positive value. It looks like the device return some
926 	 * mmio back to the system, which actually no one could use it.
927 	 */
928 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
929 		res = &dev->resource[i + PCI_IOV_RESOURCES];
930 		if (!res->flags || !res->parent)
931 			continue;
932 
933 		if (!pnv_pci_is_mem_pref_64(res->flags))
934 			continue;
935 
936 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
937 		res2 = *res;
938 		res->start += size * offset;
939 
940 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (enabling %d VFs shifted by %d)\n",
941 			 i, &res2, res, num_vfs, offset);
942 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
943 	}
944 	return 0;
945 }
946 #endif /* CONFIG_PCI_IOV */
947 
948 #if 0
949 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
950 {
951 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
952 	struct pnv_phb *phb = hose->private_data;
953 	struct pci_dn *pdn = pci_get_pdn(dev);
954 	struct pnv_ioda_pe *pe;
955 	int pe_num;
956 
957 	if (!pdn) {
958 		pr_err("%s: Device tree node not associated properly\n",
959 			   pci_name(dev));
960 		return NULL;
961 	}
962 	if (pdn->pe_number != IODA_INVALID_PE)
963 		return NULL;
964 
965 	/* PE#0 has been pre-set */
966 	if (dev->bus->number == 0)
967 		pe_num = 0;
968 	else
969 		pe_num = pnv_ioda_alloc_pe(phb);
970 	if (pe_num == IODA_INVALID_PE) {
971 		pr_warning("%s: Not enough PE# available, disabling device\n",
972 			   pci_name(dev));
973 		return NULL;
974 	}
975 
976 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
977 	 * pointer in the PE data structure, both should be destroyed at the
978 	 * same time. However, this needs to be looked at more closely again
979 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
980 	 *
981 	 * At some point we want to remove the PDN completely anyways
982 	 */
983 	pe = &phb->ioda.pe_array[pe_num];
984 	pci_dev_get(dev);
985 	pdn->pcidev = dev;
986 	pdn->pe_number = pe_num;
987 	pe->pdev = dev;
988 	pe->pbus = NULL;
989 	pe->tce32_seg = -1;
990 	pe->mve_number = -1;
991 	pe->rid = dev->bus->number << 8 | pdn->devfn;
992 
993 	pe_info(pe, "Associated device to PE\n");
994 
995 	if (pnv_ioda_configure_pe(phb, pe)) {
996 		/* XXX What do we do here ? */
997 		if (pe_num)
998 			pnv_ioda_free_pe(phb, pe_num);
999 		pdn->pe_number = IODA_INVALID_PE;
1000 		pe->pdev = NULL;
1001 		pci_dev_put(dev);
1002 		return NULL;
1003 	}
1004 
1005 	/* Assign a DMA weight to the device */
1006 	pe->dma_weight = pnv_ioda_dma_weight(dev);
1007 	if (pe->dma_weight != 0) {
1008 		phb->ioda.dma_weight += pe->dma_weight;
1009 		phb->ioda.dma_pe_count++;
1010 	}
1011 
1012 	/* Link the PE */
1013 	pnv_ioda_link_pe_by_weight(phb, pe);
1014 
1015 	return pe;
1016 }
1017 #endif /* Useful for SRIOV case */
1018 
1019 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1020 {
1021 	struct pci_dev *dev;
1022 
1023 	list_for_each_entry(dev, &bus->devices, bus_list) {
1024 		struct pci_dn *pdn = pci_get_pdn(dev);
1025 
1026 		if (pdn == NULL) {
1027 			pr_warn("%s: No device node associated with device !\n",
1028 				pci_name(dev));
1029 			continue;
1030 		}
1031 		pdn->pe_number = pe->pe_number;
1032 		pe->dma_weight += pnv_ioda_dma_weight(dev);
1033 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1034 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
1035 	}
1036 }
1037 
1038 /*
1039  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1040  * single PCI bus. Another one that contains the primary PCI bus and its
1041  * subordinate PCI devices and buses. The second type of PE is normally
1042  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1043  */
1044 static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
1045 {
1046 	struct pci_controller *hose = pci_bus_to_host(bus);
1047 	struct pnv_phb *phb = hose->private_data;
1048 	struct pnv_ioda_pe *pe;
1049 	int pe_num = IODA_INVALID_PE;
1050 
1051 	/* Check if PE is determined by M64 */
1052 	if (phb->pick_m64_pe)
1053 		pe_num = phb->pick_m64_pe(phb, bus, all);
1054 
1055 	/* The PE number isn't pinned by M64 */
1056 	if (pe_num == IODA_INVALID_PE)
1057 		pe_num = pnv_ioda_alloc_pe(phb);
1058 
1059 	if (pe_num == IODA_INVALID_PE) {
1060 		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1061 			__func__, pci_domain_nr(bus), bus->number);
1062 		return;
1063 	}
1064 
1065 	pe = &phb->ioda.pe_array[pe_num];
1066 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1067 	pe->pbus = bus;
1068 	pe->pdev = NULL;
1069 	pe->tce32_seg = -1;
1070 	pe->mve_number = -1;
1071 	pe->rid = bus->busn_res.start << 8;
1072 	pe->dma_weight = 0;
1073 
1074 	if (all)
1075 		pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1076 			bus->busn_res.start, bus->busn_res.end, pe_num);
1077 	else
1078 		pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1079 			bus->busn_res.start, pe_num);
1080 
1081 	if (pnv_ioda_configure_pe(phb, pe)) {
1082 		/* XXX What do we do here ? */
1083 		if (pe_num)
1084 			pnv_ioda_free_pe(phb, pe_num);
1085 		pe->pbus = NULL;
1086 		return;
1087 	}
1088 
1089 	pe->tce32_table = kzalloc_node(sizeof(struct iommu_table),
1090 			GFP_KERNEL, hose->node);
1091 	pe->tce32_table->data = pe;
1092 
1093 	/* Associate it with all child devices */
1094 	pnv_ioda_setup_same_PE(bus, pe);
1095 
1096 	/* Put PE to the list */
1097 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1098 
1099 	/* Account for one DMA PE if at least one DMA capable device exist
1100 	 * below the bridge
1101 	 */
1102 	if (pe->dma_weight != 0) {
1103 		phb->ioda.dma_weight += pe->dma_weight;
1104 		phb->ioda.dma_pe_count++;
1105 	}
1106 
1107 	/* Link the PE */
1108 	pnv_ioda_link_pe_by_weight(phb, pe);
1109 }
1110 
1111 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
1112 {
1113 	struct pci_dev *dev;
1114 
1115 	pnv_ioda_setup_bus_PE(bus, 0);
1116 
1117 	list_for_each_entry(dev, &bus->devices, bus_list) {
1118 		if (dev->subordinate) {
1119 			if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
1120 				pnv_ioda_setup_bus_PE(dev->subordinate, 1);
1121 			else
1122 				pnv_ioda_setup_PEs(dev->subordinate);
1123 		}
1124 	}
1125 }
1126 
1127 /*
1128  * Configure PEs so that the downstream PCI buses and devices
1129  * could have their associated PE#. Unfortunately, we didn't
1130  * figure out the way to identify the PLX bridge yet. So we
1131  * simply put the PCI bus and the subordinate behind the root
1132  * port to PE# here. The game rule here is expected to be changed
1133  * as soon as we can detected PLX bridge correctly.
