1 /*
2  * The file intends to implement the platform dependent EEH operations on
3  * powernv platform. Actually, the powernv was created in order to fully
4  * hypervisor support.
5  *
6  * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/atomic.h>
15 #include <linux/debugfs.h>
16 #include <linux/delay.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/list.h>
21 #include <linux/msi.h>
22 #include <linux/of.h>
23 #include <linux/pci.h>
24 #include <linux/proc_fs.h>
25 #include <linux/rbtree.h>
26 #include <linux/sched.h>
27 #include <linux/seq_file.h>
28 #include <linux/spinlock.h>
29 
30 #include <asm/eeh.h>
31 #include <asm/eeh_event.h>
32 #include <asm/firmware.h>
33 #include <asm/io.h>
34 #include <asm/iommu.h>
35 #include <asm/machdep.h>
36 #include <asm/msi_bitmap.h>
37 #include <asm/opal.h>
38 #include <asm/ppc-pci.h>
39 #include <asm/pnv-pci.h>
40 
41 #include "powernv.h"
42 #include "pci.h"
43 
44 static bool pnv_eeh_nb_init = false;
45 static int eeh_event_irq = -EINVAL;
46 
47 static int pnv_eeh_init(void)
48 {
49 	struct pci_controller *hose;
50 	struct pnv_phb *phb;
51 
52 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
53 		pr_warn("%s: OPAL is required !\n",
54 			__func__);
55 		return -EINVAL;
56 	}
57 
58 	/* Set probe mode */
59 	eeh_add_flag(EEH_PROBE_MODE_DEV);
60 
61 	/*
62 	 * P7IOC blocks PCI config access to frozen PE, but PHB3
63 	 * doesn't do that. So we have to selectively enable I/O
64 	 * prior to collecting error log.
65 	 */
66 	list_for_each_entry(hose, &hose_list, list_node) {
67 		phb = hose->private_data;
68 
69 		if (phb->model == PNV_PHB_MODEL_P7IOC)
70 			eeh_add_flag(EEH_ENABLE_IO_FOR_LOG);
71 
72 		/*
73 		 * PE#0 should be regarded as valid by EEH core
74 		 * if it's not the reserved one. Currently, we
75 		 * have the reserved PE#255 and PE#127 for PHB3
76 		 * and P7IOC separately. So we should regard
77 		 * PE#0 as valid for PHB3 and P7IOC.
78 		 */
79 		if (phb->ioda.reserved_pe_idx != 0)
80 			eeh_add_flag(EEH_VALID_PE_ZERO);
81 
82 		break;
83 	}
84 
85 	return 0;
86 }
87 
88 static irqreturn_t pnv_eeh_event(int irq, void *data)
89 {
90 	/*
91 	 * We simply send a special EEH event if EEH has been
92 	 * enabled. We don't care about EEH events until we've
93 	 * finished processing the outstanding ones. Event processing
94 	 * gets unmasked in next_error() if EEH is enabled.
95 	 */
96 	disable_irq_nosync(irq);
97 
98 	if (eeh_enabled())
99 		eeh_send_failure_event(NULL);
100 
101 	return IRQ_HANDLED;
102 }
103 
104 #ifdef CONFIG_DEBUG_FS
105 static ssize_t pnv_eeh_ei_write(struct file *filp,
106 				const char __user *user_buf,
107 				size_t count, loff_t *ppos)
108 {
109 	struct pci_controller *hose = filp->private_data;
110 	struct eeh_dev *edev;
111 	struct eeh_pe *pe;
112 	int pe_no, type, func;
113 	unsigned long addr, mask;
114 	char buf[50];
115 	int ret;
116 
117 	if (!eeh_ops || !eeh_ops->err_inject)
118 		return -ENXIO;
119 
120 	/* Copy over argument buffer */
121 	ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
122 	if (!ret)
123 		return -EFAULT;
124 
125 	/* Retrieve parameters */
126 	ret = sscanf(buf, "%x:%x:%x:%lx:%lx",
127 		     &pe_no, &type, &func, &addr, &mask);
128 	if (ret != 5)
129 		return -EINVAL;
130 
131 	/* Retrieve PE */
132 	edev = kzalloc(sizeof(*edev), GFP_KERNEL);
133 	if (!edev)
134 		return -ENOMEM;
135 	edev->phb = hose;
136 	edev->pe_config_addr = pe_no;
137 	pe = eeh_pe_get(edev);
138 	kfree(edev);
139 	if (!pe)
140 		return -ENODEV;
141 
142 	/* Do error injection */
143 	ret = eeh_ops->err_inject(pe, type, func, addr, mask);
144 	return ret < 0 ? ret : count;
145 }
146 
147 static const struct file_operations pnv_eeh_ei_fops = {
148 	.open	= simple_open,
149 	.llseek	= no_llseek,
150 	.write	= pnv_eeh_ei_write,
151 };
152 
153 static int pnv_eeh_dbgfs_set(void *data, int offset, u64 val)
154 {
155 	struct pci_controller *hose = data;
156 	struct pnv_phb *phb = hose->private_data;
157 
158 	out_be64(phb->regs + offset, val);
159 	return 0;
160 }
161 
162 static int pnv_eeh_dbgfs_get(void *data, int offset, u64 *val)
163 {
164 	struct pci_controller *hose = data;
165 	struct pnv_phb *phb = hose->private_data;
166 
167 	*val = in_be64(phb->regs + offset);
168 	return 0;
169 }
170 
171 #define PNV_EEH_DBGFS_ENTRY(name, reg)				\
172 static int pnv_eeh_dbgfs_set_##name(void *data, u64 val)	\
173 {								\
174 	return pnv_eeh_dbgfs_set(data, reg, val);		\
175 }								\
176 								\
177 static int pnv_eeh_dbgfs_get_##name(void *data, u64 *val)	\
178 {								\
179 	return pnv_eeh_dbgfs_get(data, reg, val);		\
180 }								\
181 								\
182 DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_dbgfs_ops_##name,		\
183 			pnv_eeh_dbgfs_get_##name,		\
184                         pnv_eeh_dbgfs_set_##name,		\
185 			"0x%llx\n")
186 
187 PNV_EEH_DBGFS_ENTRY(outb, 0xD10);
188 PNV_EEH_DBGFS_ENTRY(inbA, 0xD90);
189 PNV_EEH_DBGFS_ENTRY(inbB, 0xE10);
190 
191 #endif /* CONFIG_DEBUG_FS */
192 
193 /**
194  * pnv_eeh_post_init - EEH platform dependent post initialization
195  *
196  * EEH platform dependent post initialization on powernv. When
197  * the function is called, the EEH PEs and devices should have
198  * been built. If the I/O cache staff has been built, EEH is
199  * ready to supply service.
