1 /* 2 * PowerNV OPAL high level interfaces 3 * 4 * Copyright 2011 IBM Corp. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #define pr_fmt(fmt) "opal: " fmt 13 14 #include <linux/printk.h> 15 #include <linux/types.h> 16 #include <linux/of.h> 17 #include <linux/of_fdt.h> 18 #include <linux/of_platform.h> 19 #include <linux/of_address.h> 20 #include <linux/interrupt.h> 21 #include <linux/notifier.h> 22 #include <linux/slab.h> 23 #include <linux/sched.h> 24 #include <linux/kobject.h> 25 #include <linux/delay.h> 26 #include <linux/memblock.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/printk.h> 30 #include <linux/kmsg_dump.h> 31 #include <linux/console.h> 32 #include <linux/sched/debug.h> 33 34 #include <asm/machdep.h> 35 #include <asm/opal.h> 36 #include <asm/firmware.h> 37 #include <asm/mce.h> 38 #include <asm/imc-pmu.h> 39 #include <asm/bug.h> 40 41 #include "powernv.h" 42 43 /* /sys/firmware/opal */ 44 struct kobject *opal_kobj; 45 46 struct opal { 47 u64 base; 48 u64 entry; 49 u64 size; 50 } opal; 51 52 struct mcheck_recoverable_range { 53 u64 start_addr; 54 u64 end_addr; 55 u64 recover_addr; 56 }; 57 58 static struct mcheck_recoverable_range *mc_recoverable_range; 59 static int mc_recoverable_range_len; 60 61 struct device_node *opal_node; 62 static DEFINE_SPINLOCK(opal_write_lock); 63 static struct atomic_notifier_head opal_msg_notifier_head[OPAL_MSG_TYPE_MAX]; 64 static uint32_t opal_heartbeat; 65 static struct task_struct *kopald_tsk; 66 67 void opal_configure_cores(void) 68 { 69 u64 reinit_flags = 0; 70 71 /* Do the actual re-init, This will clobber all FPRs, VRs, etc... 72 * 73 * It will preserve non volatile GPRs and HSPRG0/1. It will 74 * also restore HIDs and other SPRs to their original value 75 * but it might clobber a bunch. 76 */ 77 #ifdef __BIG_ENDIAN__ 78 reinit_flags |= OPAL_REINIT_CPUS_HILE_BE; 79 #else 80 reinit_flags |= OPAL_REINIT_CPUS_HILE_LE; 81 #endif 82 83 /* 84 * POWER9 always support running hash: 85 * ie. Host hash supports hash guests 86 * Host radix supports hash/radix guests 87 */ 88 if (early_cpu_has_feature(CPU_FTR_ARCH_300)) { 89 reinit_flags |= OPAL_REINIT_CPUS_MMU_HASH; 90 if (early_radix_enabled()) 91 reinit_flags |= OPAL_REINIT_CPUS_MMU_RADIX; 92 } 93 94 opal_reinit_cpus(reinit_flags); 95 96 /* Restore some bits */ 97 if (cur_cpu_spec->cpu_restore) 98 cur_cpu_spec->cpu_restore(); 99 } 100 101 int __init early_init_dt_scan_opal(unsigned long node, 102 const char *uname, int depth, void *data) 103 { 104 const void *basep, *entryp, *sizep; 105 int basesz, entrysz, runtimesz; 106 107 if (depth != 1 || strcmp(uname, "ibm,opal") != 0) 108 return 0; 109 110 basep = of_get_flat_dt_prop(node, "opal-base-address", &basesz); 111 entryp = of_get_flat_dt_prop(node, "opal-entry-address", &entrysz); 112 sizep = of_get_flat_dt_prop(node, "opal-runtime-size", &runtimesz); 113 114 if (!basep || !entryp || !sizep) 115 return 1; 116 117 opal.base = of_read_number(basep, basesz/4); 118 opal.entry = of_read_number(entryp, entrysz/4); 119 opal.size = of_read_number(sizep, runtimesz/4); 120 121 pr_debug("OPAL Base = 0x%llx (basep=%p basesz=%d)\n", 122 opal.base, basep, basesz); 123 pr_debug("OPAL Entry = 0x%llx (entryp=%p basesz=%d)\n", 124 opal.entry, entryp, entrysz); 125 pr_debug("OPAL Entry = 0x%llx (sizep=%p runtimesz=%d)\n", 126 opal.size, sizep, runtimesz); 127 128 if (of_flat_dt_is_compatible(node, "ibm,opal-v3")) { 129 powerpc_firmware_features |= FW_FEATURE_OPAL; 130 pr_debug("OPAL detected !\n"); 131 } else { 132 panic("OPAL != V3 detected, no longer supported.