1 /* 2 * PowerNV OPAL high level interfaces 3 * 4 * Copyright 2011 IBM Corp. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #define pr_fmt(fmt) "opal: " fmt 13 14 #include <linux/printk.h> 15 #include <linux/types.h> 16 #include <linux/of.h> 17 #include <linux/of_fdt.h> 18 #include <linux/of_platform.h> 19 #include <linux/of_address.h> 20 #include <linux/interrupt.h> 21 #include <linux/notifier.h> 22 #include <linux/slab.h> 23 #include <linux/sched.h> 24 #include <linux/kobject.h> 25 #include <linux/delay.h> 26 #include <linux/memblock.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/kmsg_dump.h> 30 #include <linux/console.h> 31 #include <linux/sched/debug.h> 32 33 #include <asm/machdep.h> 34 #include <asm/opal.h> 35 #include <asm/firmware.h> 36 #include <asm/mce.h> 37 #include <asm/imc-pmu.h> 38 #include <asm/bug.h> 39 40 #include "powernv.h" 41 42 /* /sys/firmware/opal */ 43 struct kobject *opal_kobj; 44 45 struct opal { 46 u64 base; 47 u64 entry; 48 u64 size; 49 } opal; 50 51 struct mcheck_recoverable_range { 52 u64 start_addr; 53 u64 end_addr; 54 u64 recover_addr; 55 }; 56 57 static struct mcheck_recoverable_range *mc_recoverable_range; 58 static int mc_recoverable_range_len; 59 60 struct device_node *opal_node; 61 static DEFINE_SPINLOCK(opal_write_lock); 62 static struct atomic_notifier_head opal_msg_notifier_head[OPAL_MSG_TYPE_MAX]; 63 static uint32_t opal_heartbeat; 64 static struct task_struct *kopald_tsk; 65 66 void opal_configure_cores(void) 67 { 68 u64 reinit_flags = 0; 69 70 /* Do the actual re-init, This will clobber all FPRs, VRs, etc... 71 * 72 * It will preserve non volatile GPRs and HSPRG0/1. It will 73 * also restore HIDs and other SPRs to their original value 74 * but it might clobber a bunch. 75 */ 76 #ifdef __BIG_ENDIAN__ 77 reinit_flags |= OPAL_REINIT_CPUS_HILE_BE; 78 #else 79 reinit_flags |= OPAL_REINIT_CPUS_HILE_LE; 80 #endif 81 82 /* 83 * POWER9 always support running hash: 84 * ie. Host hash supports hash guests 85 * Host radix supports hash/radix guests 86 */ 87 if (early_cpu_has_feature(CPU_FTR_ARCH_300)) { 88 reinit_flags |= OPAL_REINIT_CPUS_MMU_HASH; 89 if (early_radix_enabled()) 90 reinit_flags |= OPAL_REINIT_CPUS_MMU_RADIX; 91 } 92 93 opal_reinit_cpus(reinit_flags); 94 95 /* Restore some bits */ 96 if (cur_cpu_spec->cpu_restore) 97 cur_cpu_spec->cpu_restore(); 98 } 99 100 int __init early_init_dt_scan_opal(unsigned long node, 101 const char *uname, int depth, void *data) 102 { 103 const void *basep, *entryp, *sizep; 104 int basesz, entrysz, runtimesz; 105 106 if (depth != 1 || strcmp(uname, "ibm,opal") != 0) 107 return 0; 108 109 basep = of_get_flat_dt_prop(node, "opal-base-address", &basesz); 110 entryp = of_get_flat_dt_prop(node, "opal-entry-address", &entrysz); 111 sizep = of_get_flat_dt_prop(node, "opal-runtime-size", &runtimesz); 112 113 if (!basep || !entryp || !sizep) 114 return 1; 115 116 opal.base = of_read_number(basep, basesz/4); 117 opal.entry = of_read_number(entryp, entrysz/4); 118 opal.size = of_read_number(sizep, runtimesz/4); 119 120 pr_debug("OPAL Base = 0x%llx (basep=%p basesz=%d)\n", 121 opal.base, basep, basesz); 122 pr_debug("OPAL Entry = 0x%llx (entryp=%p basesz=%d)\n", 123 opal.entry, entryp, entrysz); 124 pr_debug("OPAL Entry = 0x%llx (sizep=%p runtimesz=%d)\n", 125 opal.size, sizep, runtimesz); 126 127 if (of_flat_dt_is_compatible(node, "ibm,opal-v3")) { 128 powerpc_firmware_features |= FW_FEATURE_OPAL; 129 pr_debug("OPAL detected !\n"); 130 } else { 131 panic("OPAL != V3 detected, no longer supported.\n"); 132 } 133 134 return 1; 135 } 136 137 int __init early_init_dt_scan_recoverable_ranges(unsigned long node, 138 const char *uname, int depth, void *data) 139 { 140 int i, psize, size; 141 const __be32 *prop; 142 143 if (depth != 1 || strcmp(uname, "ibm,opal") != 0) 144 return 0; 145 146 prop = of_get_flat_dt_prop(node, "mcheck-recoverable-ranges", &psize); 147 148 if (!prop) 149 return 1; 150 151 pr_debug("Found machine check recoverable ranges.