1 /*
2  * The file intends to implement the platform dependent EEH operations on
3  * powernv platform. Actually, the powernv was created in order to fully
4  * hypervisor support.
5  *
6  * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/atomic.h>
15 #include <linux/debugfs.h>
16 #include <linux/delay.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/list.h>
21 #include <linux/msi.h>
22 #include <linux/of.h>
23 #include <linux/pci.h>
24 #include <linux/proc_fs.h>
25 #include <linux/rbtree.h>
26 #include <linux/sched.h>
27 #include <linux/seq_file.h>
28 #include <linux/spinlock.h>
29 
30 #include <asm/eeh.h>
31 #include <asm/eeh_event.h>
32 #include <asm/firmware.h>
33 #include <asm/io.h>
34 #include <asm/iommu.h>
35 #include <asm/machdep.h>
36 #include <asm/msi_bitmap.h>
37 #include <asm/opal.h>
38 #include <asm/ppc-pci.h>
39 #include <asm/pnv-pci.h>
40 
41 #include "powernv.h"
42 #include "pci.h"
43 
44 static bool pnv_eeh_nb_init = false;
45 static int eeh_event_irq = -EINVAL;
46 
47 static int pnv_eeh_init(void)
48 {
49 	struct pci_controller *hose;
50 	struct pnv_phb *phb;
51 
52 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
53 		pr_warn("%s: OPAL is required !\n",
54 			__func__);
55 		return -EINVAL;
56 	}
57 
58 	/* Set probe mode */
59 	eeh_add_flag(EEH_PROBE_MODE_DEV);
60 
61 	/*
62 	 * P7IOC blocks PCI config access to frozen PE, but PHB3
63 	 * doesn't do that. So we have to selectively enable I/O
64 	 * prior to collecting error log.
65 	 */
66 	list_for_each_entry(hose, &hose_list, list_node) {
67 		phb = hose->private_data;
68 
69 		if (phb->model == PNV_PHB_MODEL_P7IOC)
70 			eeh_add_flag(EEH_ENABLE_IO_FOR_LOG);
71 
72 		/*
73 		 * PE#0 should be regarded as valid by EEH core
74 		 * if it's not the reserved one. Currently, we
75 		 * have the reserved PE#255 and PE#127 for PHB3
76 		 * and P7IOC separately. So we should regard
77 		 * PE#0 as valid for PHB3 and P7IOC.
78 		 */
79 		if (phb->ioda.reserved_pe_idx != 0)
80 			eeh_add_flag(EEH_VALID_PE_ZERO);
81 
82 		break;
83 	}
84 
85 	return 0;
86 }
87 
88 static irqreturn_t pnv_eeh_event(int irq, void *data)
89 {
90 	/*
91 	 * We simply send a special EEH event if EEH has been
92 	 * enabled. We don't care about EEH events until we've
93 	 * finished processing the outstanding ones. Event processing
94 	 * gets unmasked in next_error() if EEH is enabled.
95 	 */
96 	disable_irq_nosync(irq);
97 
98 	if (eeh_enabled())
99 		eeh_send_failure_event(NULL);
100 
101 	return IRQ_HANDLED;
102 }
103 
104 #ifdef CONFIG_DEBUG_FS
105 static ssize_t pnv_eeh_ei_write(struct file *filp,
106 				const char __user *user_buf,
107 				size_t count, loff_t *ppos)
108 {
109 	struct pci_controller *hose = filp->private_data;
110 	struct eeh_dev *edev;
111 	struct eeh_pe *pe;
112 	int pe_no, type, func;
113 	unsigned long addr, mask;
114 	char buf[50];
115 	int ret;
116 
117 	if (!eeh_ops || !eeh_ops->err_inject)
118 		return -ENXIO;
119 
120 	/* Copy over argument buffer */
121 	ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
122 	if (!ret)
123 		return -EFAULT;
124 
125 	/* Retrieve parameters */
126 	ret = sscanf(buf, "%x:%x:%x:%lx:%lx",
127 		     &pe_no, &type, &func, &addr, &mask);
128 	if (ret != 5)
129 		return -EINVAL;
130 
131 	/* Retrieve PE */
132 	edev = kzalloc(sizeof(*edev), GFP_KERNEL);
133 	if (!edev)
134 		return -ENOMEM;
135 	edev->phb = hose;
136 	edev->pe_config_addr = pe_no;
137 	pe = eeh_pe_get(edev);
138 	kfree(edev);
139 	if (!pe)
140 		return -ENODEV;
141 
142 	/* Do error injection */
143 	ret = eeh_ops->err_inject(pe, type, func, addr, mask);
144 	return ret < 0 ? ret : count;
145 }
146 
147 static const struct file_operations pnv_eeh_ei_fops = {
148 	.open	= simple_open,
149 	.llseek	= no_llseek,
150 	.write	= pnv_eeh_ei_write,
151 };
152 
153 static int pnv_eeh_dbgfs_set(void *data, int offset, u64 val)
154 {
155 	struct pci_controller *hose = data;
156 	struct pnv_phb *phb = hose->private_data;
157 
158 	out_be64(phb->regs + offset, val);
159 	return 0;
160 }
161 
162 static int pnv_eeh_dbgfs_get(void *data, int offset, u64 *val)
163 {
164 	struct pci_controller *hose = data;
165 	struct pnv_phb *phb = hose->private_data;
166 
167 	*val = in_be64(phb->regs + offset);
168 	return 0;
169 }
170 
171 #define PNV_EEH_DBGFS_ENTRY(name, reg)				\
172 static int pnv_eeh_dbgfs_set_##name(void *data, u64 val)	\
173 {								\
174 	return pnv_eeh_dbgfs_set(data, reg, val);		\
175 }								\
176 								\
177 static int pnv_eeh_dbgfs_get_##name(void *data, u64 *val)	\
178 {								\
179 	return pnv_eeh_dbgfs_get(data, reg, val);		\
180 }								\
181 								\
182 DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_dbgfs_ops_##name,		\
183 			pnv_eeh_dbgfs_get_##name,		\
184                         pnv_eeh_dbgfs_set_##name,		\
185 			"0x%llx\n")
186 
187 PNV_EEH_DBGFS_ENTRY(outb, 0xD10);
188 PNV_EEH_DBGFS_ENTRY(inbA, 0xD90);
189 PNV_EEH_DBGFS_ENTRY(inbB, 0xE10);
190 
191 #endif /* CONFIG_DEBUG_FS */
192 
193 /**
194  * pnv_eeh_post_init - EEH platform dependent post initialization
195  *
196  * EEH platform dependent post initialization on powernv. When
197  * the function is called, the EEH PEs and devices should have
198  * been built. If the I/O cache staff has been built, EEH is
199  * ready to supply service.
200  */
201 static int pnv_eeh_post_init(void)
202 {
203 	struct pci_controller *hose;
204 	struct pnv_phb *phb;
205 	int ret = 0;
206 
207 	/* Register OPAL event notifier */
208 	if (!pnv_eeh_nb_init) {
209 		eeh_event_irq = opal_event_request(ilog2(OPAL_EVENT_PCI_ERROR));
210 		if (eeh_event_irq < 0) {
211 			pr_err("%s: Can't register OPAL event interrupt (%d)\n",
212 			       __func__, eeh_event_irq);
213 			return eeh_event_irq;
214 		}
215 
216 		ret = request_irq(eeh_event_irq, pnv_eeh_event,
217 				IRQ_TYPE_LEVEL_HIGH, "opal-eeh", NULL);
218 		if (ret < 0) {
219 			irq_dispose_mapping(eeh_event_irq);
220 			pr_err("%s: Can't request OPAL event interrupt (%d)\n",
221 			       __func__, eeh_event_irq);
222 			return ret;
223 		}
224 
225 		pnv_eeh_nb_init = true;
226 	}
227 
228 	if (!eeh_enabled())
229 		disable_irq(eeh_event_irq);
230 
231 	list_for_each_entry(hose, &hose_list, list_node) {
232 		phb = hose->private_data;
233 
234 		/*
235 		 * If EEH is enabled, we're going to rely on that.
236 		 * Otherwise, we restore to conventional mechanism
237 		 * to clear frozen PE during PCI config access.