200  */
201 static int pnv_eeh_post_init(void)
202 {
203 	struct pci_controller *hose;
204 	struct pnv_phb *phb;
205 	int ret = 0;
206 
207 	/* Register OPAL event notifier */
208 	if (!pnv_eeh_nb_init) {
209 		eeh_event_irq = opal_event_request(ilog2(OPAL_EVENT_PCI_ERROR));
210 		if (eeh_event_irq < 0) {
211 			pr_err("%s: Can't register OPAL event interrupt (%d)\n",
212 			       __func__, eeh_event_irq);
213 			return eeh_event_irq;
214 		}
215 
216 		ret = request_irq(eeh_event_irq, pnv_eeh_event,
217 				IRQ_TYPE_LEVEL_HIGH, "opal-eeh", NULL);
218 		if (ret < 0) {
219 			irq_dispose_mapping(eeh_event_irq);
220 			pr_err("%s: Can't request OPAL event interrupt (%d)\n",
221 			       __func__, eeh_event_irq);
222 			return ret;
223 		}
224 
225 		pnv_eeh_nb_init = true;
226 	}
227 
228 	if (!eeh_enabled())
229 		disable_irq(eeh_event_irq);
230 
231 	list_for_each_entry(hose, &hose_list, list_node) {
232 		phb = hose->private_data;
233 
234 		/*
235 		 * If EEH is enabled, we're going to rely on that.
236 		 * Otherwise, we restore to conventional mechanism
237 		 * to clear frozen PE during PCI config access.
238 		 */
239 		if (eeh_enabled())
240 			phb->flags |= PNV_PHB_FLAG_EEH;
241 		else
242 			phb->flags &= ~PNV_PHB_FLAG_EEH;
243 
244 		/* Create debugfs entries */
245 #ifdef CONFIG_DEBUG_FS
246 		if (phb->has_dbgfs || !phb->dbgfs)
247 			continue;
248 
249 		phb->has_dbgfs = 1;
250 		debugfs_create_file("err_injct", 0200,
251 				    phb->dbgfs, hose,
252 				    &pnv_eeh_ei_fops);
253 
254 		debugfs_create_file("err_injct_outbound", 0600,
255 				    phb->dbgfs, hose,
256 				    &pnv_eeh_dbgfs_ops_outb);
257 		debugfs_create_file("err_injct_inboundA", 0600,
258 				    phb->dbgfs, hose,
259 				    &pnv_eeh_dbgfs_ops_inbA);
260 		debugfs_create_file("err_injct_inboundB", 0600,
261 				    phb->dbgfs, hose,
262 				    &pnv_eeh_dbgfs_ops_inbB);
263 #endif /* CONFIG_DEBUG_FS */
264 	}
265 
266 	return ret;
267 }
268 
269 static int pnv_eeh_find_cap(struct pci_dn *pdn, int cap)
270 {
271 	int pos = PCI_CAPABILITY_LIST;
272 	int cnt = 48;   /* Maximal number of capabilities */
273 	u32 status, id;
274 
275 	if (!pdn)
276 		return 0;
277 
278 	/* Check if the device supports capabilities */
279 	pnv_pci_cfg_read(pdn, PCI_STATUS, 2, &status);
280 	if (!(status & PCI_STATUS_CAP_LIST))
281 		return 0;
282 
283 	while (cnt--) {
284 		pnv_pci_cfg_read(pdn, pos, 1, &pos);
285 		if (pos < 0x40)
286 			break;
287 
288 		pos &= ~3;
289 		pnv_pci_cfg_read(pdn, pos + PCI_CAP_LIST_ID, 1, &id);
290 		if (id == 0xff)
291 			break;
292 
293 		/* Found */
294 		if (id == cap)
295 			return pos;
296 
297 		/* Next one */
298 		pos += PCI_CAP_LIST_NEXT;
299 	}
300 
301 	return 0;
302 }
303 
304 static int pnv_eeh_find_ecap(struct pci_dn *pdn, int cap)
305 {
306 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
307 	u32 header;
308 	int pos = 256, ttl = (4096 - 256) / 8;
309 
310 	if (!edev || !edev->pcie_cap)
311 		return 0;
312 	if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
313 		return 0;
314 	else if (!header)
315 		return 0;
316 
317 	while (ttl-- > 0) {
318 		if (PCI_EXT_CAP_ID(header) == cap && pos)
319 			return pos;
320 
321 		pos = PCI_EXT_CAP_NEXT(header);
322 		if (pos < 256)
323 			break;
324 
325 		if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
326 			break;
327 	}
328 
329 	return 0;
330 }
331 
332 /**
333  * pnv_eeh_probe - Do probe on PCI device
334  * @pdn: PCI device node
335  * @data: unused
336  *
337  * When EEH module is installed during system boot, all PCI devices
338  * are checked one by one to see if it supports EEH. The function
339  * is introduced for the purpose. By default, EEH has been enabled
340  * on all PCI devices. That's to say, we only need do necessary
341  * initialization on the corresponding eeh device and create PE
342  * accordingly.
343  *
344  * It's notable that's unsafe to retrieve the EEH device through
345  * the corresponding PCI device. During the PCI device hotplug, which
346  * was possiblly triggered by EEH core, the binding between EEH device
347  * and the PCI device isn't built yet.
348  */
349 static void *pnv_eeh_probe(struct pci_dn *pdn, void *data)
350 {
351 	struct pci_controller *hose = pdn->phb;
352 	struct pnv_phb *phb = hose->private_data;
353 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
354 	uint32_t pcie_flags;
355 	int ret;
356 
357 	/*
358 	 * When probing the root bridge, which doesn't have any
359 	 * subordinate PCI devices. We don't have OF node for
360 	 * the root bridge. So it's not reasonable to continue
361 	 * the probing.