\n"); 152 153 /* 154 * Calculate number of available entries. 155 * 156 * Each recoverable address range entry is (start address, len, 157 * recovery address), 2 cells each for start and recovery address, 158 * 1 cell for len, totalling 5 cells per entry. 159 */ 160 mc_recoverable_range_len = psize / (sizeof(*prop) * 5); 161 162 /* Sanity check */ 163 if (!mc_recoverable_range_len) 164 return 1; 165 166 /* Size required to hold all the entries. */ 167 size = mc_recoverable_range_len * 168 sizeof(struct mcheck_recoverable_range); 169 170 /* 171 * Allocate a buffer to hold the MC recoverable ranges. 172 */ 173 mc_recoverable_range = memblock_alloc(size, __alignof__(u64)); 174 if (!mc_recoverable_range) 175 panic("%s: Failed to allocate %u bytes align=0x%lx\n", 176 __func__, size, __alignof__(u64)); 177 178 for (i = 0; i < mc_recoverable_range_len; i++) { 179 mc_recoverable_range[i].start_addr = 180 of_read_number(prop + (i * 5) + 0, 2); 181 mc_recoverable_range[i].end_addr = 182 mc_recoverable_range[i].start_addr + 183 of_read_number(prop + (i * 5) + 2, 1); 184 mc_recoverable_range[i].recover_addr = 185 of_read_number(prop + (i * 5) + 3, 2); 186 187 pr_debug("Machine check recoverable range: %llx..%llx: %llx\n", 188 mc_recoverable_range[i].start_addr, 189 mc_recoverable_range[i].end_addr, 190 mc_recoverable_range[i].recover_addr); 191 } 192 return 1; 193 } 194 195 static int __init opal_register_exception_handlers(void) 196 { 197 #ifdef __BIG_ENDIAN__ 198 u64 glue; 199 200 if (!(powerpc_firmware_features & FW_FEATURE_OPAL)) 201 return -ENODEV; 202 203 /* Hookup some exception handlers except machine check. We use the 204 * fwnmi area at 0x7000 to provide the glue space to OPAL 205 */ 206 glue = 0x7000; 207 208 /* 209 * Check if we are running on newer firmware that exports 210 * OPAL_HANDLE_HMI token. If yes, then don't ask OPAL to patch 211 * the HMI interrupt and we catch it directly in Linux. 212 * 213 * For older firmware (i.e currently released POWER8 System Firmware 214 * as of today <= SV810_087), we fallback to old behavior and let OPAL 215 * patch the HMI vector and handle it inside OPAL firmware. 216 * 217 * For newer firmware (in development/yet to be released) we will 218 * start catching/handling HMI directly in Linux. 219 */ 220 if (!opal_check_token(OPAL_HANDLE_HMI)) { 221 pr_info("Old firmware detected, OPAL handles HMIs.\n"); 222 opal_register_exception_handler( 223 OPAL_HYPERVISOR_MAINTENANCE_HANDLER, 224 0, glue); 225 glue += 128; 226 } 227 228 opal_register_exception_handler(OPAL_SOFTPATCH_HANDLER, 0, glue); 229 #endif 230 231 return 0; 232 } 233 machine_early_initcall(powernv, opal_register_exception_handlers); 234 235 /* 236 * Opal message notifier based on message type. Allow subscribers to get 237 * notified for specific messgae type. 238 */ 239 int opal_message_notifier_register(enum opal_msg_type msg_type, 240 struct notifier_block *nb) 241 { 242 if (!nb || msg_type >= OPAL_MSG_TYPE_MAX) { 243 pr_warn("%s: Invalid arguments, msg_type:%d\n", 244 __func__, msg_type); 245 return -EINVAL; 246 } 247 248 return atomic_notifier_chain_register( 249 &opal_msg_notifier_head[msg_type], nb); 250 } 251 EXPORT_SYMBOL_GPL(opal_message_notifier_register); 252 253 int opal_message_notifier_unregister(enum opal_msg_type msg_type, 254 struct notifier_block *nb) 255 { 256 return atomic_notifier_chain_unregister( 257 &opal_msg_notifier_head[msg_type], nb); 258 } 259 EXPORT_SYMBOL_GPL(opal_message_notifier_unregister); 260 261 static void opal_message_do_notify(uint32_t msg_type, void *msg) 262 { 263 /* notify subscribers */ 264 