238 		 */
239 		if (eeh_enabled())
240 			phb->flags |= PNV_PHB_FLAG_EEH;
241 		else
242 			phb->flags &= ~PNV_PHB_FLAG_EEH;
243 
244 		/* Create debugfs entries */
245 #ifdef CONFIG_DEBUG_FS
246 		if (phb->has_dbgfs || !phb->dbgfs)
247 			continue;
248 
249 		phb->has_dbgfs = 1;
250 		debugfs_create_file("err_injct", 0200,
251 				    phb->dbgfs, hose,
252 				    &pnv_eeh_ei_fops);
253 
254 		debugfs_create_file("err_injct_outbound", 0600,
255 				    phb->dbgfs, hose,
256 				    &pnv_eeh_dbgfs_ops_outb);
257 		debugfs_create_file("err_injct_inboundA", 0600,
258 				    phb->dbgfs, hose,
259 				    &pnv_eeh_dbgfs_ops_inbA);
260 		debugfs_create_file("err_injct_inboundB", 0600,
261 				    phb->dbgfs, hose,
262 				    &pnv_eeh_dbgfs_ops_inbB);
263 #endif /* CONFIG_DEBUG_FS */
264 	}
265 
266 	return ret;
267 }
268 
269 static int pnv_eeh_find_cap(struct pci_dn *pdn, int cap)
270 {
271 	int pos = PCI_CAPABILITY_LIST;
272 	int cnt = 48;   /* Maximal number of capabilities */
273 	u32 status, id;
274 
275 	if (!pdn)
276 		return 0;
277 
278 	/* Check if the device supports capabilities */
279 	pnv_pci_cfg_read(pdn, PCI_STATUS, 2, &status);
280 	if (!(status & PCI_STATUS_CAP_LIST))
281 		return 0;
282 
283 	while (cnt--) {
284 		pnv_pci_cfg_read(pdn, pos, 1, &pos);
285 		if (pos < 0x40)
286 			break;
287 
288 		pos &= ~3;
289 		pnv_pci_cfg_read(pdn, pos + PCI_CAP_LIST_ID, 1, &id);
290 		if (id == 0xff)
291 			break;
292 
293 		/* Found */
294 		if (id == cap)
295 			return pos;
296 
297 		/* Next one */
298 		pos += PCI_CAP_LIST_NEXT;
299 	}
300 
301 	return 0;
302 }
303 
304 static int pnv_eeh_find_ecap(struct pci_dn *pdn, int cap)
305 {
306 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
307 	u32 header;
308 	int pos = 256, ttl = (4096 - 256) / 8;
309 
310 	if (!edev || !edev->pcie_cap)
311 		return 0;
312 	if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
313 		return 0;
314 	else if (!header)
315 		return 0;
316 
317 	while (ttl-- > 0) {
318 		if (PCI_EXT_CAP_ID(header) == cap && pos)
319 			return pos;
320 
321 		pos = PCI_EXT_CAP_NEXT(header);
322 		if (pos < 256)
323 			break;
324 
325 		if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
326 			break;
327 	}
328 
329 	return 0;
330 }
331 
332 /**
333  * pnv_eeh_probe - Do probe on PCI device
334  * @pdn: PCI device node
335  * @data: unused
336  *
337  * When EEH module is installed during system boot, all PCI devices
338  * are checked one by one to see if it supports EEH. The function
339  * is introduced for the purpose. By default, EEH has been enabled
340  * on all PCI devices. That's to say, we only need do necessary
341  * initialization on the corresponding eeh device and create PE
342  * accordingly.
343  *
344  * It's notable that's unsafe to retrieve the EEH device through
345  * the corresponding PCI device. During the PCI device hotplug, which
346  * was possiblly triggered by EEH core, the binding between EEH device
347  * and the PCI device isn't built yet.
348  */
349 static void *pnv_eeh_probe(struct pci_dn *pdn, void *data)
350 {
351 	struct pci_controller *hose = pdn->phb;
352 	struct pnv_phb *phb = hose->private_data;
353 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
354 	uint32_t pcie_flags;
355 	int ret;
356 
357 	/*
358 	 * When probing the root bridge, which doesn't have any
359 	 * subordinate PCI devices. We don't have OF node for
360 	 * the root bridge. So it's not reasonable to continue
361 	 * the probing.
362 	 */
363 	if (!edev || edev->pe)
364 		return NULL;
365 
366 	/* Skip for PCI-ISA bridge */
367 	if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_ISA)
368 		return NULL;
369 
370 	/* Initialize eeh device */
371 	edev->class_code = pdn->class_code;
372 	edev->mode	&= 0xFFFFFF00;
373 	edev->pcix_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_PCIX);
374 	edev->pcie_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_EXP);
375 	edev->af_cap   = pnv_eeh_find_cap(pdn, PCI_CAP_ID_AF);
376 	edev->aer_cap  = pnv_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR);
377 	if ((edev->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) {
378 		edev->mode |= EEH_DEV_BRIDGE;
379 		if (edev->pcie_cap) {
380 			pnv_pci_cfg_read(pdn, edev->pcie_cap + PCI_EXP_FLAGS,
381 					 2, &pcie_flags);
382 			pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4;
383 			if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT)
384 				edev->mode |= EEH_DEV_ROOT_PORT;
385 			else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM)
386 				edev->mode |= EEH_DEV_DS_PORT;
387 		}
388 	}
389 
390 	edev->config_addr    = (pdn->busno << 8) | (pdn->devfn);
391 	edev->pe_config_addr = phb->ioda.pe_rmap[edev->config_addr];
392 
393 	/* Create PE */
394 	ret = eeh_add_to_parent_pe(edev);
395 	if (ret) {
396 		pr_warn("%s: Can't add PCI dev %04x:%02x:%02x.%01x to parent PE (%d)\n",
397 			__func__, hose->global_number, pdn->busno,
398 			PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn), ret);
399 		return NULL;
400 	}
401 
402 	/*
403 	 * If the PE contains any one of following adapters, the
404 	 * PCI config space can't be accessed when dumping EEH log.
405 	 * Otherwise, we will run into fenced PHB caused by shortage
406 	 * of outbound credits in the adapter. The PCI config access
407 	 * should be blocked until PE reset. MMIO access is dropped
408 	 * by hardware certainly. In order to drop PCI config requests,
409 	 * one more flag (EEH_PE_CFG_RESTRICTED) is introduced, which
410 	 * will be checked in the backend for PE state retrival. If
411 	 * the PE becomes frozen for the first time and the flag has
412 	 * been set for the PE, we will set EEH_PE_CFG_BLOCKED for
413 	 * that PE to block its config space.
414 	 *
415 	 * Broadcom Austin 4-ports NICs (14e4:1657)
416 	 * Broadcom Shiner 4-ports 1G NICs (14e4:168a)
417 	 * Broadcom Shiner 2-ports 10G NICs (14e4:168e)
418 	 */
419 	if ((pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
420 	     pdn->device_id == 0x1657) ||
421 	    (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
422 	     pdn->device_id == 0x168a) ||
423 	    (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
424 	     pdn->device_id == 0x168e))
425 		edev->pe->state |= EEH_PE_CFG_RESTRICTED;
426 
427 	/*
428 	 * Cache the PE primary bus, which can't be fetched when
429 	 * full hotplug is in progress. In that case, all child
430 	 * PCI devices of the PE are expected to be removed prior
431 	 * to PE reset.
432 	 */
433 	if (!(edev->pe->state & EEH_PE_PRI_BUS)) {
434 		edev->pe->bus = pci_find_bus(hose->global_number,
435 					     pdn->busno);
436 		if (edev->pe->bus)
437 			edev->pe->state |= EEH_PE_PRI_BUS;
438 	}
439 
440 	/*
441 	 * Enable EEH explicitly so that we will do EEH check
442 	 * while accessing I/O stuff
443 	 */
444 	eeh_add_flag(EEH_ENABLED);
445 
446 	/* Save memory bars */
447 	eeh_save_bars(edev);
448 
449 	return NULL;
450 }
451 
452 /**
453  * pnv_eeh_set_option - Initialize EEH or MMIO/DMA reenable
454  * @pe: EEH PE
455  * @option: operation to be issued
456  *
457  * The function is used to control the EEH functionality globally.
458  * Currently, following options are support according to PAPR:
459  * Enable EEH, Disable EEH, Enable MMIO and Enable DMA
460  */
461 static int pnv_eeh_set_option(struct eeh_pe *pe, int option)
462 {
463 	struct pci_controller *hose = pe->phb;
464 	struct pnv_phb *phb = hose->private_data;
465 	bool freeze_pe = false;
466 	int opt;
467 	s64 rc;
468 
469 	switch (option) {
470 	case EEH_OPT_DISABLE:
471 		return -EPERM;
472 	case EEH_OPT_ENABLE:
473 		return 0;
474 	case EEH_OPT_THAW_MMIO:
475 		opt = OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO;
476 		break;
477 	case EEH_OPT_THAW_DMA:
478 		opt = OPAL_EEH_ACTION_CLEAR_FREEZE_DMA;
479 		break;
480 	case EEH_OPT_FREEZE_PE:
481 		freeze_pe = true;
482 		opt = OPAL_EEH_ACTION_SET_FREEZE_ALL;
483 		break;
484 	default:
485 		pr_warn("%s: Invalid option %d\n", __func__, option);
486 		return -EINVAL;
487 	}
488 
489 	/* Freeze master and slave PEs if PHB supports compound PEs */
490 	if (freeze_pe) {
491 		if (phb->freeze_pe) {
492 			phb->freeze_pe(phb, pe->addr);
493 			return 0;
494 		}
495 
496 		rc = opal_pci_eeh_freeze_set(phb->opal_id, pe->addr, opt);
497 		if (rc != OPAL_SUCCESS) {
498 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
499 				__func__, rc, phb->hose->global_number,
500 				pe->addr);
501 			return -EIO;
502 		}
503 
504 		return 0;
505 	}
506 
507 	/* Unfreeze master and slave PEs if PHB supports */
508 	if (phb->unfreeze_pe)
509 		return phb->unfreeze_pe(phb, pe->addr, opt);
510 
511 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe->addr, opt);
512 	if (rc != OPAL_SUCCESS) {
513 		pr_warn("%s: Failure %lld enable %d for PHB#%x-PE#%x\n",
514 			__func__, rc, option, phb->hose->global_number,
515 			pe->addr);
516 		return -EIO;
517 	}
518 
519 	return 0;
520 }
521 
522 /**
523  * pnv_eeh_get_pe_addr - Retrieve PE address
524  * @pe: EEH PE
525  *
526  * Retrieve the PE address according to the given tranditional
527  * PCI BDF (Bus/Device/Function) address.
