1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PowerNV OPAL high level interfaces 4 * 5 * Copyright 2011 IBM Corp. 6 */ 7 8 #define pr_fmt(fmt) "opal: " fmt 9 10 #include <linux/printk.h> 11 #include <linux/types.h> 12 #include <linux/of.h> 13 #include <linux/of_fdt.h> 14 #include <linux/of_platform.h> 15 #include <linux/of_address.h> 16 #include <linux/interrupt.h> 17 #include <linux/notifier.h> 18 #include <linux/slab.h> 19 #include <linux/sched.h> 20 #include <linux/kobject.h> 21 #include <linux/delay.h> 22 #include <linux/memblock.h> 23 #include <linux/kthread.h> 24 #include <linux/freezer.h> 25 #include <linux/kmsg_dump.h> 26 #include <linux/console.h> 27 #include <linux/sched/debug.h> 28 29 #include <asm/machdep.h> 30 #include <asm/opal.h> 31 #include <asm/firmware.h> 32 #include <asm/mce.h> 33 #include <asm/imc-pmu.h> 34 #include <asm/bug.h> 35 36 #include "powernv.h" 37 38 #define OPAL_MSG_QUEUE_MAX 16 39 40 struct opal_msg_node { 41 struct list_head list; 42 struct opal_msg msg; 43 }; 44 45 static DEFINE_SPINLOCK(msg_list_lock); 46 static LIST_HEAD(msg_list); 47 48 /* /sys/firmware/opal */ 49 struct kobject *opal_kobj; 50 51 struct opal { 52 u64 base; 53 u64 entry; 54 u64 size; 55 } opal; 56 57 struct mcheck_recoverable_range { 58 u64 start_addr; 59 u64 end_addr; 60 u64 recover_addr; 61 }; 62 63 static int msg_list_size; 64 65 static struct mcheck_recoverable_range *mc_recoverable_range; 66 static int mc_recoverable_range_len; 67 68 struct device_node *opal_node; 69 static DEFINE_SPINLOCK(opal_write_lock); 70 static struct atomic_notifier_head opal_msg_notifier_head[OPAL_MSG_TYPE_MAX]; 71 static uint32_t opal_heartbeat; 72 static struct task_struct *kopald_tsk; 73 static struct opal_msg *opal_msg; 74 static u32 opal_msg_size __ro_after_init; 75 76 void opal_configure_cores(void) 77 { 78 u64 reinit_flags = 0; 79 80 /* Do the actual re-init, This will clobber all FPRs, VRs, etc... 81 * 82 * It will preserve non volatile GPRs and HSPRG0/1. It will 83 * also restore HIDs and other SPRs to their original value 84 * but it might clobber a bunch. 85 */ 86 #ifdef __BIG_ENDIAN__ 87 reinit_flags |= OPAL_REINIT_CPUS_HILE_BE; 88 #else 89 reinit_flags |= OPAL_REINIT_CPUS_HILE_LE; 90 #endif 91 92 /* 93 * POWER9 always support running hash: 94 * ie. Host hash supports hash guests 95 * Host radix supports hash/radix guests 96 */ 97 if (early_cpu_has_feature(CPU_FTR_ARCH_300)) { 98 reinit_flags |= OPAL_REINIT_CPUS_MMU_HASH; 99 if (early_radix_enabled()) 100 reinit_flags |= OPAL_REINIT_CPUS_MMU_RADIX; 101 } 102 103 opal_reinit_cpus(reinit_flags); 104 105 /* Restore some bits */ 106 if (cur_cpu_spec->cpu_restore) 107 cur_cpu_spec->cpu_restore(); 108 } 109 110 int __init early_init_dt_scan_opal(unsigned long node, 111 const char *uname, int depth, void *data) 112 { 113 const void *basep, *entryp, *sizep; 114 int basesz, entrysz, runtimesz; 115 116 if (depth != 1 || strcmp(uname, "ibm,opal") != 0) 117 return 0; 118 119 basep = of_get_flat_dt_prop(node, "opal-base-address", &basesz); 120 entryp = of_get_flat_dt_prop(node, "opal-entry-address", &entrysz); 121 sizep = of_get_flat_dt_prop(node, "opal-runtime-size", &runtimesz); 122 123 if (!basep || !entryp || !sizep) 124 return 1; 125 126 opal.base = of_read_number(basep, basesz/4); 127 opal.entry = of_read_number(entryp, entrysz/4); 128 opal.size = of_read_number(sizep, runtimesz/4); 129 130 pr_debug("OPAL Base = 0x%llx (basep=%p basesz=%d)\n", 131 opal.base, basep, basesz); 132 pr_debug("OPAL Entry = 0x%llx (entryp=%p basesz=%d)\n", 133 opal.entry, entryp, entrysz); 134 pr_debug("OPAL Entry = 0x%llx (sizep=%p runtimesz=%d)\n", 135 opal.size, sizep, runtimesz); 136 137 if (of_flat_dt_is_compatible(node, "ibm,opal-v3")) { 138 powerpc_firmware_features |= FW_FEATURE_OPAL; 139 pr_debug("OPAL detected !\n"); 140 } else { 141 panic("OPAL != V3 detected, no longer supported.\n"); 142 } 143 144 return 1; 145 } 146 147 int __init early_init_dt_scan_recoverable_ranges(unsigned long node, 148 const char *uname, int depth, void *data) 149 { 150 int i, psize, size; 151 const __be32 *prop; 152 153 if (depth != 1 || strcmp(uname, "ibm,opal") != 0) 154 return 0; 155 156 prop = of_get_flat_dt_prop(node, "mcheck-recoverable-ranges", &psize); 157 158 if (!prop) 159 return 1; 160 161 pr_debug("Found machine check recoverable ranges.