\n"); 133 } 134 135 return 1; 136 } 137 138 int __init early_init_dt_scan_recoverable_ranges(unsigned long node, 139 const char *uname, int depth, void *data) 140 { 141 int i, psize, size; 142 const __be32 *prop; 143 144 if (depth != 1 || strcmp(uname, "ibm,opal") != 0) 145 return 0; 146 147 prop = of_get_flat_dt_prop(node, "mcheck-recoverable-ranges", &psize); 148 149 if (!prop) 150 return 1; 151 152 pr_debug("Found machine check recoverable ranges.\n"); 153 154 /* 155 * Calculate number of available entries. 156 * 157 * Each recoverable address range entry is (start address, len, 158 * recovery address), 2 cells each for start and recovery address, 159 * 1 cell for len, totalling 5 cells per entry. 160 */ 161 mc_recoverable_range_len = psize / (sizeof(*prop) * 5); 162 163 /* Sanity check */ 164 if (!mc_recoverable_range_len) 165 return 1; 166 167 /* Size required to hold all the entries. */ 168 size = mc_recoverable_range_len * 169 sizeof(struct mcheck_recoverable_range); 170 171 /* 172 * Allocate a buffer to hold the MC recoverable ranges. 173 */ 174 mc_recoverable_range =__va(memblock_alloc(size, __alignof__(u64))); 175 memset(mc_recoverable_range, 0, size); 176 177 for (i = 0; i < mc_recoverable_range_len; i++) { 178 mc_recoverable_range[i].start_addr = 179 of_read_number(prop + (i * 5) + 0, 2); 180 mc_recoverable_range[i].end_addr = 181 mc_recoverable_range[i].start_addr + 182 of_read_number(prop + (i * 5) + 2, 1); 183 mc_recoverable_range[i].recover_addr = 184 of_read_number(prop + (i * 5) + 3, 2); 185 186 pr_debug("Machine check recoverable range: %llx..%llx: %llx\n", 187 mc_recoverable_range[i].start_addr, 188 mc_recoverable_range[i].end_addr, 189 mc_recoverable_range[i].recover_addr); 190 } 191 return 1; 192 } 193 194 static int __init opal_register_exception_handlers(void) 195 { 196 #ifdef __BIG_ENDIAN__ 197 u64 glue; 198 199 if (!(powerpc_firmware_features & FW_FEATURE_OPAL)) 200 return -ENODEV; 201 202 /* Hookup some exception handlers except machine check. We use the 203 * fwnmi area at 0x7000 to provide the glue space to OPAL 204 */ 205 glue = 0x7000; 206 207 /* 208 * Check if we are running on newer firmware that exports 209 * OPAL_HANDLE_HMI token. If yes, then don't ask OPAL to patch 210 * the HMI interrupt and we catch it directly in Linux. 211 * 212 * For older firmware (i.e currently released POWER8 System Firmware 213 * as of today <= SV810_087), we fallback to old behavior and let OPAL 214 * patch the HMI vector and handle it inside OPAL firmware. 215 * 216 * For newer firmware (in development/yet to be released) we will 217 * start catching/handling HMI directly in Linux. 218 */ 219 if (!opal_check_token(OPAL_HANDLE_HMI)) { 220 pr_info("Old firmware detected, OPAL handles HMIs.\n"); 221 opal_register_exception_handler( 222 OPAL_HYPERVISOR_MAINTENANCE_HANDLER, 223 0, glue); 224 glue += 128; 225 } 226 227 opal_register_exception_handler(OPAL_SOFTPATCH_HANDLER, 0, glue); 228 #endif 229 230 return 0; 231 } 232 machine_early_initcall(powernv, opal_register_exception_handlers); 233 234 /* 235 * Opal message notifier based on message type. Allow subscribers to get 236 * notified for specific messgae type. 237 */ 238 int opal_message_notifier_register(enum opal_msg_type msg_type, 239 struct notifier_block *nb) 240 { 241 if (!nb || msg_type >= OPAL_MSG_TYPE_MAX) { 242 pr_warn("%s: Invalid arguments, msg_type:%d\n", 243 __func__, msg_type); 244 return -EINVAL; 245 } 246 247 return atomic_notifier_chain_register( 248 &opal_msg_notifier_head[msg_type], nb); 