528  */
529 static int pnv_eeh_get_pe_addr(struct eeh_pe *pe)
530 {
531 	return pe->addr;
532 }
533 
534 static void pnv_eeh_get_phb_diag(struct eeh_pe *pe)
535 {
536 	struct pnv_phb *phb = pe->phb->private_data;
537 	s64 rc;
538 
539 	rc = opal_pci_get_phb_diag_data2(phb->opal_id, pe->data,
540 					 PNV_PCI_DIAG_BUF_SIZE);
541 	if (rc != OPAL_SUCCESS)
542 		pr_warn("%s: Failure %lld getting PHB#%x diag-data\n",
543 			__func__, rc, pe->phb->global_number);
544 }
545 
546 static int pnv_eeh_get_phb_state(struct eeh_pe *pe)
547 {
548 	struct pnv_phb *phb = pe->phb->private_data;
549 	u8 fstate;
550 	__be16 pcierr;
551 	s64 rc;
552 	int result = 0;
553 
554 	rc = opal_pci_eeh_freeze_status(phb->opal_id,
555 					pe->addr,
556 					&fstate,
557 					&pcierr,
558 					NULL);
559 	if (rc != OPAL_SUCCESS) {
560 		pr_warn("%s: Failure %lld getting PHB#%x state\n",
561 			__func__, rc, phb->hose->global_number);
562 		return EEH_STATE_NOT_SUPPORT;
563 	}
564 
565 	/*
566 	 * Check PHB state. If the PHB is frozen for the
567 	 * first time, to dump the PHB diag-data.
568 	 */
569 	if (be16_to_cpu(pcierr) != OPAL_EEH_PHB_ERROR) {
570 		result = (EEH_STATE_MMIO_ACTIVE  |
571 			  EEH_STATE_DMA_ACTIVE   |
572 			  EEH_STATE_MMIO_ENABLED |
573 			  EEH_STATE_DMA_ENABLED);
574 	} else if (!(pe->state & EEH_PE_ISOLATED)) {
575 		eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
576 		pnv_eeh_get_phb_diag(pe);
577 
578 		if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
579 			pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
580 	}
581 
582 	return result;
583 }
584 
585 static int pnv_eeh_get_pe_state(struct eeh_pe *pe)
586 {
587 	struct pnv_phb *phb = pe->phb->private_data;
588 	u8 fstate;
589 	__be16 pcierr;
590 	s64 rc;
591 	int result;
592 
593 	/*
594 	 * We don't clobber hardware frozen state until PE
595 	 * reset is completed. In order to keep EEH core
596 	 * moving forward, we have to return operational
597 	 * state during PE reset.
598 	 */
599 	if (pe->state & EEH_PE_RESET) {
600 		result = (EEH_STATE_MMIO_ACTIVE  |
601 			  EEH_STATE_DMA_ACTIVE   |
602 			  EEH_STATE_MMIO_ENABLED |
603 			  EEH_STATE_DMA_ENABLED);
604 		return result;
605 	}
606 
607 	/*
608 	 * Fetch PE state from hardware. If the PHB
609 	 * supports compound PE, let it handle that.
610 	 */
611 	if (phb->get_pe_state) {
612 		fstate = phb->get_pe_state(phb, pe->addr);
613 	} else {
614 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
615 						pe->addr,
616 						&fstate,
617 						&pcierr,
618 						NULL);
619 		if (rc != OPAL_SUCCESS) {
620 			pr_warn("%s: Failure %lld getting PHB#%x-PE%x state\n",
621 				__func__, rc, phb->hose->global_number,
622 				pe->addr);
623 			return EEH_STATE_NOT_SUPPORT;
624 		}
625 	}
626 
627 	/* Figure out state */
628 	switch (fstate) {
629 	case OPAL_EEH_STOPPED_NOT_FROZEN:
630 		result = (EEH_STATE_MMIO_ACTIVE  |
631 			  EEH_STATE_DMA_ACTIVE   |
632 			  EEH_STATE_MMIO_ENABLED |
633 			  EEH_STATE_DMA_ENABLED);
634 		break;
635 	case OPAL_EEH_STOPPED_MMIO_FREEZE:
636 		result = (EEH_STATE_DMA_ACTIVE |
637 			  EEH_STATE_DMA_ENABLED);
638 		break;
639 	case OPAL_EEH_STOPPED_DMA_FREEZE:
640 		result = (EEH_STATE_MMIO_ACTIVE |
641 			  EEH_STATE_MMIO_ENABLED);
642 		break;
643 	case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE:
644 		result = 0;
645 		break;
646 	case OPAL_EEH_STOPPED_RESET:
647 		result = EEH_STATE_RESET_ACTIVE;
648 		break;
649 	case OPAL_EEH_STOPPED_TEMP_UNAVAIL:
650 		result = EEH_STATE_UNAVAILABLE;
651 		break;
652 	case OPAL_EEH_STOPPED_PERM_UNAVAIL:
653 		result = EEH_STATE_NOT_SUPPORT;
654 		break;
655 	default:
656 		result = EEH_STATE_NOT_SUPPORT;
657 		pr_warn("%s: Invalid PHB#%x-PE#%x state %x\n",
658 			__func__, phb->hose->global_number,
659 			pe->addr, fstate);
660 	}
661 
662 	/*
663 	 * If PHB supports compound PE, to freeze all
664 	 * slave PEs for consistency.
665 	 *
666 	 * If the PE is switching to frozen state for the
667 	 * first time, to dump the PHB diag-data.
668 	 */
669 	if (!(result & EEH_STATE_NOT_SUPPORT) &&
670 	    !(result & EEH_STATE_UNAVAILABLE) &&
671 	    !(result & EEH_STATE_MMIO_ACTIVE) &&
672 	    !(result & EEH_STATE_DMA_ACTIVE)  &&
673 	    !(pe->state & EEH_PE_ISOLATED)) {
674 		if (phb->freeze_pe)
675 			phb->freeze_pe(phb, pe->addr);
676 
677 		eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
678 		pnv_eeh_get_phb_diag(pe);
679 
680 		if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
681 			pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
682 	}
683 
684 	return result;
685 }
686 
687 /**
688  * pnv_eeh_get_state - Retrieve PE state
689  * @pe: EEH PE
690  * @delay: delay while PE state is temporarily unavailable
691  *
692  * Retrieve the state of the specified PE. For IODA-compitable
693  * platform, it should be retrieved from IODA table. Therefore,
694  * we prefer passing down to hardware implementation to handle
695  * it.