\n"); 162 163 /* 164 * Calculate number of available entries. 165 * 166 * Each recoverable address range entry is (start address, len, 167 * recovery address), 2 cells each for start and recovery address, 168 * 1 cell for len, totalling 5 cells per entry. 169 */ 170 mc_recoverable_range_len = psize / (sizeof(*prop) * 5); 171 172 /* Sanity check */ 173 if (!mc_recoverable_range_len) 174 return 1; 175 176 /* Size required to hold all the entries. */ 177 size = mc_recoverable_range_len * 178 sizeof(struct mcheck_recoverable_range); 179 180 /* 181 * Allocate a buffer to hold the MC recoverable ranges. 182 */ 183 mc_recoverable_range = memblock_alloc(size, __alignof__(u64)); 184 if (!mc_recoverable_range) 185 panic("%s: Failed to allocate %u bytes align=0x%lx\n", 186 __func__, size, __alignof__(u64)); 187 188 for (i = 0; i < mc_recoverable_range_len; i++) { 189 mc_recoverable_range[i].start_addr = 190 of_read_number(prop + (i * 5) + 0, 2); 191 mc_recoverable_range[i].end_addr = 192 mc_recoverable_range[i].start_addr + 193 of_read_number(prop + (i * 5) + 2, 1); 194 mc_recoverable_range[i].recover_addr = 195 of_read_number(prop + (i * 5) + 3, 2); 196 197 pr_debug("Machine check recoverable range: %llx..%llx: %llx\n", 198 mc_recoverable_range[i].start_addr, 199 mc_recoverable_range[i].end_addr, 200 mc_recoverable_range[i].recover_addr); 201 } 202 return 1; 203 } 204 205 static int __init opal_register_exception_handlers(void) 206 { 207 #ifdef __BIG_ENDIAN__ 208 u64 glue; 209 210 if (!(powerpc_firmware_features & FW_FEATURE_OPAL)) 211 return -ENODEV; 212 213 /* Hookup some exception handlers except machine check. We use the 214 * fwnmi area at 0x7000 to provide the glue space to OPAL 215 */ 216 glue = 0x7000; 217 218 /* 219 * Only ancient OPAL firmware requires this. 220 * Specifically, firmware from FW810.00 (released June 2014) 221 * through FW810.20 (Released October 2014). 222 * 223 * Check if we are running on newer (post Oct 2014) firmware that 224 * exports the OPAL_HANDLE_HMI token. If yes, then don't ask OPAL to 225 * patch the HMI interrupt and we catch it directly in Linux. 226 * 227 * For older firmware (i.e < FW810.20), we fallback to old behavior and 228 * let OPAL patch the HMI vector and handle it inside OPAL firmware. 229 * 230 * For newer firmware we catch/handle the HMI directly in Linux. 231 */ 232 if (!opal_check_token(OPAL_HANDLE_HMI)) { 233 pr_info("Old firmware detected, OPAL handles HMIs.\n"); 234 opal_register_exception_handler( 235 OPAL_HYPERVISOR_MAINTENANCE_HANDLER, 236 0, glue); 237 glue += 128; 238 } 239 240 /* 241 * Only applicable to ancient firmware, all modern 242 * (post March 2015/skiboot 5.0) firmware will just return 243 * OPAL_UNSUPPORTED. 244 */ 245 opal_register_exception_handler(OPAL_SOFTPATCH_HANDLER, 0, glue); 246 #endif 247 248 return 0; 249 } 250 machine_early_initcall(powernv, opal_register_exception_handlers); 251 252 static void queue_replay_msg(void *msg) 253 { 254 struct opal_msg_node *msg_node; 255 256 if (msg_list_size < OPAL_MSG_QUEUE_MAX) { 257 msg_node = kzalloc(sizeof(*msg_node), GFP_ATOMIC); 258 if (msg_node) { 259 INIT_LIST_HEAD(&msg_node->list); 260 memcpy(&msg_node->msg, msg, sizeof(struct opal_msg)); 261 list_add_tail(&msg_node->list, &msg_list); 262 msg_list_size++; 263 } else 264 pr_warn_once("message queue no memory\n"); 265 266 if (msg_list_size >= OPAL_MSG_QUEUE_MAX) 267 pr_warn_once("message queue full\n"); 268 } 269 } 270 271 static void dequeue_replay_msg(enum opal_msg_type msg_type) 272 { 273 struct opal_msg_node *msg_node, *tmp; 274 275 list_for_each_entry_safe(msg_node, tmp, &msg_list, list) { 276 if (be32_to_cpu(msg_node->msg.msg_type) != msg_type) 277 continue; 278 279 atomic_notifier_call_chain(&opal_msg_notifier_head[msg_type], 280 msg_type, 281 &msg_node->msg); 282 283 list_del(&msg_node->list); 284 kfree(msg_node); 285 msg_list_size--; 286 } 287 } 288 289 /* 290 * Opal message notifier based on message type. Allow subscribers to get 291 * notified for specific messgae type. 292 */ 293 int opal_message_notifier_register(enum opal_msg_type msg_type, 294 struct notifier_block *nb) 295 { 296 int ret; 297 unsigned long flags; 298 299 if (!nb || msg_type >= OPAL_MSG_TYPE_MAX) { 300 pr_warn("%s: Invalid arguments, msg_type:%d\n", 301 __func__, msg_type); 302 return -EINVAL; 303 } 304 305 spin_lock_irqsave(&msg_list_lock, flags); 306 ret = atomic_notifier_chain_register( 307 &opal_msg_notifier_head[msg_type], nb); 308 309 /* 310 * If the registration succeeded, replay any queued messages that came 311 * in prior to the notifier chain registration. msg_list_lock held here 312 * to ensure they're delivered prior to any subsequent messages. 