atomic_notifier_call_chain(&opal_msg_notifier_head[msg_type], 265 msg_type, msg); 266 } 267 268 static void opal_handle_message(void) 269 { 270 s64 ret; 271 /* 272 * TODO: pre-allocate a message buffer depending on opal-msg-size 273 * value in /proc/device-tree. 274 */ 275 static struct opal_msg msg; 276 u32 type; 277 278 ret = opal_get_msg(__pa(&msg), sizeof(msg)); 279 /* No opal message pending. */ 280 if (ret == OPAL_RESOURCE) 281 return; 282 283 /* check for errors. */ 284 if (ret) { 285 pr_warn("%s: Failed to retrieve opal message, err=%lld\n", 286 __func__, ret); 287 return; 288 } 289 290 type = be32_to_cpu(msg.msg_type); 291 292 /* Sanity check */ 293 if (type >= OPAL_MSG_TYPE_MAX) { 294 pr_warn_once("%s: Unknown message type: %u\n", __func__, type); 295 return; 296 } 297 opal_message_do_notify(type, (void *)&msg); 298 } 299 300 static irqreturn_t opal_message_notify(int irq, void *data) 301 { 302 opal_handle_message(); 303 return IRQ_HANDLED; 304 } 305 306 static int __init opal_message_init(void) 307 { 308 int ret, i, irq; 309 310 for (i = 0; i < OPAL_MSG_TYPE_MAX; i++) 311 ATOMIC_INIT_NOTIFIER_HEAD(&opal_msg_notifier_head[i]); 312 313 irq = opal_event_request(ilog2(OPAL_EVENT_MSG_PENDING)); 314 if (!irq) { 315 pr_err("%s: Can't register OPAL event irq (%d)\n", 316 __func__, irq); 317 return irq; 318 } 319 320 ret = request_irq(irq, opal_message_notify, 321 IRQ_TYPE_LEVEL_HIGH, "opal-msg", NULL); 322 if (ret) { 323 pr_err("%s: Can't request OPAL event irq (%d)\n", 324 __func__, ret); 325 return ret; 326 } 327 328 return 0; 329 } 330 331 int opal_get_chars(uint32_t vtermno, char *buf, int count) 332 { 333 s64 rc; 334 __be64 evt, len; 335 336 if (!opal.entry) 337 return -ENODEV; 338 opal_poll_events(&evt); 339 if ((be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_INPUT) == 0) 340 return 0; 341 len = cpu_to_be64(count); 342 rc = opal_console_read(vtermno, &len, buf); 343 if (rc == OPAL_SUCCESS) 344 return be64_to_cpu(len); 345 return 0; 346 } 347 348 static int __opal_put_chars(uint32_t vtermno, const char *data, int total_len, bool atomic) 349 { 350 unsigned long flags = 0 /* shut up gcc */; 351 int written; 352 __be64 olen; 353 s64 rc; 354 355 if (!opal.entry) 356 return -ENODEV; 357 358 if (atomic) 359 spin_lock_irqsave(&opal_write_lock, flags); 360 rc = opal_console_write_buffer_space(vtermno, &olen); 361 if (rc || be64_to_cpu(olen) < total_len) { 362 /* Closed -> drop characters */ 363 if (rc) 364 written = total_len; 365 else 366 written = -EAGAIN; 367 goto out; 368 } 369 370 /* Should not get a partial write here because space is available. */ 371 olen = cpu_to_be64(total_len); 372 rc = opal_console_write(vtermno, &olen, data); 373 if (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) { 374 if (rc == OPAL_BUSY_EVENT) 375 opal_poll_events(NULL); 376 written = -EAGAIN; 377 goto out; 378 } 379 380 /* Closed or other error drop */ 381 if (rc != OPAL_SUCCESS) { 382 written = opal_error_code(rc); 383 goto out; 384 } 385 386 written = be64_to_cpu(olen); 387 if (written < total_len) { 388 if (atomic) { 389 /* Should not happen */ 390 pr_warn("atomic console write returned partial " 391 "len=%d written=%d\n", total_len, written); 392 } 393 if (!written) 394 written = -EAGAIN; 395 } 396 397 out: 398 if (atomic) 399 spin_unlock_irqrestore(&opal_write_lock, flags); 400 401 return written; 402 } 403 404 int opal_put_chars(uint32_t vtermno, const char *data, int total_len) 405 { 406 return __opal_put_chars(vtermno, data, total_len, false); 407 } 408 409 /* 410 * opal_put_chars_atomic will not perform partial-writes. Data will be 411 * atomically written to the terminal or not at all. This is not strictly 412 * true at the moment because console space can race with OPAL's console 413 * writes. 