249 } 250 EXPORT_SYMBOL_GPL(opal_message_notifier_register); 251 252 int opal_message_notifier_unregister(enum opal_msg_type msg_type, 253 struct notifier_block *nb) 254 { 255 return atomic_notifier_chain_unregister( 256 &opal_msg_notifier_head[msg_type], nb); 257 } 258 EXPORT_SYMBOL_GPL(opal_message_notifier_unregister); 259 260 static void opal_message_do_notify(uint32_t msg_type, void *msg) 261 { 262 /* notify subscribers */ 263 atomic_notifier_call_chain(&opal_msg_notifier_head[msg_type], 264 msg_type, msg); 265 } 266 267 static void opal_handle_message(void) 268 { 269 s64 ret; 270 /* 271 * TODO: pre-allocate a message buffer depending on opal-msg-size 272 * value in /proc/device-tree. 273 */ 274 static struct opal_msg msg; 275 u32 type; 276 277 ret = opal_get_msg(__pa(&msg), sizeof(msg)); 278 /* No opal message pending. */ 279 if (ret == OPAL_RESOURCE) 280 return; 281 282 /* check for errors. */ 283 if (ret) { 284 pr_warn("%s: Failed to retrieve opal message, err=%lld\n", 285 __func__, ret); 286 return; 287 } 288 289 type = be32_to_cpu(msg.msg_type); 290 291 /* Sanity check */ 292 if (type >= OPAL_MSG_TYPE_MAX) { 293 pr_warn_once("%s: Unknown message type: %u\n", __func__, type); 294 return; 295 } 296 opal_message_do_notify(type, (void *)&msg); 297 } 298 299 static irqreturn_t opal_message_notify(int irq, void *data) 300 { 301 opal_handle_message(); 302 return IRQ_HANDLED; 303 } 304 305 static int __init opal_message_init(void) 306 { 307 int ret, i, irq; 308 309 for (i = 0; i < OPAL_MSG_TYPE_MAX; i++) 310 ATOMIC_INIT_NOTIFIER_HEAD(&opal_msg_notifier_head[i]); 311 312 irq = opal_event_request(ilog2(OPAL_EVENT_MSG_PENDING)); 313 if (!irq) { 314 pr_err("%s: Can't register OPAL event irq (%d)\n", 315 __func__, irq); 316 return irq; 317 } 318 319 ret = request_irq(irq, opal_message_notify, 320 IRQ_TYPE_LEVEL_HIGH, "opal-msg", NULL); 321 if (ret) { 322 pr_err("%s: Can't request OPAL event irq (%d)\n", 323 __func__, ret); 324 return ret; 325 } 326 327 return 0; 328 } 329 330 int opal_get_chars(uint32_t vtermno, char *buf, int count) 331 { 332 s64 rc; 333 __be64 evt, len; 334 335 if (!opal.entry) 336 return -ENODEV; 337 opal_poll_events(&evt); 338 if ((be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_INPUT) == 0) 339 return 0; 340 len = cpu_to_be64(count); 341 rc = opal_console_read(vtermno, &len, buf); 342 if (rc == OPAL_SUCCESS) 343 return be64_to_cpu(len); 344 return 0; 345 } 346 347 int opal_put_chars(uint32_t vtermno, const char *data, int total_len) 348 { 349 int written = 0; 350 __be64 olen; 351 s64 len, rc; 352 unsigned long flags; 353 __be64 evt; 354 355 if (!opal.entry) 356 return -ENODEV; 357 358 /* We want put_chars to be atomic to avoid mangling of hvsi 359 * packets. To do that, we first test for room and return 360 * -EAGAIN if there isn't enough. 361 * 362 * Unfortunately, opal_console_write_buffer_space() doesn't 363 * appear to work on opal v1, so we just assume there is 364 * enough room and be done with it 365 */ 366 spin_lock_irqsave(&opal_write_lock, flags); 367 rc = opal_console_write_buffer_space(vtermno, &olen); 368 len = be64_to_cpu(olen); 369 if (rc || len < total_len) { 370 spin_unlock_irqrestore(&opal_write_lock, flags); 371 /* Closed -> drop characters */ 372 if (rc) 373 return total_len; 374 opal_poll_events(NULL); 375 return -EAGAIN; 376 } 377 378 /* We still try to handle partial completions, though they 379 * should no longer happen. 