313 */ 314 if (ret == 0) 315 dequeue_replay_msg(msg_type); 316 317 spin_unlock_irqrestore(&msg_list_lock, flags); 318 319 return ret; 320 } 321 EXPORT_SYMBOL_GPL(opal_message_notifier_register); 322 323 int opal_message_notifier_unregister(enum opal_msg_type msg_type, 324 struct notifier_block *nb) 325 { 326 return atomic_notifier_chain_unregister( 327 &opal_msg_notifier_head[msg_type], nb); 328 } 329 EXPORT_SYMBOL_GPL(opal_message_notifier_unregister); 330 331 static void opal_message_do_notify(uint32_t msg_type, void *msg) 332 { 333 unsigned long flags; 334 bool queued = false; 335 336 spin_lock_irqsave(&msg_list_lock, flags); 337 if (opal_msg_notifier_head[msg_type].head == NULL) { 338 /* 339 * Queue up the msg since no notifiers have registered 340 * yet for this msg_type. 341 */ 342 queue_replay_msg(msg); 343 queued = true; 344 } 345 spin_unlock_irqrestore(&msg_list_lock, flags); 346 347 if (queued) 348 return; 349 350 /* notify subscribers */ 351 atomic_notifier_call_chain(&opal_msg_notifier_head[msg_type], 352 msg_type, msg); 353 } 354 355 static void opal_handle_message(void) 356 { 357 s64 ret; 358 u32 type; 359 360 ret = opal_get_msg(__pa(opal_msg), opal_msg_size); 361 /* No opal message pending. */ 362 if (ret == OPAL_RESOURCE) 363 return; 364 365 /* check for errors. */ 366 if (ret) { 367 pr_warn("%s: Failed to retrieve opal message, err=%lld\n", 368 __func__, ret); 369 return; 370 } 371 372 type = be32_to_cpu(opal_msg->msg_type); 373 374 /* Sanity check */ 375 if (type >= OPAL_MSG_TYPE_MAX) { 376 pr_warn_once("%s: Unknown message type: %u\n", __func__, type); 377 return; 378 } 379 opal_message_do_notify(type, (void *)opal_msg); 380 } 381 382 static irqreturn_t opal_message_notify(int irq, void *data) 383 { 384 opal_handle_message(); 385 return IRQ_HANDLED; 386 } 387 388 static int __init opal_message_init(struct device_node *opal_node) 389 { 390 int ret, i, irq; 391 392 ret = of_property_read_u32(opal_node, "opal-msg-size", &opal_msg_size); 393 if (ret) { 394 pr_notice("Failed to read opal-msg-size property\n"); 395 opal_msg_size = sizeof(struct opal_msg); 396 } 397 398 opal_msg = kmalloc(opal_msg_size, GFP_KERNEL); 399 if (!opal_msg) { 400 opal_msg_size = sizeof(struct opal_msg); 401 /* Try to allocate fixed message size */ 402 opal_msg = kmalloc(opal_msg_size, GFP_KERNEL); 403 BUG_ON(opal_msg == NULL); 404 } 405 406 for (i = 0; i < OPAL_MSG_TYPE_MAX; i++) 407 ATOMIC_INIT_NOTIFIER_HEAD(&opal_msg_notifier_head[i]); 408 409 irq = opal_event_request(ilog2(OPAL_EVENT_MSG_PENDING)); 410 if (!irq) { 411 pr_err("%s: Can't register OPAL event irq (%d)\n", 412 __func__, irq); 413 return irq; 414 } 415 416 ret = request_irq(irq, opal_message_notify, 417 IRQ_TYPE_LEVEL_HIGH, "opal-msg", NULL); 418 if (ret) { 419 pr_err("%s: Can't request OPAL event irq (%d)\n", 420 __func__, ret); 421 return ret; 422 } 423 424 return 0; 425 } 426 427 int opal_get_chars(uint32_t vtermno, char *buf, int count) 428 { 429 s64 rc; 430 __be64 evt, len; 431 432 if (!opal.entry) 433 return -ENODEV; 434 opal_poll_events(&evt); 435 if ((be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_INPUT) == 0) 436 return 0; 437 len = cpu_to_be64(count); 438 rc = opal_console_read(vtermno, &len, buf); 439 if (rc == OPAL_SUCCESS) 440 return be64_to_cpu(len); 441 return 0; 442 } 443 444 static int __opal_put_chars(uint32_t vtermno, const char *data, int total_len, bool atomic) 445 { 446 unsigned long flags = 0 /* shut up gcc */; 447 int written; 448 __be64 olen; 449 s64 rc; 450 451 if (!opal.entry) 452 return -ENODEV; 453 454 if (atomic) 455 spin_lock_irqsave(&opal_write_lock, flags); 456 rc = opal_console_write_buffer_space(vtermno, &olen); 457 if (rc || be64_to_cpu(olen) < total_len) { 458 /* Closed -> drop characters */ 459 if (rc) 460 written = total_len; 461 else 462 written = -EAGAIN; 463 goto out; 464 } 465 466 /* Should not get a partial write here because space is available. */ 467 olen = cpu_to_be64(total_len); 468 rc = opal_console_write(vtermno, &olen, data); 469 if (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) { 470 if (rc == OPAL_BUSY_EVENT) 471 opal_poll_events(NULL); 472 written = -EAGAIN; 473 goto out; 474 } 475 476 /* Closed or other error drop */ 477 if (rc != OPAL_SUCCESS) { 478 written = opal_error_code(rc); 479 goto out; 480 } 481 482 written = be64_to_cpu(olen); 483 if (written < total_len) { 484 if (atomic) { 485 /* Should not happen */ 486 pr_warn("atomic console write returned partial " 487 "len=%d written=%d\n", total_len, written); 488 } 489 if (!written) 490 written = -EAGAIN; 491 } 492 493 out: 494 if (atomic) 495 spin_unlock_irqrestore(&opal_write_lock, flags); 496 497 return written; 498 } 499 500 int opal_put_chars(uint32_t vtermno, const char *data, int total_len) 501 { 502 return __opal_put_chars(vtermno, data, total_len, false); 503 } 504 505 /* 506 * opal_put_chars_atomic will not perform partial-writes. Data will be 507 * atomically written to the terminal or not at all. This is not strictly 508 * true at the moment because console space can race with OPAL's console 509 * writes. 510 */ 511 int opal_put_chars_atomic(uint32_t vtermno, const char *data, int total_len) 512 { 513 return __opal_put_chars(vtermno, data, total_len, true); 514 } 515 516 static s64 __opal_flush_console(uint32_t vtermno) 517 { 518 s64 rc; 519 520 if (!opal_check_token(OPAL_CONSOLE_FLUSH)) { 521 __be64 evt; 522 523 /* 524 * If OPAL_CONSOLE_FLUSH is not implemented in the firmware, 525 * the console can still be flushed by calling the polling 526 * function while it has OPAL_EVENT_CONSOLE_OUTPUT events. 527 */ 528 WARN_ONCE(1, "opal: OPAL_CONSOLE_FLUSH missing.\n"); 529 530 opal_poll_events(&evt); 531 if (!(be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_OUTPUT)) 532 return OPAL_SUCCESS; 533 return OPAL_BUSY; 534 535 } else { 536 rc = opal_console_flush(vtermno); 537 if (rc == OPAL_BUSY_EVENT) { 538 opal_poll_events(NULL); 539 rc = OPAL_BUSY; 540 } 541 return rc; 542 } 543 544 } 545 546 /* 547 * opal_flush_console spins until the console is flushed 548 */ 549 int opal_flush_console(uint32_t vtermno) 550 { 551 for (;;) { 552 s64 rc = __opal_flush_console(vtermno); 553 554 if (rc == OPAL_BUSY || rc == OPAL_PARTIAL) { 555 mdelay(1); 556 continue; 557 } 558 559 return opal_error_code(rc); 560 } 561 } 562 563 /* 564 * opal_flush_chars is an hvc interface that sleeps until the console is 565 * flushed if wait, otherwise it will return -EBUSY if the console has data, 566 * -EAGAIN if it has data and some of it was flushed. 567 */ 568 int opal_flush_chars(uint32_t vtermno, bool wait) 569 { 570 for (;;) { 571 s64 rc = __opal_flush_console(vtermno); 572 573 if (rc == OPAL_BUSY || rc == OPAL_PARTIAL) { 574 if (wait) { 575 msleep(OPAL_BUSY_DELAY_MS); 576 continue; 577 } 578 if (rc == OPAL_PARTIAL) 579 return -EAGAIN; 580 } 581 582 return opal_error_code(rc); 583 } 584 } 585 586 static int opal_recover_mce(struct pt_regs *regs, 587 struct machine_check_event *evt) 588 { 589 int recovered = 0; 590 591 if (regs_is_unrecoverable(regs)) { 592 /* If MSR_RI isn't set, we cannot recover */ 593 pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n"); 594 recovered = 0; 595 } else if (evt->disposition == MCE_DISPOSITION_RECOVERED) { 596 /* Platform corrected itself */ 597 recovered = 1; 598 } else if (evt->severity == MCE_SEV_FATAL) { 599 /* Fatal machine check */ 600 pr_err("Machine check interrupt is fatal\n"); 601 recovered = 0; 602 } 603 604 if (!recovered && evt->sync_error) { 605 /* 606 * Try to kill processes if we get a synchronous machine check 607 * (e.g., one caused by execution of this instruction). This 608 * will devolve into a panic if we try to kill init or are in 609 * an interrupt etc. 610 * 611 * TODO: Queue up this address for hwpoisioning later. 612 * TODO: This is not quite right for d-side machine 613 * checks ->nip is not necessarily the important 614 * address. 