1 /* 2 * PowerNV OPAL high level interfaces 3 * 4 * Copyright 2011 IBM Corp. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #define pr_fmt(fmt) "opal: " fmt 13 14 #include <linux/printk.h> 15 #include <linux/types.h> 16 #include <linux/of.h> 17 #include <linux/of_fdt.h> 18 #include <linux/of_platform.h> 19 #include <linux/of_address.h> 20 #include <linux/interrupt.h> 21 #include <linux/notifier.h> 22 #include <linux/slab.h> 23 #include <linux/sched.h> 24 #include <linux/kobject.h> 25 #include <linux/delay.h> 26 #include <linux/memblock.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/printk.h> 30 #include <linux/kmsg_dump.h> 31 #include <linux/console.h> 32 #include <linux/sched/debug.h> 33 34 #include <asm/machdep.h> 35 #include <asm/opal.h> 36 #include <asm/firmware.h> 37 #include <asm/mce.h> 38 #include <asm/imc-pmu.h> 39 #include <asm/bug.h> 40 41 #include "powernv.h" 42 43 /* /sys/firmware/opal */ 44 struct kobject *opal_kobj; 45 46 struct opal { 47 u64 base; 48 u64 entry; 49 u64 size; 50 } opal; 51 52 struct mcheck_recoverable_range { 53 u64 start_addr; 54 u64 end_addr; 55 u64 recover_addr; 56 }; 57 58 static struct mcheck_recoverable_range *mc_recoverable_range; 59 static int mc_recoverable_range_len; 60 61 struct device_node *opal_node; 62 static DEFINE_SPINLOCK(opal_write_lock); 63 static struct atomic_notifier_head opal_msg_notifier_head[OPAL_MSG_TYPE_MAX]; 64 static uint32_t opal_heartbeat; 65 static struct task_struct *kopald_tsk; 66 67 void opal_configure_cores(void) 68 { 69 u64 reinit_flags = 0; 70 71 /* Do the actual re-init, This will clobber all FPRs, VRs, etc... 72 * 73 * It will preserve non volatile GPRs and HSPRG0/1. It will 74 * also restore HIDs and other SPRs to their original value 75 * but it might clobber a bunch. 76 */ 77 #ifdef __BIG_ENDIAN__ 78 reinit_flags |= OPAL_REINIT_CPUS_HILE_BE; 79 #else 80 reinit_flags |= OPAL_REINIT_CPUS_HILE_LE; 81 #endif 82 83 /* 84 * POWER9 always support running hash: 85 * ie. Host hash supports hash guests 86 * Host radix supports hash/radix guests 87 */ 88 if (early_cpu_has_feature(CPU_FTR_ARCH_300)) { 89 reinit_flags |= OPAL_REINIT_CPUS_MMU_HASH; 90 if (early_radix_enabled()) 91 reinit_flags |= OPAL_REINIT_CPUS_MMU_RADIX; 92 } 93 94 opal_reinit_cpus(reinit_flags); 95 96 /* Restore some bits */ 97 if (cur_cpu_spec->cpu_restore) 98 cur_cpu_spec->cpu_restore(); 99 } 100 101 int __init early_init_dt_scan_opal(unsigned long node, 102 const char *uname, int depth, void *data) 103 { 104 const void *basep, *entryp, *sizep; 105 int basesz, entrysz, runtimesz; 106 107 if (depth != 1 || strcmp(uname, "ibm,opal") != 0) 108 return 0; 109 110 basep = of_get_flat_dt_prop(node, "opal-base-address", &basesz); 111 entryp = of_get_flat_dt_prop(node, "opal-entry-address", &entrysz); 112 sizep = of_get_flat_dt_prop(node, "opal-runtime-size", &runtimesz); 113 114 if (!basep || !entryp || !sizep) 115 return 1; 116 117 opal.base = of_read_number(basep, basesz/4); 118 opal.entry = of_read_number(entryp, entrysz/4); 119 opal.size = of_read_number(sizep, runtimesz/4); 120 121 pr_debug("OPAL Base = 0x%llx (basep=%p basesz=%d)\n", 122 opal.base, basep, basesz); 123 pr_debug("OPAL Entry = 0x%llx (entryp=%p basesz=%d)\n", 124 opal.entry, entryp, entrysz); 125 pr_debug("OPAL Entry = 0x%llx (sizep=%p runtimesz=%d)\n", 126 opal.size, sizep, runtimesz); 127 128 if (of_flat_dt_is_compatible(node, "ibm,opal-v3")) { 129 powerpc_firmware_features |= FW_FEATURE_OPAL; 130 pr_debug("OPAL detected !\n"); 131 } else { 132 panic("OPAL != V3 detected, no longer supported.