380 */ 381 rc = OPAL_BUSY; 382 while(total_len > 0 && (rc == OPAL_BUSY || 383 rc == OPAL_BUSY_EVENT || rc == OPAL_SUCCESS)) { 384 olen = cpu_to_be64(total_len); 385 rc = opal_console_write(vtermno, &olen, data); 386 len = be64_to_cpu(olen); 387 388 /* Closed or other error drop */ 389 if (rc != OPAL_SUCCESS && rc != OPAL_BUSY && 390 rc != OPAL_BUSY_EVENT) { 391 written = total_len; 392 break; 393 } 394 if (rc == OPAL_SUCCESS) { 395 total_len -= len; 396 data += len; 397 written += len; 398 } 399 /* This is a bit nasty but we need that for the console to 400 * flush when there aren't any interrupts. We will clean 401 * things a bit later to limit that to synchronous path 402 * such as the kernel console and xmon/udbg 403 */ 404 do 405 opal_poll_events(&evt); 406 while(rc == OPAL_SUCCESS && 407 (be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_OUTPUT)); 408 } 409 spin_unlock_irqrestore(&opal_write_lock, flags); 410 return written; 411 } 412 413 static int opal_recover_mce(struct pt_regs *regs, 414 struct machine_check_event *evt) 415 { 416 int recovered = 0; 417 418 if (!(regs->msr & MSR_RI)) { 419 /* If MSR_RI isn't set, we cannot recover */ 420 pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n"); 421 recovered = 0; 422 } else if (evt->disposition == MCE_DISPOSITION_RECOVERED) { 423 /* Platform corrected itself */ 424 recovered = 1; 425 } else if (evt->severity == MCE_SEV_FATAL) { 426 /* Fatal machine check */ 427 pr_err("Machine check interrupt is fatal\n"); 428 recovered = 0; 429 } 430 431 if (!recovered && evt->severity == MCE_SEV_ERROR_SYNC) { 432 /* 433 * Try to kill processes if we get a synchronous machine check 434 * (e.g., one caused by execution of this instruction). This 435 * will devolve into a panic if we try to kill init or are in 436 * an interrupt etc. 437 * 438 * TODO: Queue up this address for hwpoisioning later. 439 * TODO: This is not quite right for d-side machine 440 * checks ->nip is not necessarily the important 441 * address. 442 */ 443 if ((user_mode(regs))) { 444 _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip); 445 recovered = 1; 446 } else if (die_will_crash()) { 447 /* 448 * die() would kill the kernel, so better to go via 449 * the platform reboot code that will log the 450 * machine check. 451 */ 452 recovered = 0; 453 } else { 454 die("Machine check", regs, SIGBUS); 455 recovered = 1; 456 } 457 } 458 459 return recovered; 460 } 461 462 void pnv_platform_error_reboot(struct pt_regs *regs, const char *msg) 463 { 464 panic_flush_kmsg_start(); 465 466 pr_emerg("Hardware platform error: %s\n", msg); 467 if (regs) 468 show_regs(regs); 469 smp_send_stop(); 470 471 panic_flush_kmsg_end(); 472 473 /* 474 * Don't bother to shut things down because this will 475 * xstop the system. 476 */ 477 if (opal_cec_reboot2(OPAL_REBOOT_PLATFORM_ERROR, msg) 478 == OPAL_UNSUPPORTED) { 479 pr_emerg("Reboot type %d not supported for %s\n", 480 OPAL_REBOOT_PLATFORM_ERROR, msg); 481 } 482 483 /* 484 * We reached here. There can be three possibilities: 485 * 1. We are running on a firmware level that do not support 486 * opal_cec_reboot2() 487 * 2. We are running on a firmware level that do not support 488 * OPAL_REBOOT_PLATFORM_ERROR reboot type. 489 * 3. We are running on FSP based system that does not need 490 * opal to trigger checkstop explicitly for error analysis. 491 * The FSP PRD component would have already got notified 492 * about this error through other channels. 493 * 4. We are running on a newer skiboot that by default does 494 * not cause a checkstop, drops us back to the kernel to 495 * extract context and state at the time of the error. 