1134  */
1135 static void pnv_pci_ioda_setup_PEs(void)
1136 {
1137 	struct pci_controller *hose, *tmp;
1138 	struct pnv_phb *phb;
1139 
1140 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1141 		phb = hose->private_data;
1142 
1143 		/* M64 layout might affect PE allocation */
1144 		if (phb->reserve_m64_pe)
1145 			phb->reserve_m64_pe(phb);
1146 
1147 		pnv_ioda_setup_PEs(hose->bus);
1148 	}
1149 }
1150 
1151 #ifdef CONFIG_PCI_IOV
1152 static int pnv_pci_vf_release_m64(struct pci_dev *pdev)
1153 {
1154 	struct pci_bus        *bus;
1155 	struct pci_controller *hose;
1156 	struct pnv_phb        *phb;
1157 	struct pci_dn         *pdn;
1158 	int                    i, j;
1159 
1160 	bus = pdev->bus;
1161 	hose = pci_bus_to_host(bus);
1162 	phb = hose->private_data;
1163 	pdn = pci_get_pdn(pdev);
1164 
1165 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1166 		for (j = 0; j < M64_PER_IOV; j++) {
1167 			if (pdn->m64_wins[i][j] == IODA_INVALID_M64)
1168 				continue;
1169 			opal_pci_phb_mmio_enable(phb->opal_id,
1170 				OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 0);
1171 			clear_bit(pdn->m64_wins[i][j], &phb->ioda.m64_bar_alloc);
1172 			pdn->m64_wins[i][j] = IODA_INVALID_M64;
1173 		}
1174 
1175 	return 0;
1176 }
1177 
1178 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1179 {
1180 	struct pci_bus        *bus;
1181 	struct pci_controller *hose;
1182 	struct pnv_phb        *phb;
1183 	struct pci_dn         *pdn;
1184 	unsigned int           win;
1185 	struct resource       *res;
1186 	int                    i, j;
1187 	int64_t                rc;
1188 	int                    total_vfs;
1189 	resource_size_t        size, start;
1190 	int                    pe_num;
1191 	int                    vf_groups;
1192 	int                    vf_per_group;
1193 
1194 	bus = pdev->bus;
1195 	hose = pci_bus_to_host(bus);
1196 	phb = hose->private_data;
1197 	pdn = pci_get_pdn(pdev);
1198 	total_vfs = pci_sriov_get_totalvfs(pdev);
1199 
1200 	/* Initialize the m64_wins to IODA_INVALID_M64 */
1201 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1202 		for (j = 0; j < M64_PER_IOV; j++)
1203 			pdn->m64_wins[i][j] = IODA_INVALID_M64;
1204 
1205 	if (pdn->m64_per_iov == M64_PER_IOV) {
1206 		vf_groups = (num_vfs <= M64_PER_IOV) ? num_vfs: M64_PER_IOV;
1207 		vf_per_group = (num_vfs <= M64_PER_IOV)? 1:
1208 			roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1209 	} else {
1210 		vf_groups = 1;
1211 		vf_per_group = 1;
1212 	}
1213 
1214 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1215 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
1216 		if (!res->flags || !res->parent)
1217 			continue;
1218 
1219 		if (!pnv_pci_is_mem_pref_64(res->flags))
1220 			continue;
1221 
1222 		for (j = 0; j < vf_groups; j++) {
1223 			do {
1224 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1225 						phb->ioda.m64_bar_idx + 1, 0);
1226 
1227 				if (win >= phb->ioda.m64_bar_idx + 1)
1228 					goto m64_failed;
1229 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1230 
1231 			pdn->m64_wins[i][j] = win;
1232 
1233 			if (pdn->m64_per_iov == M64_PER_IOV) {
1234 				size = pci_iov_resource_size(pdev,
1235 							PCI_IOV_RESOURCES + i);
1236 				size = size * vf_per_group;
1237 				start = res->start + size * j;
1238 			} else {
1239 				size = resource_size(res);
1240 				start = res->start;
1241 			}
1242 
1243 			/* Map the M64 here */
1244 			if (pdn->m64_per_iov == M64_PER_IOV) {
1245 				pe_num = pdn->offset + j;
1246 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1247 						pe_num, OPAL_M64_WINDOW_TYPE,
1248 						pdn->m64_wins[i][j], 0);
1249 			}
1250 
1251 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
1252 						 OPAL_M64_WINDOW_TYPE,
1253 						 pdn->m64_wins[i][j],
1254 						 start,
1255 						 0, /* unused */
1256 						 size);
1257 
1258 
1259 			if (rc != OPAL_SUCCESS) {
1260 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1261 					win, rc);
1262 				goto m64_failed;
1263 			}
1264 
1265 			if (pdn->m64_per_iov == M64_PER_IOV)
1266 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1267 				     OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 2);
1268 			else
1269 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1270 				     OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 1);
1271 
1272 			if (rc != OPAL_SUCCESS) {
1273 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1274 					win, rc);
1275 				goto m64_failed;
1276 			}
1277 		}
1278 	}
1279 	return 0;
1280 
1281 m64_failed:
1282 	pnv_pci_vf_release_m64(pdev);
1283 	return -EBUSY;
1284 }
1285 
1286 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1287 {
1288 	struct pci_bus        *bus;
1289 	struct pci_controller *hose;
1290 	struct pnv_phb        *phb;
1291 	struct iommu_table    *tbl;
1292 	unsigned long         addr;
1293 	int64_t               rc;
1294 
1295 	bus = dev->bus;
1296 	hose = pci_bus_to_host(bus);
1297 	phb = hose->private_data;
1298 	tbl = pe->tce32_table;
1299 	addr = tbl->it_base;
1300 
1301 	opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1302 				   pe->pe_number << 1, 1, __pa(addr),
1303 				   0, 0x1000);
1304 
1305 	rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1306 				        pe->pe_number,
1307 				        (pe->pe_number << 1) + 1,
1308 				        pe->tce_bypass_base,
1309 				        0);
1310 	if (rc)
1311 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1312 
1313 	iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1314 	free_pages(addr, get_order(TCE32_TABLE_SIZE));
1315 	pe->tce32_table = NULL;
1316 }
1317 
1318 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1319 {
1320 	struct pci_bus        *bus;
1321 	struct pci_controller *hose;
1322 	struct pnv_phb        *phb;
1323 	struct pnv_ioda_pe    *pe, *pe_n;
1324 	struct pci_dn         *pdn;
1325 	u16                    vf_index;
1326 	int64_t                rc;
1327 
1328 	bus = pdev->bus;
1329 	hose = pci_bus_to_host(bus);
1330 	phb = hose->private_data;
1331 	pdn = pci_get_pdn(pdev);
1332 
1333 	if (!pdev->is_physfn)
1334 		return;
1335 
1336 	if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
1337 		int   vf_group;
1338 		int   vf_per_group;
1339 		int   vf_index1;
1340 
1341 		vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1342 
1343 		for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++)
1344 			for (vf_index = vf_group * vf_per_group;
1345 				vf_index < (vf_group + 1) * vf_per_group &&
1346 				vf_index < num_vfs;
1347 				vf_index++)
1348 				for (vf_index1 = vf_group * vf_per_group;
1349 					vf_index1 < (vf_group + 1) * vf_per_group &&
1350 					vf_index1 < num_vfs;
1351 					vf_index1++){
1352 
1353 					rc = opal_pci_set_peltv(phb->opal_id,
1354 						pdn->offset + vf_index,
1355 						pdn->offset + vf_index1,
1356 						OPAL_REMOVE_PE_FROM_DOMAIN);
1357 
1358 					if (rc)
1359 					    dev_warn(&pdev->dev, "%s: Failed to unlink same group PE#%d(%lld)\n",
1360 						__func__,
1361 						pdn->offset + vf_index1, rc);
1362 				}
1363 	}
1364 
1365 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1366 		if (pe->parent_dev != pdev)
1367 			continue;
1368 
1369 		pnv_pci_ioda2_release_dma_pe(pdev, pe);
1370 
1371 		/* Remove from list */
1372 		mutex_lock(&phb->ioda.pe_list_mutex);
1373 		list_del(&pe->list);
1374 		mutex_unlock(&phb->ioda.pe_list_mutex);
1375 
1376 		pnv_ioda_deconfigure_pe(phb, pe);
1377 
1378 		pnv_ioda_free_pe(phb, pe->pe_number);
1379 	}
1380 }
1381 
1382 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1383 {
1384 	struct pci_bus        *bus;
1385 	struct pci_controller *hose;
1386 	struct pnv_phb        *phb;
1387 	struct pci_dn         *pdn;
1388 	struct pci_sriov      *iov;
1389 	u16 num_vfs;
1390 
1391 	bus = pdev->bus;
1392 	hose = pci_bus_to_host(bus);
1393 	phb = hose->private_data;
1394 	pdn = pci_get_pdn(pdev);
1395 	iov = pdev->sriov;
1396 	num_vfs = pdn->num_vfs;
1397 
1398 	/* Release VF PEs */
1399 	pnv_ioda_release_vf_PE(pdev, num_vfs);
1400 
1401 	if (phb->type == PNV_PHB_IODA2) {
1402 		if (pdn->m64_per_iov == 1)
1403 			pnv_pci_vf_resource_shift(pdev, -pdn->offset);
1404 
1405 		/* Release M64 windows */
1406 		pnv_pci_vf_release_m64(pdev);
1407 
1408 		/* Release PE numbers */
