1 /* 2 * PowerNV OPAL high level interfaces 3 * 4 * Copyright 2011 IBM Corp. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #define pr_fmt(fmt) "opal: " fmt 13 14 #include <linux/printk.h> 15 #include <linux/types.h> 16 #include <linux/of.h> 17 #include <linux/of_fdt.h> 18 #include <linux/of_platform.h> 19 #include <linux/of_address.h> 20 #include <linux/interrupt.h> 21 #include <linux/notifier.h> 22 #include <linux/slab.h> 23 #include <linux/sched.h> 24 #include <linux/kobject.h> 25 #include <linux/delay.h> 26 #include <linux/memblock.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/printk.h> 30 #include <linux/kmsg_dump.h> 31 #include <linux/console.h> 32 #include <linux/sched/debug.h> 33 34 #include <asm/machdep.h> 35 #include <asm/opal.h> 36 #include <asm/firmware.h> 37 #include <asm/mce.h> 38 #include <asm/imc-pmu.h> 39 #include <asm/bug.h> 40 41 #include "powernv.h" 42 43 /* /sys/firmware/opal */ 44 struct kobject *opal_kobj; 45 46 struct opal { 47 u64 base; 48 u64 entry; 49 u64 size; 50 } opal; 51 52 struct mcheck_recoverable_range { 53 u64 start_addr; 54 u64 end_addr; 55 u64 recover_addr; 56 }; 57 58 static struct mcheck_recoverable_range *mc_recoverable_range; 59 static int mc_recoverable_range_len; 60 61 struct device_node *opal_node; 62 static DEFINE_SPINLOCK(opal_write_lock); 63 static struct atomic_notifier_head opal_msg_notifier_head[OPAL_MSG_TYPE_MAX]; 64 static uint32_t opal_heartbeat; 65 static struct task_struct *kopald_tsk; 66 67 void opal_configure_cores(void) 68 { 69 u64 reinit_flags = 0; 70 71 /* Do the actual re-init, This will clobber all FPRs, VRs, etc... 72 * 73 * It will preserve non volatile GPRs and HSPRG0/1. It will 74 * also restore HIDs and other SPRs to their original value 75 * but it might clobber a bunch. 76 */ 77 #ifdef __BIG_ENDIAN__ 78 reinit_flags |= OPAL_REINIT_CPUS_HILE_BE; 79 #else 80 reinit_flags |= OPAL_REINIT_CPUS_HILE_LE; 81 #endif 82 83 /* 84 * POWER9 always support running hash: 85 * ie. Host hash supports hash guests 86 * Host radix supports hash/radix guests 87 */ 88 if (early_cpu_has_feature(CPU_FTR_ARCH_300)) { 89 reinit_flags |= OPAL_REINIT_CPUS_MMU_HASH; 90 if (early_radix_enabled()) 91 reinit_flags |= OPAL_REINIT_CPUS_MMU_RADIX; 92 } 93 94 opal_reinit_cpus(reinit_flags); 95 96 /* Restore some bits */ 97 if (cur_cpu_spec->cpu_restore) 98 cur_cpu_spec->cpu_restore(); 99 } 100 101 int __init early_init_dt_scan_opal(unsigned long node, 102 const char *uname, int depth, void *data) 103 { 104 const void *basep, *entryp, *sizep; 105 int basesz, entrysz, runtimesz; 106 107 if (depth != 1 || strcmp(uname, "ibm,opal") != 0) 108 return 0; 109 110 basep = of_get_flat_dt_prop(node, "opal-base-address", &basesz); 111 entryp = of_get_flat_dt_prop(node, "opal-entry-address", &entrysz); 112 sizep = of_get_flat_dt_prop(node, "opal-runtime-size", &runtimesz); 113 114 if (!basep || !entryp || !sizep) 115 return 1; 116 117 opal.base = of_read_number(basep, basesz/4); 118 opal.entry = of_read_number(entryp, entrysz/4); 119 opal.size = of_read_number(sizep, runtimesz/4); 120 121 pr_debug("OPAL Base = 0x%llx (basep=%p basesz=%d)\n", 122 opal.base, basep, basesz); 123 pr_debug("OPAL Entry = 0x%llx (entryp=%p basesz=%d)\n", 124 opal.entry, entryp, entrysz); 125 pr_debug("OPAL Entry = 0x%llx (sizep=%p runtimesz=%d)\n", 126 opal.size, sizep, runtimesz); 127 128 if (of_flat_dt_is_compatible(node, "ibm,opal-v3")) { 129 powerpc_firmware_features |= FW_FEATURE_OPAL; 130 pr_debug("OPAL detected !\n"); 131 } else { 132 panic("OPAL != V3 detected, no longer supported.