696  */
697 static int pnv_eeh_get_state(struct eeh_pe *pe, int *delay)
698 {
699 	int ret;
700 
701 	if (pe->type & EEH_PE_PHB)
702 		ret = pnv_eeh_get_phb_state(pe);
703 	else
704 		ret = pnv_eeh_get_pe_state(pe);
705 
706 	if (!delay)
707 		return ret;
708 
709 	/*
710 	 * If the PE state is temporarily unavailable,
711 	 * to inform the EEH core delay for default
712 	 * period (1 second)
713 	 */
714 	*delay = 0;
715 	if (ret & EEH_STATE_UNAVAILABLE)
716 		*delay = 1000;
717 
718 	return ret;
719 }
720 
721 static s64 pnv_eeh_poll(unsigned long id)
722 {
723 	s64 rc = OPAL_HARDWARE;
724 
725 	while (1) {
726 		rc = opal_pci_poll(id);
727 		if (rc <= 0)
728 			break;
729 
730 		if (system_state < SYSTEM_RUNNING)
731 			udelay(1000 * rc);
732 		else
733 			msleep(rc);
734 	}
735 
736 	return rc;
737 }
738 
739 int pnv_eeh_phb_reset(struct pci_controller *hose, int option)
740 {
741 	struct pnv_phb *phb = hose->private_data;
742 	s64 rc = OPAL_HARDWARE;
743 
744 	pr_debug("%s: Reset PHB#%x, option=%d\n",
745 		 __func__, hose->global_number, option);
746 
747 	/* Issue PHB complete reset request */
748 	if (option == EEH_RESET_FUNDAMENTAL ||
749 	    option == EEH_RESET_HOT)
750 		rc = opal_pci_reset(phb->opal_id,
751 				    OPAL_RESET_PHB_COMPLETE,
752 				    OPAL_ASSERT_RESET);
753 	else if (option == EEH_RESET_DEACTIVATE)
754 		rc = opal_pci_reset(phb->opal_id,
755 				    OPAL_RESET_PHB_COMPLETE,
756 				    OPAL_DEASSERT_RESET);
757 	if (rc < 0)
758 		goto out;
759 
760 	/*
761 	 * Poll state of the PHB until the request is done
762 	 * successfully. The PHB reset is usually PHB complete
763 	 * reset followed by hot reset on root bus. So we also
764 	 * need the PCI bus settlement delay.
765 	 */
766 	if (rc > 0)
767 		rc = pnv_eeh_poll(phb->opal_id);
768 	if (option == EEH_RESET_DEACTIVATE) {
769 		if (system_state < SYSTEM_RUNNING)
770 			udelay(1000 * EEH_PE_RST_SETTLE_TIME);
771 		else
772 			msleep(EEH_PE_RST_SETTLE_TIME);
773 	}
774 out:
775 	if (rc != OPAL_SUCCESS)
776 		return -EIO;
777 
778 	return 0;
779 }
780 
781 static int pnv_eeh_root_reset(struct pci_controller *hose, int option)
782 {
783 	struct pnv_phb *phb = hose->private_data;
784 	s64 rc = OPAL_HARDWARE;
785 
786 	pr_debug("%s: Reset PHB#%x, option=%d\n",
787 		 __func__, hose->global_number, option);
788 
789 	/*
790 	 * During the reset deassert time, we needn't care
791 	 * the reset scope because the firmware does nothing
792 	 * for fundamental or hot reset during deassert phase.
793 	 */
794 	if (option == EEH_RESET_FUNDAMENTAL)
795 		rc = opal_pci_reset(phb->opal_id,
796 				    OPAL_RESET_PCI_FUNDAMENTAL,
797 				    OPAL_ASSERT_RESET);
798 	else if (option == EEH_RESET_HOT)
799 		rc = opal_pci_reset(phb->opal_id,
800 				    OPAL_RESET_PCI_HOT,
801 				    OPAL_ASSERT_RESET);
802 	else if (option == EEH_RESET_DEACTIVATE)
803 		rc = opal_pci_reset(phb->opal_id,
804 				    OPAL_RESET_PCI_HOT,
805 				    OPAL_DEASSERT_RESET);
806 	if (rc < 0)
807 		goto out;
808 
809 	/* Poll state of the PHB until the request is done */
810 	if (rc > 0)
811 		rc = pnv_eeh_poll(phb->opal_id);
812 	if (option == EEH_RESET_DEACTIVATE)
813 		msleep(EEH_PE_RST_SETTLE_TIME);
814 out:
815 	if (rc != OPAL_SUCCESS)
816 		return -EIO;
817 
818 	return 0;
819 }
820 
821 static int __pnv_eeh_bridge_reset(struct pci_dev *dev, int option)
822 {
823 	struct pci_dn *pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
824 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
825 	int aer = edev ? edev->aer_cap : 0;
826 	u32 ctrl;
827 
828 	pr_debug("%s: Reset PCI bus %04x:%02x with option %d\n",
829 		 __func__, pci_domain_nr(dev->bus),
830 		 dev->bus->number, option);
831 
832 	switch (option) {
833 	case EEH_RESET_FUNDAMENTAL:
834 	case EEH_RESET_HOT:
835 		/* Don't report linkDown event */
836 		if (aer) {
837 			eeh_ops->read_config(pdn, aer + PCI_ERR_UNCOR_MASK,
838 					     4, &ctrl);
839 			ctrl |= PCI_ERR_UNC_SURPDN;
840 			eeh_ops->write_config(pdn, aer + PCI_ERR_UNCOR_MASK,
841 					      4, ctrl);
842 		}
843 
844 		eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &ctrl);
845 		ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
846 		eeh_ops->write_config(pdn, PCI_BRIDGE_CONTROL, 2, ctrl);
847 
848 		msleep(EEH_PE_RST_HOLD_TIME);
849 		break;
850 	case EEH_RESET_DEACTIVATE:
851 		eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &ctrl);
852 		ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
853 		eeh_ops->write_config(pdn, PCI_BRIDGE_CONTROL, 2, ctrl);
854 
855 		msleep(EEH_PE_RST_SETTLE_TIME);
856 
857 		/* Continue reporting linkDown event */
858 		if (aer) {
859 			eeh_ops->read_config(pdn, aer + PCI_ERR_UNCOR_MASK,
860 					     4, &ctrl);
861 			ctrl &= ~PCI_ERR_UNC_SURPDN;
862 			eeh_ops->write_config(pdn, aer + PCI_ERR_UNCOR_MASK,
863 					      4, ctrl);
864 		}
865 
866 		break;
867 	}
868 
869 	return 0;
870 }
871 
872 static int pnv_eeh_bridge_reset(struct pci_dev *pdev, int option)
873 {
874 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
875 	struct pnv_phb *phb = hose->private_data;
876 	struct device_node *dn = pci_device_to_OF_node(pdev);
877 	uint64_t id = PCI_SLOT_ID(phb->opal_id,
878 				  (pdev->bus->number << 8) | pdev->devfn);
879 	uint8_t scope;
880 	int64_t rc;
881 
882 	/* Hot reset to the bus if firmware cannot handle */
883 	if (!dn || !of_get_property(dn, "ibm,reset-by-firmware", NULL))
884 		return __pnv_eeh_bridge_reset(pdev, option);
885 
886 	switch (option) {
887 	case EEH_RESET_FUNDAMENTAL:
888 		scope = OPAL_RESET_PCI_FUNDAMENTAL;
889 		break;
890 	case EEH_RESET_HOT:
891 		scope = OPAL_RESET_PCI_HOT;
892 		break;
893 	case EEH_RESET_DEACTIVATE:
894 		return 0;
895 	default:
896 		dev_dbg(&pdev->dev, "%s: Unsupported reset %d\n",
897 			__func__, option);
898 		return -EINVAL;
899 	}
900 
901 	rc = opal_pci_reset(id, scope, OPAL_ASSERT_RESET);
902 	if (rc <= OPAL_SUCCESS)
903 		goto out;
904 
905 	rc = pnv_eeh_poll(id);
906 out:
907 	return (rc == OPAL_SUCCESS) ? 0 : -EIO;
908 }
909 
910 void pnv_pci_reset_secondary_bus(struct pci_dev *dev)
911 {
912 	struct pci_controller *hose;
913 
914 	if (pci_is_root_bus(dev->bus)) {
915 		hose = pci_bus_to_host(dev->bus);
916 		pnv_eeh_root_reset(hose, EEH_RESET_HOT);
917 		pnv_eeh_root_reset(hose, EEH_RESET_DEACTIVATE);
918 	} else {
919 		pnv_eeh_bridge_reset(dev, EEH_RESET_HOT);
920 		pnv_eeh_bridge_reset(dev, EEH_RESET_DEACTIVATE);
921 	}
922 }
923 
924 static void pnv_eeh_wait_for_pending(struct pci_dn *pdn, const char *type,
925 				     int pos, u16 mask)
926 {
927 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
928 	int i, status = 0;
929 
930 	/* Wait for Transaction Pending bit to be cleared */
931 	for (i = 0; i < 4; i++) {
932 		eeh_ops->read_config(pdn, pos, 2, &status);
933 		if (!(status & mask))
934 			return;
935 
936 		msleep((1 << i) * 100);
937 	}
938 
939 	pr_warn("%s: Pending transaction while issuing %sFLR to %04x:%02x:%02x.%01x\n",
940 		__func__, type,
941 		edev->phb->global_number, pdn->busno,
942 		PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
943 }
944 
945 static int pnv_eeh_do_flr(struct pci_dn *pdn, int option)
946 {
947 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
948 	u32 reg = 0;
949 
950 	if (WARN_ON(!edev->pcie_cap))
951 		return -ENOTTY;
952 
953 	eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP, 4, &reg);
954 	if (!(reg & PCI_EXP_DEVCAP_FLR))
955 		return -ENOTTY;
956 
957 	switch (option) {
958 	case EEH_RESET_HOT:
959 	case EEH_RESET_FUNDAMENTAL:
960 		pnv_eeh_wait_for_pending(pdn, "",
961 					 edev->pcie_cap + PCI_EXP_DEVSTA,
962 					 PCI_EXP_DEVSTA_TRPND);
963 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
964 				     4, &reg);
965 		reg |= PCI_EXP_DEVCTL_BCR_FLR;
966 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
967 				      4, reg);
968 		msleep(EEH_PE_RST_HOLD_TIME);
969 		break;
970 	case EEH_RESET_DEACTIVATE:
971 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
972 				     4, &reg);
973 		reg &= ~PCI_EXP_DEVCTL_BCR_FLR;
974 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
975 				      4, reg);
976 		msleep(EEH_PE_RST_SETTLE_TIME);
977 		break;
978 	}
979 
980 	return 0;
981 }
982 
983 static int pnv_eeh_do_af_flr(struct pci_dn *pdn, int option)
984 {
985 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
986 	u32 cap = 0;
987 
988 	if (WARN_ON(!edev->af_cap))
989 		return -ENOTTY;
990 
991 	eeh_ops->read_config(pdn, edev->af_cap + PCI_AF_CAP, 1, &cap);
992 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
993 		return -ENOTTY;
994 
995 	switch (option) {
996 	case EEH_RESET_HOT:
997 	case EEH_RESET_FUNDAMENTAL:
998 		/*
999 		 * Wait for Transaction Pending bit to clear. A word-aligned
1000 		 * test is used, so we use the conrol offset rather than status
1001 		 * and shift the test bit to match.