1409 		bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1410 		pdn->offset = 0;
1411 	}
1412 }
1413 
1414 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1415 				       struct pnv_ioda_pe *pe);
1416 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1417 {
1418 	struct pci_bus        *bus;
1419 	struct pci_controller *hose;
1420 	struct pnv_phb        *phb;
1421 	struct pnv_ioda_pe    *pe;
1422 	int                    pe_num;
1423 	u16                    vf_index;
1424 	struct pci_dn         *pdn;
1425 	int64_t                rc;
1426 
1427 	bus = pdev->bus;
1428 	hose = pci_bus_to_host(bus);
1429 	phb = hose->private_data;
1430 	pdn = pci_get_pdn(pdev);
1431 
1432 	if (!pdev->is_physfn)
1433 		return;
1434 
1435 	/* Reserve PE for each VF */
1436 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1437 		pe_num = pdn->offset + vf_index;
1438 
1439 		pe = &phb->ioda.pe_array[pe_num];
1440 		pe->pe_number = pe_num;
1441 		pe->phb = phb;
1442 		pe->flags = PNV_IODA_PE_VF;
1443 		pe->pbus = NULL;
1444 		pe->parent_dev = pdev;
1445 		pe->tce32_seg = -1;
1446 		pe->mve_number = -1;
1447 		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1448 			   pci_iov_virtfn_devfn(pdev, vf_index);
1449 
1450 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1451 			hose->global_number, pdev->bus->number,
1452 			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1453 			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1454 
1455 		if (pnv_ioda_configure_pe(phb, pe)) {
1456 			/* XXX What do we do here ? */
1457 			if (pe_num)
1458 				pnv_ioda_free_pe(phb, pe_num);
1459 			pe->pdev = NULL;
1460 			continue;
1461 		}
1462 
1463 		pe->tce32_table = kzalloc_node(sizeof(struct iommu_table),
1464 				GFP_KERNEL, hose->node);
1465 		pe->tce32_table->data = pe;
1466 
1467 		/* Put PE to the list */
1468 		mutex_lock(&phb->ioda.pe_list_mutex);
1469 		list_add_tail(&pe->list, &phb->ioda.pe_list);
1470 		mutex_unlock(&phb->ioda.pe_list_mutex);
1471 
1472 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
1473 	}
1474 
1475 	if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
1476 		int   vf_group;
1477 		int   vf_per_group;
1478 		int   vf_index1;
1479 
1480 		vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1481 
1482 		for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++) {
1483 			for (vf_index = vf_group * vf_per_group;
1484 			     vf_index < (vf_group + 1) * vf_per_group &&
1485 			     vf_index < num_vfs;
1486 			     vf_index++) {
1487 				for (vf_index1 = vf_group * vf_per_group;
1488 				     vf_index1 < (vf_group + 1) * vf_per_group &&
1489 				     vf_index1 < num_vfs;
1490 				     vf_index1++) {
1491 
1492 					rc = opal_pci_set_peltv(phb->opal_id,
1493 						pdn->offset + vf_index,
1494 						pdn->offset + vf_index1,
1495 						OPAL_ADD_PE_TO_DOMAIN);
1496 
1497 					if (rc)
1498 					    dev_warn(&pdev->dev, "%s: Failed to link same group PE#%d(%lld)\n",
1499 						__func__,
1500 						pdn->offset + vf_index1, rc);
1501 				}
1502 			}
1503 		}
1504 	}
1505 }
1506 
1507 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1508 {
1509 	struct pci_bus        *bus;
1510 	struct pci_controller *hose;
1511 	struct pnv_phb        *phb;
1512 	struct pci_dn         *pdn;
1513 	int                    ret;
1514 
1515 	bus = pdev->bus;
1516 	hose = pci_bus_to_host(bus);
1517 	phb = hose->private_data;
1518 	pdn = pci_get_pdn(pdev);
1519 
1520 	if (phb->type == PNV_PHB_IODA2) {
1521 		/* Calculate available PE for required VFs */
1522 		mutex_lock(&phb->ioda.pe_alloc_mutex);
1523 		pdn->offset = bitmap_find_next_zero_area(
1524 			phb->ioda.pe_alloc, phb->ioda.total_pe,
1525 			0, num_vfs, 0);
1526 		if (pdn->offset >= phb->ioda.total_pe) {
1527 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
1528 			dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1529 			pdn->offset = 0;
1530 			return -EBUSY;
1531 		}
1532 		bitmap_set(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1533 		pdn->num_vfs = num_vfs;
1534 		mutex_unlock(&phb->ioda.pe_alloc_mutex);
1535 
1536 		/* Assign M64 window accordingly */
1537 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1538 		if (ret) {
1539 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
1540 			goto m64_failed;
1541 		}
1542 
1543 		/*
1544 		 * When using one M64 BAR to map one IOV BAR, we need to shift
1545 		 * the IOV BAR according to the PE# allocated to the VFs.
1546 		 * Otherwise, the PE# for the VF will conflict with others.
1547 		 */
1548 		if (pdn->m64_per_iov == 1) {
1549 			ret = pnv_pci_vf_resource_shift(pdev, pdn->offset);
1550 			if (ret)
1551 				goto m64_failed;
1552 		}
1553 	}
1554 
1555 	/* Setup VF PEs */
1556 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
1557 
1558 	return 0;
1559 
1560 m64_failed:
1561 	bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1562 	pdn->offset = 0;
1563 
1564 	return ret;
1565 }
1566 
1567 int pcibios_sriov_disable(struct pci_dev *pdev)
1568 {
1569 	pnv_pci_sriov_disable(pdev);
1570 
1571 	/* Release PCI data */
1572 	remove_dev_pci_data(pdev);
1573 	return 0;
1574 }
1575 
1576 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1577 {
1578 	/* Allocate PCI data */
1579 	add_dev_pci_data(pdev);
1580 
1581 	pnv_pci_sriov_enable(pdev, num_vfs);
1582 	return 0;
1583 }
1584 #endif /* CONFIG_PCI_IOV */
1585 
1586 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1587 {
1588 	struct pci_dn *pdn = pci_get_pdn(pdev);
1589 	struct pnv_ioda_pe *pe;
1590 
1591 	/*
1592 	 * The function can be called while the PE#
1593 	 * hasn't been assigned. Do nothing for the
1594 	 * case.
1595 	 */
1596 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1597 		return;
1598 
1599 	pe = &phb->ioda.pe_array[pdn->pe_number];
1600 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1601 	set_iommu_table_base_and_group(&pdev->dev, pe->tce32_table);
1602 }
1603 
1604 static int pnv_pci_ioda_dma_set_mask(struct pnv_phb *phb,
1605 				     struct pci_dev *pdev, u64 dma_mask)
1606 {
1607 	struct pci_dn *pdn = pci_get_pdn(pdev);
1608 	struct pnv_ioda_pe *pe;
1609 	uint64_t top;
1610 	bool bypass = false;
1611 
1612 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1613 		return -ENODEV;;
1614 
1615 	pe = &phb->ioda.pe_array[pdn->pe_number];
1616 	if (pe->tce_bypass_enabled) {
1617 		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1618 		bypass = (dma_mask >= top);
1619 	}
1620 
1621 	if (bypass) {
1622 		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1623 		set_dma_ops(&pdev->dev, &dma_direct_ops);
1624 		set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1625 	} else {
1626 		dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1627 		set_dma_ops(&pdev->dev, &dma_iommu_ops);
1628 		set_iommu_table_base(&pdev->dev, pe->tce32_table);
1629 	}
1630 	*pdev->dev.dma_mask = dma_mask;
1631 	return 0;
1632 }
1633 
1634 static u64 pnv_pci_ioda_dma_get_required_mask(struct pnv_phb *phb,
1635 					      struct pci_dev *pdev)
1636 {
1637 	struct pci_dn *pdn = pci_get_pdn(pdev);
1638 	struct pnv_ioda_pe *pe;
1639 	u64 end, mask;
1640 
1641 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1642 		return 0;
1643 
1644 	pe = &phb->ioda.pe_array[pdn->pe_number];
1645 	if (!pe->tce_bypass_enabled)
1646 		return __dma_get_required_mask(&pdev->dev);
1647 
1648 
1649 	end = pe->tce_bypass_base + memblock_end_of_DRAM();
1650 	mask = 1ULL << (fls64(end) - 1);
1651 	mask += mask - 1;
1652 
1653 	return mask;
1654 }
1655 
1656 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1657 				   struct pci_bus *bus,
1658 				   bool add_to_iommu_group)
1659 {
1660 	struct pci_dev *dev;
1661 
1662 	list_for_each_entry(dev, &bus->devices, bus_list) {
1663 		if (add_to_iommu_group)
1664 			set_iommu_table_base_and_group(&dev->dev,
1665 						       pe->tce32_table);
1666 		else
1667 			set_iommu_table_base(&dev->dev, pe->tce32_table);
1668 
1669 		if (dev->subordinate)
1670 			pnv_ioda_setup_bus_dma(pe, dev->subordinate,
1671 					       add_to_iommu_group);
1672 	}
1673 }
1674 
1675 static void pnv_pci_ioda1_tce_invalidate(struct pnv_ioda_pe *pe,
1676 					 struct iommu_table *tbl,
1677 					 __be64 *startp, __be64 *endp, bool rm)
1678 {
1679 	__be64 __iomem *invalidate = rm ?