\n"); 133 } 134 135 return 1; 136 } 137 138 int __init early_init_dt_scan_recoverable_ranges(unsigned long node, 139 const char *uname, int depth, void *data) 140 { 141 int i, psize, size; 142 const __be32 *prop; 143 144 if (depth != 1 || strcmp(uname, "ibm,opal") != 0) 145 return 0; 146 147 prop = of_get_flat_dt_prop(node, "mcheck-recoverable-ranges", &psize); 148 149 if (!prop) 150 return 1; 151 152 pr_debug("Found machine check recoverable ranges.\n"); 153 154 /* 155 * Calculate number of available entries. 156 * 157 * Each recoverable address range entry is (start address, len, 158 * recovery address), 2 cells each for start and recovery address, 159 * 1 cell for len, totalling 5 cells per entry. 160 */ 161 mc_recoverable_range_len = psize / (sizeof(*prop) * 5); 162 163 /* Sanity check */ 164 if (!mc_recoverable_range_len) 165 return 1; 166 167 /* Size required to hold all the entries. */ 168 size = mc_recoverable_range_len * 169 sizeof(struct mcheck_recoverable_range); 170 171 /* 172 * Allocate a buffer to hold the MC recoverable ranges. 173 */ 174 mc_recoverable_range =__va(memblock_phys_alloc(size, __alignof__(u64))); 175 memset(mc_recoverable_range, 0, size); 176 177 for (i = 0; i < mc_recoverable_range_len; i++) { 178 mc_recoverable_range[i].start_addr = 179 of_read_number(prop + (i * 5) + 0, 2); 180 mc_recoverable_range[i].end_addr = 181 mc_recoverable_range[i].start_addr + 182 of_read_number(prop + (i * 5) + 2, 1); 183 mc_recoverable_range[i].recover_addr = 184 of_read_number(prop + (i * 5) + 3, 2); 185 186 pr_debug("Machine check recoverable range: %llx..%llx: %llx\n", 187 mc_recoverable_range[i].start_addr, 188 mc_recoverable_range[i].end_addr, 189 mc_recoverable_range[i].recover_addr); 190 } 191 return 1; 192 } 193 194 static int __init opal_register_exception_handlers(void) 195 { 196 #ifdef __BIG_ENDIAN__ 197 u64 glue; 198 199 if (!(powerpc_firmware_features & FW_FEATURE_OPAL)) 200 return -ENODEV; 201 202 /* Hookup some exception handlers except machine check. We use the 203 * fwnmi area at 0x7000 to provide the glue space to OPAL 204 */ 205 glue = 0x7000; 206 207 /* 208 * Check if we are running on newer firmware that exports 209 * OPAL_HANDLE_HMI token. If yes, then don't ask OPAL to patch 210 * the HMI interrupt and we catch it directly in Linux. 211 * 212 * For older firmware (i.e currently released POWER8 System Firmware 213 * as of today <= SV810_087), we fallback to old behavior and let OPAL 214 * patch the HMI vector and handle it inside OPAL firmware. 215 * 216 * For newer firmware (in development/yet to be released) we will 217 * start catching/handling HMI directly in Linux. 218 */ 219 if (!opal_check_token(OPAL_HANDLE_HMI)) { 220 pr_info("Old firmware detected, OPAL handles HMIs.\n"); 221 opal_register_exception_handler( 222 OPAL_HYPERVISOR_MAINTENANCE_HANDLER, 223 0, glue); 224 glue += 128; 225 } 226 227 opal_register_exception_handler(OPAL_SOFTPATCH_HANDLER, 0, glue); 228 #endif 229 230 return 0; 231 } 232 machine_early_initcall(powernv, opal_register_exception_handlers); 233 234 /* 235 * Opal message notifier based on message type. Allow subscribers to get 236 * notified for specific messgae type. 237 */ 238 int opal_message_notifier_register(enum opal_msg_type msg_type, 239 struct notifier_block *nb) 240 { 241 if (!nb || msg_type >= OPAL_MSG_TYPE_MAX) { 242 pr_warn("%s: Invalid arguments, msg_type:%d\n", 243 __func__, msg_type); 244 return -EINVAL; 245 } 246 247 return atomic_notifier_chain_register( 248 &opal_msg_notifier_head[msg_type], nb); 249 } 250 EXPORT_SYMBOL_GPL(opal_message_notifier_register); 251 252 int opal_message_notifier_unregister(enum opal_msg_type msg_type, 253 struct notifier_block *nb) 254 { 255 return atomic_notifier_chain_unregister( 256 &opal_msg_notifier_head[msg_type], nb); 257 } 258 EXPORT_SYMBOL_GPL(opal_message_notifier_unregister); 259 260 static void opal_message_do_notify(uint32_t msg_type, void *msg) 261 { 262 /* notify subscribers */ 263 atomic_notifier_call_chain(&opal_msg_notifier_head[msg_type], 