362 	 */
363 	if (!edev || edev->pe)
364 		return NULL;
365 
366 	/* Skip for PCI-ISA bridge */
367 	if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_ISA)
368 		return NULL;
369 
370 	/* Initialize eeh device */
371 	edev->class_code = pdn->class_code;
372 	edev->mode	&= 0xFFFFFF00;
373 	edev->pcix_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_PCIX);
374 	edev->pcie_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_EXP);
375 	edev->af_cap   = pnv_eeh_find_cap(pdn, PCI_CAP_ID_AF);
376 	edev->aer_cap  = pnv_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR);
377 	if ((edev->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) {
378 		edev->mode |= EEH_DEV_BRIDGE;
379 		if (edev->pcie_cap) {
380 			pnv_pci_cfg_read(pdn, edev->pcie_cap + PCI_EXP_FLAGS,
381 					 2, &pcie_flags);
382 			pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4;
383 			if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT)
384 				edev->mode |= EEH_DEV_ROOT_PORT;
385 			else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM)
386 				edev->mode |= EEH_DEV_DS_PORT;
387 		}
388 	}
389 
390 	edev->config_addr    = (pdn->busno << 8) | (pdn->devfn);
391 	edev->pe_config_addr = phb->ioda.pe_rmap[edev->config_addr];
392 
393 	/* Create PE */
394 	ret = eeh_add_to_parent_pe(edev);
395 	if (ret) {
396 		pr_warn("%s: Can't add PCI dev %04x:%02x:%02x.%01x to parent PE (%x)\n",
397 			__func__, hose->global_number, pdn->busno,
398 			PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn), ret);
399 		return NULL;
400 	}
401 
402 	/*
403 	 * If the PE contains any one of following adapters, the
404 	 * PCI config space can't be accessed when dumping EEH log.
405 	 * Otherwise, we will run into fenced PHB caused by shortage
406 	 * of outbound credits in the adapter. The PCI config access
407 	 * should be blocked until PE reset. MMIO access is dropped
408 	 * by hardware certainly. In order to drop PCI config requests,
409 	 * one more flag (EEH_PE_CFG_RESTRICTED) is introduced, which
410 	 * will be checked in the backend for PE state retrival. If
411 	 * the PE becomes frozen for the first time and the flag has
412 	 * been set for the PE, we will set EEH_PE_CFG_BLOCKED for
413 	 * that PE to block its config space.
414 	 *
415 	 * Broadcom BCM5718 2-ports NICs (14e4:1656)
416 	 * Broadcom Austin 4-ports NICs (14e4:1657)
417 	 * Broadcom Shiner 4-ports 1G NICs (14e4:168a)
418 	 * Broadcom Shiner 2-ports 10G NICs (14e4:168e)
419 	 */
420 	if ((pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
421 	     pdn->device_id == 0x1656) ||
422 	    (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
423 	     pdn->device_id == 0x1657) ||
424 	    (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
425 	     pdn->device_id == 0x168a) ||
426 	    (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
427 	     pdn->device_id == 0x168e))
428 		edev->pe->state |= EEH_PE_CFG_RESTRICTED;
429 
430 	/*
431 	 * Cache the PE primary bus, which can't be fetched when
432 	 * full hotplug is in progress. In that case, all child
433 	 * PCI devices of the PE are expected to be removed prior
434 	 * to PE reset.
435 	 */
436 	if (!(edev->pe->state & EEH_PE_PRI_BUS)) {
437 		edev->pe->bus = pci_find_bus(hose->global_number,
438 					     pdn->busno);
439 		if (edev->pe->bus)
440 			edev->pe->state |= EEH_PE_PRI_BUS;
441 	}
442 
443 	/*
444 	 * Enable EEH explicitly so that we will do EEH check
445 	 * while accessing I/O stuff
446 	 */
447 	eeh_add_flag(EEH_ENABLED);
448 
449 	/* Save memory bars */
450 	eeh_save_bars(edev);
451 
452 	return NULL;
453 }
454 
455 /**
456  * pnv_eeh_set_option - Initialize EEH or MMIO/DMA reenable
457  * @pe: EEH PE
458  * @option: operation to be issued
459  *
460  * The function is used to control the EEH functionality globally.
461  * Currently, following options are support according to PAPR:
462  * Enable EEH, Disable EEH, Enable MMIO and Enable DMA
463  */
464 static int pnv_eeh_set_option(struct eeh_pe *pe, int option)
465 {
466 	struct pci_controller *hose = pe->phb;
467 	struct pnv_phb *phb = hose->private_data;
468 	bool freeze_pe = false;
469 	int opt;
470 	s64 rc;
471 
472 	switch (option) {
473 	case EEH_OPT_DISABLE:
474 		return -EPERM;
475 	case EEH_OPT_ENABLE:
476 		return 0;
477 	case EEH_OPT_THAW_MMIO:
478 		opt = OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO;
479 		break;
480 	case EEH_OPT_THAW_DMA:
481 		opt = OPAL_EEH_ACTION_CLEAR_FREEZE_DMA;
482 		break;
483 	case EEH_OPT_FREEZE_PE:
484 		freeze_pe = true;
485 		opt = OPAL_EEH_ACTION_SET_FREEZE_ALL;
486 		break;
487 	default:
488 		pr_warn("%s: Invalid option %d\n", __func__, option);
489 		return -EINVAL;
490 	}
491 
492 	/* Freeze master and slave PEs if PHB supports compound PEs */
493 	if (freeze_pe) {
494 		if (phb->freeze_pe) {
495 			phb->freeze_pe(phb, pe->addr);
496 			return 0;
497 		}
498 
499 		rc = opal_pci_eeh_freeze_set(phb->opal_id, pe->addr, opt);
500 		if (rc != OPAL_SUCCESS) {
501 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
502 				__func__, rc, phb->hose->global_number,
503 				pe->addr);
504 			return -EIO;
505 		}
506 
507 		return 0;
508 	}
509 
510 	/* Unfreeze master and slave PEs if PHB supports */
511 	if (phb->unfreeze_pe)
512 		return phb->unfreeze_pe(phb, pe->addr, opt);
513 
514 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe->addr, opt);
515 	if (rc != OPAL_SUCCESS) {
516 		pr_warn("%s: Failure %lld enable %d for PHB#%x-PE#%x\n",
517 			__func__, rc, option, phb->hose->global_number,
518 			pe->addr);
519 		return -EIO;
520 	}
521 
522 	return 0;
523 }
524 
525 /**
526  * pnv_eeh_get_pe_addr - Retrieve PE address
527  * @pe: EEH PE
528  *
529  * Retrieve the PE address according to the given tranditional
530  * PCI BDF (Bus/Device/Function) address.