1680 		(__be64 __iomem *)pe->tce_inval_reg_phys :
1681 		(__be64 __iomem *)tbl->it_index;
1682 	unsigned long start, end, inc;
1683 	const unsigned shift = tbl->it_page_shift;
1684 
1685 	start = __pa(startp);
1686 	end = __pa(endp);
1687 
1688 	/* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1689 	if (tbl->it_busno) {
1690 		start <<= shift;
1691 		end <<= shift;
1692 		inc = 128ull << shift;
1693 		start |= tbl->it_busno;
1694 		end |= tbl->it_busno;
1695 	} else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1696 		/* p7ioc-style invalidation, 2 TCEs per write */
1697 		start |= (1ull << 63);
1698 		end |= (1ull << 63);
1699 		inc = 16;
1700         } else {
1701 		/* Default (older HW) */
1702                 inc = 128;
1703 	}
1704 
1705         end |= inc - 1;	/* round up end to be different than start */
1706 
1707         mb(); /* Ensure above stores are visible */
1708         while (start <= end) {
1709 		if (rm)
1710 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1711 		else
1712 			__raw_writeq(cpu_to_be64(start), invalidate);
1713                 start += inc;
1714         }
1715 
1716 	/*
1717 	 * The iommu layer will do another mb() for us on build()
1718 	 * and we don't care on free()
1719 	 */
1720 }
1721 
1722 static void pnv_pci_ioda2_tce_invalidate(struct pnv_ioda_pe *pe,
1723 					 struct iommu_table *tbl,
1724 					 __be64 *startp, __be64 *endp, bool rm)
1725 {
1726 	unsigned long start, end, inc;
1727 	__be64 __iomem *invalidate = rm ?
1728 		(__be64 __iomem *)pe->tce_inval_reg_phys :
1729 		(__be64 __iomem *)tbl->it_index;
1730 	const unsigned shift = tbl->it_page_shift;
1731 
1732 	/* We'll invalidate DMA address in PE scope */
1733 	start = 0x2ull << 60;
1734 	start |= (pe->pe_number & 0xFF);
1735 	end = start;
1736 
1737 	/* Figure out the start, end and step */
1738 	inc = tbl->it_offset + (((u64)startp - tbl->it_base) / sizeof(u64));
1739 	start |= (inc << shift);
1740 	inc = tbl->it_offset + (((u64)endp - tbl->it_base) / sizeof(u64));
1741 	end |= (inc << shift);
1742 	inc = (0x1ull << shift);
1743 	mb();
1744 
1745 	while (start <= end) {
1746 		if (rm)
1747 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1748 		else
1749 			__raw_writeq(cpu_to_be64(start), invalidate);
1750 		start += inc;
1751 	}
1752 }
1753 
1754 void pnv_pci_ioda_tce_invalidate(struct iommu_table *tbl,
1755 				 __be64 *startp, __be64 *endp, bool rm)
1756 {
1757 	struct pnv_ioda_pe *pe = tbl->data;
1758 	struct pnv_phb *phb = pe->phb;
1759 
1760 	if (phb->type == PNV_PHB_IODA1)
1761 		pnv_pci_ioda1_tce_invalidate(pe, tbl, startp, endp, rm);
1762 	else
1763 		pnv_pci_ioda2_tce_invalidate(pe, tbl, startp, endp, rm);
1764 }
1765 
1766 static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
1767 				      struct pnv_ioda_pe *pe, unsigned int base,
1768 				      unsigned int segs)
1769 {
1770 
1771 	struct page *tce_mem = NULL;
1772 	const __be64 *swinvp;
1773 	struct iommu_table *tbl;
1774 	unsigned int i;
1775 	int64_t rc;
1776 	void *addr;
1777 
1778 	/* XXX FIXME: Handle 64-bit only DMA devices */
1779 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1780 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
1781 
1782 	/* We shouldn't already have a 32-bit DMA associated */
1783 	if (WARN_ON(pe->tce32_seg >= 0))
1784 		return;
1785 
1786 	/* Grab a 32-bit TCE table */
1787 	pe->tce32_seg = base;
1788 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1789 		(base << 28), ((base + segs) << 28) - 1);
1790 
1791 	/* XXX Currently, we allocate one big contiguous table for the
1792 	 * TCEs. We only really need one chunk per 256M of TCE space
1793 	 * (ie per segment) but that's an optimization for later, it
1794 	 * requires some added smarts with our get/put_tce implementation
1795 	 */
1796 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1797 				   get_order(TCE32_TABLE_SIZE * segs));
1798 	if (!tce_mem) {
1799 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1800 		goto fail;
1801 	}
1802 	addr = page_address(tce_mem);
1803 	memset(addr, 0, TCE32_TABLE_SIZE * segs);
1804 
1805 	/* Configure HW */
1806 	for (i = 0; i < segs; i++) {
1807 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
1808 					      pe->pe_number,
1809 					      base + i, 1,
1810 					      __pa(addr) + TCE32_TABLE_SIZE * i,
1811 					      TCE32_TABLE_SIZE, 0x1000);
1812 		if (rc) {
1813 			pe_err(pe, " Failed to configure 32-bit TCE table,"
1814 			       " err %ld\n", rc);
1815 			goto fail;
1816 		}
1817 	}
1818 
1819 	/* Setup linux iommu table */
1820 	tbl = pe->tce32_table;
1821 	pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
1822 				  base << 28, IOMMU_PAGE_SHIFT_4K);
1823 
1824 	/* OPAL variant of P7IOC SW invalidated TCEs */
1825 	swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
1826 	if (swinvp) {
1827 		/* We need a couple more fields -- an address and a data
1828 		 * to or.  Since the bus is only printed out on table free
1829 		 * errors, and on the first pass the data will be a relative
1830 		 * bus number, print that out instead.
1831 		 */
1832 		pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
1833 		tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
1834 				8);
1835 		tbl->it_type |= (TCE_PCI_SWINV_CREATE |
1836 				 TCE_PCI_SWINV_FREE   |
1837 				 TCE_PCI_SWINV_PAIR);
1838 	}
1839 	iommu_init_table(tbl, phb->hose->node);
1840 
1841 	if (pe->flags & PNV_IODA_PE_DEV) {
1842 		iommu_register_group(tbl, phb->hose->global_number,
1843 				     pe->pe_number);
1844 		set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
1845 	} else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) {
1846 		iommu_register_group(tbl, phb->hose->global_number,
1847 				     pe->pe_number);
1848 		pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
1849 	} else if (pe->flags & PNV_IODA_PE_VF) {
1850 		iommu_register_group(tbl, phb->hose->global_number,
1851 				     pe->pe_number);
1852 	}
1853 
1854 	return;
1855  fail:
1856 	/* XXX Failure: Try to fallback to 64-bit only ? */
1857 	if (pe->tce32_seg >= 0)
1858 		pe->tce32_seg = -1;
1859 	if (tce_mem)
1860 		__free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
1861 }
1862 
1863 static void pnv_pci_ioda2_set_bypass(struct iommu_table *tbl, bool enable)
1864 {
1865 	struct pnv_ioda_pe *pe = tbl->data;
1866 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
1867 	int64_t rc;
1868 
1869 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1870 	if (enable) {
1871 		phys_addr_t top = memblock_end_of_DRAM();
1872 
1873 		top = roundup_pow_of_two(top);
1874 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1875 						     pe->pe_number,
1876 						     window_id,
1877 						     pe->tce_bypass_base,
1878 						     top);
1879 	} else {
1880 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1881 						     pe->pe_number,
1882 						     window_id,
1883 						     pe->tce_bypass_base,
1884 						     0);
1885 
1886 		/*
1887 		 * EEH needs the mapping between IOMMU table and group
1888 		 * of those VFIO/KVM pass-through devices. We can postpone
1889 		 * resetting DMA ops until the DMA mask is configured in
1890 		 * host side.