414 */ 415 int opal_put_chars_atomic(uint32_t vtermno, const char *data, int total_len) 416 { 417 return __opal_put_chars(vtermno, data, total_len, true); 418 } 419 420 static s64 __opal_flush_console(uint32_t vtermno) 421 { 422 s64 rc; 423 424 if (!opal_check_token(OPAL_CONSOLE_FLUSH)) { 425 __be64 evt; 426 427 /* 428 * If OPAL_CONSOLE_FLUSH is not implemented in the firmware, 429 * the console can still be flushed by calling the polling 430 * function while it has OPAL_EVENT_CONSOLE_OUTPUT events. 431 */ 432 WARN_ONCE(1, "opal: OPAL_CONSOLE_FLUSH missing.\n"); 433 434 opal_poll_events(&evt); 435 if (!(be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_OUTPUT)) 436 return OPAL_SUCCESS; 437 return OPAL_BUSY; 438 439 } else { 440 rc = opal_console_flush(vtermno); 441 if (rc == OPAL_BUSY_EVENT) { 442 opal_poll_events(NULL); 443 rc = OPAL_BUSY; 444 } 445 return rc; 446 } 447 448 } 449 450 /* 451 * opal_flush_console spins until the console is flushed 452 */ 453 int opal_flush_console(uint32_t vtermno) 454 { 455 for (;;) { 456 s64 rc = __opal_flush_console(vtermno); 457 458 if (rc == OPAL_BUSY || rc == OPAL_PARTIAL) { 459 mdelay(1); 460 continue; 461 } 462 463 return opal_error_code(rc); 464 } 465 } 466 467 /* 468 * opal_flush_chars is an hvc interface that sleeps until the console is 469 * flushed if wait, otherwise it will return -EBUSY if the console has data, 470 * -EAGAIN if it has data and some of it was flushed. 471 */ 472 int opal_flush_chars(uint32_t vtermno, bool wait) 473 { 474 for (;;) { 475 s64 rc = __opal_flush_console(vtermno); 476 477 if (rc == OPAL_BUSY || rc == OPAL_PARTIAL) { 478 if (wait) { 479 msleep(OPAL_BUSY_DELAY_MS); 480 continue; 481 } 482 if (rc == OPAL_PARTIAL) 483 return -EAGAIN; 484 } 485 486 return opal_error_code(rc); 487 } 488 } 489 490 static int opal_recover_mce(struct pt_regs *regs, 491 struct machine_check_event *evt) 492 { 493 int recovered = 0; 494 495 if (!(regs->msr & MSR_RI)) { 496 /* If MSR_RI isn't set, we cannot recover */ 497 pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n"); 498 recovered = 0; 499 } else if (evt->disposition == MCE_DISPOSITION_RECOVERED) { 500 /* Platform corrected itself */ 501 recovered = 1; 502 } else if (evt->severity == MCE_SEV_FATAL) { 503 /* Fatal machine check */ 504 pr_err("Machine check interrupt is fatal\n"); 505 recovered = 0; 506 } 507 508 if (!recovered && evt->severity == MCE_SEV_ERROR_SYNC) { 509 /* 510 * Try to kill processes if we get a synchronous machine check 511 * (e.g., one caused by execution of this instruction). This 512 * will devolve into a panic if we try to kill init or are in 513 * an interrupt etc. 514 * 515 * TODO: Queue up this address for hwpoisioning later. 516 * TODO: This is not quite right for d-side machine 517 * checks ->nip is not necessarily the important 518 * address. 519 */ 520 if ((user_mode(regs))) { 521 _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip); 522 recovered = 1; 523 } else if (die_will_crash()) { 524 /* 525 * die() would kill the kernel, so better to go via 526 * the platform reboot code that will log the 527 * machine check. 528 */ 529 recovered = 0; 530 } else { 531 die("Machine check", regs, SIGBUS); 532 recovered = 1; 533 } 534 } 535 536 return recovered; 537 } 538 539 void __noreturn pnv_platform_error_reboot(struct pt_regs *regs, const char *msg) 540 { 541 panic_flush_kmsg_start(); 542 543 pr_emerg("Hardware platform error: %s\n", msg); 544 if (regs) 545 show_regs(regs); 546 smp_send_stop(); 547 548 panic_flush_kmsg_end(); 549 550 /* 551 * Don't bother to shut things down because this will 552 * xstop the system. 