264 msg_type, msg); 265 } 266 267 static void opal_handle_message(void) 268 { 269 s64 ret; 270 /* 271 * TODO: pre-allocate a message buffer depending on opal-msg-size 272 * value in /proc/device-tree. 273 */ 274 static struct opal_msg msg; 275 u32 type; 276 277 ret = opal_get_msg(__pa(&msg), sizeof(msg)); 278 /* No opal message pending. */ 279 if (ret == OPAL_RESOURCE) 280 return; 281 282 /* check for errors. */ 283 if (ret) { 284 pr_warn("%s: Failed to retrieve opal message, err=%lld\n", 285 __func__, ret); 286 return; 287 } 288 289 type = be32_to_cpu(msg.msg_type); 290 291 /* Sanity check */ 292 if (type >= OPAL_MSG_TYPE_MAX) { 293 pr_warn_once("%s: Unknown message type: %u\n", __func__, type); 294 return; 295 } 296 opal_message_do_notify(type, (void *)&msg); 297 } 298 299 static irqreturn_t opal_message_notify(int irq, void *data) 300 { 301 opal_handle_message(); 302 return IRQ_HANDLED; 303 } 304 305 static int __init opal_message_init(void) 306 { 307 int ret, i, irq; 308 309 for (i = 0; i < OPAL_MSG_TYPE_MAX; i++) 310 ATOMIC_INIT_NOTIFIER_HEAD(&opal_msg_notifier_head[i]); 311 312 irq = opal_event_request(ilog2(OPAL_EVENT_MSG_PENDING)); 313 if (!irq) { 314 pr_err("%s: Can't register OPAL event irq (%d)\n", 315 __func__, irq); 316 return irq; 317 } 318 319 ret = request_irq(irq, opal_message_notify, 320 IRQ_TYPE_LEVEL_HIGH, "opal-msg", NULL); 321 if (ret) { 322 pr_err("%s: Can't request OPAL event irq (%d)\n", 323 __func__, ret); 324 return ret; 325 } 326 327 return 0; 328 } 329 330 int opal_get_chars(uint32_t vtermno, char *buf, int count) 331 { 332 s64 rc; 333 __be64 evt, len; 334 335 if (!opal.entry) 336 return -ENODEV; 337 opal_poll_events(&evt); 338 if ((be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_INPUT) == 0) 339 return 0; 340 len = cpu_to_be64(count); 341 rc = opal_console_read(vtermno, &len, buf); 342 if (rc == OPAL_SUCCESS) 343 return be64_to_cpu(len); 344 return 0; 345 } 346 347 static int __opal_put_chars(uint32_t vtermno, const char *data, int total_len, bool atomic) 348 { 349 unsigned long flags = 0 /* shut up gcc */; 350 int written; 351 __be64 olen; 352 s64 rc; 353 354 if (!opal.entry) 355 return -ENODEV; 356 357 if (atomic) 358 spin_lock_irqsave(&opal_write_lock, flags); 359 rc = opal_console_write_buffer_space(vtermno, &olen); 360 if (rc || be64_to_cpu(olen) < total_len) { 361 /* Closed -> drop characters */ 362 if (rc) 363 written = total_len; 364 else 365 written = -EAGAIN; 366 goto out; 367 } 368 369 /* Should not get a partial write here because space is available. */ 370 olen = cpu_to_be64(total_len); 371 rc = opal_console_write(vtermno, &olen, data); 372 if (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) { 373 if (rc == OPAL_BUSY_EVENT) 374 opal_poll_events(NULL); 375 written = -EAGAIN; 376 goto out; 377 } 378 379 /* Closed or other error drop */ 380 if (rc != OPAL_SUCCESS) { 381 written = opal_error_code(rc); 382 goto out; 383 } 384 385 written = be64_to_cpu(olen); 386 if (written < total_len) { 387 if (atomic) { 388 /* Should not happen */ 389 pr_warn("atomic console write returned partial " 390 "len=%d written=%d\n", total_len, written); 391 } 392 if (!written) 393 written = -EAGAIN; 394 } 395 396 out: 397 if (atomic) 398 spin_unlock_irqrestore(&opal_write_lock, flags); 399 400 return written; 401 } 402 403 int opal_put_chars(uint32_t vtermno, const char *data, int total_len) 404 { 405 return __opal_put_chars(vtermno, data, total_len, false); 406 } 407 408 /* 409 * opal_put_chars_atomic will not perform partial-writes. Data will be 410 * atomically written to the terminal or not at all. This is not strictly 411 * true at the moment because console space can race with OPAL's console 412 * writes. 