1891 		 */
1892 		if (pe->pdev)
1893 			set_iommu_table_base(&pe->pdev->dev, tbl);
1894 		else
1895 			pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
1896 	}
1897 	if (rc)
1898 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
1899 	else
1900 		pe->tce_bypass_enabled = enable;
1901 }
1902 
1903 static void pnv_pci_ioda2_setup_bypass_pe(struct pnv_phb *phb,
1904 					  struct pnv_ioda_pe *pe)
1905 {
1906 	/* TVE #1 is selected by PCI address bit 59 */
1907 	pe->tce_bypass_base = 1ull << 59;
1908 
1909 	/* Install set_bypass callback for VFIO */
1910 	pe->tce32_table->set_bypass = pnv_pci_ioda2_set_bypass;
1911 
1912 	/* Enable bypass by default */
1913 	pnv_pci_ioda2_set_bypass(pe->tce32_table, true);
1914 }
1915 
1916 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1917 				       struct pnv_ioda_pe *pe)
1918 {
1919 	struct page *tce_mem = NULL;
1920 	void *addr;
1921 	const __be64 *swinvp;
1922 	struct iommu_table *tbl;
1923 	unsigned int tce_table_size, end;
1924 	int64_t rc;
1925 
1926 	/* We shouldn't already have a 32-bit DMA associated */
1927 	if (WARN_ON(pe->tce32_seg >= 0))
1928 		return;
1929 
1930 	/* The PE will reserve all possible 32-bits space */
1931 	pe->tce32_seg = 0;
1932 	end = (1 << ilog2(phb->ioda.m32_pci_base));
1933 	tce_table_size = (end / 0x1000) * 8;
1934 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
1935 		end);
1936 
1937 	/* Allocate TCE table */
1938 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1939 				   get_order(tce_table_size));
1940 	if (!tce_mem) {
1941 		pe_err(pe, "Failed to allocate a 32-bit TCE memory\n");
1942 		goto fail;
1943 	}
1944 	addr = page_address(tce_mem);
1945 	memset(addr, 0, tce_table_size);
1946 
1947 	/*
1948 	 * Map TCE table through TVT. The TVE index is the PE number
1949 	 * shifted by 1 bit for 32-bits DMA space.
1950 	 */
1951 	rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1952 					pe->pe_number << 1, 1, __pa(addr),
1953 					tce_table_size, 0x1000);
1954 	if (rc) {
1955 		pe_err(pe, "Failed to configure 32-bit TCE table,"
1956 		       " err %ld\n", rc);
1957 		goto fail;
1958 	}
1959 
1960 	/* Setup linux iommu table */
1961 	tbl = pe->tce32_table;
1962 	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, 0,
1963 			IOMMU_PAGE_SHIFT_4K);
1964 
1965 	/* OPAL variant of PHB3 invalidated TCEs */
1966 	swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
1967 	if (swinvp) {
1968 		/* We need a couple more fields -- an address and a data
1969 		 * to or.  Since the bus is only printed out on table free
1970 		 * errors, and on the first pass the data will be a relative
1971 		 * bus number, print that out instead.
1972 		 */
1973 		pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
1974 		tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
1975 				8);
1976 		tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
1977 	}
1978 	iommu_init_table(tbl, phb->hose->node);
1979 
1980 	if (pe->flags & PNV_IODA_PE_DEV) {
1981 		iommu_register_group(tbl, phb->hose->global_number,
1982 				     pe->pe_number);
1983 		set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
1984 	} else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) {
1985 		iommu_register_group(tbl, phb->hose->global_number,
1986 				     pe->pe_number);
1987 		pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
1988 	} else if (pe->flags & PNV_IODA_PE_VF) {
1989 		iommu_register_group(tbl, phb->hose->global_number,
1990 				     pe->pe_number);
1991 	}
1992 
1993 	/* Also create a bypass window */
1994 	if (!pnv_iommu_bypass_disabled)
1995 		pnv_pci_ioda2_setup_bypass_pe(phb, pe);
1996 
1997 	return;
1998 fail:
1999 	if (pe->tce32_seg >= 0)
2000 		pe->tce32_seg = -1;
2001 	if (tce_mem)
2002 		__free_pages(tce_mem, get_order(tce_table_size));
2003 }
2004 
2005 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
2006 {
2007 	struct pci_controller *hose = phb->hose;
2008 	unsigned int residual, remaining, segs, tw, base;
2009 	struct pnv_ioda_pe *pe;
2010 
2011 	/* If we have more PE# than segments available, hand out one
2012 	 * per PE until we run out and let the rest fail. If not,
2013 	 * then we assign at least one segment per PE, plus more based
2014 	 * on the amount of devices under that PE
2015 	 */
2016 	if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
2017 		residual = 0;
2018 	else
2019 		residual = phb->ioda.tce32_count -
2020 			phb->ioda.dma_pe_count;
2021 
2022 	pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
2023 		hose->global_number, phb->ioda.tce32_count);
2024 	pr_info("PCI: %d PE# for a total weight of %d\n",
2025 		phb->ioda.dma_pe_count, phb->ioda.dma_weight);
2026 
2027 	/* Walk our PE list and configure their DMA segments, hand them
2028 	 * out one base segment plus any residual segments based on
2029 	 * weight
2030 	 */
2031 	remaining = phb->ioda.tce32_count;
2032 	tw = phb->ioda.dma_weight;
2033 	base = 0;
2034 	list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
2035 		if (!pe->dma_weight)
2036 			continue;
2037 		if (!remaining) {
2038 			pe_warn(pe, "No DMA32 resources available\n");
2039 			continue;
2040 		}
2041 		segs = 1;
2042 		if (residual) {
2043 			segs += ((pe->dma_weight * residual)  + (tw / 2)) / tw;
2044 			if (segs > remaining)
2045 				segs = remaining;
2046 		}
2047 
2048 		/*
2049 		 * For IODA2 compliant PHB3, we needn't care about the weight.
2050 		 * The all available 32-bits DMA space will be assigned to
2051 		 * the specific PE.
2052 		 */
2053 		if (phb->type == PNV_PHB_IODA1) {
2054 			pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
2055 				pe->dma_weight, segs);
2056 			pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
2057 		} else {
2058 			pe_info(pe, "Assign DMA32 space\n");
2059 			segs = 0;
2060 			pnv_pci_ioda2_setup_dma_pe(phb, pe);
2061 		}
2062 
2063 		remaining -= segs;
2064 		base += segs;
2065 	}
2066 }
2067 
2068 #ifdef CONFIG_PCI_MSI
2069 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2070 {
2071 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2072 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2073 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2074 					   ioda.irq_chip);
2075 	int64_t rc;
2076 
2077 	rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
2078 	WARN_ON_ONCE(rc);
2079 
2080 	icp_native_eoi(d);
2081 }
2082 
2083 
2084 static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2085 {
2086 	struct irq_data *idata;
2087 	struct irq_chip *ichip;
2088 
2089 	if (phb->type != PNV_PHB_IODA2)
2090 		return;
2091 
2092 	if (!phb->ioda.irq_chip_init) {
2093 		/*
2094 		 * First time we setup an MSI IRQ, we need to setup the
2095 		 * corresponding IRQ chip to route correctly.