553 */ 554 if (opal_cec_reboot2(OPAL_REBOOT_PLATFORM_ERROR, msg) 555 == OPAL_UNSUPPORTED) { 556 pr_emerg("Reboot type %d not supported for %s\n", 557 OPAL_REBOOT_PLATFORM_ERROR, msg); 558 } 559 560 /* 561 * We reached here. There can be three possibilities: 562 * 1. We are running on a firmware level that do not support 563 * opal_cec_reboot2() 564 * 2. We are running on a firmware level that do not support 565 * OPAL_REBOOT_PLATFORM_ERROR reboot type. 566 * 3. We are running on FSP based system that does not need 567 * opal to trigger checkstop explicitly for error analysis. 568 * The FSP PRD component would have already got notified 569 * about this error through other channels. 570 * 4. We are running on a newer skiboot that by default does 571 * not cause a checkstop, drops us back to the kernel to 572 * extract context and state at the time of the error. 573 */ 574 575 panic(msg); 576 } 577 578 int opal_machine_check(struct pt_regs *regs) 579 { 580 struct machine_check_event evt; 581 582 if (!get_mce_event(&evt, MCE_EVENT_RELEASE)) 583 return 0; 584 585 /* Print things out */ 586 if (evt.version != MCE_V1) { 587 pr_err("Machine Check Exception, Unknown event version %d !\n", 588 evt.version); 589 return 0; 590 } 591 machine_check_print_event_info(&evt, user_mode(regs), false); 592 593 if (opal_recover_mce(regs, &evt)) 594 return 1; 595 596 pnv_platform_error_reboot(regs, "Unrecoverable Machine Check exception"); 597 } 598 599 /* Early hmi handler called in real mode. */ 600 int opal_hmi_exception_early(struct pt_regs *regs) 601 { 602 s64 rc; 603 604 /* 605 * call opal hmi handler. Pass paca address as token. 606 * The return value OPAL_SUCCESS is an indication that there is 607 * an HMI event generated waiting to pull by Linux. 608 */ 609 rc = opal_handle_hmi(); 610 if (rc == OPAL_SUCCESS) { 611 local_paca->hmi_event_available = 1; 612 return 1; 613 } 614 return 0; 615 } 616 617 /* HMI exception handler called in virtual mode during check_irq_replay. */ 618 int opal_handle_hmi_exception(struct pt_regs *regs) 619 { 620 /* 621 * Check if HMI event is available. 622 * if Yes, then wake kopald to process them. 623 */ 624 if (!local_paca->hmi_event_available) 625 return 0; 626 627 local_paca->hmi_event_available = 0; 628 opal_wake_poller(); 629 630 return 1; 631 } 632 633 static uint64_t find_recovery_address(uint64_t nip) 634 { 635 int i; 636 637 for (i = 0; i < mc_recoverable_range_len; i++) 638 if ((nip >= mc_recoverable_range[i].start_addr) && 639 (nip < mc_recoverable_range[i].end_addr)) 640 return mc_recoverable_range[i].recover_addr; 641 return 0; 642 } 643 644 bool opal_mce_check_early_recovery(struct pt_regs *regs) 645 { 646 uint64_t recover_addr = 0; 647 648 if (!opal.base || !opal.size) 649 goto out; 650 651 if ((regs->nip >= opal.base) && 652 (regs->nip < (opal.base + opal.size))) 653 recover_addr = find_recovery_address(regs->nip); 654 655 /* 656 * Setup regs->nip to rfi into fixup address. 657 */ 658 if (recover_addr) 659 regs->nip = recover_addr; 660 661 out: 662 return !!recover_addr; 663 } 664 665 static int opal_sysfs_init(void) 666 { 667 opal_kobj = kobject_create_and_add("opal", firmware_kobj); 668 if (!opal_kobj) { 669 pr_warn("kobject_create_and_add opal failed\n"); 670 return -ENOMEM; 671 } 672 673 return 0; 674 } 675 676 static ssize_t symbol_map_read(struct file *fp, struct kobject *kobj, 677 struct bin_attribute *bin_attr, 678 char *buf, loff_t off, size_t count) 679 { 680 return memory_read_from_buffer(buf, count, &off, bin_attr->private, 681 bin_attr->size); 682 } 683 684 static BIN_ATTR_RO(symbol_map, 0); 685 686 static void opal_export_symmap(void) 687 { 688 const __be64 *syms; 689 unsigned int size; 690 struct device_node *fw; 691 int rc; 692 693 fw = of_find_node_by_path("/ibm,opal/firmware"); 694 if (!fw) 695 return; 696 syms = of_get_property(fw, "symbol-map", &size); 697 if (!syms || size != 2 * sizeof(__be64)) 698 return; 699 700 /* Setup attributes */ 701 bin_attr_symbol_map.private = __va(be64_to_cpu(syms[0])); 702 bin_attr_symbol_map.size = be64_to_cpu(syms[1]); 703 704 rc = sysfs_create_bin_file(opal_kobj, &bin_attr_symbol_map); 705 if (rc) 706 pr_warn("Error %d creating OPAL symbols file\n", rc); 707 } 708 709 static ssize_t export_attr_read(struct file *fp, struct kobject *kobj, 710 struct bin_attribute *bin_attr, char *buf, 711 loff_t off, size_t count) 712 { 713 return memory_read_from_buffer(buf, count, &off, bin_attr->private, 714 bin_attr->size); 715 } 716 717 /* 718 * opal_export_attrs: creates a sysfs node for each property listed in 719 * the device-tree under /ibm,opal/firmware/exports/ 720 * All new sysfs nodes are created under /opal/exports/. 721 * This allows for reserved memory regions (e.g. HDAT) to be read. 722 * The new sysfs nodes are only readable by root. 723 */ 724 static void opal_export_attrs(void) 725 { 726 struct bin_attribute *attr; 727 struct device_node *np; 728 struct property *prop; 729 struct kobject *kobj; 730 u64 vals[2]; 731 int rc; 732 733 np = of_find_node_by_path("/ibm,opal/firmware/exports"); 734 if (!np) 735 return; 736 737 /* Create new 'exports' directory - /sys/firmware/opal/exports */ 738 kobj = kobject_create_and_add("exports", opal_kobj); 739 if (!kobj) { 740 pr_warn("kobject_create_and_add() of exports failed\n"); 741 return; 742 } 743 744 for_each_property_of_node(np, prop) { 745 if (!strcmp(prop->name, "name") || !strcmp(prop->name, "phandle")) 746 continue; 747 748 if (of_property_read_u64_array(np, prop->name, &vals[0], 2)) 749 continue; 750 751 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 752 753 if (attr == NULL) { 754 pr_warn("Failed kmalloc for bin_attribute!"); 755 continue; 756 } 757 758 sysfs_bin_attr_init(attr); 759 attr->attr.name = kstrdup(prop->name, GFP_KERNEL); 760 attr->attr.mode = 0400; 761 attr->read = export_attr_read; 762 attr->private = __va(vals[0]); 763 attr->size = vals[1]; 764 765 if (attr->attr.name == NULL) { 766 pr_warn("Failed kstrdup for bin_attribute attr.name"); 767 kfree(attr); 768 continue; 769 } 770 771 rc = sysfs_create_bin_file(kobj, attr); 772 if (rc) { 773 pr_warn("Error %d creating OPAL sysfs exports/%s file\n", 774 rc, prop->name); 775 kfree(attr->attr.name); 776 kfree(attr); 777 } 778 } 779 780 of_node_put(np); 781 } 782 783 static void __init opal_dump_region_init(void) 784 { 785 void *addr; 786 uint64_t size; 787 int rc; 788 789 if (!opal_check_token(OPAL_REGISTER_DUMP_REGION)) 790 return; 791 792 /* Register kernel log buffer */ 793 addr = log_buf_addr_get(); 794 if (addr == NULL) 795 return; 796 797 size = log_buf_len_get(); 798 if (size == 0) 799 return; 800 801 rc = opal_register_dump_region(OPAL_DUMP_REGION_LOG_BUF, 802 __pa(addr), size); 803 /* Don't warn if this is just an older OPAL that doesn't 804 * know about that call 805 */ 806 if (rc && rc != OPAL_UNSUPPORTED) 807 pr_warn("DUMP: Failed to register kernel log buffer. " 808 "rc = %d\n", rc); 809 } 810 811 static void opal_pdev_init(const char *compatible) 812 { 813 struct device_node *np; 814 815 for_each_compatible_node(np, NULL, compatible) 816 of_platform_device_create(np, NULL, NULL); 817 } 818 819 static void __init opal_imc_init_dev(void) 820 { 821 struct device_node *np; 822 823 np = of_find_compatible_node(NULL, NULL, IMC_DTB_COMPAT); 824 if (np) 825 of_platform_device_create(np, NULL, NULL); 826 } 827 828 static int kopald(void *unused) 829 { 830 unsigned long timeout = msecs_to_jiffies(opal_heartbeat) + 1; 831 832 set_freezable(); 833 do { 834 try_to_freeze(); 835 836 opal_handle_events(); 837 838 set_current_state(TASK_INTERRUPTIBLE); 839 if (opal_have_pending_events()) 840 __set_current_state(TASK_RUNNING); 841 else 842 schedule_timeout(timeout); 843 844 } while (!kthread_should_stop()); 845 846 return 0; 847 } 848 849 