\n"); 133 } 134 135 return 1; 136 } 137 138 int __init early_init_dt_scan_recoverable_ranges(unsigned long node, 139 const char *uname, int depth, void *data) 140 { 141 int i, psize, size; 142 const __be32 *prop; 143 144 if (depth != 1 || strcmp(uname, "ibm,opal") != 0) 145 return 0; 146 147 prop = of_get_flat_dt_prop(node, "mcheck-recoverable-ranges", &psize); 148 149 if (!prop) 150 return 1; 151 152 pr_debug("Found machine check recoverable ranges.\n"); 153 154 /* 155 * Calculate number of available entries. 156 * 157 * Each recoverable address range entry is (start address, len, 158 * recovery address), 2 cells each for start and recovery address, 159 * 1 cell for len, totalling 5 cells per entry. 160 */ 161 mc_recoverable_range_len = psize / (sizeof(*prop) * 5); 162 163 /* Sanity check */ 164 if (!mc_recoverable_range_len) 165 return 1; 166 167 /* Size required to hold all the entries. */ 168 size = mc_recoverable_range_len * 169 sizeof(struct mcheck_recoverable_range); 170 171 /* 172 * Allocate a buffer to hold the MC recoverable ranges. 173 */ 174 mc_recoverable_range =__va(memblock_alloc(size, __alignof__(u64))); 175 memset(mc_recoverable_range, 0, size); 176 177 for (i = 0; i < mc_recoverable_range_len; i++) { 178 mc_recoverable_range[i].start_addr = 179 of_read_number(prop + (i * 5) + 0, 2); 180 mc_recoverable_range[i].end_addr = 181 mc_recoverable_range[i].start_addr + 182 of_read_number(prop + (i * 5) + 2, 1); 183 mc_recoverable_range[i].recover_addr = 184 of_read_number(prop + (i * 5) + 3, 2); 185 186 pr_debug("Machine check recoverable range: %llx..%llx: %llx\n", 187 mc_recoverable_range[i].start_addr, 188 mc_recoverable_range[i].end_addr, 189 mc_recoverable_range[i].recover_addr); 190 } 191 return 1; 192 } 193 194 static int __init opal_register_exception_handlers(void) 195 { 196 #ifdef __BIG_ENDIAN__ 197 u64 glue; 198 199 if (!(powerpc_firmware_features & FW_FEATURE_OPAL)) 200 return -ENODEV; 201 202 /* Hookup some exception handlers except machine check. We use the 203 * fwnmi area at 0x7000 to provide the glue space to OPAL 204 */ 205 glue = 0x7000; 206 207 /* 208 * Check if we are running on newer firmware that exports 209 * OPAL_HANDLE_HMI token. If yes, then don't ask OPAL to patch 210 * the HMI interrupt and we catch it directly in Linux. 211 * 212 * For older firmware (i.e currently released POWER8 System Firmware 213 * as of today <= SV810_087), we fallback to old behavior and let OPAL 214 * patch the HMI vector and handle it inside OPAL firmware. 215 * 216 * For newer firmware (in development/yet to be released) we will 217 * start catching/handling HMI directly in Linux. 218 */ 219 if (!opal_check_token(OPAL_HANDLE_HMI)) { 220 pr_info("Old firmware detected, OPAL handles HMIs.\n"); 221 opal_register_exception_handler( 222 OPAL_HYPERVISOR_MAINTENANCE_HANDLER, 223 0, glue); 224 glue += 128; 225 } 226 227 opal_register_exception_handler(OPAL_SOFTPATCH_HANDLER, 0, glue); 228 #endif 229 230 return 0; 231 } 232 machine_early_initcall(powernv, opal_register_exception_handlers); 233 234 /* 235 * Opal message notifier based on message type. Allow subscribers to get 236 * notified for specific messgae type. 237 */ 238 int opal_message_notifier_register(enum opal_msg_type msg_type, 239 struct notifier_block *nb) 240 { 241 if (!nb || msg_type >= OPAL_MSG_TYPE_MAX) { 242 pr_warn("%s: Invalid arguments, msg_type:%d\n", 243 __func__, msg_type); 244 return -EINVAL; 245 } 246 247 return atomic_notifier_chain_register( 248 &opal_msg_notifier_head[msg_type], nb); 249 } 250 EXPORT_SYMBOL_GPL(opal_message_notifier_register); 251 252 int opal_message_notifier_unregister(enum opal_msg_type msg_type, 253 struct notifier_block *nb) 254 { 255 return atomic_notifier_chain_unregister( 256 &opal_msg_notifier_head[msg_type], nb); 257 } 258 EXPORT_SYMBOL_GPL(opal_message_notifier_unregister); 259 260 static void opal_message_do_notify(uint32_t msg_type, void *msg) 261 { 262 /* notify subscribers */ 263 atomic_notifier_call_chain(&opal_msg_notifier_head[msg_type], 264 msg_type, msg); 265 } 266 267 static void opal_handle_message(void) 268 { 269 s64 ret; 270 /* 271 * TODO: pre-allocate a message buffer depending on opal-msg-size 272 * value in /proc/device-tree. 273 */ 274 static struct opal_msg msg; 275 u32 type; 276 277 ret = opal_get_msg(__pa(&msg), sizeof(msg)); 278 /* No opal message pending. */ 279 if (ret == OPAL_RESOURCE) 280 return; 281 282 /* check for errors. */ 283 if (ret) { 284 pr_warn("%s: Failed to retrieve opal message, err=%lld\n", 285 __func__, ret); 286 return; 287 } 288 289 type = be32_to_cpu(msg.msg_type); 290 291 /* Sanity check */ 292 if (type >= OPAL_MSG_TYPE_MAX) { 293 pr_warn_once("%s: Unknown message type: %u\n", __func__, type); 294 return; 295 } 296 opal_message_do_notify(type, (void *)&msg); 297 } 298 299 static irqreturn_t opal_message_notify(int irq, void *data) 300 { 301 opal_handle_message(); 302 return IRQ_HANDLED; 303 } 304 305 static int __init opal_message_init(void) 306 { 307 int ret, i, irq; 308 309 for (i = 0; i < OPAL_MSG_TYPE_MAX; i++) 310 ATOMIC_INIT_NOTIFIER_HEAD(&opal_msg_notifier_head[i]); 311 312 irq = opal_event_request(ilog2(OPAL_EVENT_MSG_PENDING)); 313 if (!irq) { 314 pr_err("%s: Can't register OPAL event irq (%d)\n", 315 __func__, irq); 316 return irq; 317 } 318 319 ret = request_irq(irq, opal_message_notify, 320 IRQ_TYPE_LEVEL_HIGH, "opal-msg", NULL); 321 if (ret) { 322 pr_err("%s: Can't request OPAL event irq (%d)\n", 323 __func__, ret); 324 return ret; 325 } 326 327 return 0; 328 } 329 330 int opal_get_chars(uint32_t vtermno, char *buf, int count) 331 { 332 s64 rc; 333 __be64 evt, len; 334 335 if (!opal.entry) 336 return -ENODEV; 337 opal_poll_events(&evt); 338 if ((be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_INPUT) == 0) 339 return 0; 340 len = cpu_to_be64(count); 341 rc = opal_console_read(vtermno, &len, buf); 342 if (rc == OPAL_SUCCESS) 343 return be64_to_cpu(len); 344 return 0; 345 } 346 347 static int __opal_put_chars(uint32_t vtermno, const char *data, int total_len, bool atomic) 348 { 349 unsigned long flags = 0 /* shut up gcc */; 350 int written; 351 __be64 olen; 352 s64 rc; 353 354 if (!opal.entry) 355 return -ENODEV; 356 357 if (atomic) 358 spin_lock_irqsave(&opal_write_lock, flags); 359 rc = opal_console_write_buffer_space(vtermno, &olen); 360 if (rc || be64_to_cpu(olen) < total_len) { 361 /* Closed -> drop characters */ 362 if (rc) 363 written = total_len; 364 else 365 written = -EAGAIN; 366 goto out; 367 } 368 369 /* Should not get a partial write here because space is available. */ 370 olen = cpu_to_be64(total_len); 371 rc = opal_console_write(vtermno, &olen, data); 372 if (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) { 373 if (rc == OPAL_BUSY_EVENT) { 374 mdelay(OPAL_BUSY_DELAY_MS); 375 opal_poll_events(NULL); 376 } else if (rc == OPAL_BUSY_EVENT) { 377 mdelay(OPAL_BUSY_DELAY_MS); 378 } 379 written = -EAGAIN; 380 goto out; 381 } 382 383 /* Closed or other error drop */ 384 if (rc != OPAL_SUCCESS) { 385 written = opal_error_code(rc); 386 goto out; 387 } 388 389 written = be64_to_cpu(olen); 390 if (written < total_len) { 391 if (atomic) { 392 /* Should not happen */ 393 pr_warn("atomic console write returned partial " 394 "len=%d written=%d\n", total_len, written); 395 } 396 if (!written) 397 written = -EAGAIN; 398 } 399 400 out: 401 if (atomic) 402 spin_unlock_irqrestore(&opal_write_lock, flags); 403 404 /* In the -EAGAIN case, callers loop, so we have to flush the console 405 * here in case they have interrupts off (and we don't want to wait 406 * for async flushing if we can make immediate progress here). If 407 * necessary the API could be made entirely