2096 		 */
2097 		idata = irq_get_irq_data(virq);
2098 		ichip = irq_data_get_irq_chip(idata);
2099 		phb->ioda.irq_chip_init = 1;
2100 		phb->ioda.irq_chip = *ichip;
2101 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2102 	}
2103 	irq_set_chip(virq, &phb->ioda.irq_chip);
2104 }
2105 
2106 #ifdef CONFIG_CXL_BASE
2107 
2108 struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev)
2109 {
2110 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2111 
2112 	return of_node_get(hose->dn);
2113 }
2114 EXPORT_SYMBOL(pnv_pci_get_phb_node);
2115 
2116 int pnv_phb_to_cxl_mode(struct pci_dev *dev, uint64_t mode)
2117 {
2118 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2119 	struct pnv_phb *phb = hose->private_data;
2120 	struct pnv_ioda_pe *pe;
2121 	int rc;
2122 
2123 	pe = pnv_ioda_get_pe(dev);
2124 	if (!pe)
2125 		return -ENODEV;
2126 
2127 	pe_info(pe, "Switching PHB to CXL\n");
2128 
2129 	rc = opal_pci_set_phb_cxl_mode(phb->opal_id, mode, pe->pe_number);
2130 	if (rc)
2131 		dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
2132 
2133 	return rc;
2134 }
2135 EXPORT_SYMBOL(pnv_phb_to_cxl_mode);
2136 
2137 /* Find PHB for cxl dev and allocate MSI hwirqs?
2138  * Returns the absolute hardware IRQ number
2139  */
2140 int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
2141 {
2142 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2143 	struct pnv_phb *phb = hose->private_data;
2144 	int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
2145 
2146 	if (hwirq < 0) {
2147 		dev_warn(&dev->dev, "Failed to find a free MSI\n");
2148 		return -ENOSPC;
2149 	}
2150 
2151 	return phb->msi_base + hwirq;
2152 }
2153 EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
2154 
2155 void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
2156 {
2157 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2158 	struct pnv_phb *phb = hose->private_data;
2159 
2160 	msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
2161 }
2162 EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
2163 
2164 void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
2165 				  struct pci_dev *dev)
2166 {
2167 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2168 	struct pnv_phb *phb = hose->private_data;
2169 	int i, hwirq;
2170 
2171 	for (i = 1; i < CXL_IRQ_RANGES; i++) {
2172 		if (!irqs->range[i])
2173 			continue;
2174 		pr_devel("cxl release irq range 0x%x: offset: 0x%lx  limit: %ld\n",
2175 			 i, irqs->offset[i],
2176 			 irqs->range[i]);
2177 		hwirq = irqs->offset[i] - phb->msi_base;
2178 		msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
2179 				       irqs->range[i]);
2180 	}
2181 }
2182 EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
2183 
2184 int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
2185 			       struct pci_dev *dev, int num)
2186 {
2187 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2188 	struct pnv_phb *phb = hose->private_data;
2189 	int i, hwirq, try;
2190 
2191 	memset(irqs, 0, sizeof(struct cxl_irq_ranges));
2192 
2193 	/* 0 is reserved for the multiplexed PSL DSI interrupt */
2194 	for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
2195 		try = num;
2196 		while (try) {
2197 			hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
2198 			if (hwirq >= 0)
2199 				break;
2200 			try /= 2;
2201 		}
2202 		if (!try)
2203 			goto fail;
2204 
2205 		irqs->offset[i] = phb->msi_base + hwirq;
2206 		irqs->range[i] = try;
2207 		pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx  limit: %li\n",
2208 			 i, irqs->offset[i], irqs->range[i]);
2209 		num -= try;
2210 	}
2211 	if (num)
2212 		goto fail;
2213 
2214 	return 0;
2215 fail:
2216 	pnv_cxl_release_hwirq_ranges(irqs, dev);
2217 	return -ENOSPC;
2218 }
2219 EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
2220 
2221 int pnv_cxl_get_irq_count(struct pci_dev *dev)
2222 {
2223 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2224 	struct pnv_phb *phb = hose->private_data;
2225 
2226 	return phb->msi_bmp.irq_count;
2227 }
2228 EXPORT_SYMBOL(pnv_cxl_get_irq_count);
2229 
2230 int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
2231 			   unsigned int virq)
2232 {
2233 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2234 	struct pnv_phb *phb = hose->private_data;
2235 	unsigned int xive_num = hwirq - phb->msi_base;
2236 	struct pnv_ioda_pe *pe;
2237 	int rc;
2238 
2239 	if (!(pe = pnv_ioda_get_pe(dev)))
2240 		return -ENODEV;
2241 
2242 	/* Assign XIVE to PE */
2243 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2244 	if (rc) {
2245 		pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
2246 			"hwirq 0x%x XIVE 0x%x PE\n",
2247 			pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
2248 		return -EIO;
2249 	}
2250 	set_msi_irq_chip(phb, virq);
2251 
2252 	return 0;
2253 }
2254 EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
2255 #endif
2256 
2257 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2258 				  unsigned int hwirq, unsigned int virq,
2259 				  unsigned int is_64, struct msi_msg *msg)
2260 {
2261 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2262 	unsigned int xive_num = hwirq - phb->msi_base;
2263 	__be32 data;
2264 	int rc;
2265 
2266 	/* No PE assigned ? bail out ... no MSI for you ! */
2267 	if (pe == NULL)
2268 		return -ENXIO;
2269 
2270 	/* Check if we have an MVE */
2271 	if (pe->mve_number < 0)
2272 		return -ENXIO;
2273 
2274 	/* Force 32-bit MSI on some broken devices */
2275 	if (dev->no_64bit_msi)
2276 		is_64 = 0;
2277 
2278 	/* Assign XIVE to PE */
2279 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2280 	if (rc) {
2281 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2282 			pci_name(dev), rc, xive_num);
2283 		return -EIO;
2284 	}
2285 
2286 	if (is_64) {
2287 		__be64 addr64;
2288 
2289 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2290 				     &addr64, &data);
2291 		if (rc) {
2292 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2293 				pci_name(dev), rc);
2294 			return -EIO;
2295 		}
2296 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2297 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2298 	} else {
2299 		__be32 addr32;
2300 
2301 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2302 				     &addr32, &data);
2303 		if (rc) {
2304 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2305 				pci_name(dev), rc);
2306 			return -EIO;
2307 		}
2308 		msg->address_hi = 0;
2309 		msg->address_lo = be32_to_cpu(addr32);
2310 	}
2311 	msg->data = be32_to_cpu(data);
2312 
2313 	set_msi_irq_chip(phb, virq);
2314 
2315 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2316 		 " address=%x_%08x data=%x PE# %d\n",
2317 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2318 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
2319 
2320 	return 0;
2321 }
2322 
2323 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2324 {
2325 	unsigned int count;
2326 	const __be32 *prop = of_get_property(phb->hose->dn,
2327 					     "ibm,opal-msi-ranges", NULL);
2328 	if (!prop) {
2329 		/* BML Fallback */
2330 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2331 	}
2332 	if (!prop)
2333 		return;
2334 
2335 	phb->msi_base = be32_to_cpup(prop);
2336 	count = be32_to_cpup(prop + 1);
2337 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2338 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2339 		       phb->hose->global_number);
2340 		return;
2341 	}
2342 
2343 	phb->msi_setup = pnv_pci_ioda_msi_setup;
2344 	phb->msi32_support = 1;
2345 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2346 		count, phb->msi_base);
2347 }
2348 #else
2349 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2350 #endif /* CONFIG_PCI_MSI */
2351 
2352 #ifdef CONFIG_PCI_IOV
2353 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2354 {
2355 	struct pci_controller *hose;
2356 	struct pnv_phb *phb;
2357 	struct resource *res;
2358 	int i;
2359 	resource_size_t size;
2360 	struct pci_dn *pdn;
2361 	int mul, total_vfs;
2362 
2363 	if (!pdev->is_physfn || pdev->is_added)
2364 		return;
2365 
2366 	hose = pci_bus_to_host(pdev->bus);
2367 	phb = hose->private_data;
2368 
2369 	pdn = pci_get_pdn(pdev);
2370 	pdn->vfs_expanded = 0;
2371 
2372 	total_vfs = pci_sriov_get_totalvfs(pdev);
2373 	pdn->m64_per_iov = 1;
2374 	mul = phb->ioda.total_pe;
2375 
2376 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2377 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2378 		if (!res->flags || res->parent)
2379 			continue;
2380 		if (!pnv_pci_is_mem_pref_64(res->flags)) {
2381 			dev_warn(&pdev->dev, " non M64 VF BAR%d: %pR\n",
2382 				 i, res);
2383 			continue;
2384 		}
2385 
2386 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2387 
2388 		/* bigger than 64M */
2389 		if (size > (1 << 26)) {
2390 			dev_info(&pdev->dev, "PowerNV: VF BAR%d: %pR IOV size is bigger than 64M, roundup power2\n",
2391 				 i, res);
2392 			pdn->m64_per_iov = M64_PER_IOV;
2393 			mul = roundup_pow_of_two(total_vfs);
2394 			break;
2395 		}
2396 	}
2397 
2398 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2399 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2400 		if (!res->flags || res->parent)
2401 			continue;
2402 		if (!pnv_pci_is_mem_pref_64(res->flags)) {
2403 			dev_warn(&pdev->dev, "Skipping expanding VF BAR%d: %pR\n",
2404 				 i, res);
2405 			continue;
2406 		}
2407 
2408 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2409 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2410 		res->end = res->start + size * mul - 1;
2411 		dev_dbg(&pdev->dev, "                       %pR\n", res);
2412 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2413 			 i, res, mul);
2414 	}
2415 	pdn->vfs_expanded = mul;
2416 }
2417 #endif /* CONFIG_PCI_IOV */
2418 
2419 /*
2420  * This function is supposed to be called on basis of PE from top
2421  * to bottom style. So the the I/O or MMIO segment assigned to
2422  * parent PE could be overrided by its child PEs if necessary.