531  */
532 static int pnv_eeh_get_pe_addr(struct eeh_pe *pe)
533 {
534 	return pe->addr;
535 }
536 
537 static void pnv_eeh_get_phb_diag(struct eeh_pe *pe)
538 {
539 	struct pnv_phb *phb = pe->phb->private_data;
540 	s64 rc;
541 
542 	rc = opal_pci_get_phb_diag_data2(phb->opal_id, pe->data,
543 					 PNV_PCI_DIAG_BUF_SIZE);
544 	if (rc != OPAL_SUCCESS)
545 		pr_warn("%s: Failure %lld getting PHB#%x diag-data\n",
546 			__func__, rc, pe->phb->global_number);
547 }
548 
549 static int pnv_eeh_get_phb_state(struct eeh_pe *pe)
550 {
551 	struct pnv_phb *phb = pe->phb->private_data;
552 	u8 fstate;
553 	__be16 pcierr;
554 	s64 rc;
555 	int result = 0;
556 
557 	rc = opal_pci_eeh_freeze_status(phb->opal_id,
558 					pe->addr,
559 					&fstate,
560 					&pcierr,
561 					NULL);
562 	if (rc != OPAL_SUCCESS) {
563 		pr_warn("%s: Failure %lld getting PHB#%x state\n",
564 			__func__, rc, phb->hose->global_number);
565 		return EEH_STATE_NOT_SUPPORT;
566 	}
567 
568 	/*
569 	 * Check PHB state. If the PHB is frozen for the
570 	 * first time, to dump the PHB diag-data.
571 	 */
572 	if (be16_to_cpu(pcierr) != OPAL_EEH_PHB_ERROR) {
573 		result = (EEH_STATE_MMIO_ACTIVE  |
574 			  EEH_STATE_DMA_ACTIVE   |
575 			  EEH_STATE_MMIO_ENABLED |
576 			  EEH_STATE_DMA_ENABLED);
577 	} else if (!(pe->state & EEH_PE_ISOLATED)) {
578 		eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
579 		pnv_eeh_get_phb_diag(pe);
580 
581 		if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
582 			pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
583 	}
584 
585 	return result;
586 }
587 
588 static int pnv_eeh_get_pe_state(struct eeh_pe *pe)
589 {
590 	struct pnv_phb *phb = pe->phb->private_data;
591 	u8 fstate;
592 	__be16 pcierr;
593 	s64 rc;
594 	int result;
595 
596 	/*
597 	 * We don't clobber hardware frozen state until PE
598 	 * reset is completed. In order to keep EEH core
599 	 * moving forward, we have to return operational
600 	 * state during PE reset.
601 	 */
602 	if (pe->state & EEH_PE_RESET) {
603 		result = (EEH_STATE_MMIO_ACTIVE  |
604 			  EEH_STATE_DMA_ACTIVE   |
605 			  EEH_STATE_MMIO_ENABLED |
606 			  EEH_STATE_DMA_ENABLED);
607 		return result;
608 	}
609 
610 	/*
611 	 * Fetch PE state from hardware. If the PHB
612 	 * supports compound PE, let it handle that.
613 	 */
614 	if (phb->get_pe_state) {
615 		fstate = phb->get_pe_state(phb, pe->addr);
616 	} else {
617 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
618 						pe->addr,
619 						&fstate,
620 						&pcierr,
621 						NULL);
622 		if (rc != OPAL_SUCCESS) {
623 			pr_warn("%s: Failure %lld getting PHB#%x-PE%x state\n",
624 				__func__, rc, phb->hose->global_number,
625 				pe->addr);
626 			return EEH_STATE_NOT_SUPPORT;
627 		}
628 	}
629 
630 	/* Figure out state */
631 	switch (fstate) {
632 	case OPAL_EEH_STOPPED_NOT_FROZEN:
633 		result = (EEH_STATE_MMIO_ACTIVE  |
634 			  EEH_STATE_DMA_ACTIVE   |
635 			  EEH_STATE_MMIO_ENABLED |
636 			  EEH_STATE_DMA_ENABLED);
637 		break;
638 	case OPAL_EEH_STOPPED_MMIO_FREEZE:
639 		result = (EEH_STATE_DMA_ACTIVE |
640 			  EEH_STATE_DMA_ENABLED);
641 		break;
642 	case OPAL_EEH_STOPPED_DMA_FREEZE:
643 		result = (EEH_STATE_MMIO_ACTIVE |
644 			  EEH_STATE_MMIO_ENABLED);
645 		break;
646 	case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE:
647 		result = 0;
648 		break;
649 	case OPAL_EEH_STOPPED_RESET:
650 		result = EEH_STATE_RESET_ACTIVE;
651 		break;
652 	case OPAL_EEH_STOPPED_TEMP_UNAVAIL:
653 		result = EEH_STATE_UNAVAILABLE;
654 		break;
655 	case OPAL_EEH_STOPPED_PERM_UNAVAIL:
656 		result = EEH_STATE_NOT_SUPPORT;
657 		break;
658 	default:
659 		result = EEH_STATE_NOT_SUPPORT;
660 		pr_warn("%s: Invalid PHB#%x-PE#%x state %x\n",
661 			__func__, phb->hose->global_number,
662 			pe->addr, fstate);
663 	}
664 
665 	/*
666 	 * If PHB supports compound PE, to freeze all
667 	 * slave PEs for consistency.
668 	 *
669 	 * If the PE is switching to frozen state for the
670 	 * first time, to dump the PHB diag-data.
671 	 */
672 	if (!(result & EEH_STATE_NOT_SUPPORT) &&
673 	    !(result & EEH_STATE_UNAVAILABLE) &&
674 	    !(result & EEH_STATE_MMIO_ACTIVE) &&
675 	    !(result & EEH_STATE_DMA_ACTIVE)  &&
676 	    !(pe->state & EEH_PE_ISOLATED)) {
677 		if (phb->freeze_pe)
678 			phb->freeze_pe(phb, pe->addr);
679 
680 		eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
681 		pnv_eeh_get_phb_diag(pe);
682 
683 		if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
684 			pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
685 	}
686 
687 	return result;
688 }
689 
690 /**
691  * pnv_eeh_get_state - Retrieve PE state
692  * @pe: EEH PE
693  * @delay: delay while PE state is temporarily unavailable
694  *
695  * Retrieve the state of the specified PE. For IODA-compitable
696  * platform, it should be retrieved from IODA table. Therefore,
697  * we prefer passing down to hardware implementation to handle
698  * it.