615 */ 616 if ((user_mode(regs))) { 617 _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip); 618 recovered = 1; 619 } else if (die_will_crash()) { 620 /* 621 * die() would kill the kernel, so better to go via 622 * the platform reboot code that will log the 623 * machine check. 624 */ 625 recovered = 0; 626 } else { 627 die_mce("Machine check", regs, SIGBUS); 628 recovered = 1; 629 } 630 } 631 632 return recovered; 633 } 634 635 void __noreturn pnv_platform_error_reboot(struct pt_regs *regs, const char *msg) 636 { 637 panic_flush_kmsg_start(); 638 639 pr_emerg("Hardware platform error: %s\n", msg); 640 if (regs) 641 show_regs(regs); 642 smp_send_stop(); 643 644 panic_flush_kmsg_end(); 645 646 /* 647 * Don't bother to shut things down because this will 648 * xstop the system. 649 */ 650 if (opal_cec_reboot2(OPAL_REBOOT_PLATFORM_ERROR, msg) 651 == OPAL_UNSUPPORTED) { 652 pr_emerg("Reboot type %d not supported for %s\n", 653 OPAL_REBOOT_PLATFORM_ERROR, msg); 654 } 655 656 /* 657 * We reached here. There can be three possibilities: 658 * 1. We are running on a firmware level that do not support 659 * opal_cec_reboot2() 660 * 2. We are running on a firmware level that do not support 661 * OPAL_REBOOT_PLATFORM_ERROR reboot type. 662 * 3. We are running on FSP based system that does not need 663 * opal to trigger checkstop explicitly for error analysis. 664 * The FSP PRD component would have already got notified 665 * about this error through other channels. 666 * 4. We are running on a newer skiboot that by default does 667 * not cause a checkstop, drops us back to the kernel to 668 * extract context and state at the time of the error. 669 */ 670 671 panic(msg); 672 } 673 674 int opal_machine_check(struct pt_regs *regs) 675 { 676 struct machine_check_event evt; 677 678 if (!get_mce_event(&evt, MCE_EVENT_RELEASE)) 679 return 0; 680 681 /* Print things out */ 682 if (evt.version != MCE_V1) { 683 pr_err("Machine Check Exception, Unknown event version %d !\n", 684 evt.version); 685 return 0; 686 } 687 machine_check_print_event_info(&evt, user_mode(regs), false); 688 689 if (opal_recover_mce(regs, &evt)) 690 return 1; 691 692 pnv_platform_error_reboot(regs, "Unrecoverable Machine Check exception"); 693 } 694 695 /* Early hmi handler called in real mode. */ 696 int opal_hmi_exception_early(struct pt_regs *regs) 697 { 698 s64 rc; 699 700 /* 701 * call opal hmi handler. Pass paca address as token. 702 * The return value OPAL_SUCCESS is an indication that there is 703 * an HMI event generated waiting to pull by Linux. 704 */ 705 rc = opal_handle_hmi(); 706 if (rc == OPAL_SUCCESS) { 707 local_paca->hmi_event_available = 1; 708 return 1; 709 } 710 return 0; 711 } 712 713 int opal_hmi_exception_early2(struct pt_regs *regs) 714 { 715 s64 rc; 716 __be64 out_flags; 717 718 /* 719 * call opal hmi handler. 720 * Check 64-bit flag mask to find out if an event was generated, 721 * and whether TB is still valid or not etc. 722 */ 723 rc = opal_handle_hmi2(&out_flags); 724 if (rc != OPAL_SUCCESS) 725 return 0; 726 727 if (be64_to_cpu(out_flags) & OPAL_HMI_FLAGS_NEW_EVENT) 728 local_paca->hmi_event_available = 1; 729 if (be64_to_cpu(out_flags) & OPAL_HMI_FLAGS_TOD_TB_FAIL) 730 tb_invalid = true; 731 return 1; 732 } 733 734 /* HMI exception handler called in virtual mode when irqs are next enabled. */ 735 int opal_handle_hmi_exception(struct pt_regs *regs) 736 { 737 /* 738 * Check if HMI event is available. 739 * if Yes, then wake kopald to process them. 740 */ 741 if (!local_paca->hmi_event_available) 742 return 0; 743 744 local_paca->hmi_event_available = 0; 745 opal_wake_poller(); 746 747 return 1; 748 } 749 750 static uint64_t find_recovery_address(uint64_t nip) 751 { 752 int i; 753 754 for (i = 0; i < mc_recoverable_range_len; i++) 755 if ((nip >= mc_recoverable_range[i].start_addr) && 756 (nip < mc_recoverable_range[i].end_addr)) 757 return mc_recoverable_range[i].recover_addr; 758 return 0; 759 } 760 761 bool opal_mce_check_early_recovery(struct pt_regs *regs) 762 { 763 uint64_t recover_addr = 0; 764 765 if (!opal.base || !opal.size) 766 goto out; 767 768 if ((regs->nip >= opal.base) && 769 (regs->nip < (opal.base + opal.size))) 770 recover_addr = find_recovery_address(regs->nip); 771 772 /* 773 * Setup regs->nip to rfi into fixup address. 