void opal_wake_poller(void) 850 { 851 if (kopald_tsk) 852 wake_up_process(kopald_tsk); 853 } 854 855 static void opal_init_heartbeat(void) 856 { 857 /* Old firwmware, we assume the HVC heartbeat is sufficient */ 858 if (of_property_read_u32(opal_node, "ibm,heartbeat-ms", 859 &opal_heartbeat) != 0) 860 opal_heartbeat = 0; 861 862 if (opal_heartbeat) 863 kopald_tsk = kthread_run(kopald, NULL, "kopald"); 864 } 865 866 static int __init opal_init(void) 867 { 868 struct device_node *np, *consoles, *leds; 869 int rc; 870 871 opal_node = of_find_node_by_path("/ibm,opal"); 872 if (!opal_node) { 873 pr_warn("Device node not found\n"); 874 return -ENODEV; 875 } 876 877 /* Register OPAL consoles if any ports */ 878 consoles = of_find_node_by_path("/ibm,opal/consoles"); 879 if (consoles) { 880 for_each_child_of_node(consoles, np) { 881 if (!of_node_name_eq(np, "serial")) 882 continue; 883 of_platform_device_create(np, NULL, NULL); 884 } 885 of_node_put(consoles); 886 } 887 888 /* Initialise OPAL messaging system */ 889 opal_message_init(); 890 891 /* Initialise OPAL asynchronous completion interface */ 892 opal_async_comp_init(); 893 894 /* Initialise OPAL sensor interface */ 895 opal_sensor_init(); 896 897 /* Initialise OPAL hypervisor maintainence interrupt handling */ 898 opal_hmi_handler_init(); 899 900 /* Create i2c platform devices */ 901 opal_pdev_init("ibm,opal-i2c"); 902 903 /* Handle non-volatile memory devices */ 904 opal_pdev_init("pmem-region"); 905 906 /* Setup a heatbeat thread if requested by OPAL */ 907 opal_init_heartbeat(); 908 909 /* Detect In-Memory Collection counters and create devices*/ 910 opal_imc_init_dev(); 911 912 /* Create leds platform devices */ 913 leds = of_find_node_by_path("/ibm,opal/leds"); 914 if (leds) { 915 of_platform_device_create(leds, "opal_leds", NULL); 916 of_node_put(leds); 917 } 918 919 /* Initialise OPAL message log interface */ 920 opal_msglog_init(); 921 922 /* Create "opal" kobject under /sys/firmware */ 923 rc = opal_sysfs_init(); 924 if (rc == 0) { 925 /* Export symbol map to userspace */ 926 opal_export_symmap(); 927 /* Setup dump region interface */ 928 opal_dump_region_init(); 929 /* Setup error log interface */ 930 rc = opal_elog_init(); 931 /* Setup code update interface */ 932 opal_flash_update_init(); 933 /* Setup platform dump extract interface */ 934 opal_platform_dump_init(); 935 /* Setup system parameters interface */ 936 opal_sys_param_init(); 937 /* Setup message log sysfs interface. */ 938 opal_msglog_sysfs_init(); 939 } 940 941 /* Export all properties */ 942 opal_export_attrs(); 943 944 /* Initialize platform devices: IPMI backend, PRD & flash interface */ 945 opal_pdev_init("ibm,opal-ipmi"); 946 opal_pdev_init("ibm,opal-flash"); 947 opal_pdev_init("ibm,opal-prd"); 948 949 /* Initialise platform device: oppanel interface */ 950 opal_pdev_init("ibm,opal-oppanel"); 951 952 /* Initialise OPAL kmsg dumper for flushing console on panic */ 953 opal_kmsg_init(); 954 955 /* Initialise OPAL powercap interface */ 956 opal_powercap_init(); 957 958 /* Initialise OPAL Power-Shifting-Ratio interface */ 959 opal_psr_init(); 960 961 /* Initialise OPAL sensor groups */ 962 opal_sensor_groups_init(); 963 964 /* Initialise OPAL Power control interface */ 965 opal_power_control_init(); 966 967 return 0; 968 } 969 machine_subsys_initcall(powernv, opal_init); 970 971 void opal_shutdown(void) 972 { 973 long rc = OPAL_BUSY; 974 975 opal_event_shutdown(); 976 977 /* 978 * Then sync with OPAL which ensure anything that can 979 * potentially write to our memory has completed such 980 * as an ongoing dump retrieval 981 */ 982 while (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) { 983 rc = opal_sync_host_reboot(); 984 if (rc == OPAL_BUSY) 985 opal_poll_events(NULL); 986 else 987 mdelay(10); 