699  */
700 static int pnv_eeh_get_state(struct eeh_pe *pe, int *delay)
701 {
702 	int ret;
703 
704 	if (pe->type & EEH_PE_PHB)
705 		ret = pnv_eeh_get_phb_state(pe);
706 	else
707 		ret = pnv_eeh_get_pe_state(pe);
708 
709 	if (!delay)
710 		return ret;
711 
712 	/*
713 	 * If the PE state is temporarily unavailable,
714 	 * to inform the EEH core delay for default
715 	 * period (1 second)
716 	 */
717 	*delay = 0;
718 	if (ret & EEH_STATE_UNAVAILABLE)
719 		*delay = 1000;
720 
721 	return ret;
722 }
723 
724 static s64 pnv_eeh_poll(unsigned long id)
725 {
726 	s64 rc = OPAL_HARDWARE;
727 
728 	while (1) {
729 		rc = opal_pci_poll(id);
730 		if (rc <= 0)
731 			break;
732 
733 		if (system_state < SYSTEM_RUNNING)
734 			udelay(1000 * rc);
735 		else
736 			msleep(rc);
737 	}
738 
739 	return rc;
740 }
741 
742 int pnv_eeh_phb_reset(struct pci_controller *hose, int option)
743 {
744 	struct pnv_phb *phb = hose->private_data;
745 	s64 rc = OPAL_HARDWARE;
746 
747 	pr_debug("%s: Reset PHB#%x, option=%d\n",
748 		 __func__, hose->global_number, option);
749 
750 	/* Issue PHB complete reset request */
751 	if (option == EEH_RESET_FUNDAMENTAL ||
752 	    option == EEH_RESET_HOT)
753 		rc = opal_pci_reset(phb->opal_id,
754 				    OPAL_RESET_PHB_COMPLETE,
755 				    OPAL_ASSERT_RESET);
756 	else if (option == EEH_RESET_DEACTIVATE)
757 		rc = opal_pci_reset(phb->opal_id,
758 				    OPAL_RESET_PHB_COMPLETE,
759 				    OPAL_DEASSERT_RESET);
760 	if (rc < 0)
761 		goto out;
762 
763 	/*
764 	 * Poll state of the PHB until the request is done
765 	 * successfully. The PHB reset is usually PHB complete
766 	 * reset followed by hot reset on root bus. So we also
767 	 * need the PCI bus settlement delay.
768 	 */
769 	if (rc > 0)
770 		rc = pnv_eeh_poll(phb->opal_id);
771 	if (option == EEH_RESET_DEACTIVATE) {
772 		if (system_state < SYSTEM_RUNNING)
773 			udelay(1000 * EEH_PE_RST_SETTLE_TIME);
774 		else
775 			msleep(EEH_PE_RST_SETTLE_TIME);
776 	}
777 out:
778 	if (rc != OPAL_SUCCESS)
779 		return -EIO;
780 
781 	return 0;
782 }
783 
784 static int pnv_eeh_root_reset(struct pci_controller *hose, int option)
785 {
786 	struct pnv_phb *phb = hose->private_data;
787 	s64 rc = OPAL_HARDWARE;
788 
789 	pr_debug("%s: Reset PHB#%x, option=%d\n",
790 		 __func__, hose->global_number, option);
791 
792 	/*
793 	 * During the reset deassert time, we needn't care
794 	 * the reset scope because the firmware does nothing
795 	 * for fundamental or hot reset during deassert phase.
796 	 */
797 	if (option == EEH_RESET_FUNDAMENTAL)
798 		rc = opal_pci_reset(phb->opal_id,
799 				    OPAL_RESET_PCI_FUNDAMENTAL,
800 				    OPAL_ASSERT_RESET);
801 	else if (option == EEH_RESET_HOT)
802 		rc = opal_pci_reset(phb->opal_id,
803 				    OPAL_RESET_PCI_HOT,
804 				    OPAL_ASSERT_RESET);
805 	else if (option == EEH_RESET_DEACTIVATE)
806 		rc = opal_pci_reset(phb->opal_id,
807 				    OPAL_RESET_PCI_HOT,
808 				    OPAL_DEASSERT_RESET);
809 	if (rc < 0)
810 		goto out;
811 
812 	/* Poll state of the PHB until the request is done */
813 	if (rc > 0)
814 		rc = pnv_eeh_poll(phb->opal_id);
815 	if (option == EEH_RESET_DEACTIVATE)
816 		msleep(EEH_PE_RST_SETTLE_TIME);
817 out:
818 	if (rc != OPAL_SUCCESS)
819 		return -EIO;
820 
821 	return 0;
822 }
823 
824 static int __pnv_eeh_bridge_reset(struct pci_dev *dev, int option)
825 {
826 	struct pci_dn *pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
827 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
828 	int aer = edev ? edev->aer_cap : 0;
829 	u32 ctrl;
830 
831 	pr_debug("%s: Reset PCI bus %04x:%02x with option %d\n",
832 		 __func__, pci_domain_nr(dev->bus),
833 		 dev->bus->number, option);
834 
835 	switch (option) {
836 	case EEH_RESET_FUNDAMENTAL:
837 	case EEH_RESET_HOT:
838 		/* Don't report linkDown event */
839 		if (aer) {
840 			eeh_ops->read_config(pdn, aer + PCI_ERR_UNCOR_MASK,
841 					     4, &ctrl);
842 			ctrl |= PCI_ERR_UNC_SURPDN;
843 			eeh_ops->write_config(pdn, aer + PCI_ERR_UNCOR_MASK,
844 					      4, ctrl);
845 		}
846 
847 		eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &ctrl);
848 		ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
849 		eeh_ops->write_config(pdn, PCI_BRIDGE_CONTROL, 2, ctrl);
850 
851 		msleep(EEH_PE_RST_HOLD_TIME);
852 		break;
853 	case EEH_RESET_DEACTIVATE:
854 		eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &ctrl);
855 		ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
856 		eeh_ops->write_config(pdn, PCI_BRIDGE_CONTROL, 2, ctrl);
857 
858 		msleep(EEH_PE_RST_SETTLE_TIME);
859 
860 		/* Continue reporting linkDown event */
861 		if (aer) {
862 			eeh_ops->read_config(pdn, aer + PCI_ERR_UNCOR_MASK,
863 					     4, &ctrl);
864 			ctrl &= ~PCI_ERR_UNC_SURPDN;
865 			eeh_ops->write_config(pdn, aer + PCI_ERR_UNCOR_MASK,
866 					      4, ctrl);
867 		}
868 
869 		break;
870 	}
871 
872 	return 0;
873 }
874 
875 static int pnv_eeh_bridge_reset(struct pci_dev *pdev, int option)
876 {
877 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
878 	struct pnv_phb *phb = hose->private_data;
879 	struct device_node *dn = pci_device_to_OF_node(pdev);