1002 		 */
1003 		pnv_eeh_wait_for_pending(pdn, "AF",
1004 					 edev->af_cap + PCI_AF_CTRL,
1005 					 PCI_AF_STATUS_TP << 8);
1006 		eeh_ops->write_config(pdn, edev->af_cap + PCI_AF_CTRL,
1007 				      1, PCI_AF_CTRL_FLR);
1008 		msleep(EEH_PE_RST_HOLD_TIME);
1009 		break;
1010 	case EEH_RESET_DEACTIVATE:
1011 		eeh_ops->write_config(pdn, edev->af_cap + PCI_AF_CTRL, 1, 0);
1012 		msleep(EEH_PE_RST_SETTLE_TIME);
1013 		break;
1014 	}
1015 
1016 	return 0;
1017 }
1018 
1019 static int pnv_eeh_reset_vf_pe(struct eeh_pe *pe, int option)
1020 {
1021 	struct eeh_dev *edev;
1022 	struct pci_dn *pdn;
1023 	int ret;
1024 
1025 	/* The VF PE should have only one child device */
1026 	edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, list);
1027 	pdn = eeh_dev_to_pdn(edev);
1028 	if (!pdn)
1029 		return -ENXIO;
1030 
1031 	ret = pnv_eeh_do_flr(pdn, option);
1032 	if (!ret)
1033 		return ret;
1034 
1035 	return pnv_eeh_do_af_flr(pdn, option);
1036 }
1037 
1038 /**
1039  * pnv_eeh_reset - Reset the specified PE
1040  * @pe: EEH PE
1041  * @option: reset option
1042  *
1043  * Do reset on the indicated PE. For PCI bus sensitive PE,
1044  * we need to reset the parent p2p bridge. The PHB has to
1045  * be reinitialized if the p2p bridge is root bridge. For
1046  * PCI device sensitive PE, we will try to reset the device
1047  * through FLR. For now, we don't have OPAL APIs to do HARD
1048  * reset yet, so all reset would be SOFT (HOT) reset.
1049  */
1050 static int pnv_eeh_reset(struct eeh_pe *pe, int option)
1051 {
1052 	struct pci_controller *hose = pe->phb;
1053 	struct pnv_phb *phb;
1054 	struct pci_bus *bus;
1055 	int64_t rc;
1056 
1057 	/*
1058 	 * For PHB reset, we always have complete reset. For those PEs whose
1059 	 * primary bus derived from root complex (root bus) or root port
1060 	 * (usually bus#1), we apply hot or fundamental reset on the root port.
1061 	 * For other PEs, we always have hot reset on the PE primary bus.
1062 	 *
1063 	 * Here, we have different design to pHyp, which always clear the
1064 	 * frozen state during PE reset. However, the good idea here from
1065 	 * benh is to keep frozen state before we get PE reset done completely
1066 	 * (until BAR restore). With the frozen state, HW drops illegal IO
1067 	 * or MMIO access, which can incur recrusive frozen PE during PE
1068 	 * reset. The side effect is that EEH core has to clear the frozen
1069 	 * state explicitly after BAR restore.
1070 	 */
1071 	if (pe->type & EEH_PE_PHB)
1072 		return pnv_eeh_phb_reset(hose, option);
1073 
1074 	/*
1075 	 * The frozen PE might be caused by PAPR error injection
1076 	 * registers, which are expected to be cleared after hitting
1077 	 * frozen PE as stated in the hardware spec. Unfortunately,
1078 	 * that's not true on P7IOC. So we have to clear it manually
1079 	 * to avoid recursive EEH errors during recovery.
1080 	 */
1081 	phb = hose->private_data;
1082 	if (phb->model == PNV_PHB_MODEL_P7IOC &&
1083 	    (option == EEH_RESET_HOT ||
1084 	     option == EEH_RESET_FUNDAMENTAL)) {
1085 		rc = opal_pci_reset(phb->opal_id,
1086 				    OPAL_RESET_PHB_ERROR,
1087 				    OPAL_ASSERT_RESET);
1088 		if (rc != OPAL_SUCCESS) {
1089 			pr_warn("%s: Failure %lld clearing error injection registers\n",
1090 				__func__, rc);
1091 			return -EIO;
1092 		}
1093 	}
1094 
1095 	if (pe->type & EEH_PE_VF)
1096 		return pnv_eeh_reset_vf_pe(pe, option);
1097 
1098 	bus = eeh_pe_bus_get(pe);
1099 	if (!bus) {
1100 		pr_err("%s: Cannot find PCI bus for PHB#%d-PE#%x\n",
1101 			__func__, pe->phb->global_number, pe->addr);
1102 		return -EIO;
1103 	}
1104 
1105 	if (pci_is_root_bus(bus) ||
1106 	    pci_is_root_bus(bus->parent))
1107 		return pnv_eeh_root_reset(hose, option);
1108 
1109 	return pnv_eeh_bridge_reset(bus->self, option);
1110 }
1111 
1112 /**
1113  * pnv_eeh_wait_state - Wait for PE state
1114  * @pe: EEH PE
1115  * @max_wait: maximal period in millisecond
1116  *
1117  * Wait for the state of associated PE. It might take some time
1118  * to retrieve the PE's state.
1119  */
1120 static int pnv_eeh_wait_state(struct eeh_pe *pe, int max_wait)
1121 {
1122 	int ret;
1123 	int mwait;
1124 
1125 	while (1) {
1126 		ret = pnv_eeh_get_state(pe, &mwait);
1127 
1128 		/*
1129 		 * If the PE's state is temporarily unavailable,
1130 		 * we have to wait for the specified time. Otherwise,
1131 		 * the PE's state will be returned immediately.
1132 		 */
1133 		if (ret != EEH_STATE_UNAVAILABLE)
1134 			return ret;
1135 
1136 		if (max_wait <= 0) {
1137 			pr_warn("%s: Timeout getting PE#%x's state (%d)\n",
1138 				__func__, pe->addr, max_wait);
1139 			return EEH_STATE_NOT_SUPPORT;
1140 		}
1141 
1142 		max_wait -= mwait;
1143 		msleep(mwait);
1144 	}
1145 
1146 	return EEH_STATE_NOT_SUPPORT;
1147 }
1148 
1149 /**
1150  * pnv_eeh_get_log - Retrieve error log
1151  * @pe: EEH PE
1152  * @severity: temporary or permanent error log
1153  * @drv_log: driver log to be combined with retrieved error log
1154  * @len: length of driver log
1155  *
1156  * Retrieve the temporary or permanent error from the PE.
1157  */
1158 static int pnv_eeh_get_log(struct eeh_pe *pe, int severity,
1159 			   char *drv_log, unsigned long len)
1160 {
1161 	if (!eeh_has_flag(EEH_EARLY_DUMP_LOG))
1162 		pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
1163 
1164 	return 0;
1165 }
1166 
1167 /**
1168  * pnv_eeh_configure_bridge - Configure PCI bridges in the indicated PE
1169  * @pe: EEH PE
1170  *
1171  * The function will be called to reconfigure the bridges included
1172  * in the specified PE so that the mulfunctional PE would be recovered
1173  * again.
1174  */
1175 static int pnv_eeh_configure_bridge(struct eeh_pe *pe)
1176 {
1177 	return 0;
1178 }
1179 
1180 /**
1181  * pnv_pe_err_inject - Inject specified error to the indicated PE
1182  * @pe: the indicated PE
1183  * @type: error type
1184  * @func: specific error type
1185  * @addr: address
1186  * @mask: address mask
1187  *
1188  * The routine is called to inject specified error, which is
1189  * determined by @type and @func, to the indicated PE for
1190  * testing purpose.