2423  */
2424 static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
2425 				  struct pnv_ioda_pe *pe)
2426 {
2427 	struct pnv_phb *phb = hose->private_data;
2428 	struct pci_bus_region region;
2429 	struct resource *res;
2430 	int i, index;
2431 	int rc;
2432 
2433 	/*
2434 	 * NOTE: We only care PCI bus based PE for now. For PCI
2435 	 * device based PE, for example SRIOV sensitive VF should
2436 	 * be figured out later.
2437 	 */
2438 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2439 
2440 	pci_bus_for_each_resource(pe->pbus, res, i) {
2441 		if (!res || !res->flags ||
2442 		    res->start > res->end)
2443 			continue;
2444 
2445 		if (res->flags & IORESOURCE_IO) {
2446 			region.start = res->start - phb->ioda.io_pci_base;
2447 			region.end   = res->end - phb->ioda.io_pci_base;
2448 			index = region.start / phb->ioda.io_segsize;
2449 
2450 			while (index < phb->ioda.total_pe &&
2451 			       region.start <= region.end) {
2452 				phb->ioda.io_segmap[index] = pe->pe_number;
2453 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2454 					pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2455 				if (rc != OPAL_SUCCESS) {
2456 					pr_err("%s: OPAL error %d when mapping IO "
2457 					       "segment #%d to PE#%d\n",
2458 					       __func__, rc, index, pe->pe_number);
2459 					break;
2460 				}
2461 
2462 				region.start += phb->ioda.io_segsize;
2463 				index++;
2464 			}
2465 		} else if ((res->flags & IORESOURCE_MEM) &&
2466 			   !pnv_pci_is_mem_pref_64(res->flags)) {
2467 			region.start = res->start -
2468 				       hose->mem_offset[0] -
2469 				       phb->ioda.m32_pci_base;
2470 			region.end   = res->end -
2471 				       hose->mem_offset[0] -
2472 				       phb->ioda.m32_pci_base;
2473 			index = region.start / phb->ioda.m32_segsize;
2474 
2475 			while (index < phb->ioda.total_pe &&
2476 			       region.start <= region.end) {
2477 				phb->ioda.m32_segmap[index] = pe->pe_number;
2478 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2479 					pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2480 				if (rc != OPAL_SUCCESS) {
2481 					pr_err("%s: OPAL error %d when mapping M32 "
2482 					       "segment#%d to PE#%d",
2483 					       __func__, rc, index, pe->pe_number);
2484 					break;
2485 				}
2486 
2487 				region.start += phb->ioda.m32_segsize;
2488 				index++;
2489 			}
2490 		}
2491 	}
2492 }
2493 
2494 static void pnv_pci_ioda_setup_seg(void)
2495 {
2496 	struct pci_controller *tmp, *hose;
2497 	struct pnv_phb *phb;
2498 	struct pnv_ioda_pe *pe;
2499 
2500 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2501 		phb = hose->private_data;
2502 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2503 			pnv_ioda_setup_pe_seg(hose, pe);
2504 		}
2505 	}
2506 }
2507 
2508 static void pnv_pci_ioda_setup_DMA(void)
2509 {
2510 	struct pci_controller *hose, *tmp;
2511 	struct pnv_phb *phb;
2512 
2513 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2514 		pnv_ioda_setup_dma(hose->private_data);
2515 
2516 		/* Mark the PHB initialization done */
2517 		phb = hose->private_data;
2518 		phb->initialized = 1;
2519 	}
2520 }
2521 
2522 static void pnv_pci_ioda_create_dbgfs(void)
2523 {
2524 #ifdef CONFIG_DEBUG_FS
2525 	struct pci_controller *hose, *tmp;
2526 	struct pnv_phb *phb;
2527 	char name[16];
2528 
2529 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2530 		phb = hose->private_data;
2531 
2532 		sprintf(name, "PCI%04x", hose->global_number);
2533 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
2534 		if (!phb->dbgfs)
2535 			pr_warning("%s: Error on creating debugfs on PHB#%x\n",
2536 				__func__, hose->global_number);
2537 	}
2538 #endif /* CONFIG_DEBUG_FS */
2539 }
2540 
2541 static void pnv_pci_ioda_fixup(void)
2542 {
2543 	pnv_pci_ioda_setup_PEs();
2544 	pnv_pci_ioda_setup_seg();
2545 	pnv_pci_ioda_setup_DMA();
2546 
2547 	pnv_pci_ioda_create_dbgfs();
2548 
2549 #ifdef CONFIG_EEH
2550 	eeh_init();
2551 	eeh_addr_cache_build();
2552 #endif
2553 }
2554 
2555 /*
2556  * Returns the alignment for I/O or memory windows for P2P
2557  * bridges. That actually depends on how PEs are segmented.
2558  * For now, we return I/O or M32 segment size for PE sensitive
2559  * P2P bridges. Otherwise, the default values (4KiB for I/O,
2560  * 1MiB for memory) will be returned.
2561  *
2562  * The current PCI bus might be put into one PE, which was
2563  * create against the parent PCI bridge. For that case, we
2564  * needn't enlarge the alignment so that we can save some
2565  * resources.
2566  */
2567 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
2568 						unsigned long type)
2569 {
2570 	struct pci_dev *bridge;
2571 	struct pci_controller *hose = pci_bus_to_host(bus);
2572 	struct pnv_phb *phb = hose->private_data;
2573 	int num_pci_bridges = 0;
2574 
2575 	bridge = bus->self;
2576 	while (bridge) {
2577 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
2578 			num_pci_bridges++;
2579 			if (num_pci_bridges >= 2)
2580 				return 1;
2581 		}
2582 
2583 		bridge = bridge->bus->self;
2584 	}
2585 
2586 	/* We fail back to M32 if M64 isn't supported */
2587 	if (phb->ioda.m64_segsize &&
2588 	    pnv_pci_is_mem_pref_64(type))
2589 		return phb->ioda.m64_segsize;
2590 	if (type & IORESOURCE_MEM)
2591 		return phb->ioda.m32_segsize;
2592 
2593 	return phb->ioda.io_segsize;
2594 }
2595 
2596 #ifdef CONFIG_PCI_IOV
2597 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
2598 						      int resno)
2599 {
2600 	struct pci_dn *pdn = pci_get_pdn(pdev);
2601 	resource_size_t align, iov_align;
2602 
2603 	iov_align = resource_size(&pdev->resource[resno]);
2604 	if (iov_align)
2605 		return iov_align;
2606 
2607 	align = pci_iov_resource_size(pdev, resno);
2608 	if (pdn->vfs_expanded)
2609 		return pdn->vfs_expanded * align;
2610 
2611 	return align;
2612 }
2613 #endif /* CONFIG_PCI_IOV */
2614 
2615 /* Prevent enabling devices for which we couldn't properly
2616  * assign a PE
2617  */
2618 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
2619 {
2620 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2621 	struct pnv_phb *phb = hose->private_data;
2622 	struct pci_dn *pdn;
2623 
2624 	/* The function is probably called while the PEs have
2625 	 * not be created yet. For example, resource reassignment
2626 	 * during PCI probe period. We just skip the check if
2627 	 * PEs isn't ready.