non-flushing if the 408 * callers had a ->flush API to use. 409 */ 410 if (written == -EAGAIN) 411 opal_flush_console(vtermno); 412 413 return written; 414 } 415 416 int opal_put_chars(uint32_t vtermno, const char *data, int total_len) 417 { 418 return __opal_put_chars(vtermno, data, total_len, false); 419 } 420 421 /* 422 * opal_put_chars_atomic will not perform partial-writes. Data will be 423 * atomically written to the terminal or not at all. This is not strictly 424 * true at the moment because console space can race with OPAL's console 425 * writes. 426 */ 427 int opal_put_chars_atomic(uint32_t vtermno, const char *data, int total_len) 428 { 429 return __opal_put_chars(vtermno, data, total_len, true); 430 } 431 432 int opal_flush_console(uint32_t vtermno) 433 { 434 s64 rc; 435 436 if (!opal_check_token(OPAL_CONSOLE_FLUSH)) { 437 __be64 evt; 438 439 WARN_ONCE(1, "opal: OPAL_CONSOLE_FLUSH missing.\n"); 440 /* 441 * If OPAL_CONSOLE_FLUSH is not implemented in the firmware, 442 * the console can still be flushed by calling the polling 443 * function while it has OPAL_EVENT_CONSOLE_OUTPUT events. 444 */ 445 do { 446 opal_poll_events(&evt); 447 } while (be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_OUTPUT); 448 449 return OPAL_SUCCESS; 450 } 451 452 do { 453 rc = OPAL_BUSY; 454 while (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) { 455 rc = opal_console_flush(vtermno); 456 if (rc == OPAL_BUSY_EVENT) { 457 mdelay(OPAL_BUSY_DELAY_MS); 458 opal_poll_events(NULL); 459 } else if (rc == OPAL_BUSY) { 460 mdelay(OPAL_BUSY_DELAY_MS); 461 } 462 } 463 } while (rc == OPAL_PARTIAL); /* More to flush */ 464 465 return opal_error_code(rc); 466 } 467 468 static int opal_recover_mce(struct pt_regs *regs, 469 struct machine_check_event *evt) 470 { 471 int recovered = 0; 472 473 if (!(regs->msr & MSR_RI)) { 474 /* If MSR_RI isn't set, we cannot recover */ 475 pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n"); 476 recovered = 0; 477 } else if (evt->disposition == MCE_DISPOSITION_RECOVERED) { 478 /* Platform corrected itself */ 479 recovered = 1; 480 } else if (evt->severity == MCE_SEV_FATAL) { 481 /* Fatal machine check */ 482 pr_err("Machine check interrupt is fatal\n"); 483 recovered = 0; 484 } 485 486 if (!recovered && evt->severity == MCE_SEV_ERROR_SYNC) { 487 /* 488 * Try to kill processes if we get a synchronous machine check 489 * (e.g., one caused by execution of this instruction). This 490 * will devolve into a panic if we try to kill init or are in 491 * an interrupt etc. 492 * 493 * TODO: Queue up this address for hwpoisioning later. 494 * TODO: This is not quite right for d-side machine 495 * checks ->nip is not necessarily the important 496 * address. 497 */ 498 if ((user_mode(regs))) { 499 _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip); 500 recovered = 1; 501 } else if (die_will_crash()) { 502 /* 503 * die() would kill the kernel, so better to go via 504 * the platform reboot code that will log the 505 * machine check. 506 */ 507 recovered = 0; 508 } else { 509 die("Machine check", regs, SIGBUS); 510 recovered = 1; 511 } 512 } 513 514 return recovered; 515 } 516 517 void pnv_platform_error_reboot(struct pt_regs *regs, const char *msg) 518 { 519 panic_flush_kmsg_start(); 520 521 pr_emerg("Hardware platform error: %s\n", msg); 522 if (regs) 523 show_regs(regs); 524 smp_send_stop(); 525 526 panic_flush_kmsg_end(); 527 528 /* 529 * Don't bother to shut things down because this will 530 * xstop the system. 