413 */ 414 int opal_put_chars_atomic(uint32_t vtermno, const char *data, int total_len) 415 { 416 return __opal_put_chars(vtermno, data, total_len, true); 417 } 418 419 static s64 __opal_flush_console(uint32_t vtermno) 420 { 421 s64 rc; 422 423 if (!opal_check_token(OPAL_CONSOLE_FLUSH)) { 424 __be64 evt; 425 426 /* 427 * If OPAL_CONSOLE_FLUSH is not implemented in the firmware, 428 * the console can still be flushed by calling the polling 429 * function while it has OPAL_EVENT_CONSOLE_OUTPUT events. 430 */ 431 WARN_ONCE(1, "opal: OPAL_CONSOLE_FLUSH missing.\n"); 432 433 opal_poll_events(&evt); 434 if (!(be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_OUTPUT)) 435 return OPAL_SUCCESS; 436 return OPAL_BUSY; 437 438 } else { 439 rc = opal_console_flush(vtermno); 440 if (rc == OPAL_BUSY_EVENT) { 441 opal_poll_events(NULL); 442 rc = OPAL_BUSY; 443 } 444 return rc; 445 } 446 447 } 448 449 /* 450 * opal_flush_console spins until the console is flushed 451 */ 452 int opal_flush_console(uint32_t vtermno) 453 { 454 for (;;) { 455 s64 rc = __opal_flush_console(vtermno); 456 457 if (rc == OPAL_BUSY || rc == OPAL_PARTIAL) { 458 mdelay(1); 459 continue; 460 } 461 462 return opal_error_code(rc); 463 } 464 } 465 466 /* 467 * opal_flush_chars is an hvc interface that sleeps until the console is 468 * flushed if wait, otherwise it will return -EBUSY if the console has data, 469 * -EAGAIN if it has data and some of it was flushed. 470 */ 471 int opal_flush_chars(uint32_t vtermno, bool wait) 472 { 473 for (;;) { 474 s64 rc = __opal_flush_console(vtermno); 475 476 if (rc == OPAL_BUSY || rc == OPAL_PARTIAL) { 477 if (wait) { 478 msleep(OPAL_BUSY_DELAY_MS); 479 continue; 480 } 481 if (rc == OPAL_PARTIAL) 482 return -EAGAIN; 483 } 484 485 return opal_error_code(rc); 486 } 487 } 488 489 static int opal_recover_mce(struct pt_regs *regs, 490 struct machine_check_event *evt) 491 { 492 int recovered = 0; 493 494 if (!(regs->msr & MSR_RI)) { 495 /* If MSR_RI isn't set, we cannot recover */ 496 pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n"); 497 recovered = 0; 498 } else if (evt->disposition == MCE_DISPOSITION_RECOVERED) { 499 /* Platform corrected itself */ 500 recovered = 1; 501 } else if (evt->severity == MCE_SEV_FATAL) { 502 /* Fatal machine check */ 503 pr_err("Machine check interrupt is fatal\n"); 504 recovered = 0; 505 } 506 507 if (!recovered && evt->severity == MCE_SEV_ERROR_SYNC) { 508 /* 509 * Try to kill processes if we get a synchronous machine check 510 * (e.g., one caused by execution of this instruction). This 511 * will devolve into a panic if we try to kill init or are in 512 * an interrupt etc. 513 * 514 * TODO: Queue up this address for hwpoisioning later. 515 * TODO: This is not quite right for d-side machine 516 * checks ->nip is not necessarily the important 517 * address. 518 */ 519 if ((user_mode(regs))) { 520 _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip); 521 recovered = 1; 522 } else if (die_will_crash()) { 523 /* 524 * die() would kill the kernel, so better to go via 525 * the platform reboot code that will log the 526 * machine check. 527 */ 528 recovered = 0; 529 } else { 530 die("Machine check", regs, SIGBUS); 531 recovered = 1; 532 } 533 } 534 535 return recovered; 536 } 537 538 void __noreturn pnv_platform_error_reboot(struct pt_regs *regs, const char *msg) 539 { 540 panic_flush_kmsg_start(); 541 542 pr_emerg("Hardware platform error: %s\n", msg); 543 if (regs) 544 show_regs(regs); 545 smp_send_stop(); 546 547 panic_flush_kmsg_end(); 548 549 /* 550 * Don't bother to shut things down because this will 551 * xstop the system. 