774 */ 775 if (recover_addr) 776 regs_set_return_ip(regs, recover_addr); 777 778 out: 779 return !!recover_addr; 780 } 781 782 static int opal_sysfs_init(void) 783 { 784 opal_kobj = kobject_create_and_add("opal", firmware_kobj); 785 if (!opal_kobj) { 786 pr_warn("kobject_create_and_add opal failed\n"); 787 return -ENOMEM; 788 } 789 790 return 0; 791 } 792 793 static ssize_t export_attr_read(struct file *fp, struct kobject *kobj, 794 struct bin_attribute *bin_attr, char *buf, 795 loff_t off, size_t count) 796 { 797 return memory_read_from_buffer(buf, count, &off, bin_attr->private, 798 bin_attr->size); 799 } 800 801 static int opal_add_one_export(struct kobject *parent, const char *export_name, 802 struct device_node *np, const char *prop_name) 803 { 804 struct bin_attribute *attr = NULL; 805 const char *name = NULL; 806 u64 vals[2]; 807 int rc; 808 809 rc = of_property_read_u64_array(np, prop_name, &vals[0], 2); 810 if (rc) 811 goto out; 812 813 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 814 if (!attr) { 815 rc = -ENOMEM; 816 goto out; 817 } 818 name = kstrdup(export_name, GFP_KERNEL); 819 if (!name) { 820 rc = -ENOMEM; 821 goto out; 822 } 823 824 sysfs_bin_attr_init(attr); 825 attr->attr.name = name; 826 attr->attr.mode = 0400; 827 attr->read = export_attr_read; 828 attr->private = __va(vals[0]); 829 attr->size = vals[1]; 830 831 rc = sysfs_create_bin_file(parent, attr); 832 out: 833 if (rc) { 834 kfree(name); 835 kfree(attr); 836 } 837 838 return rc; 839 } 840 841 static void opal_add_exported_attrs(struct device_node *np, 842 struct kobject *kobj) 843 { 844 struct device_node *child; 845 struct property *prop; 846 847 for_each_property_of_node(np, prop) { 848 int rc; 849 850 if (!strcmp(prop->name, "name") || 851 !strcmp(prop->name, "phandle")) 852 continue; 853 854 rc = opal_add_one_export(kobj, prop->name, np, prop->name); 855 if (rc) { 856 pr_warn("Unable to add export %pOF/%s, rc = %d!\n", 857 np, prop->name, rc); 858 } 859 } 860 861 for_each_child_of_node(np, child) { 862 struct kobject *child_kobj; 863 864 child_kobj = kobject_create_and_add(child->name, kobj); 865 if (!child_kobj) { 866 pr_err("Unable to create export dir for %pOF\n", child); 867 continue; 868 } 869 870 opal_add_exported_attrs(child, child_kobj); 871 } 872 } 873 874 /* 875 * opal_export_attrs: creates a sysfs node for each property listed in 876 * the device-tree under /ibm,opal/firmware/exports/ 877 * All new sysfs nodes are created under /opal/exports/. 878 * This allows for reserved memory regions (e.g. HDAT) to be read. 879 * The new sysfs nodes are only readable by root. 880 */ 881 static void opal_export_attrs(void) 882 { 883 struct device_node *np; 884 struct kobject *kobj; 885 int rc; 886 887 np = of_find_node_by_path("/ibm,opal/firmware/exports"); 888 if (!np) 889 return; 890 891 /* Create new 'exports' directory - /sys/firmware/opal/exports */ 892 kobj = kobject_create_and_add("exports", opal_kobj); 893 if (!kobj) { 894 pr_warn("kobject_create_and_add() of exports failed\n"); 895 return; 896 } 897 898 opal_add_exported_attrs(np, kobj); 899 900 /* 901 * NB: symbol_map existed before the generic export interface so it 902 * lives under the top level opal_kobj. 903 */ 904 rc = opal_add_one_export(opal_kobj, "symbol_map", 905 np->parent, "symbol-map"); 906 if (rc) 907 pr_warn("Error %d creating OPAL symbols file\n", rc); 908 909 of_node_put(np); 910 } 911 912 static void __init opal_dump_region_init(void) 913 { 914 void *addr; 915 uint64_t size; 916 int rc; 917 918 if (!opal_check_token(OPAL_REGISTER_DUMP_REGION)) 919 return; 920 921 /* Register kernel log buffer */ 922 addr = log_buf_addr_get(); 923 if (addr == NULL) 924 return; 925 926 size = log_buf_len_get(); 927 if (size == 0) 928 return; 929 930 rc = opal_register_dump_region(OPAL_DUMP_REGION_LOG_BUF, 931 __pa(addr), size); 932 /* Don't warn if this is just an older OPAL that doesn't 933 * know about that call 934 */ 935 if (rc && rc != OPAL_UNSUPPORTED) 936 pr_warn("DUMP: Failed to register kernel log buffer. " 937 "rc = %d\n", rc); 938 } 939 940 static void opal_pdev_init(const char *compatible) 941 { 942 struct device_node *np; 943 944 