988 } 989 990 /* Unregister memory dump region */ 991 if (opal_check_token(OPAL_UNREGISTER_DUMP_REGION)) 992 opal_unregister_dump_region(OPAL_DUMP_REGION_LOG_BUF); 993 } 994 995 /* Export this so that test modules can use it */ 996 EXPORT_SYMBOL_GPL(opal_invalid_call); 997 EXPORT_SYMBOL_GPL(opal_xscom_read); 998 EXPORT_SYMBOL_GPL(opal_xscom_write); 999 EXPORT_SYMBOL_GPL(opal_ipmi_send); 1000 EXPORT_SYMBOL_GPL(opal_ipmi_recv); 1001 EXPORT_SYMBOL_GPL(opal_flash_read); 1002 EXPORT_SYMBOL_GPL(opal_flash_write); 1003 EXPORT_SYMBOL_GPL(opal_flash_erase); 1004 EXPORT_SYMBOL_GPL(opal_prd_msg); 1005 EXPORT_SYMBOL_GPL(opal_check_token); 1006 1007 /* Convert a region of vmalloc memory to an opal sg list */ 1008 struct opal_sg_list *opal_vmalloc_to_sg_list(void *vmalloc_addr, 1009 unsigned long vmalloc_size) 1010 { 1011 struct opal_sg_list *sg, *first = NULL; 1012 unsigned long i = 0; 1013 1014 sg = kzalloc(PAGE_SIZE, GFP_KERNEL); 1015 if (!sg) 1016 goto nomem; 1017 1018 first = sg; 1019 1020 while (vmalloc_size > 0) { 1021 uint64_t data = vmalloc_to_pfn(vmalloc_addr) << PAGE_SHIFT; 1022 uint64_t length = min(vmalloc_size, PAGE_SIZE); 1023 1024 sg->entry[i].data = cpu_to_be64(data); 1025 sg->entry[i].length = cpu_to_be64(length); 1026 i++; 1027 1028 if (i >= SG_ENTRIES_PER_NODE) { 1029 struct opal_sg_list *next; 1030 1031 next = kzalloc(PAGE_SIZE, GFP_KERNEL); 1032 if (!next) 1033 goto nomem; 1034 1035 sg->length = cpu_to_be64( 1036 i * sizeof(struct opal_sg_entry) + 16); 1037 i = 0; 1038 sg->next = cpu_to_be64(__pa(next)); 1039 sg = next; 1040 } 1041 1042 vmalloc_addr += length; 1043 vmalloc_size -= length; 1044 } 1045 1046 sg->length = cpu_to_be64(i * sizeof(struct opal_sg_entry) + 16); 1047 1048 return first; 1049 1050 nomem: 1051 pr_err("%s : Failed to allocate memory\n", __func__); 1052 opal_free_sg_list(first); 1053 return NULL; 1054 } 1055 1056 void opal_free_sg_list(struct opal_sg_list *sg) 1057 { 1058 while (sg) { 1059 uint64_t next = be64_to_cpu(sg->next); 1060 1061 kfree(sg); 1062 1063 if (next) 1064 sg = __va(next); 1065 else 1066 sg = NULL; 1067 } 1068 } 1069 1070 int opal_error_code(int rc) 1071 { 1072 switch (rc) { 1073 case OPAL_SUCCESS: return 0; 1074 1075 case OPAL_PARAMETER: return -EINVAL; 1076 case OPAL_ASYNC_COMPLETION: return -EINPROGRESS; 1077 case OPAL_BUSY: 1078 case OPAL_BUSY_EVENT: return -EBUSY; 1079 case OPAL_NO_MEM: return -ENOMEM; 1080 case OPAL_PERMISSION: return -EPERM; 1081 1082 case OPAL_UNSUPPORTED: return -EIO; 1083 case OPAL_HARDWARE: return -EIO; 1084 case OPAL_INTERNAL_ERROR: return -EIO; 1085 case OPAL_TIMEOUT: return -ETIMEDOUT; 1086 default: 1087 pr_err("%s: unexpected OPAL error %d\n", __func__, rc); 1088 return -EIO; 1089 } 1090 } 1091 1092 void powernv_set_nmmu_ptcr(unsigned long ptcr) 1093 { 1094 int rc; 1095 1096 if (firmware_has_feature(FW_FEATURE_OPAL)) { 1097 rc = opal_nmmu_set_ptcr(-1UL, ptcr); 1098 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED) 1099 pr_warn("%s: Unable to set nest mmu ptcr\n", __func__); 1100 } 1101 } 1102 1103 EXPORT_SYMBOL_GPL(opal_poll_events); 1104 EXPORT_SYMBOL_GPL(opal_rtc_read); 1105 EXPORT_SYMBOL_GPL(opal_rtc_write); 1106 EXPORT_SYMBOL_GPL(opal_tpo_read); 1107 EXPORT_SYMBOL_GPL(opal_tpo_write); 1108 EXPORT_SYMBOL_GPL(opal_i2c_request); 1109 /* Export these symbols for PowerNV LED class driver */ 1110 EXPORT_SYMBOL_GPL(opal_leds_get_ind); 1111 EXPORT_SYMBOL_GPL(opal_leds_set_ind); 1112 /* Export this symbol for PowerNV Operator Panel class driver */ 1113 EXPORT_SYMBOL_GPL(opal_write_oppanel_async); 1114 /* Export this for KVM */ 1115 EXPORT_SYMBOL_GPL(opal_int_set_mfrr); 1116 EXPORT_SYMBOL_GPL(opal_int_eoi); 1117 EXPORT_SYMBOL_GPL(opal_error_code); 1118 /* Export the below symbol for NX compression */ 1119 EXPORT_SYMBOL(opal_nx_coproc_init); 1120