2628 	 */
2629 	if (!phb->initialized)
2630 		return true;
2631 
2632 	pdn = pci_get_pdn(dev);
2633 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2634 		return false;
2635 
2636 	return true;
2637 }
2638 
2639 static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
2640 			       u32 devfn)
2641 {
2642 	return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
2643 }
2644 
2645 static void pnv_pci_ioda_shutdown(struct pnv_phb *phb)
2646 {
2647 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
2648 		       OPAL_ASSERT_RESET);
2649 }
2650 
2651 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
2652 					 u64 hub_id, int ioda_type)
2653 {
2654 	struct pci_controller *hose;
2655 	struct pnv_phb *phb;
2656 	unsigned long size, m32map_off, pemap_off, iomap_off = 0;
2657 	const __be64 *prop64;
2658 	const __be32 *prop32;
2659 	int len;
2660 	u64 phb_id;
2661 	void *aux;
2662 	long rc;
2663 
2664 	pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
2665 
2666 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
2667 	if (!prop64) {
2668 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
2669 		return;
2670 	}
2671 	phb_id = be64_to_cpup(prop64);
2672 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
2673 
2674 	phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
2675 
2676 	/* Allocate PCI controller */
2677 	phb->hose = hose = pcibios_alloc_controller(np);
2678 	if (!phb->hose) {
2679 		pr_err("  Can't allocate PCI controller for %s\n",
2680 		       np->full_name);
2681 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
2682 		return;
2683 	}
2684 
2685 	spin_lock_init(&phb->lock);
2686 	prop32 = of_get_property(np, "bus-range", &len);
2687 	if (prop32 && len == 8) {
2688 		hose->first_busno = be32_to_cpu(prop32[0]);
2689 		hose->last_busno = be32_to_cpu(prop32[1]);
2690 	} else {
2691 		pr_warn("  Broken <bus-range> on %s\n", np->full_name);
2692 		hose->first_busno = 0;
2693 		hose->last_busno = 0xff;
2694 	}
2695 	hose->private_data = phb;
2696 	phb->hub_id = hub_id;
2697 	phb->opal_id = phb_id;
2698 	phb->type = ioda_type;
2699 	mutex_init(&phb->ioda.pe_alloc_mutex);
2700 
2701 	/* Detect specific models for error handling */
2702 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
2703 		phb->model = PNV_PHB_MODEL_P7IOC;
2704 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
2705 		phb->model = PNV_PHB_MODEL_PHB3;
2706 	else
2707 		phb->model = PNV_PHB_MODEL_UNKNOWN;
2708 
2709 	/* Parse 32-bit and IO ranges (if any) */
2710 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
2711 
2712 	/* Get registers */
2713 	phb->regs = of_iomap(np, 0);
2714 	if (phb->regs == NULL)
2715 		pr_err("  Failed to map registers !\n");
2716 
2717 	/* Initialize more IODA stuff */
2718 	phb->ioda.total_pe = 1;
2719 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
2720 	if (prop32)
2721 		phb->ioda.total_pe = be32_to_cpup(prop32);
2722 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
2723 	if (prop32)
2724 		phb->ioda.reserved_pe = be32_to_cpup(prop32);
2725 
2726 	/* Parse 64-bit MMIO range */
2727 	pnv_ioda_parse_m64_window(phb);
2728 
2729 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
2730 	/* FW Has already off top 64k of M32 space (MSI space) */
2731 	phb->ioda.m32_size += 0x10000;
2732 
2733 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
2734 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
2735 	phb->ioda.io_size = hose->pci_io_size;
2736 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
2737 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
2738 
2739 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
2740 	size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
2741 	m32map_off = size;
2742 	size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
2743 	if (phb->type == PNV_PHB_IODA1) {
2744 		iomap_off = size;
2745 		size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
2746 	}
2747 	pemap_off = size;
2748 	size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
2749 	aux = memblock_virt_alloc(size, 0);
2750 	phb->ioda.pe_alloc = aux;
2751 	phb->ioda.m32_segmap = aux + m32map_off;
2752 	if (phb->type == PNV_PHB_IODA1)
2753 		phb->ioda.io_segmap = aux + iomap_off;
2754 	phb->ioda.pe_array = aux + pemap_off;
2755 	set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc);
2756 
2757 	INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
2758 	INIT_LIST_HEAD(&phb->ioda.pe_list);
2759 	mutex_init(&phb->ioda.pe_list_mutex);
2760 
2761 	/* Calculate how many 32-bit TCE segments we have */
2762 	phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
2763 
2764 #if 0 /* We should really do that ... */
2765 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
2766 					 window_type,
2767 					 window_num,
2768 					 starting_real_address,
2769 					 starting_pci_address,
2770 					 segment_size);
2771 #endif
2772 
2773 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
2774 		phb->ioda.total_pe, phb->ioda.reserved_pe,
2775 		phb->ioda.m32_size, phb->ioda.m32_segsize);
2776 	if (phb->ioda.m64_size)
2777 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
2778 			phb->ioda.m64_size, phb->ioda.m64_segsize);
2779 	if (phb->ioda.io_size)
2780 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
2781 			phb->ioda.io_size, phb->ioda.io_segsize);
2782 
2783 
2784 	phb->hose->ops = &pnv_pci_ops;
2785 	phb->get_pe_state = pnv_ioda_get_pe_state;
2786 	phb->freeze_pe = pnv_ioda_freeze_pe;
2787 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
2788 
2789 	/* Setup RID -> PE mapping function */
2790 	phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
2791 
2792 	/* Setup TCEs */
2793 	phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
2794 	phb->dma_set_mask = pnv_pci_ioda_dma_set_mask;
2795 	phb->dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask;
2796 
2797 	/* Setup shutdown function for kexec */
2798 	phb->shutdown = pnv_pci_ioda_shutdown;
2799 
2800 	/* Setup MSI support */
2801 	pnv_pci_init_ioda_msis(phb);
2802 
2803 	/*
2804 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
2805 	 * to let the PCI core do resource assignment. It's supposed
2806 	 * that the PCI core will do correct I/O and MMIO alignment
2807 	 * for the P2P bridge bars so that each PCI bus (excluding
2808 	 * the child P2P bridges) can form individual PE.
2809 	 */
2810 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
2811 	pnv_pci_controller_ops.enable_device_hook = pnv_pci_enable_device_hook;
2812 	pnv_pci_controller_ops.window_alignment = pnv_pci_window_alignment;
2813 	pnv_pci_controller_ops.reset_secondary_bus = pnv_pci_reset_secondary_bus;
2814 	hose->controller_ops = pnv_pci_controller_ops;
2815 
2816 #ifdef CONFIG_PCI_IOV
2817 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
2818 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
2819 #endif
2820 
2821 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
2822 
2823 	/* Reset IODA tables to a clean state */
2824 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
2825 	if (rc)
2826 		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
2827 
2828 	/* If we're running in kdump kerenl, the previous kerenl never
2829 	 * shutdown PCI devices correctly. We already got IODA table
2830 	 * cleaned out. So we have to issue PHB reset to stop all PCI
2831 	 * transactions from previous kerenl.
2832 	 */
2833 	if (is_kdump_kernel()) {
2834 		pr_info("  Issue PHB reset ...\n");
2835 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
2836 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
2837 	}
2838 
2839 	/* Remove M64 resource if we can't configure it successfully */
2840 	if (!phb->init_m64 || phb->init_m64(phb))
2841 		hose->mem_resources[1].flags = 0;
2842 }
2843 
2844 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
2845 {
2846 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
2847 }
2848 
2849 void __init pnv_pci_init_ioda_hub(struct device_node *np)
2850 {
2851 	struct device_node *phbn;
2852 	const __be64 *prop64;
2853 	u64 hub_id;
2854 
2855 	pr_info("Probing IODA IO-Hub %s\n", np->full_name);
2856 
2857 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
2858 	if (!prop64) {
2859 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
2860 		return;
2861 	}
2862 	hub_id = be64_to_cpup(prop64);
2863 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
2864 
2865 	/* Count child PHBs */
2866 	for_each_child_of_node(np, phbn) {
2867 		/* Look for IODA1 PHBs */
2868 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
2869 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
2870 	}
2871 }
2872