552 */ 553 if (opal_cec_reboot2(OPAL_REBOOT_PLATFORM_ERROR, msg) 554 == OPAL_UNSUPPORTED) { 555 pr_emerg("Reboot type %d not supported for %s\n", 556 OPAL_REBOOT_PLATFORM_ERROR, msg); 557 } 558 559 /* 560 * We reached here. There can be three possibilities: 561 * 1. We are running on a firmware level that do not support 562 * opal_cec_reboot2() 563 * 2. We are running on a firmware level that do not support 564 * OPAL_REBOOT_PLATFORM_ERROR reboot type. 565 * 3. We are running on FSP based system that does not need 566 * opal to trigger checkstop explicitly for error analysis. 567 * The FSP PRD component would have already got notified 568 * about this error through other channels. 569 * 4. We are running on a newer skiboot that by default does 570 * not cause a checkstop, drops us back to the kernel to 571 * extract context and state at the time of the error. 572 */ 573 574 panic(msg); 575 } 576 577 int opal_machine_check(struct pt_regs *regs) 578 { 579 struct machine_check_event evt; 580 581 if (!get_mce_event(&evt, MCE_EVENT_RELEASE)) 582 return 0; 583 584 /* Print things out */ 585 if (evt.version != MCE_V1) { 586 pr_err("Machine Check Exception, Unknown event version %d !\n", 587 evt.version); 588 return 0; 589 } 590 machine_check_print_event_info(&evt, user_mode(regs)); 591 592 if (opal_recover_mce(regs, &evt)) 593 return 1; 594 595 pnv_platform_error_reboot(regs, "Unrecoverable Machine Check exception"); 596 } 597 598 /* Early hmi handler called in real mode. */ 599 int opal_hmi_exception_early(struct pt_regs *regs) 600 { 601 s64 rc; 602 603 /* 604 * call opal hmi handler. Pass paca address as token. 605 * The return value OPAL_SUCCESS is an indication that there is 606 * an HMI event generated waiting to pull by Linux. 607 */ 608 rc = opal_handle_hmi(); 609 if (rc == OPAL_SUCCESS) { 610 local_paca->hmi_event_available = 1; 611 return 1; 612 } 613 return 0; 614 } 615 616 /* HMI exception handler called in virtual mode during check_irq_replay. */ 617 int opal_handle_hmi_exception(struct pt_regs *regs) 618 { 619 /* 620 * Check if HMI event is available. 621 * if Yes, then wake kopald to process them. 622 */ 623 if (!local_paca->hmi_event_available) 624 return 0; 625 626 local_paca->hmi_event_available = 0; 627 opal_wake_poller(); 628 629 return 1; 630 } 631 632 static uint64_t find_recovery_address(uint64_t nip) 633 { 634 int i; 635 636 for (i = 0; i < mc_recoverable_range_len; i++) 637 if ((nip >= mc_recoverable_range[i].start_addr) && 638 (nip < mc_recoverable_range[i].end_addr)) 639 return mc_recoverable_range[i].recover_addr; 640 return 0; 641 } 642 643 bool opal_mce_check_early_recovery(struct pt_regs *regs) 644 { 645 uint64_t recover_addr = 0; 646 647 if (!opal.base || !opal.size) 648 goto out; 649 650 if ((regs->nip >= opal.base) && 651 (regs->nip < (opal.base + opal.size))) 652 recover_addr = find_recovery_address(regs->nip); 653 654 /* 655 * Setup regs->nip to rfi into fixup address. 656 */ 657 if (recover_addr) 658 regs->nip = recover_addr; 659 660 out: 661 return !!recover_addr; 662 } 663 664 static int opal_sysfs_init(void) 665 { 666 opal_kobj = kobject_create_and_add("opal", firmware_kobj); 667 if (!opal_kobj) { 668 pr_warn("kobject_create_and_add opal failed\n"); 669 return -ENOMEM; 670 } 671 672 return 0; 673 } 674 675 static ssize_t symbol_map_read(struct file *fp, struct kobject *kobj, 676 struct bin_attribute *bin_attr, 677 char *buf, loff_t off, size_t count) 678 { 679 return memory_read_from_buffer(buf, count, &off, bin_attr->private, 680 bin_attr->size); 681 } 682 683 static BIN_ATTR_RO(symbol_map, 0); 684 685 static void opal_export_symmap(void) 686 { 687 const __be64 *syms; 688 unsigned int size; 689 struct device_node *fw; 690 int rc; 691 692 fw = of_find_node_by_path("/ibm,opal/firmware"); 693 if (!fw) 694 return; 695 syms = of_get_property(fw, "symbol-map", &size); 696 if (!syms || size != 2 * sizeof(__be64)) 697 return; 698 699 /* Setup attributes */ 700 bin_attr_symbol_map.private = __va(be64_to_cpu(syms[0])); 701 bin_attr_symbol_map.size = be64_to_cpu(syms[1]); 702 703 rc = sysfs_create_bin_file(opal_kobj, &bin_attr_symbol_map); 704 if (rc) 705 pr_warn("Error %d creating OPAL symbols file\n", rc); 706 } 707 708 static ssize_t export_attr_read(struct file *fp, struct kobject *kobj, 709 struct bin_attribute *bin_attr, char *buf, 710 loff_t off, size_t count) 711 { 712 return memory_read_from_buffer(buf, count, &off, bin_attr->private, 713 bin_attr->size); 714 } 715 716 /* 717 * opal_export_attrs: creates a sysfs node for each property listed in 718 * the device-tree under /ibm,opal/firmware/exports/ 719 * All new sysfs nodes are created under /opal/exports/. 720 * This allows for reserved memory regions (e.g. HDAT) to be read. 721 * The new sysfs nodes are only readable by root. 722 */ 723 static void opal_export_attrs(void) 724 { 725 struct bin_attribute *attr; 726 struct device_node *np; 727 struct property *prop; 728 struct kobject *kobj; 729 u64 vals[2]; 730 int rc; 731 732 np = of_find_node_by_path("/ibm,opal/firmware/exports"); 733 if (!np) 734 return; 735 736 /* Create new 'exports' directory - /sys/firmware/opal/exports */ 737 kobj = kobject_create_and_add("exports", opal_kobj); 738 if (!kobj) { 739 pr_warn("kobject_create_and_add() of exports failed\n"); 740 return; 741 } 742 743 for_each_property_of_node(np, prop) { 744 if (!strcmp(prop->name, "name") || !strcmp(prop->name, "phandle")) 745 continue; 746 747 if (of_property_read_u64_array(np, prop->name, &vals[0], 2)) 748 continue; 749 750 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 751 752 if (attr == NULL) { 753 pr_warn("Failed kmalloc for bin_attribute!"); 754 continue; 755 } 756 757 sysfs_bin_attr_init(attr); 758 attr->attr.name = kstrdup(prop->name, GFP_KERNEL); 759 attr->attr.mode = 0400; 760 attr->read = export_attr_read; 761 attr->private = __va(vals[0]); 762 attr->size = vals[1]; 763 764 if (attr->attr.name == NULL) { 765 pr_warn("Failed kstrdup for bin_attribute attr.name"); 766 kfree(attr); 767 continue; 768 } 769 770 rc = sysfs_create_bin_file(kobj, attr); 771 if (rc) { 772 pr_warn("Error %d creating OPAL sysfs exports/%s file\n", 773 rc, prop->name); 774 kfree(attr->attr.name); 775 kfree(attr); 776 } 777 } 778 779 of_node_put(np); 780 } 781 782 static void __init opal_dump_region_init(void) 783 { 784 void *addr; 785 uint64_t size; 786 int rc; 787 788 if (!opal_check_token(OPAL_REGISTER_DUMP_REGION)) 789 return; 790 791 /* Register kernel log buffer */ 792 addr = log_buf_addr_get(); 793 if (addr == NULL) 794 return; 795 796 size = log_buf_len_get(); 797 if (size == 0) 798 return; 799 800 rc = opal_register_dump_region(OPAL_DUMP_REGION_LOG_BUF, 801 __pa(addr), size); 802 /* Don't warn if this is just an older OPAL that doesn't 803 * know about that call 804 */ 805 if (rc && rc != OPAL_UNSUPPORTED) 806 pr_warn("DUMP: Failed to register kernel log buffer. " 807 "rc = %d\n", rc); 808 } 809 810 static void opal_pdev_init(const char *compatible) 811 { 812 struct device_node *np; 813 814 for_each_compatible_node(np, NULL, compatible) 815 of_platform_device_create(np, NULL, NULL); 816 } 817 818 static void __init opal_imc_init_dev(void) 819 { 820 struct device_node *np; 821 822 np = of_find_compatible_node(NULL, NULL, IMC_DTB_COMPAT); 823 if (np) 824 of_platform_device_create(np, NULL, NULL); 825 } 826 827 static int kopald(void *unused) 828 { 829 unsigned long timeout = msecs_to_jiffies(opal_heartbeat) + 1; 830 831 set_freezable(); 832 do { 833 try_to_freeze(); 834 835 opal_handle_events(); 836 837 set_current_state(TASK_INTERRUPTIBLE); 838 if (opal_have_pending_events()) 839 __set_current_state(TASK_RUNNING); 840 else 841 schedule_timeout(timeout); 842 843 } while (!kthread_should_stop()); 844 845 return 0; 846 } 847 848 void