496 */ 497 498 panic(msg); 499 } 500 501 int opal_machine_check(struct pt_regs *regs) 502 { 503 struct machine_check_event evt; 504 505 if (!get_mce_event(&evt, MCE_EVENT_RELEASE)) 506 return 0; 507 508 /* Print things out */ 509 if (evt.version != MCE_V1) { 510 pr_err("Machine Check Exception, Unknown event version %d !\n", 511 evt.version); 512 return 0; 513 } 514 machine_check_print_event_info(&evt, user_mode(regs)); 515 516 if (opal_recover_mce(regs, &evt)) 517 return 1; 518 519 pnv_platform_error_reboot(regs, "Unrecoverable Machine Check exception"); 520 } 521 522 /* Early hmi handler called in real mode. */ 523 int opal_hmi_exception_early(struct pt_regs *regs) 524 { 525 s64 rc; 526 527 /* 528 * call opal hmi handler. Pass paca address as token. 529 * The return value OPAL_SUCCESS is an indication that there is 530 * an HMI event generated waiting to pull by Linux. 531 */ 532 rc = opal_handle_hmi(); 533 if (rc == OPAL_SUCCESS) { 534 local_paca->hmi_event_available = 1; 535 return 1; 536 } 537 return 0; 538 } 539 540 /* HMI exception handler called in virtual mode during check_irq_replay. */ 541 int opal_handle_hmi_exception(struct pt_regs *regs) 542 { 543 /* 544 * Check if HMI event is available. 545 * if Yes, then wake kopald to process them. 546 */ 547 if (!local_paca->hmi_event_available) 548 return 0; 549 550 local_paca->hmi_event_available = 0; 551 opal_wake_poller(); 552 553 return 1; 554 } 555 556 static uint64_t find_recovery_address(uint64_t nip) 557 { 558 int i; 559 560 for (i = 0; i < mc_recoverable_range_len; i++) 561 if ((nip >= mc_recoverable_range[i].start_addr) && 562 (nip < mc_recoverable_range[i].end_addr)) 563 return mc_recoverable_range[i].recover_addr; 564 return 0; 565 } 566 567 bool opal_mce_check_early_recovery(struct pt_regs *regs) 568 { 569 uint64_t recover_addr = 0; 570 571 if (!opal.base || !opal.size) 572 goto out; 573 574 if ((regs->nip >= opal.base) && 575 (regs->nip < (opal.base + opal.size))) 576 recover_addr = find_recovery_address(regs->nip); 577 578 /* 579 * Setup regs->nip to rfi into fixup address. 580 */ 581 if (recover_addr) 582 regs->nip = recover_addr; 583 584 out: 585 return !!recover_addr; 586 } 587 588 static int opal_sysfs_init(void) 589 { 590 opal_kobj = kobject_create_and_add("opal", firmware_kobj); 591 if (!opal_kobj) { 592 pr_warn("kobject_create_and_add opal failed\n"); 593 return -ENOMEM; 594 } 595 596 return 0; 597 } 598 599 static ssize_t symbol_map_read(struct file *fp, struct kobject *kobj, 600 struct bin_attribute *bin_attr, 601 char *buf, loff_t off, size_t count) 602 { 603 return memory_read_from_buffer(buf, count, &off, bin_attr->private, 604 bin_attr->size); 605 } 606 607 static BIN_ATTR_RO(symbol_map, 0); 608 609 static void opal_export_symmap(void) 610 { 611 const __be64 *syms; 612 unsigned int size; 613 struct device_node *fw; 614 int rc; 615 616 fw = of_find_node_by_path("/ibm,opal/firmware"); 617 if (!fw) 618 return; 619 syms = of_get_property(fw, "symbol-map", &size); 620 if (!syms || size != 2 * sizeof(__be64)) 621 return; 622 623 /* Setup attributes */ 624 bin_attr_symbol_map.private = __va(be64_to_cpu(syms[0])); 625 bin_attr_symbol_map.size = be64_to_cpu(syms[1]); 626 627 rc = sysfs_create_bin_file(opal_kobj, &bin_attr_symbol_map); 628 if (rc) 629 pr_warn("Error %d creating OPAL symbols file\n", rc); 630 } 631 632 static ssize_t export_attr_read(struct file *fp, struct kobject *kobj, 633 struct bin_attribute *bin_attr, char *buf, 634 loff_t off, size_t count) 635 { 636 return memory_read_from_buffer(buf, count, &off, bin_attr->private, 637 bin_attr->size); 638 } 639 640 /* 641 * opal_export_attrs: creates a sysfs node for each property listed in 642 * the device-tree under /ibm,opal/firmware/exports/ 643 * All new sysfs nodes are created under /opal/exports/. 