for_each_compatible_node(np, NULL, compatible) 945 of_platform_device_create(np, NULL, NULL); 946 } 947 948 static void __init opal_imc_init_dev(void) 949 { 950 struct device_node *np; 951 952 np = of_find_compatible_node(NULL, NULL, IMC_DTB_COMPAT); 953 if (np) 954 of_platform_device_create(np, NULL, NULL); 955 } 956 957 static int kopald(void *unused) 958 { 959 unsigned long timeout = msecs_to_jiffies(opal_heartbeat) + 1; 960 961 set_freezable(); 962 do { 963 try_to_freeze(); 964 965 opal_handle_events(); 966 967 set_current_state(TASK_INTERRUPTIBLE); 968 if (opal_have_pending_events()) 969 __set_current_state(TASK_RUNNING); 970 else 971 schedule_timeout(timeout); 972 973 } while (!kthread_should_stop()); 974 975 return 0; 976 } 977 978 void opal_wake_poller(void) 979 { 980 if (kopald_tsk) 981 wake_up_process(kopald_tsk); 982 } 983 984 static void opal_init_heartbeat(void) 985 { 986 /* Old firwmware, we assume the HVC heartbeat is sufficient */ 987 if (of_property_read_u32(opal_node, "ibm,heartbeat-ms", 988 &opal_heartbeat) != 0) 989 opal_heartbeat = 0; 990 991 if (opal_heartbeat) 992 kopald_tsk = kthread_run(kopald, NULL, "kopald"); 993 } 994 995 static int __init opal_init(void) 996 { 997 struct device_node *np, *consoles, *leds; 998 int rc; 999 1000 opal_node = of_find_node_by_path("/ibm,opal"); 1001 if (!opal_node) { 1002 pr_warn("Device node not found\n"); 1003 return -ENODEV; 1004 } 1005 1006 /* Register OPAL consoles if any ports */ 1007 consoles = of_find_node_by_path("/ibm,opal/consoles"); 1008 if (consoles) { 1009 for_each_child_of_node(consoles, np) { 1010 if (!of_node_name_eq(np, "serial")) 1011 continue; 1012 of_platform_device_create(np, NULL, NULL); 1013 } 1014 of_node_put(consoles); 1015 } 1016 1017 /* Initialise OPAL messaging system */ 1018 opal_message_init(opal_node); 1019 1020 /* Initialise OPAL asynchronous completion interface */ 1021 opal_async_comp_init(); 1022 1023 /* Initialise OPAL sensor interface */ 1024 opal_sensor_init(); 1025 1026 /* Initialise OPAL hypervisor maintainence interrupt handling */ 1027 opal_hmi_handler_init(); 1028 1029 /* Create i2c platform devices */ 1030 opal_pdev_init("ibm,opal-i2c"); 1031 1032 /* Handle non-volatile memory devices */ 1033 opal_pdev_init("pmem-region"); 1034 1035 /* Setup a heatbeat thread if requested by OPAL */ 1036 opal_init_heartbeat(); 1037 1038 /* Detect In-Memory Collection counters and create devices*/ 1039 opal_imc_init_dev(); 1040 1041 /* Create leds platform devices */ 1042 leds = of_find_node_by_path("/ibm,opal/leds"); 1043 if (leds) { 1044 of_platform_device_create(leds, "opal_leds", NULL); 1045 of_node_put(leds); 1046 } 1047 1048 /* Initialise OPAL message log interface */ 1049 opal_msglog_init(); 1050 1051 /* Create "opal" kobject under /sys/firmware */ 1052 rc = opal_sysfs_init(); 1053 if (rc == 0) { 1054 /* Setup dump region interface */ 1055 opal_dump_region_init(); 1056 /* Setup error log interface */ 1057 rc = opal_elog_init(); 1058 /* Setup code update interface */ 1059 opal_flash_update_init(); 1060 /* Setup platform dump extract interface */ 1061 opal_platform_dump_init(); 1062 /* Setup system parameters interface */ 1063 opal_sys_param_init(); 1064 /* Setup message log sysfs interface. */ 1065 opal_msglog_sysfs_init(); 1066 /* Add all export properties*/ 1067 opal_export_attrs(); 1068 } 1069 1070 /* Initialize platform devices: IPMI backend, PRD & flash interface */ 1071 opal_pdev_init("ibm,opal-ipmi"); 1072 opal_pdev_init("ibm,opal-flash"); 1073 opal_pdev_init("ibm,opal-prd"); 1074 1075 /* Initialise platform device: oppanel interface */ 1076 opal_pdev_init("ibm,opal-oppanel"); 1077 1078 /* Initialise OPAL kmsg dumper for flushing console on panic */ 1079 opal_kmsg_init(); 1080 1081 /* Initialise OPAL powercap interface */ 1082 opal_powercap_init(); 1083 1084 /* Initialise OPAL Power-Shifting-Ratio interface */ 1085 opal_psr_init(); 1086 1087 /* Initialise OPAL sensor groups */ 1088 opal_sensor_groups_init(); 1089 1090 /* Initialise OPAL Power control interface */ 1091 opal_power_control_init(); 1092 1093 /* Initialize OPAL secure variables */ 1094 opal_pdev_init("ibm,secvar-backend"); 1095 1096 return 0; 1097 } 1098 machine_subsys_initcall(powernv, opal_init); 1099 1100 void