1191  */
1192 static int pnv_eeh_err_inject(struct eeh_pe *pe, int type, int func,
1193 			      unsigned long addr, unsigned long mask)
1194 {
1195 	struct pci_controller *hose = pe->phb;
1196 	struct pnv_phb *phb = hose->private_data;
1197 	s64 rc;
1198 
1199 	if (type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR &&
1200 	    type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64) {
1201 		pr_warn("%s: Invalid error type %d\n",
1202 			__func__, type);
1203 		return -ERANGE;
1204 	}
1205 
1206 	if (func < OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_ADDR ||
1207 	    func > OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_TARGET) {
1208 		pr_warn("%s: Invalid error function %d\n",
1209 			__func__, func);
1210 		return -ERANGE;
1211 	}
1212 
1213 	/* Firmware supports error injection ? */
1214 	if (!opal_check_token(OPAL_PCI_ERR_INJECT)) {
1215 		pr_warn("%s: Firmware doesn't support error injection\n",
1216 			__func__);
1217 		return -ENXIO;
1218 	}
1219 
1220 	/* Do error injection */
1221 	rc = opal_pci_err_inject(phb->opal_id, pe->addr,
1222 				 type, func, addr, mask);
1223 	if (rc != OPAL_SUCCESS) {
1224 		pr_warn("%s: Failure %lld injecting error "
1225 			"%d-%d to PHB#%x-PE#%x\n",
1226 			__func__, rc, type, func,
1227 			hose->global_number, pe->addr);
1228 		return -EIO;
1229 	}
1230 
1231 	return 0;
1232 }
1233 
1234 static inline bool pnv_eeh_cfg_blocked(struct pci_dn *pdn)
1235 {
1236 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1237 
1238 	if (!edev || !edev->pe)
1239 		return false;
1240 
1241 	/*
1242 	 * We will issue FLR or AF FLR to all VFs, which are contained
1243 	 * in VF PE. It relies on the EEH PCI config accessors. So we
1244 	 * can't block them during the window.
1245 	 */
1246 	if (edev->physfn && (edev->pe->state & EEH_PE_RESET))
1247 		return false;
1248 
1249 	if (edev->pe->state & EEH_PE_CFG_BLOCKED)
1250 		return true;
1251 
1252 	return false;
1253 }
1254 
1255 static int pnv_eeh_read_config(struct pci_dn *pdn,
1256 			       int where, int size, u32 *val)
1257 {
1258 	if (!pdn)
1259 		return PCIBIOS_DEVICE_NOT_FOUND;
1260 
1261 	if (pnv_eeh_cfg_blocked(pdn)) {
1262 		*val = 0xFFFFFFFF;
1263 		return PCIBIOS_SET_FAILED;
1264 	}
1265 
1266 	return pnv_pci_cfg_read(pdn, where, size, val);
1267 }
1268 
1269 static int pnv_eeh_write_config(struct pci_dn *pdn,
1270 				int where, int size, u32 val)
1271 {
1272 	if (!pdn)
1273 		return PCIBIOS_DEVICE_NOT_FOUND;
1274 
1275 	if (pnv_eeh_cfg_blocked(pdn))
1276 		return PCIBIOS_SET_FAILED;
1277 
1278 	return pnv_pci_cfg_write(pdn, where, size, val);
1279 }
1280 
1281 static void pnv_eeh_dump_hub_diag_common(struct OpalIoP7IOCErrorData *data)
1282 {
1283 	/* GEM */
1284 	if (data->gemXfir || data->gemRfir ||
1285 	    data->gemRirqfir || data->gemMask || data->gemRwof)
1286 		pr_info("  GEM: %016llx %016llx %016llx %016llx %016llx\n",
1287 			be64_to_cpu(data->gemXfir),
1288 			be64_to_cpu(data->gemRfir),
1289 			be64_to_cpu(data->gemRirqfir),
1290 			be64_to_cpu(data->gemMask),
1291 			be64_to_cpu(data->gemRwof));
1292 
1293 	/* LEM */
1294 	if (data->lemFir || data->lemErrMask ||
1295 	    data->lemAction0 || data->lemAction1 || data->lemWof)
1296 		pr_info("  LEM: %016llx %016llx %016llx %016llx %016llx\n",
1297 			be64_to_cpu(data->lemFir),
1298 			be64_to_cpu(data->lemErrMask),
1299 			be64_to_cpu(data->lemAction0),
1300 			be64_to_cpu(data->lemAction1),
1301 			be64_to_cpu(data->lemWof));
1302 }
1303 
1304 static void pnv_eeh_get_and_dump_hub_diag(struct pci_controller *hose)
1305 {
1306 	struct pnv_phb *phb = hose->private_data;
1307 	struct OpalIoP7IOCErrorData *data = &phb->diag.hub_diag;
1308 	long rc;
1309 
1310 	rc = opal_pci_get_hub_diag_data(phb->hub_id, data, sizeof(*data));
1311 	if (rc != OPAL_SUCCESS) {
1312 		pr_warn("%s: Failed to get HUB#%llx diag-data (%ld)\n",
1313 			__func__, phb->hub_id, rc);
1314 		return;
1315 	}
1316 
1317 	switch (data->type) {
1318 	case OPAL_P7IOC_DIAG_TYPE_RGC:
1319 		pr_info("P7IOC diag-data for RGC\n\n");
1320 		pnv_eeh_dump_hub_diag_common(data);
1321 		if (data->rgc.rgcStatus || data->rgc.rgcLdcp)
1322 			pr_info("  RGC: %016llx %016llx\n",
1323 				be64_to_cpu(data->rgc.rgcStatus),
1324 				be64_to_cpu(data->rgc.rgcLdcp));
1325 		break;
1326 	case OPAL_P7IOC_DIAG_TYPE_BI:
1327 		pr_info("P7IOC diag-data for BI %s\n\n",
1328 			data->bi.biDownbound ? "Downbound" : "Upbound");
1329 		pnv_eeh_dump_hub_diag_common(data);
1330 		if (data->bi.biLdcp0 || data->bi.biLdcp1 ||
1331 		    data->bi.biLdcp2 || data->bi.biFenceStatus)
1332 			pr_info("  BI:  %016llx %016llx %016llx %016llx\n",
1333 				be64_to_cpu(data->bi.biLdcp0),
1334 				be64_to_cpu(data->bi.biLdcp1),
1335 				be64_to_cpu(data->bi.biLdcp2),
1336 				be64_to_cpu(data->bi.biFenceStatus));
1337 		break;
1338 	case OPAL_P7IOC_DIAG_TYPE_CI:
1339 		pr_info("P7IOC diag-data for CI Port %d\n\n",
1340 			data->ci.ciPort);
1341 		pnv_eeh_dump_hub_diag_common(data);
1342 		if (data->ci.ciPortStatus || data->ci.ciPortLdcp)
1343 			pr_info("  CI:  %016llx %016llx\n",
1344 				be64_to_cpu(data->ci.ciPortStatus),
1345 				be64_to_cpu(data->ci.ciPortLdcp));
1346 		break;
1347 	case OPAL_P7IOC_DIAG_TYPE_MISC:
1348 		pr_info("P7IOC diag-data for MISC\n\n");
1349 		pnv_eeh_dump_hub_diag_common(data);
1350 		break;
1351 	case OPAL_P7IOC_DIAG_TYPE_I2C:
1352 		pr_info("P7IOC diag-data for I2C\n\n");
1353 		pnv_eeh_dump_hub_diag_common(data);
1354 		break;
1355 	default:
1356 		pr_warn("%s: Invalid type of HUB#%llx diag-data (%d)\n",
1357 			__func__, phb->hub_id, data->type);
1358 	}
1359 }
1360 
1361 static int pnv_eeh_get_pe(struct pci_controller *hose,
1362 			  u16 pe_no, struct eeh_pe **pe)
1363 {
1364 	struct pnv_phb *phb = hose->private_data;
1365 	struct pnv_ioda_pe *pnv_pe;
1366 	struct eeh_pe *dev_pe;
1367 	struct eeh_dev edev;
1368 
1369 	/*
1370 	 * If PHB supports compound PE, to fetch
1371 	 * the master PE because slave PE is invisible
1372 	 * to EEH core.