880 	uint64_t id = PCI_SLOT_ID(phb->opal_id,
881 				  (pdev->bus->number << 8) | pdev->devfn);
882 	uint8_t scope;
883 	int64_t rc;
884 
885 	/* Hot reset to the bus if firmware cannot handle */
886 	if (!dn || !of_get_property(dn, "ibm,reset-by-firmware", NULL))
887 		return __pnv_eeh_bridge_reset(pdev, option);
888 
889 	switch (option) {
890 	case EEH_RESET_FUNDAMENTAL:
891 		scope = OPAL_RESET_PCI_FUNDAMENTAL;
892 		break;
893 	case EEH_RESET_HOT:
894 		scope = OPAL_RESET_PCI_HOT;
895 		break;
896 	case EEH_RESET_DEACTIVATE:
897 		return 0;
898 	default:
899 		dev_dbg(&pdev->dev, "%s: Unsupported reset %d\n",
900 			__func__, option);
901 		return -EINVAL;
902 	}
903 
904 	rc = opal_pci_reset(id, scope, OPAL_ASSERT_RESET);
905 	if (rc <= OPAL_SUCCESS)
906 		goto out;
907 
908 	rc = pnv_eeh_poll(id);
909 out:
910 	return (rc == OPAL_SUCCESS) ? 0 : -EIO;
911 }
912 
913 void pnv_pci_reset_secondary_bus(struct pci_dev *dev)
914 {
915 	struct pci_controller *hose;
916 
917 	if (pci_is_root_bus(dev->bus)) {
918 		hose = pci_bus_to_host(dev->bus);
919 		pnv_eeh_root_reset(hose, EEH_RESET_HOT);
920 		pnv_eeh_root_reset(hose, EEH_RESET_DEACTIVATE);
921 	} else {
922 		pnv_eeh_bridge_reset(dev, EEH_RESET_HOT);
923 		pnv_eeh_bridge_reset(dev, EEH_RESET_DEACTIVATE);
924 	}
925 }
926 
927 static void pnv_eeh_wait_for_pending(struct pci_dn *pdn, const char *type,
928 				     int pos, u16 mask)
929 {
930 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
931 	int i, status = 0;
932 
933 	/* Wait for Transaction Pending bit to be cleared */
934 	for (i = 0; i < 4; i++) {
935 		eeh_ops->read_config(pdn, pos, 2, &status);
936 		if (!(status & mask))
937 			return;
938 
939 		msleep((1 << i) * 100);
940 	}
941 
942 	pr_warn("%s: Pending transaction while issuing %sFLR to %04x:%02x:%02x.%01x\n",
943 		__func__, type,
944 		edev->phb->global_number, pdn->busno,
945 		PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
946 }
947 
948 static int pnv_eeh_do_flr(struct pci_dn *pdn, int option)
949 {
950 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
951 	u32 reg = 0;
952 
953 	if (WARN_ON(!edev->pcie_cap))
954 		return -ENOTTY;
955 
956 	eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP, 4, &reg);
957 	if (!(reg & PCI_EXP_DEVCAP_FLR))
958 		return -ENOTTY;
959 
960 	switch (option) {
961 	case EEH_RESET_HOT:
962 	case EEH_RESET_FUNDAMENTAL:
963 		pnv_eeh_wait_for_pending(pdn, "",
964 					 edev->pcie_cap + PCI_EXP_DEVSTA,
965 					 PCI_EXP_DEVSTA_TRPND);
966 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
967 				     4, &reg);
968 		reg |= PCI_EXP_DEVCTL_BCR_FLR;
969 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
970 				      4, reg);
971 		msleep(EEH_PE_RST_HOLD_TIME);
972 		break;
973 	case EEH_RESET_DEACTIVATE:
974 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
975 				     4, &reg);
976 		reg &= ~PCI_EXP_DEVCTL_BCR_FLR;
977 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
978 				      4, reg);
979 		msleep(EEH_PE_RST_SETTLE_TIME);
980 		break;
981 	}
982 
983 	return 0;
984 }
985 
986 static int pnv_eeh_do_af_flr(struct pci_dn *pdn, int option)
987 {
988 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
989 	u32 cap = 0;
990 
991 	if (WARN_ON(!edev->af_cap))
992 		return -ENOTTY;
993 
994 	eeh_ops->read_config(pdn, edev->af_cap + PCI_AF_CAP, 1, &cap);
995 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
996 		return -ENOTTY;
997 
998 	switch (option) {
999 	case EEH_RESET_HOT:
1000 	case EEH_RESET_FUNDAMENTAL:
1001 		/*
1002 		 * Wait for Transaction Pending bit to clear. A word-aligned
1003 		 * test is used, so we use the conrol offset rather than status
1004 		 * and shift the test bit to match.
1005 		 */
1006 		pnv_eeh_wait_for_pending(pdn, "AF",
1007 					 edev->af_cap + PCI_AF_CTRL,
1008 					 PCI_AF_STATUS_TP << 8);
1009 		eeh_ops->write_config(pdn, edev->af_cap + PCI_AF_CTRL,
1010 				      1, PCI_AF_CTRL_FLR);
1011 		msleep(EEH_PE_RST_HOLD_TIME);
1012 		break;
1013 	case EEH_RESET_DEACTIVATE:
1014 		eeh_ops->write_config(pdn, edev->af_cap + PCI_AF_CTRL, 1, 0);
1015 		msleep(EEH_PE_RST_SETTLE_TIME);
1016 		break;
1017 	}
1018 
1019 	return 0;
1020 }
1021 
1022 static int pnv_eeh_reset_vf_pe(struct eeh_pe *pe, int option)
1023 {
1024 	struct eeh_dev *edev;
1025 	struct pci_dn *pdn;
1026 	int ret;
1027 
1028 	/* The VF PE should have only one child device */
1029 	edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, list);
1030 	pdn = eeh_dev_to_pdn(edev);
1031 	if (!pdn)
1032 		return -ENXIO;
1033 
1034 	ret = pnv_eeh_do_flr(pdn, option);
1035 	if (!ret)
1036 		return ret;
1037 
1038 	return pnv_eeh_do_af_flr(pdn, option);
1039 }
1040 
1041 /**
1042  * pnv_eeh_reset - Reset the specified PE
1043  * @pe: EEH PE
1044  * @option: reset option
1045  *
1046  * Do reset on the indicated PE. For PCI bus sensitive PE,
1047  * we need to reset the parent p2p bridge. The PHB has to
1048  * be reinitialized if the p2p bridge is root bridge. For
1049  * PCI device sensitive PE, we will try to reset the device
1050  * through FLR. For now, we don't have OPAL APIs to do HARD
1051  * reset yet, so all reset would be SOFT (HOT) reset.