644 * This allows for reserved memory regions (e.g. HDAT) to be read. 645 * The new sysfs nodes are only readable by root. 646 */ 647 static void opal_export_attrs(void) 648 { 649 struct bin_attribute *attr; 650 struct device_node *np; 651 struct property *prop; 652 struct kobject *kobj; 653 u64 vals[2]; 654 int rc; 655 656 np = of_find_node_by_path("/ibm,opal/firmware/exports"); 657 if (!np) 658 return; 659 660 /* Create new 'exports' directory - /sys/firmware/opal/exports */ 661 kobj = kobject_create_and_add("exports", opal_kobj); 662 if (!kobj) { 663 pr_warn("kobject_create_and_add() of exports failed\n"); 664 return; 665 } 666 667 for_each_property_of_node(np, prop) { 668 if (!strcmp(prop->name, "name") || !strcmp(prop->name, "phandle")) 669 continue; 670 671 if (of_property_read_u64_array(np, prop->name, &vals[0], 2)) 672 continue; 673 674 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 675 676 if (attr == NULL) { 677 pr_warn("Failed kmalloc for bin_attribute!"); 678 continue; 679 } 680 681 sysfs_bin_attr_init(attr); 682 attr->attr.name = kstrdup(prop->name, GFP_KERNEL); 683 attr->attr.mode = 0400; 684 attr->read = export_attr_read; 685 attr->private = __va(vals[0]); 686 attr->size = vals[1]; 687 688 if (attr->attr.name == NULL) { 689 pr_warn("Failed kstrdup for bin_attribute attr.name"); 690 kfree(attr); 691 continue; 692 } 693 694 rc = sysfs_create_bin_file(kobj, attr); 695 if (rc) { 696 pr_warn("Error %d creating OPAL sysfs exports/%s file\n", 697 rc, prop->name); 698 kfree(attr->attr.name); 699 kfree(attr); 700 } 701 } 702 703 of_node_put(np); 704 } 705 706 static void __init opal_dump_region_init(void) 707 { 708 void *addr; 709 uint64_t size; 710 int rc; 711 712 if (!opal_check_token(OPAL_REGISTER_DUMP_REGION)) 713 return; 714 715 /* Register kernel log buffer */ 716 addr = log_buf_addr_get(); 717 if (addr == NULL) 718 return; 719 720 size = log_buf_len_get(); 721 if (size == 0) 722 return; 723 724 rc = opal_register_dump_region(OPAL_DUMP_REGION_LOG_BUF, 725 __pa(addr), size); 726 /* Don't warn if this is just an older OPAL that doesn't 727 * know about that call 728 */ 729 if (rc && rc != OPAL_UNSUPPORTED) 730 pr_warn("DUMP: Failed to register kernel log buffer. " 731 "rc = %d\n", rc); 732 } 733 734 static void opal_pdev_init(const char *compatible) 735 { 736 struct device_node *np; 737 738 for_each_compatible_node(np, NULL, compatible) 739 of_platform_device_create(np, NULL, NULL); 740 } 741 742 static void __init opal_imc_init_dev(void) 743 { 744 struct device_node *np; 745 746 np = of_find_compatible_node(NULL, NULL, IMC_DTB_COMPAT); 747 if (np) 748 of_platform_device_create(np, NULL, NULL); 749 } 750 751 static int kopald(void *unused) 752 { 753 unsigned long timeout = msecs_to_jiffies(opal_heartbeat) + 1; 754 755 set_freezable(); 756 do { 757 try_to_freeze(); 758 759 opal_handle_events(); 760 761 set_current_state(TASK_INTERRUPTIBLE); 762 if (opal_have_pending_events()) 763 __set_current_state(TASK_RUNNING); 764 else 765 schedule_timeout(timeout); 766 767 } while (!kthread_should_stop()); 768 769 return 0; 770 } 771 772 void opal_wake_poller(void) 773 { 774 if (kopald_tsk) 775 wake_up_process(kopald_tsk); 776 } 777 778 static void opal_init_heartbeat(void) 779 { 780 /* Old firwmware, we assume the HVC heartbeat