1373 	 */
1374 	pnv_pe = &phb->ioda.pe_array[pe_no];
1375 	if (pnv_pe->flags & PNV_IODA_PE_SLAVE) {
1376 		pnv_pe = pnv_pe->master;
1377 		WARN_ON(!pnv_pe ||
1378 			!(pnv_pe->flags & PNV_IODA_PE_MASTER));
1379 		pe_no = pnv_pe->pe_number;
1380 	}
1381 
1382 	/* Find the PE according to PE# */
1383 	memset(&edev, 0, sizeof(struct eeh_dev));
1384 	edev.phb = hose;
1385 	edev.pe_config_addr = pe_no;
1386 	dev_pe = eeh_pe_get(&edev);
1387 	if (!dev_pe)
1388 		return -EEXIST;
1389 
1390 	/* Freeze the (compound) PE */
1391 	*pe = dev_pe;
1392 	if (!(dev_pe->state & EEH_PE_ISOLATED))
1393 		phb->freeze_pe(phb, pe_no);
1394 
1395 	/*
1396 	 * At this point, we're sure the (compound) PE should
1397 	 * have been frozen. However, we still need poke until
1398 	 * hitting the frozen PE on top level.
1399 	 */
1400 	dev_pe = dev_pe->parent;
1401 	while (dev_pe && !(dev_pe->type & EEH_PE_PHB)) {
1402 		int ret;
1403 		int active_flags = (EEH_STATE_MMIO_ACTIVE |
1404 				    EEH_STATE_DMA_ACTIVE);
1405 
1406 		ret = eeh_ops->get_state(dev_pe, NULL);
1407 		if (ret <= 0 || (ret & active_flags) == active_flags) {
1408 			dev_pe = dev_pe->parent;
1409 			continue;
1410 		}
1411 
1412 		/* Frozen parent PE */
1413 		*pe = dev_pe;
1414 		if (!(dev_pe->state & EEH_PE_ISOLATED))
1415 			phb->freeze_pe(phb, dev_pe->addr);
1416 
1417 		/* Next one */
1418 		dev_pe = dev_pe->parent;
1419 	}
1420 
1421 	return 0;
1422 }
1423 
1424 /**
1425  * pnv_eeh_next_error - Retrieve next EEH error to handle
1426  * @pe: Affected PE
1427  *
1428  * The function is expected to be called by EEH core while it gets
1429  * special EEH event (without binding PE). The function calls to
1430  * OPAL APIs for next error to handle. The informational error is
1431  * handled internally by platform. However, the dead IOC, dead PHB,
1432  * fenced PHB and frozen PE should be handled by EEH core eventually.
1433  */
1434 static int pnv_eeh_next_error(struct eeh_pe **pe)
1435 {
1436 	struct pci_controller *hose;
1437 	struct pnv_phb *phb;
1438 	struct eeh_pe *phb_pe, *parent_pe;
1439 	__be64 frozen_pe_no;
1440 	__be16 err_type, severity;
1441 	int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
1442 	long rc;
1443 	int state, ret = EEH_NEXT_ERR_NONE;
1444 
1445 	/*
1446 	 * While running here, it's safe to purge the event queue. The
1447 	 * event should still be masked.
1448 	 */
1449 	eeh_remove_event(NULL, false);
1450 
1451 	list_for_each_entry(hose, &hose_list, list_node) {
1452 		/*
1453 		 * If the subordinate PCI buses of the PHB has been
1454 		 * removed or is exactly under error recovery, we
1455 		 * needn't take care of it any more.
1456 		 */
1457 		phb = hose->private_data;
1458 		phb_pe = eeh_phb_pe_get(hose);
1459 		if (!phb_pe || (phb_pe->state & EEH_PE_ISOLATED))
1460 			continue;
1461 
1462 		rc = opal_pci_next_error(phb->opal_id,
1463 					 &frozen_pe_no, &err_type, &severity);
1464 		if (rc != OPAL_SUCCESS) {
1465 			pr_devel("%s: Invalid return value on "
1466 				 "PHB#%x (0x%lx) from opal_pci_next_error",
1467 				 __func__, hose->global_number, rc);
1468 			continue;
1469 		}
1470 
1471 		/* If the PHB doesn't have error, stop processing */
1472 		if (be16_to_cpu(err_type) == OPAL_EEH_NO_ERROR ||
1473 		    be16_to_cpu(severity) == OPAL_EEH_SEV_NO_ERROR) {
1474 			pr_devel("%s: No error found on PHB#%x\n",
1475 				 __func__, hose->global_number);
1476 			continue;
1477 		}
1478 
1479 		/*
1480 		 * Processing the error. We're expecting the error with
1481 		 * highest priority reported upon multiple errors on the
1482 		 * specific PHB.
1483 		 */
1484 		pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n",
1485 			__func__, be16_to_cpu(err_type),
1486 			be16_to_cpu(severity), be64_to_cpu(frozen_pe_no),
1487 			hose->global_number);
1488 		switch (be16_to_cpu(err_type)) {
1489 		case OPAL_EEH_IOC_ERROR:
1490 			if (be16_to_cpu(severity) == OPAL_EEH_SEV_IOC_DEAD) {
1491 				pr_err("EEH: dead IOC detected\n");
1492 				ret = EEH_NEXT_ERR_DEAD_IOC;
1493 			} else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
1494 				pr_info("EEH: IOC informative error "
1495 					"detected\n");
1496 				pnv_eeh_get_and_dump_hub_diag(hose);
1497 				ret = EEH_NEXT_ERR_NONE;
1498 			}
1499 
1500 			break;
1501 		case OPAL_EEH_PHB_ERROR:
1502 			if (be16_to_cpu(severity) == OPAL_EEH_SEV_PHB_DEAD) {
1503 				*pe = phb_pe;
1504 				pr_err("EEH: dead PHB#%x detected, "
1505 				       "location: %s\n",
1506 					hose->global_number,
1507 					eeh_pe_loc_get(phb_pe));
1508 				ret = EEH_NEXT_ERR_DEAD_PHB;
1509 			} else if (be16_to_cpu(severity) ==
1510 				   OPAL_EEH_SEV_PHB_FENCED) {
1511 				*pe = phb_pe;
1512 				pr_err("EEH: Fenced PHB#%x detected, "
1513 				       "location: %s\n",
1514 					hose->global_number,
1515 					eeh_pe_loc_get(phb_pe));
1516 				ret = EEH_NEXT_ERR_FENCED_PHB;
1517 			} else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
1518 				pr_info("EEH: PHB#%x informative error "
1519 					"detected, location: %s\n",
1520 					hose->global_number,
1521 					eeh_pe_loc_get(phb_pe));
1522 				pnv_eeh_get_phb_diag(phb_pe);
1523 				pnv_pci_dump_phb_diag_data(hose, phb_pe->data);
1524 				ret = EEH_NEXT_ERR_NONE;
1525 			}
1526 
1527 			break;
1528 		case OPAL_EEH_PE_ERROR:
1529 			/*
1530 			 * If we can't find the corresponding PE, we
1531 			 * just try to unfreeze.
1532 			 */
1533 			if (pnv_eeh_get_pe(hose,
1534 				be64_to_cpu(frozen_pe_no), pe)) {
1535 				pr_info("EEH: Clear non-existing PHB#%x-PE#%llx\n",
1536 					hose->global_number, be64_to_cpu(frozen_pe_no));
1537 				pr_info("EEH: PHB location: %s\n",
1538 					eeh_pe_loc_get(phb_pe));
1539 
1540 				/* Dump PHB diag-data */
1541 				rc = opal_pci_get_phb_diag_data2(phb->opal_id,
1542 					phb->diag.blob, PNV_PCI_DIAG_BUF_SIZE);
1543 				if (rc == OPAL_SUCCESS)
1544 					pnv_pci_dump_phb_diag_data(hose,
1545 							phb->diag.blob);
1546 
1547 				/* Try best to clear it */
1548 				opal_pci_eeh_freeze_clear(phb->opal_id,
1549 					frozen_pe_no,
1550 					OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
1551 				ret = EEH_NEXT_ERR_NONE;
1552 			} else if ((*pe)->state & EEH_PE_ISOLATED ||
1553 				   eeh_pe_passed(*pe)) {
1554 				ret = EEH_NEXT_ERR_NONE;
1555 			} else {
1556 				pr_err("EEH: Frozen PE#%x "
1557 				       "on PHB#%x detected\n",
1558 				       (*pe)->addr,
1559 					(*pe)->phb->global_number);
1560 				pr_err("EEH: PE location: %s, "
1561 				       "PHB location: %s\n",
1562 				       eeh_pe_loc_get(*pe),
1563 				       eeh_pe_loc_get(phb_pe));
1564 				ret = EEH_NEXT_ERR_FROZEN_PE;
1565 			}
1566 
1567 			break;
1568 		default:
1569 			pr_warn("%s: Unexpected error type %d\n",
1570 				__func__, be16_to_cpu(err_type));
1571 		}
1572 
1573 		/*
1574 		 * EEH core will try recover from fenced PHB or
1575 		 * frozen PE. In the time for frozen PE, EEH core
1576 		 * enable IO path for that before collecting logs,
1577 		 * but it ruins the site. So we have to dump the
1578 		 * log in advance here.