531 */ 532 if (opal_cec_reboot2(OPAL_REBOOT_PLATFORM_ERROR, msg) 533 == OPAL_UNSUPPORTED) { 534 pr_emerg("Reboot type %d not supported for %s\n", 535 OPAL_REBOOT_PLATFORM_ERROR, msg); 536 } 537 538 /* 539 * We reached here. There can be three possibilities: 540 * 1. We are running on a firmware level that do not support 541 * opal_cec_reboot2() 542 * 2. We are running on a firmware level that do not support 543 * OPAL_REBOOT_PLATFORM_ERROR reboot type. 544 * 3. We are running on FSP based system that does not need 545 * opal to trigger checkstop explicitly for error analysis. 546 * The FSP PRD component would have already got notified 547 * about this error through other channels. 548 * 4. We are running on a newer skiboot that by default does 549 * not cause a checkstop, drops us back to the kernel to 550 * extract context and state at the time of the error. 551 */ 552 553 panic(msg); 554 } 555 556 int opal_machine_check(struct pt_regs *regs) 557 { 558 struct machine_check_event evt; 559 560 if (!get_mce_event(&evt, MCE_EVENT_RELEASE)) 561 return 0; 562 563 /* Print things out */ 564 if (evt.version != MCE_V1) { 565 pr_err("Machine Check Exception, Unknown event version %d !\n", 566 evt.version); 567 return 0; 568 } 569 machine_check_print_event_info(&evt, user_mode(regs)); 570 571 if (opal_recover_mce(regs, &evt)) 572 return 1; 573 574 pnv_platform_error_reboot(regs, "Unrecoverable Machine Check exception"); 575 } 576 577 /* Early hmi handler called in real mode. */ 578 int opal_hmi_exception_early(struct pt_regs *regs) 579 { 580 s64 rc; 581 582 /* 583 * call opal hmi handler. Pass paca address as token. 584 * The return value OPAL_SUCCESS is an indication that there is 585 * an HMI event generated waiting to pull by Linux. 586 */ 587 rc = opal_handle_hmi(); 588 if (rc == OPAL_SUCCESS) { 589 local_paca->hmi_event_available = 1; 590 return 1; 591 } 592 return 0; 593 } 594 595 /* HMI exception handler called in virtual mode during check_irq_replay. */ 596 int opal_handle_hmi_exception(struct pt_regs *regs) 597 { 598 /* 599 * Check if HMI event is available. 600 * if Yes, then wake kopald to process them. 601 */ 602 if (!local_paca->hmi_event_available) 603 return 0; 604 605 local_paca->hmi_event_available = 0; 606 opal_wake_poller(); 607 608 return 1; 609 } 610 611 static uint64_t find_recovery_address(uint64_t nip) 612 { 613 int i; 614 615 for (i = 0; i < mc_recoverable_range_len; i++) 616 if ((nip >= mc_recoverable_range[i].start_addr) && 617 (nip < mc_recoverable_range[i].end_addr)) 618 return mc_recoverable_range[i].recover_addr; 619 return 0; 620 } 621 622 bool opal_mce_check_early_recovery(struct pt_regs *regs) 623 { 624 uint64_t recover_addr = 0; 625 626 if (!opal.base || !opal.size) 627 goto out; 628 629 if ((regs->nip >= opal.base) && 630 (regs->nip < (opal.base + opal.size))) 631 recover_addr = find_recovery_address(regs->nip); 632 633 /* 634 * Setup regs->nip to rfi into fixup address. 635 */ 636 if (recover_addr) 637 regs->nip = recover_addr; 638 639 out: 640 return !!recover_addr; 641 } 642 643 static int opal_sysfs_init(void) 644 { 645 opal_kobj = kobject_create_and_add("opal", firmware_kobj); 646 if (!opal_kobj) { 647 pr_warn("kobject_create_and_add opal failed\n"); 648 return -ENOMEM; 649 } 650 651 return 0; 652 } 653 654 static ssize_t symbol_map_read(struct file *fp, struct kobject *kobj, 655 struct bin_attribute *bin_attr, 656 char *buf, loff_t off, size_t count) 657 { 658 return memory_read_from_buffer(buf, count, &off, bin_attr->private, 659 bin_attr->size); 660 } 661 662 static BIN_ATTR_RO(symbol_map, 0); 663 664 static void opal_export_symmap(void) 665 { 666 const __be64 *syms; 667 unsigned int size; 668 struct device_node *fw; 669 int rc; 670 671 fw = of_find_node_by_path("/ibm,opal/firmware"); 672 if (!fw) 673 return; 674 syms = of_get_property(fw, "symbol-map", &size); 675 if (!syms || size != 2 * sizeof(__be64)) 676 return; 677 678 /* Setup attributes */ 679 bin_attr_symbol_map.private = __va(be64_to_cpu(syms[0])); 680 bin_attr_symbol_map.size = be64_to_cpu(syms[1]); 681 682 rc = sysfs_create_bin_file(opal_kobj, &bin_attr_symbol_map); 683 if (rc) 684 pr_warn("Error %d creating OPAL symbols file\n", rc); 685 } 686 687 static ssize_t export_attr_read(struct file *fp, struct kobject *kobj, 688 struct bin_attribute *bin_attr, char *buf, 689 loff_t off, size_t count) 690 { 691 return memory_read_from_buffer(buf, count, &off, bin_attr->private, 692 bin_attr->size); 693 } 694 695 /* 696 * opal_export_attrs: creates a sysfs node for each property listed in 697 * the device-tree under /ibm,opal/firmware/exports/ 698 * All new sysfs nodes are created under /opal/exports/. 699 * This allows for reserved memory regions (e.g. HDAT) to be read. 700 * The new sysfs nodes are only readable by root. 701 */ 702 static void opal_export_attrs(void) 703 { 704 struct bin_attribute *attr; 705 struct device_node *np; 706 struct property *prop; 707 struct kobject *kobj; 708 u64 vals[2]; 709 int rc; 710 711 np = of_find_node_by_path("/ibm,opal/firmware/exports"); 712 if (!np) 713 return; 714 715 /* Create new 'exports' directory - /sys/firmware/opal/exports */ 716 kobj = kobject_create_and_add("exports", opal_kobj); 717 if (!kobj) { 718 pr_warn("kobject_create_and_add() of exports failed\n"); 719 return; 720 } 721 722 for_each_property_of_node(np, prop) { 723 if (!strcmp(prop->name, "name") || !strcmp(prop->name, "phandle")) 724 continue; 725 726 if (of_property_read_u64_array(np, prop->name, &vals[0], 2)) 727 continue; 728 729 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 730 731 if (attr == NULL) { 732 pr_warn("Failed kmalloc for bin_attribute!"); 733 continue; 734 } 735 736 sysfs_bin_attr_init(attr); 737 attr->attr.name = kstrdup(prop->name, GFP_KERNEL); 738 attr->attr.mode = 0400; 739 attr->read = export_attr_read; 740 attr->private = __va(vals[0]); 741 attr->size = vals[1]; 742 743 if (attr->attr.name == NULL) { 744 pr_warn("Failed kstrdup for bin_attribute attr.name"); 745 kfree(attr); 746 continue; 747 } 748 749 rc = sysfs_create_bin_file(kobj, attr); 750 if (rc) { 751 pr_warn("Error %d creating OPAL sysfs exports/%s file\n", 752 rc, prop->name); 753 kfree(attr->attr.name); 754 kfree(attr); 755 } 756 } 757 758 of_node_put(np); 759 } 760 761 static void __init opal_dump_region_init(void) 762 { 763 void *addr; 764 uint64_t size; 765 int rc; 766 767 if (!opal_check_token(OPAL_REGISTER_DUMP_REGION)) 768 return; 769 770 /* Register kernel log buffer */ 771 addr = log_buf_addr_get(); 772 if (addr == NULL) 773 return; 774 775 size = log_buf_len_get(); 776 if (size == 0) 777 return; 778 779 rc = opal_register_dump_region(OPAL_DUMP_REGION_LOG_BUF, 780 __pa(addr), size); 781 /* Don't warn if this is just an older OPAL that doesn't 782 * know about that call 783 */ 784 if (rc && rc != OPAL_UNSUPPORTED) 785 pr_warn("DUMP: Failed to register kernel log buffer. " 786 "rc = %d\n", rc); 787 } 788 789 static void opal_pdev_init(const char *compatible) 790 { 791 struct device_node *np; 792 793 for_each_compatible_node(np, NULL, compatible) 794 of_platform_device_create(np, NULL, NULL); 795 } 796 797 static void __init opal_imc_init_dev(void) 798 { 799 struct device_node *np; 800 801 np = of_find_compatible_node(NULL, NULL, IMC_DTB_COMPAT); 802 if (np) 803 of_platform_device_create(np, NULL, NULL); 804 } 805 806 static int kopald(void *unused) 807 { 808 unsigned long timeout = msecs_to_jiffies(opal_heartbeat) + 1; 809 810 set_freezable(); 811 do { 812 try_to_freeze(); 813 814 opal_handle_events(); 815 816 set_current_state(TASK_INTERRUPTIBLE); 817 if (opal_have_pending_events()) 818 __set_current_state(TASK_RUNNING); 819 else 820 schedule_timeout(timeout); 821 822 } while (!kthread_should_stop()); 823 824 