is sufficient */ 781 if (of_property_read_u32(opal_node, "ibm,heartbeat-ms", 782 &opal_heartbeat) != 0) 783 opal_heartbeat = 0; 784 785 if (opal_heartbeat) 786 kopald_tsk = kthread_run(kopald, NULL, "kopald"); 787 } 788 789 static int __init opal_init(void) 790 { 791 struct device_node *np, *consoles, *leds; 792 int rc; 793 794 opal_node = of_find_node_by_path("/ibm,opal"); 795 if (!opal_node) { 796 pr_warn("Device node not found\n"); 797 return -ENODEV; 798 } 799 800 /* Register OPAL consoles if any ports */ 801 consoles = of_find_node_by_path("/ibm,opal/consoles"); 802 if (consoles) { 803 for_each_child_of_node(consoles, np) { 804 if (strcmp(np->name, "serial")) 805 continue; 806 of_platform_device_create(np, NULL, NULL); 807 } 808 of_node_put(consoles); 809 } 810 811 /* Initialise OPAL messaging system */ 812 opal_message_init(); 813 814 /* Initialise OPAL asynchronous completion interface */ 815 opal_async_comp_init(); 816 817 /* Initialise OPAL sensor interface */ 818 opal_sensor_init(); 819 820 /* Initialise OPAL hypervisor maintainence interrupt handling */ 821 opal_hmi_handler_init(); 822 823 /* Create i2c platform devices */ 824 opal_pdev_init("ibm,opal-i2c"); 825 826 /* Handle non-volatile memory devices */ 827 opal_pdev_init("pmem-region"); 828 829 /* Setup a heatbeat thread if requested by OPAL */ 830 opal_init_heartbeat(); 831 832 /* Detect In-Memory Collection counters and create devices*/ 833 opal_imc_init_dev(); 834 835 /* Create leds platform devices */ 836 leds = of_find_node_by_path("/ibm,opal/leds"); 837 if (leds) { 838 of_platform_device_create(leds, "opal_leds", NULL); 839 of_node_put(leds); 840 } 841 842 /* Initialise OPAL message log interface */ 843 opal_msglog_init(); 844 845 /* Create "opal" kobject under /sys/firmware */ 846 rc = opal_sysfs_init(); 847 if (rc == 0) { 848 /* Export symbol map to userspace */ 849 opal_export_symmap(); 850 /* Setup dump region interface */ 851 opal_dump_region_init(); 852 /* Setup error log interface */ 853 rc = opal_elog_init(); 854 /* Setup code update interface */ 855 opal_flash_update_init(); 856 /* Setup platform dump extract interface */ 857 opal_platform_dump_init(); 858 /* Setup system parameters interface */ 859 opal_sys_param_init(); 860 /* Setup message log sysfs interface. */ 861 opal_msglog_sysfs_init(); 862 } 863 864 /* Export all properties */ 865 opal_export_attrs(); 866 867 /* Initialize platform devices: IPMI backend, PRD & flash interface */ 868 opal_pdev_init("ibm,opal-ipmi"); 869 opal_pdev_init("ibm,opal-flash"); 870 opal_pdev_init("ibm,opal-prd"); 871 872 /* Initialise platform device: oppanel interface */ 873 opal_pdev_init("ibm,opal-oppanel"); 874 875 /* Initialise OPAL kmsg dumper for flushing console on panic */ 876 opal_kmsg_init(); 877 878 /* Initialise OPAL powercap interface */ 879 opal_powercap_init(); 880 881 /* Initialise OPAL Power-Shifting-Ratio interface */ 882 opal_psr_init(); 883 884 /* Initialise OPAL sensor groups */ 885 opal_sensor_groups_init(); 886 887 return 0; 888 } 889 machine_subsys_initcall(powernv, opal_init); 890 891 void opal_shutdown(void) 892 { 893 long rc = OPAL_BUSY; 894 895 opal_event_shutdown(); 896 897 /* 898 * Then sync with OPAL which ensure anything that can 899 * potentially write to our memory has completed such 900 * as an ongoing dump retrieval 901 */ 902 while (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) { 903 rc = opal_sync_host_reboot(); 904 if (rc == OPAL_BUSY) 905 opal_poll_events(NULL); 906 else 907 mdelay(10); 908 } 909 910 /* Unregister