1579 		 */
1580 		if ((ret == EEH_NEXT_ERR_FROZEN_PE  ||
1581 		    ret == EEH_NEXT_ERR_FENCED_PHB) &&
1582 		    !((*pe)->state & EEH_PE_ISOLATED)) {
1583 			eeh_pe_state_mark(*pe, EEH_PE_ISOLATED);
1584 			pnv_eeh_get_phb_diag(*pe);
1585 
1586 			if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
1587 				pnv_pci_dump_phb_diag_data((*pe)->phb,
1588 							   (*pe)->data);
1589 		}
1590 
1591 		/*
1592 		 * We probably have the frozen parent PE out there and
1593 		 * we need have to handle frozen parent PE firstly.
1594 		 */
1595 		if (ret == EEH_NEXT_ERR_FROZEN_PE) {
1596 			parent_pe = (*pe)->parent;
1597 			while (parent_pe) {
1598 				/* Hit the ceiling ? */
1599 				if (parent_pe->type & EEH_PE_PHB)
1600 					break;
1601 
1602 				/* Frozen parent PE ? */
1603 				state = eeh_ops->get_state(parent_pe, NULL);
1604 				if (state > 0 &&
1605 				    (state & active_flags) != active_flags)
1606 					*pe = parent_pe;
1607 
1608 				/* Next parent level */
1609 				parent_pe = parent_pe->parent;
1610 			}
1611 
1612 			/* We possibly migrate to another PE */
1613 			eeh_pe_state_mark(*pe, EEH_PE_ISOLATED);
1614 		}
1615 
1616 		/*
1617 		 * If we have no errors on the specific PHB or only
1618 		 * informative error there, we continue poking it.
1619 		 * Otherwise, we need actions to be taken by upper
1620 		 * layer.
1621 		 */
1622 		if (ret > EEH_NEXT_ERR_INF)
1623 			break;
1624 	}
1625 
1626 	/* Unmask the event */
1627 	if (ret == EEH_NEXT_ERR_NONE && eeh_enabled())
1628 		enable_irq(eeh_event_irq);
1629 
1630 	return ret;
1631 }
1632 
1633 static int pnv_eeh_restore_vf_config(struct pci_dn *pdn)
1634 {
1635 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1636 	u32 devctl, cmd, cap2, aer_capctl;
1637 	int old_mps;
1638 
1639 	if (edev->pcie_cap) {
1640 		/* Restore MPS */
1641 		old_mps = (ffs(pdn->mps) - 8) << 5;
1642 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
1643 				     2, &devctl);
1644 		devctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
1645 		devctl |= old_mps;
1646 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
1647 				      2, devctl);
1648 
1649 		/* Disable Completion Timeout */
1650 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP2,
1651 				     4, &cap2);
1652 		if (cap2 & 0x10) {
1653 			eeh_ops->read_config(pdn,
1654 					     edev->pcie_cap + PCI_EXP_DEVCTL2,
1655 					     4, &cap2);
1656 			cap2 |= 0x10;
1657 			eeh_ops->write_config(pdn,
1658 					      edev->pcie_cap + PCI_EXP_DEVCTL2,
1659 					      4, cap2);
1660 		}
1661 	}
1662 
1663 	/* Enable SERR and parity checking */
1664 	eeh_ops->read_config(pdn, PCI_COMMAND, 2, &cmd);
1665 	cmd |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR);
1666 	eeh_ops->write_config(pdn, PCI_COMMAND, 2, cmd);
1667 
1668 	/* Enable report various errors */
1669 	if (edev->pcie_cap) {
1670 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
1671 				     2, &devctl);
1672 		devctl &= ~PCI_EXP_DEVCTL_CERE;
1673 		devctl |= (PCI_EXP_DEVCTL_NFERE |
1674 			   PCI_EXP_DEVCTL_FERE |
1675 			   PCI_EXP_DEVCTL_URRE);
1676 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
1677 				      2, devctl);
1678 	}
1679 
1680 	/* Enable ECRC generation and check */
1681 	if (edev->pcie_cap && edev->aer_cap) {
1682 		eeh_ops->read_config(pdn, edev->aer_cap + PCI_ERR_CAP,
1683 				     4, &aer_capctl);
1684 		aer_capctl |= (PCI_ERR_CAP_ECRC_GENE | PCI_ERR_CAP_ECRC_CHKE);
1685 		eeh_ops->write_config(pdn, edev->aer_cap + PCI_ERR_CAP,
1686 				      4, aer_capctl);
1687 	}
1688 
1689 	return 0;
1690 }
1691 
1692 static int pnv_eeh_restore_config(struct pci_dn *pdn)
1693 {
1694 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1695 	struct pnv_phb *phb;
1696 	s64 ret;
1697 
1698 	if (!edev)
1699 		return -EEXIST;
1700 
1701 	/*
1702 	 * We have to restore the PCI config space after reset since the
1703 	 * firmware can't see SRIOV VFs.
1704 	 *
1705 	 * FIXME: The MPS, error routing rules, timeout setting are worthy
1706 	 * to be exported by firmware in extendible way.
1707 	 */
1708 	if (edev->physfn) {
1709 		ret = pnv_eeh_restore_vf_config(pdn);
1710 	} else {
1711 		phb = edev->phb->private_data;
1712 		ret = opal_pci_reinit(phb->opal_id,
1713 				      OPAL_REINIT_PCI_DEV, edev->config_addr);
1714 	}
1715 
1716 	if (ret) {
1717 		pr_warn("%s: Can't reinit PCI dev 0x%x (%lld)\n",
1718 			__func__, edev->config_addr, ret);
1719 		return -EIO;
1720 	}
1721 
1722 	return 0;
1723 }
1724 
1725 static struct eeh_ops pnv_eeh_ops = {
1726 	.name                   = "powernv",
1727 	.init                   = pnv_eeh_init,
1728 	.post_init              = pnv_eeh_post_init,
1729 	.probe			= pnv_eeh_probe,
1730 	.set_option             = pnv_eeh_set_option,
1731 	.get_pe_addr            = pnv_eeh_get_pe_addr,
1732 	.get_state              = pnv_eeh_get_state,
1733 	.reset                  = pnv_eeh_reset,
1734 	.wait_state             = pnv_eeh_wait_state,
1735 	.get_log                = pnv_eeh_get_log,
1736 	.configure_bridge       = pnv_eeh_configure_bridge,
1737 	.err_inject		= pnv_eeh_err_inject,
1738 	.read_config            = pnv_eeh_read_config,
1739 	.write_config           = pnv_eeh_write_config,
1740 	.next_error		= pnv_eeh_next_error,
1741 	.restore_config		= pnv_eeh_restore_config
1742 };
1743 
1744 void pcibios_bus_add_device(struct pci_dev *pdev)
1745 {
1746 	struct pci_dn *pdn = pci_get_pdn(pdev);
1747 
1748 	if (!pdev->is_virtfn)
1749 		return;
1750 
1751 	/*
1752 	 * The following operations will fail if VF's sysfs files
1753 	 * aren't created or its resources aren't finalized.
1754 	 */
1755 	eeh_add_device_early(pdn);
1756 	eeh_add_device_late(pdev);
1757 	eeh_sysfs_add_device(pdev);
1758 }
1759 
1760 #ifdef CONFIG_PCI_IOV
1761 static void pnv_pci_fixup_vf_mps(struct pci_dev *pdev)
1762 {
1763 	struct pci_dn *pdn = pci_get_pdn(pdev);
1764 	int parent_mps;
1765 
1766 	if (!pdev->is_virtfn)
1767 		return;
1768 
1769 	/* Synchronize MPS for VF and PF */
1770 	parent_mps = pcie_get_mps(pdev->physfn);
1771 	if ((128 << pdev->pcie_mpss) >= parent_mps)
1772 		pcie_set_mps(pdev, parent_mps);
1773 	pdn->mps = pcie_get_mps(pdev);
1774 }
1775 DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pnv_pci_fixup_vf_mps);
1776 #endif /* CONFIG_PCI_IOV */
1777 
1778 /**
1779  * eeh_powernv_init - Register platform dependent EEH operations
1780  *
1781  * EEH initialization on powernv platform. This function should be
1782  * called before any EEH related functions.
1783  */
1784 static int __init eeh_powernv_init(void)
1785 {
1786 	int ret = -EINVAL;
1787 
1788 	eeh_set_pe_aux_size(PNV_PCI_DIAG_BUF_SIZE);
1789 	ret = eeh_ops_register(&pnv_eeh_ops);
1790 	if (!ret)
1791 		pr_info("EEH: PowerNV platform initialized\n");
1792 	else
1793 		pr_info("EEH: Failed to initialize PowerNV platform (%d)\n", ret);
1794 
1795 	return ret;
1796 }
1797 machine_early_initcall(powernv, eeh_powernv_init);
1798