1052  */
1053 static int pnv_eeh_reset(struct eeh_pe *pe, int option)
1054 {
1055 	struct pci_controller *hose = pe->phb;
1056 	struct pnv_phb *phb;
1057 	struct pci_bus *bus;
1058 	int64_t rc;
1059 
1060 	/*
1061 	 * For PHB reset, we always have complete reset. For those PEs whose
1062 	 * primary bus derived from root complex (root bus) or root port
1063 	 * (usually bus#1), we apply hot or fundamental reset on the root port.
1064 	 * For other PEs, we always have hot reset on the PE primary bus.
1065 	 *
1066 	 * Here, we have different design to pHyp, which always clear the
1067 	 * frozen state during PE reset. However, the good idea here from
1068 	 * benh is to keep frozen state before we get PE reset done completely
1069 	 * (until BAR restore). With the frozen state, HW drops illegal IO
1070 	 * or MMIO access, which can incur recrusive frozen PE during PE
1071 	 * reset. The side effect is that EEH core has to clear the frozen
1072 	 * state explicitly after BAR restore.
1073 	 */
1074 	if (pe->type & EEH_PE_PHB)
1075 		return pnv_eeh_phb_reset(hose, option);
1076 
1077 	/*
1078 	 * The frozen PE might be caused by PAPR error injection
1079 	 * registers, which are expected to be cleared after hitting
1080 	 * frozen PE as stated in the hardware spec. Unfortunately,
1081 	 * that's not true on P7IOC. So we have to clear it manually
1082 	 * to avoid recursive EEH errors during recovery.
1083 	 */
1084 	phb = hose->private_data;
1085 	if (phb->model == PNV_PHB_MODEL_P7IOC &&
1086 	    (option == EEH_RESET_HOT ||
1087 	     option == EEH_RESET_FUNDAMENTAL)) {
1088 		rc = opal_pci_reset(phb->opal_id,
1089 				    OPAL_RESET_PHB_ERROR,
1090 				    OPAL_ASSERT_RESET);
1091 		if (rc != OPAL_SUCCESS) {
1092 			pr_warn("%s: Failure %lld clearing error injection registers\n",
1093 				__func__, rc);
1094 			return -EIO;
1095 		}
1096 	}
1097 
1098 	if (pe->type & EEH_PE_VF)
1099 		return pnv_eeh_reset_vf_pe(pe, option);
1100 
1101 	bus = eeh_pe_bus_get(pe);
1102 	if (!bus) {
1103 		pr_err("%s: Cannot find PCI bus for PHB#%x-PE#%x\n",
1104 			__func__, pe->phb->global_number, pe->addr);
1105 		return -EIO;
1106 	}
1107 
1108 	/*
1109 	 * If dealing with the root bus (or the bus underneath the
1110 	 * root port), we reset the bus underneath the root port.
1111 	 *
1112 	 * The cxl driver depends on this behaviour for bi-modal card
1113 	 * switching.
1114 	 */
1115 	if (pci_is_root_bus(bus) ||
1116 	    pci_is_root_bus(bus->parent))
1117 		return pnv_eeh_root_reset(hose, option);
1118 
1119 	return pnv_eeh_bridge_reset(bus->self, option);
1120 }
1121 
1122 /**
1123  * pnv_eeh_wait_state - Wait for PE state
1124  * @pe: EEH PE
1125  * @max_wait: maximal period in millisecond
1126  *
1127  * Wait for the state of associated PE. It might take some time
1128  * to retrieve the PE's state.
1129  */
1130 static int pnv_eeh_wait_state(struct eeh_pe *pe, int max_wait)
1131 {
1132 	int ret;
1133 	int mwait;
1134 
1135 	while (1) {
1136 		ret = pnv_eeh_get_state(pe, &mwait);
1137 
1138 		/*
1139 		 * If the PE's state is temporarily unavailable,
1140 		 * we have to wait for the specified time. Otherwise,
1141 		 * the PE's state will be returned immediately.
1142 		 */
1143 		if (ret != EEH_STATE_UNAVAILABLE)
1144 			return ret;
1145 
1146 		if (max_wait <= 0) {
1147 			pr_warn("%s: Timeout getting PE#%x's state (%d)\n",
1148 				__func__, pe->addr, max_wait);
1149 			return EEH_STATE_NOT_SUPPORT;
1150 		}
1151 
1152 		max_wait -= mwait;
1153 		msleep(mwait);
1154 	}
1155 
1156 	return EEH_STATE_NOT_SUPPORT;
1157 }
1158 
1159 /**
1160  * pnv_eeh_get_log - Retrieve error log
1161  * @pe: EEH PE
1162  * @severity: temporary or permanent error log
1163  * @drv_log: driver log to be combined with retrieved error log
1164  * @len: length of driver log
1165  *
1166  * Retrieve the temporary or permanent error from the PE.
1167  */
1168 static int pnv_eeh_get_log(struct eeh_pe *pe, int severity,
1169 			   char *drv_log, unsigned long len)
1170 {
1171 	if (!eeh_has_flag(EEH_EARLY_DUMP_LOG))
1172 		pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
1173 
1174 	return 0;
1175 }
1176 
1177 /**
1178  * pnv_eeh_configure_bridge - Configure PCI bridges in the indicated PE
1179  * @pe: EEH PE
1180  *
1181  * The function will be called to reconfigure the bridges included
1182  * in the specified PE so that the mulfunctional PE would be recovered
1183  * again.
1184  */
1185 static int pnv_eeh_configure_bridge(struct eeh_pe *pe)
1186 {
1187 	return 0;
1188 }
1189 
1190 /**
1191  * pnv_pe_err_inject - Inject specified error to the indicated PE
1192  * @pe: the indicated PE
1193  * @type: error type
1194  * @func: specific error type
1195  * @addr: address
1196  * @mask: address mask
1197  *
1198  * The routine is called to inject specified error, which is
1199  * determined by @type and @func, to the indicated PE for
1200  * testing purpose.