opal_shutdown(void) 1101 { 1102 long rc = OPAL_BUSY; 1103 1104 opal_event_shutdown(); 1105 1106 /* 1107 * Then sync with OPAL which ensure anything that can 1108 * potentially write to our memory has completed such 1109 * as an ongoing dump retrieval 1110 */ 1111 while (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) { 1112 rc = opal_sync_host_reboot(); 1113 if (rc == OPAL_BUSY) 1114 opal_poll_events(NULL); 1115 else 1116 mdelay(10); 1117 } 1118 1119 /* Unregister memory dump region */ 1120 if (opal_check_token(OPAL_UNREGISTER_DUMP_REGION)) 1121 opal_unregister_dump_region(OPAL_DUMP_REGION_LOG_BUF); 1122 } 1123 1124 /* Export this so that test modules can use it */ 1125 EXPORT_SYMBOL_GPL(opal_invalid_call); 1126 EXPORT_SYMBOL_GPL(opal_xscom_read); 1127 EXPORT_SYMBOL_GPL(opal_xscom_write); 1128 EXPORT_SYMBOL_GPL(opal_ipmi_send); 1129 EXPORT_SYMBOL_GPL(opal_ipmi_recv); 1130 EXPORT_SYMBOL_GPL(opal_flash_read); 1131 EXPORT_SYMBOL_GPL(opal_flash_write); 1132 EXPORT_SYMBOL_GPL(opal_flash_erase); 1133 EXPORT_SYMBOL_GPL(opal_prd_msg); 1134 EXPORT_SYMBOL_GPL(opal_check_token); 1135 1136 /* Convert a region of vmalloc memory to an opal sg list */ 1137 struct opal_sg_list *opal_vmalloc_to_sg_list(void *vmalloc_addr, 1138 unsigned long vmalloc_size) 1139 { 1140 struct opal_sg_list *sg, *first = NULL; 1141 unsigned long i = 0; 1142 1143 sg = kzalloc(PAGE_SIZE, GFP_KERNEL); 1144 if (!sg) 1145 goto nomem; 1146 1147 first = sg; 1148 1149 while (vmalloc_size > 0) { 1150 uint64_t data = vmalloc_to_pfn(vmalloc_addr) << PAGE_SHIFT; 1151 uint64_t length = min(vmalloc_size, PAGE_SIZE); 1152 1153 sg->entry[i].data = cpu_to_be64(data); 1154 sg->entry[i].length = cpu_to_be64(length); 1155 i++; 1156 1157 if (i >= SG_ENTRIES_PER_NODE) { 1158 struct opal_sg_list *next; 1159 1160 next = kzalloc(PAGE_SIZE, GFP_KERNEL); 1161 if (!next) 1162 goto nomem; 1163 1164 sg->length = cpu_to_be64( 1165 i * sizeof(struct opal_sg_entry) + 16); 1166 i = 0; 1167 sg->next = cpu_to_be64(__pa(next)); 1168 sg = next; 1169 } 1170 1171 vmalloc_addr += length; 1172 vmalloc_size -= length; 1173 } 1174 1175 sg->length = cpu_to_be64(i * sizeof(struct opal_sg_entry) + 16); 1176 1177 return first; 1178 1179 nomem: 1180 pr_err("%s : Failed to allocate memory\n", __func__); 1181 opal_free_sg_list(first); 1182 return NULL; 1183 } 1184 1185 void opal_free_sg_list(struct opal_sg_list *sg) 1186 { 1187 while (sg) { 1188 uint64_t next = be64_to_cpu(sg->next); 1189 1190 kfree(sg); 1191 1192 if (next) 1193 sg = __va(next); 1194 else 1195 sg = NULL; 1196 } 1197 } 1198 1199 int opal_error_code(int rc) 1200 { 1201 switch (rc) { 1202 case OPAL_SUCCESS: return 0; 1203 1204 case OPAL_PARAMETER: return -EINVAL; 1205 case OPAL_ASYNC_COMPLETION: return -EINPROGRESS; 1206 case OPAL_BUSY: 1207 case OPAL_BUSY_EVENT: return -EBUSY; 1208 case OPAL_NO_MEM: return -ENOMEM; 1209 case OPAL_PERMISSION: return -EPERM; 1210 1211 case OPAL_UNSUPPORTED: return -EIO; 1212 case OPAL_HARDWARE: return -EIO; 1213 case OPAL_INTERNAL_ERROR: return -EIO; 1214 case OPAL_TIMEOUT: return -ETIMEDOUT; 1215 default: 1216 pr_err("%s: unexpected OPAL error %d\n", __func__, rc); 1217 return -EIO; 1218 } 1219 } 1220 1221 void powernv_set_nmmu_ptcr(unsigned long ptcr) 1222 { 1223 int rc; 1224 1225 if (firmware_has_feature(FW_FEATURE_OPAL)) { 1226 rc = opal_nmmu_set_ptcr(-1UL, ptcr); 1227 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED) 1228 pr_warn("%s: Unable to set nest mmu ptcr\n", __func__); 1229 } 1230 } 1231 1232 EXPORT_SYMBOL_GPL(opal_poll_events); 1233 EXPORT_SYMBOL_GPL(opal_rtc_read); 1234 EXPORT_SYMBOL_GPL(opal_rtc_write); 1235 EXPORT_SYMBOL_GPL(opal_tpo_read); 1236 EXPORT_SYMBOL_GPL(opal_tpo_write); 1237 EXPORT_SYMBOL_GPL(opal_i2c_request); 1238 /* Export these symbols for PowerNV LED class driver */ 1239 EXPORT_SYMBOL_GPL(opal_leds_get_ind); 1240 EXPORT_SYMBOL_GPL(opal_leds_set_ind); 1241 /* Export this symbol for PowerNV Operator Panel class driver */ 1242 EXPORT_SYMBOL_GPL(opal_write_oppanel_async); 1243 /* Export this for KVM */ 1244 EXPORT_SYMBOL_GPL(opal_int_set_mfrr); 1245 EXPORT_SYMBOL_GPL(opal_int_eoi); 1246 EXPORT_SYMBOL_GPL(opal_error_code); 1247 /* Export the below symbol for NX compression */ 1248 EXPORT_SYMBOL(opal_nx_coproc_init); 1249