opal_wake_poller(void) 849 { 850 if (kopald_tsk) 851 wake_up_process(kopald_tsk); 852 } 853 854 static void opal_init_heartbeat(void) 855 { 856 /* Old firwmware, we assume the HVC heartbeat is sufficient */ 857 if (of_property_read_u32(opal_node, "ibm,heartbeat-ms", 858 &opal_heartbeat) != 0) 859 opal_heartbeat = 0; 860 861 if (opal_heartbeat) 862 kopald_tsk = kthread_run(kopald, NULL, "kopald"); 863 } 864 865 static int __init opal_init(void) 866 { 867 struct device_node *np, *consoles, *leds; 868 int rc; 869 870 opal_node = of_find_node_by_path("/ibm,opal"); 871 if (!opal_node) { 872 pr_warn("Device node not found\n"); 873 return -ENODEV; 874 } 875 876 /* Register OPAL consoles if any ports */ 877 consoles = of_find_node_by_path("/ibm,opal/consoles"); 878 if (consoles) { 879 for_each_child_of_node(consoles, np) { 880 if (!of_node_name_eq(np, "serial")) 881 continue; 882 of_platform_device_create(np, NULL, NULL); 883 } 884 of_node_put(consoles); 885 } 886 887 /* Initialise OPAL messaging system */ 888 opal_message_init(); 889 890 /* Initialise OPAL asynchronous completion interface */ 891 opal_async_comp_init(); 892 893 /* Initialise OPAL sensor interface */ 894 opal_sensor_init(); 895 896 /* Initialise OPAL hypervisor maintainence interrupt handling */ 897 opal_hmi_handler_init(); 898 899 /* Create i2c platform devices */ 900 opal_pdev_init("ibm,opal-i2c"); 901 902 /* Handle non-volatile memory devices */ 903 opal_pdev_init("pmem-region"); 904 905 /* Setup a heatbeat thread if requested by OPAL */ 906 opal_init_heartbeat(); 907 908 /* Detect In-Memory Collection counters and create devices*/ 909 opal_imc_init_dev(); 910 911 /* Create leds platform devices */ 912 leds = of_find_node_by_path("/ibm,opal/leds"); 913 if (leds) { 914 of_platform_device_create(leds, "opal_leds", NULL); 915 of_node_put(leds); 916 } 917 918 /* Initialise OPAL message log interface */ 919 opal_msglog_init(); 920 921 /* Create "opal" kobject under /sys/firmware */ 922 rc = opal_sysfs_init(); 923 if (rc == 0) { 924 /* Export symbol map to userspace */ 925 opal_export_symmap(); 926 /* Setup dump region interface */ 927 opal_dump_region_init(); 928 /* Setup error log interface */ 929 rc = opal_elog_init(); 930 /* Setup code update interface */ 931 opal_flash_update_init(); 932 /* Setup platform dump extract interface */ 933 opal_platform_dump_init(); 934 /* Setup system parameters interface */ 935 opal_sys_param_init(); 936 /* Setup message log sysfs interface. */ 937 opal_msglog_sysfs_init(); 938 } 939 940 /* Export all properties */ 941 opal_export_attrs(); 942 943 /* Initialize platform devices: IPMI backend, PRD & flash interface */ 944 opal_pdev_init("ibm,opal-ipmi"); 945 opal_pdev_init("ibm,opal-flash"); 946 opal_pdev_init("ibm,opal-prd"); 947 948 /* Initialise platform device: oppanel interface */ 949 opal_pdev_init("ibm,opal-oppanel"); 950 951 /* Initialise OPAL kmsg dumper for flushing console on panic */ 952 opal_kmsg_init(); 953 954 /* Initialise OPAL powercap interface */ 955 opal_powercap_init(); 956 957 /* Initialise OPAL Power-Shifting-Ratio interface */ 958 opal_psr_init(); 959 960 /* Initialise OPAL sensor groups */ 961 opal_sensor_groups_init(); 962 963 /* Initialise OPAL Power control interface */ 964 opal_power_control_init(); 965 966 return 0; 967 } 968 machine_subsys_initcall(powernv, opal_init); 969 970 void opal_shutdown(void) 971 { 972 long rc = OPAL_BUSY; 973 974 opal_event_shutdown(); 975 976 /* 977 * Then sync with OPAL which ensure anything that can 978 * potentially write to our memory has completed such 979 * as an ongoing dump retrieval 980 */ 981 while (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) { 982 rc = opal_sync_host_reboot(); 983 if (rc == OPAL_BUSY) 984 opal_poll_events(NULL); 985 else 986 mdelay(10); 987 } 988 989 /* Unregister memory dump region */ 990 if (opal_check_token(OPAL_UNREGISTER_DUMP_REGION)) 991 opal_unregister_dump_region(OPAL_DUMP_REGION_LOG_BUF); 992 } 993 994 /* Export this so that test modules can use it */ 995 EXPORT_SYMBOL_GPL(opal_invalid_call); 996 EXPORT_SYMBOL_GPL(opal_xscom_read); 997 EXPORT_SYMBOL_GPL(opal_xscom_write); 998 EXPORT_SYMBOL_GPL(opal_ipmi_send); 999 EXPORT_SYMBOL_GPL(opal_ipmi_recv); 1000 EXPORT_SYMBOL_GPL(opal_flash_read); 1001 EXPORT_SYMBOL_GPL(opal_flash_write); 1002 EXPORT_SYMBOL_GPL(opal_flash_erase); 1003 EXPORT_SYMBOL_GPL(opal_prd_msg); 1004 EXPORT_SYMBOL_GPL(opal_check_token); 1005 1006 /* Convert a region of vmalloc memory to an opal sg list */ 1007 struct opal_sg_list *opal_vmalloc_to_sg_list(void *vmalloc_addr, 1008 unsigned long vmalloc_size) 1009 { 1010 struct opal_sg_list *sg, *first = NULL; 1011 unsigned long i = 0; 1012 1013 sg = kzalloc(PAGE_SIZE, GFP_KERNEL); 1014 if (!sg) 1015 goto nomem; 1016 1017 first = sg; 1018 1019 while (vmalloc_size > 0) { 1020 uint64_t data = vmalloc_to_pfn(vmalloc_addr) << PAGE_SHIFT; 1021 uint64_t length = min(vmalloc_size, PAGE_SIZE); 1022 1023 sg->entry[i].data = cpu_to_be64(data); 1024 sg->entry[i].length = cpu_to_be64(length); 1025 i++; 1026 1027 if (i >= SG_ENTRIES_PER_NODE) { 1028 struct opal_sg_list *next; 1029 1030 next = kzalloc(PAGE_SIZE, GFP_KERNEL); 1031 if (!next) 1032 goto nomem; 1033 1034 sg->length = cpu_to_be64( 1035 i * sizeof(struct opal_sg_entry) + 16); 1036 i = 0; 1037 sg->next = cpu_to_be64(__pa(next)); 1038 sg = next; 1039 } 1040 1041 vmalloc_addr += length; 1042 vmalloc_size -= length; 1043 } 1044 1045 sg->length = cpu_to_be64(i * sizeof(struct opal_sg_entry) + 16); 1046 1047 return first; 1048 1049 nomem: 1050 pr_err("%s : Failed to allocate memory\n", __func__); 1051 opal_free_sg_list(first); 1052 return NULL; 1053 } 1054 1055 void opal_free_sg_list(struct opal_sg_list *sg) 1056 { 1057 while (sg) { 1058 uint64_t next = be64_to_cpu(sg->next); 1059 1060 kfree(sg); 1061 1062 if (next) 1063 sg = __va(next); 1064 else 1065 sg = NULL; 1066 } 1067 } 1068 1069 int opal_error_code(int rc) 1070 { 1071 switch (rc) { 1072 case OPAL_SUCCESS: return 0; 1073 1074 case OPAL_PARAMETER: return -EINVAL; 1075 case OPAL_ASYNC_COMPLETION: return -EINPROGRESS; 1076 case OPAL_BUSY: 1077 case OPAL_BUSY_EVENT: return -EBUSY; 1078 case OPAL_NO_MEM: return -ENOMEM; 1079 case OPAL_PERMISSION: return -EPERM; 1080 1081 case OPAL_UNSUPPORTED: return -EIO; 1082 case OPAL_HARDWARE: return -EIO; 1083 case OPAL_INTERNAL_ERROR: return -EIO; 1084 case OPAL_TIMEOUT: return -ETIMEDOUT; 1085 default: 1086 pr_err("%s: unexpected OPAL error %d\n", __func__, rc); 1087 return -EIO; 1088 } 1089 } 1090 1091 void powernv_set_nmmu_ptcr(unsigned long ptcr) 1092 { 1093 int rc; 1094 1095 if (firmware_has_feature(FW_FEATURE_OPAL)) { 1096 rc = opal_nmmu_set_ptcr(-1UL, ptcr); 1097 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED) 1098 pr_warn("%s: Unable to set nest mmu ptcr\n", __func__); 1099 } 1100 } 1101 1102 EXPORT_SYMBOL_GPL(opal_poll_events); 1103 EXPORT_SYMBOL_GPL(opal_rtc_read); 1104 EXPORT_SYMBOL_GPL(opal_rtc_write); 1105 EXPORT_SYMBOL_GPL(opal_tpo_read); 1106 EXPORT_SYMBOL_GPL(opal_tpo_write); 1107 EXPORT_SYMBOL_GPL(opal_i2c_request); 1108 /* Export these symbols for PowerNV LED class driver */ 1109 EXPORT_SYMBOL_GPL(opal_leds_get_ind); 1110 EXPORT_SYMBOL_GPL(opal_leds_set_ind); 1111 /* Export this symbol for PowerNV Operator Panel class driver */ 1112 EXPORT_SYMBOL_GPL(opal_write_oppanel_async); 1113 /* Export this for KVM */ 1114 EXPORT_SYMBOL_GPL(opal_int_set_mfrr); 1115 EXPORT_SYMBOL_GPL(opal_int_eoi); 1116 EXPORT_SYMBOL_GPL(opal_error_code); 1117 /* Export the below symbol for NX compression */ 1118 EXPORT_SYMBOL(opal_nx_coproc_init); 1119