return 0; 825 } 826 827 void opal_wake_poller(void) 828 { 829 if (kopald_tsk) 830 wake_up_process(kopald_tsk); 831 } 832 833 static void opal_init_heartbeat(void) 834 { 835 /* Old firwmware, we assume the HVC heartbeat is sufficient */ 836 if (of_property_read_u32(opal_node, "ibm,heartbeat-ms", 837 &opal_heartbeat) != 0) 838 opal_heartbeat = 0; 839 840 if (opal_heartbeat) 841 kopald_tsk = kthread_run(kopald, NULL, "kopald"); 842 } 843 844 static int __init opal_init(void) 845 { 846 struct device_node *np, *consoles, *leds; 847 int rc; 848 849 opal_node = of_find_node_by_path("/ibm,opal"); 850 if (!opal_node) { 851 pr_warn("Device node not found\n"); 852 return -ENODEV; 853 } 854 855 /* Register OPAL consoles if any ports */ 856 consoles = of_find_node_by_path("/ibm,opal/consoles"); 857 if (consoles) { 858 for_each_child_of_node(consoles, np) { 859 if (strcmp(np->name, "serial")) 860 continue; 861 of_platform_device_create(np, NULL, NULL); 862 } 863 of_node_put(consoles); 864 } 865 866 /* Initialise OPAL messaging system */ 867 opal_message_init(); 868 869 /* Initialise OPAL asynchronous completion interface */ 870 opal_async_comp_init(); 871 872 /* Initialise OPAL sensor interface */ 873 opal_sensor_init(); 874 875 /* Initialise OPAL hypervisor maintainence interrupt handling */ 876 opal_hmi_handler_init(); 877 878 /* Create i2c platform devices */ 879 opal_pdev_init("ibm,opal-i2c"); 880 881 /* Handle non-volatile memory devices */ 882 opal_pdev_init("pmem-region"); 883 884 /* Setup a heatbeat thread if requested by OPAL */ 885 opal_init_heartbeat(); 886 887 /* Detect In-Memory Collection counters and create devices*/ 888 opal_imc_init_dev(); 889 890 /* Create leds platform devices */ 891 leds = of_find_node_by_path("/ibm,opal/leds"); 892 if (leds) { 893 of_platform_device_create(leds, "opal_leds", NULL); 894 of_node_put(leds); 895 } 896 897 /* Initialise OPAL message log interface */ 898 opal_msglog_init(); 899 900 /* Create "opal" kobject under /sys/firmware */ 901 rc = opal_sysfs_init(); 902 if (rc == 0) { 903 /* Export symbol map to userspace */ 904 opal_export_symmap(); 905 /* Setup dump region interface */ 906 opal_dump_region_init(); 907 /* Setup error log interface */ 908 rc = opal_elog_init(); 909 /* Setup code update interface */ 910 opal_flash_update_init(); 911 /* Setup platform dump extract interface */ 912 opal_platform_dump_init(); 913 /* Setup system parameters interface */ 914 opal_sys_param_init(); 915 /* Setup message log sysfs interface. */ 916 opal_msglog_sysfs_init(); 917 } 918 919 /* Export all properties */ 920 opal_export_attrs(); 921 922 /* Initialize platform devices: IPMI backend, PRD & flash interface */ 923 opal_pdev_init("ibm,opal-ipmi"); 924 opal_pdev_init("ibm,opal-flash"); 925 opal_pdev_init("ibm,opal-prd"); 926 927 /* Initialise platform device: oppanel interface */ 928 opal_pdev_init("ibm,opal-oppanel"); 929 930 /* Initialise OPAL kmsg dumper for flushing console on panic */ 931 opal_kmsg_init(); 932 933 /* Initialise OPAL powercap interface */ 934 opal_powercap_init(); 935 936 /* Initialise OPAL Power-Shifting-Ratio interface */ 937 opal_psr_init(); 938 939 /* Initialise OPAL sensor groups */ 940 opal_sensor_groups_init(); 941 942 return 0; 943 } 944 machine_subsys_initcall(powernv, opal_init); 945 946 void opal_shutdown(void) 947 { 948 long rc = OPAL_BUSY; 949 950 opal_event_shutdown(); 951 952 /* 953 * Then sync with OPAL which ensure anything that can 954 * potentially write to our memory has completed such 955 * as an ongoing dump retrieval 956 */ 957 while (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) { 958 rc = opal_sync_host_reboot(); 959 if (rc == OPAL_BUSY) 960 opal_poll_events(NULL); 961 else 962 mdelay(10); 963 } 964 965 /* Unregister memory dump region */ 966 if (opal_check_token(OPAL_UNREGISTER_DUMP_REGION)) 967 opal_unregister_dump_region(OPAL_DUMP_REGION_LOG_BUF); 968 } 969 970 /* Export this so that test modules can use it */ 971 EXPORT_SYMBOL_GPL(opal_invalid_call); 972 EXPORT_SYMBOL_GPL(opal_xscom_read); 973 EXPORT_SYMBOL_GPL(opal_xscom_write); 974 EXPORT_SYMBOL_GPL(opal_ipmi_send); 975 EXPORT_SYMBOL_GPL(opal_ipmi_recv); 976 EXPORT_SYMBOL_GPL(opal_flash_read); 977 EXPORT_SYMBOL_GPL(opal_flash_write); 978 EXPORT_SYMBOL_GPL(opal_flash_erase); 979 EXPORT_SYMBOL_GPL(opal_prd_msg); 980 EXPORT_SYMBOL_GPL(opal_check_token); 981 982 /* Convert a region of vmalloc memory to an opal sg list */ 983 struct opal_sg_list *opal_vmalloc_to_sg_list(void *vmalloc_addr, 984 unsigned long vmalloc_size) 985 { 986 struct opal_sg_list *sg, *first = NULL; 987 unsigned long i = 0; 988 989 sg = kzalloc(PAGE_SIZE, GFP_KERNEL); 990 if (!sg) 991 goto nomem; 992 993 first = sg; 994 995 while (vmalloc_size > 0) { 996 uint64_t data = vmalloc_to_pfn(vmalloc_addr) << PAGE_SHIFT; 997 uint64_t length = min(vmalloc_size, PAGE_SIZE); 998 999 sg->entry[i].data = cpu_to_be64(data); 1000 sg->entry[i].length = cpu_to_be64(length); 1001 i++; 1002 1003 if (i >= SG_ENTRIES_PER_NODE) { 1004 struct opal_sg_list *next; 1005 1006 next = kzalloc(PAGE_SIZE, GFP_KERNEL); 1007 if (!next) 1008 goto nomem; 1009 1010 sg->length = cpu_to_be64( 1011 i * sizeof(struct opal_sg_entry) + 16); 1012 i = 0; 1013 sg->next = cpu_to_be64(__pa(next)); 1014 sg = next; 1015 } 1016 1017 vmalloc_addr += length; 1018 vmalloc_size -= length; 1019 } 1020 1021 sg->length = cpu_to_be64(i * sizeof(struct opal_sg_entry) + 16); 1022 1023 return first; 1024 1025 nomem: 1026 pr_err("%s : Failed to allocate memory\n", __func__); 1027 opal_free_sg_list(first); 1028 return NULL; 1029 } 1030 1031 void opal_free_sg_list(struct opal_sg_list *sg) 1032 { 1033 while (sg) { 1034 uint64_t next = be64_to_cpu(sg->next); 1035 1036 kfree(sg); 1037 1038 if (next) 1039 sg = __va(next); 1040 else 1041 sg = NULL; 1042 } 1043 } 1044 1045 int opal_error_code(int rc) 1046 { 1047 switch (rc) { 1048 case OPAL_SUCCESS: return 0; 1049 1050 case OPAL_PARAMETER: return -EINVAL; 1051 case OPAL_ASYNC_COMPLETION: return -EINPROGRESS; 1052 case OPAL_BUSY: 1053 case OPAL_BUSY_EVENT: return -EBUSY; 1054 case OPAL_NO_MEM: return -ENOMEM; 1055 case OPAL_PERMISSION: return -EPERM; 1056 1057 case OPAL_UNSUPPORTED: return -EIO; 1058 case OPAL_HARDWARE: return -EIO; 1059 case OPAL_INTERNAL_ERROR: return -EIO; 1060 case OPAL_TIMEOUT: return -ETIMEDOUT; 1061 default: 1062 pr_err("%s: unexpected OPAL error %d\n", __func__, rc); 1063 return -EIO; 1064 } 1065 } 1066 1067 void powernv_set_nmmu_ptcr(unsigned long ptcr) 1068 { 1069 int rc; 1070 1071 if (firmware_has_feature(FW_FEATURE_OPAL)) { 1072 rc = opal_nmmu_set_ptcr(-1UL, ptcr); 1073 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED) 1074 pr_warn("%s: Unable to set nest mmu ptcr\n", __func__); 1075 } 1076 } 1077 1078 EXPORT_SYMBOL_GPL(opal_poll_events); 1079 EXPORT_SYMBOL_GPL(opal_rtc_read); 1080 EXPORT_SYMBOL_GPL(opal_rtc_write); 1081 EXPORT_SYMBOL_GPL(opal_tpo_read); 1082 EXPORT_SYMBOL_GPL(opal_tpo_write); 1083 EXPORT_SYMBOL_GPL(opal_i2c_request); 1084 /* Export these symbols for PowerNV LED class driver */ 1085 EXPORT_SYMBOL_GPL(opal_leds_get_ind); 1086 EXPORT_SYMBOL_GPL(opal_leds_set_ind); 1087 /* Export this symbol for PowerNV Operator Panel class driver */ 1088 EXPORT_SYMBOL_GPL(opal_write_oppanel_async); 1089 /* Export this for KVM */ 1090 EXPORT_SYMBOL_GPL(opal_int_set_mfrr); 1091 EXPORT_SYMBOL_GPL(opal_int_eoi); 1092 EXPORT_SYMBOL_GPL(opal_error_code); 1093 /* Export the below symbol for NX compression */ 1094 EXPORT_SYMBOL(opal_nx_coproc_init); 1095