memory dump region */ 911 if (opal_check_token(OPAL_UNREGISTER_DUMP_REGION)) 912 opal_unregister_dump_region(OPAL_DUMP_REGION_LOG_BUF); 913 } 914 915 /* Export this so that test modules can use it */ 916 EXPORT_SYMBOL_GPL(opal_invalid_call); 917 EXPORT_SYMBOL_GPL(opal_xscom_read); 918 EXPORT_SYMBOL_GPL(opal_xscom_write); 919 EXPORT_SYMBOL_GPL(opal_ipmi_send); 920 EXPORT_SYMBOL_GPL(opal_ipmi_recv); 921 EXPORT_SYMBOL_GPL(opal_flash_read); 922 EXPORT_SYMBOL_GPL(opal_flash_write); 923 EXPORT_SYMBOL_GPL(opal_flash_erase); 924 EXPORT_SYMBOL_GPL(opal_prd_msg); 925 926 /* Convert a region of vmalloc memory to an opal sg list */ 927 struct opal_sg_list *opal_vmalloc_to_sg_list(void *vmalloc_addr, 928 unsigned long vmalloc_size) 929 { 930 struct opal_sg_list *sg, *first = NULL; 931 unsigned long i = 0; 932 933 sg = kzalloc(PAGE_SIZE, GFP_KERNEL); 934 if (!sg) 935 goto nomem; 936 937 first = sg; 938 939 while (vmalloc_size > 0) { 940 uint64_t data = vmalloc_to_pfn(vmalloc_addr) << PAGE_SHIFT; 941 uint64_t length = min(vmalloc_size, PAGE_SIZE); 942 943 sg->entry[i].data = cpu_to_be64(data); 944 sg->entry[i].length = cpu_to_be64(length); 945 i++; 946 947 if (i >= SG_ENTRIES_PER_NODE) { 948 struct opal_sg_list *next; 949 950 next = kzalloc(PAGE_SIZE, GFP_KERNEL); 951 if (!next) 952 goto nomem; 953 954 sg->length = cpu_to_be64( 955 i * sizeof(struct opal_sg_entry) + 16); 956 i = 0; 957 sg->next = cpu_to_be64(__pa(next)); 958 sg = next; 959 } 960 961 vmalloc_addr += length; 962 vmalloc_size -= length; 963 } 964 965 sg->length = cpu_to_be64(i * sizeof(struct opal_sg_entry) + 16); 966 967 return first; 968 969 nomem: 970 pr_err("%s : Failed to allocate memory\n", __func__); 971 opal_free_sg_list(first); 972 return NULL; 973 } 974 975 void opal_free_sg_list(struct opal_sg_list *sg) 976 { 977 while (sg) { 978 uint64_t next = be64_to_cpu(sg->next); 979 980 kfree(sg); 981 982 if (next) 983 sg = __va(next); 984 else 985 sg = NULL; 986 } 987 } 988 989 int opal_error_code(int rc) 990 { 991 switch (rc) { 992 case OPAL_SUCCESS: return 0; 993 994 case OPAL_PARAMETER: return -EINVAL; 995 case OPAL_ASYNC_COMPLETION: return -EINPROGRESS; 996 case OPAL_BUSY: 997 case OPAL_BUSY_EVENT: return -EBUSY; 998 case OPAL_NO_MEM: return -ENOMEM; 999 case OPAL_PERMISSION: return -EPERM; 1000 1001 case OPAL_UNSUPPORTED: return -EIO; 1002 case OPAL_HARDWARE: return -EIO; 1003 case OPAL_INTERNAL_ERROR: return -EIO; 1004 case OPAL_TIMEOUT: return -ETIMEDOUT; 1005 default: 1006 pr_err("%s: unexpected OPAL error %d\n", __func__, rc); 1007 return -EIO; 1008 } 1009 } 1010 1011 void powernv_set_nmmu_ptcr(unsigned long ptcr) 1012 { 1013 int rc; 1014 1015 if (firmware_has_feature(FW_FEATURE_OPAL)) { 1016 rc = opal_nmmu_set_ptcr(-1UL, ptcr); 1017 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED) 1018 pr_warn("%s: Unable to set nest mmu ptcr\n", __func__); 1019 } 1020 } 1021 1022 EXPORT_SYMBOL_GPL(opal_poll_events); 1023 EXPORT_SYMBOL_GPL(opal_rtc_read); 1024 EXPORT_SYMBOL_GPL(opal_rtc_write); 1025 EXPORT_SYMBOL_GPL(opal_tpo_read); 1026 EXPORT_SYMBOL_GPL(opal_tpo_write); 1027 EXPORT_SYMBOL_GPL(opal_i2c_request); 1028 /* Export these symbols for PowerNV LED class driver */ 1029 EXPORT_SYMBOL_GPL(opal_leds_get_ind); 1030 EXPORT_SYMBOL_GPL(opal_leds_set_ind); 1031 /* Export this symbol for PowerNV Operator Panel class driver */ 1032 EXPORT_SYMBOL_GPL(opal_write_oppanel_async); 1033 /* Export this for KVM */ 1034 EXPORT_SYMBOL_GPL(opal_int_set_mfrr); 1035 EXPORT_SYMBOL_GPL(opal_int_eoi); 1036 EXPORT_SYMBOL_GPL(opal_error_code); 1037