1201  */
1202 static int pnv_eeh_err_inject(struct eeh_pe *pe, int type, int func,
1203 			      unsigned long addr, unsigned long mask)
1204 {
1205 	struct pci_controller *hose = pe->phb;
1206 	struct pnv_phb *phb = hose->private_data;
1207 	s64 rc;
1208 
1209 	if (type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR &&
1210 	    type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64) {
1211 		pr_warn("%s: Invalid error type %d\n",
1212 			__func__, type);
1213 		return -ERANGE;
1214 	}
1215 
1216 	if (func < OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_ADDR ||
1217 	    func > OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_TARGET) {
1218 		pr_warn("%s: Invalid error function %d\n",
1219 			__func__, func);
1220 		return -ERANGE;
1221 	}
1222 
1223 	/* Firmware supports error injection ? */
1224 	if (!opal_check_token(OPAL_PCI_ERR_INJECT)) {
1225 		pr_warn("%s: Firmware doesn't support error injection\n",
1226 			__func__);
1227 		return -ENXIO;
1228 	}
1229 
1230 	/* Do error injection */
1231 	rc = opal_pci_err_inject(phb->opal_id, pe->addr,
1232 				 type, func, addr, mask);
1233 	if (rc != OPAL_SUCCESS) {
1234 		pr_warn("%s: Failure %lld injecting error "
1235 			"%d-%d to PHB#%x-PE#%x\n",
1236 			__func__, rc, type, func,
1237 			hose->global_number, pe->addr);
1238 		return -EIO;
1239 	}
1240 
1241 	return 0;
1242 }
1243 
1244 static inline bool pnv_eeh_cfg_blocked(struct pci_dn *pdn)
1245 {
1246 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1247 
1248 	if (!edev || !edev->pe)
1249 		return false;
1250 
1251 	/*
1252 	 * We will issue FLR or AF FLR to all VFs, which are contained
1253 	 * in VF PE. It relies on the EEH PCI config accessors. So we
1254 	 * can't block them during the window.
1255 	 */
1256 	if (edev->physfn && (edev->pe->state & EEH_PE_RESET))
1257 		return false;
1258 
1259 	if (edev->pe->state & EEH_PE_CFG_BLOCKED)
1260 		return true;
1261 
1262 	return false;
1263 }
1264 
1265 static int pnv_eeh_read_config(struct pci_dn *pdn,
1266 			       int where, int size, u32 *val)
1267 {
1268 	if (!pdn)
1269 		return PCIBIOS_DEVICE_NOT_FOUND;
1270 
1271 	if (pnv_eeh_cfg_blocked(pdn)) {
1272 		*val = 0xFFFFFFFF;
1273 		return PCIBIOS_SET_FAILED;
1274 	}
1275 
1276 	return pnv_pci_cfg_read(pdn, where, size, val);
1277 }
1278 
1279 static int pnv_eeh_write_config(struct pci_dn *pdn,
1280 				int where, int size, u32 val)
1281 {
1282 	if (!pdn)
1283 		return PCIBIOS_DEVICE_NOT_FOUND;
1284 
1285 	if (pnv_eeh_cfg_blocked(pdn))
1286 		return PCIBIOS_SET_FAILED;
1287 
1288 	return pnv_pci_cfg_write(pdn, where, size, val);
1289 }
1290 
1291 static void pnv_eeh_dump_hub_diag_common(struct OpalIoP7IOCErrorData *data)
1292 {
1293 	/* GEM */
1294 	if (data->gemXfir || data->gemRfir ||
1295 	    data->gemRirqfir || data->gemMask || data->gemRwof)
1296 		pr_info("  GEM: %016llx %016llx %016llx %016llx %016llx\n",
1297 			be64_to_cpu(data->gemXfir),
1298 			be64_to_cpu(data->gemRfir),
1299 			be64_to_cpu(data->gemRirqfir),
1300 			be64_to_cpu(data->gemMask),
1301 			be64_to_cpu(data->gemRwof));
1302 
1303 	/* LEM */
1304 	if (data->lemFir || data->lemErrMask ||
1305 	    data->lemAction0 || data->lemAction1 || data->lemWof)
1306 		pr_info("  LEM: %016llx %016llx %016llx %016llx %016llx\n",
1307 			be64_to_cpu(data->lemFir),
1308 			be64_to_cpu(data->lemErrMask),
1309 			be64_to_cpu(data->lemAction0),
1310 			be64_to_cpu(data->lemAction1),
1311 			be64_to_cpu(data->lemWof));
1312 }
1313 
1314 static void pnv_eeh_get_and_dump_hub_diag(struct pci_controller *hose)
1315 {
1316 	struct pnv_phb *phb = hose->private_data;
1317 	struct OpalIoP7IOCErrorData *data = &phb->diag.hub_diag;
1318 	long rc;
1319 
1320 	rc = opal_pci_get_hub_diag_data(phb->hub_id, data, sizeof(*data));
1321 	if (rc != OPAL_SUCCESS) {
1322 		pr_warn("%s: Failed to get HUB#%llx diag-data (%ld)\n",
1323 			__func__, phb->hub_id, rc);
1324 		return;
1325 	}
1326 
1327 	switch (be16_to_cpu(data->type)) {
1328 	case OPAL_P7IOC_DIAG_TYPE_RGC:
1329 		pr_info("P7IOC diag-data for RGC\n\n");
1330 		pnv_eeh_dump_hub_diag_common(data);
1331 		if (data->rgc.rgcStatus || data->rgc.rgcLdcp)
1332 			pr_info("  RGC: %016llx %016llx\n",
1333 				be64_to_cpu(data->rgc.rgcStatus),
1334 				be64_to_cpu(data->rgc.rgcLdcp));
1335 		break;
1336 	case OPAL_P7IOC_DIAG_TYPE_BI:
1337 		pr_info("P7IOC diag-data for BI %s\n\n",
1338 			data->bi.biDownbound ? "Downbound" : "Upbound");
1339 		pnv_eeh_dump_hub_diag_common(data);
1340 		if (data->bi.biLdcp0 || data->bi.biLdcp1 ||
1341 		    data->bi.biLdcp2 || data->bi.biFenceStatus)
1342 			pr_info("  BI:  %016llx %016llx %016llx %016llx\n",
1343 				be64_to_cpu(data->bi.biLdcp0),
1344 				be64_to_cpu(data->bi.biLdcp1),
1345 				be64_to_cpu(data->bi.biLdcp2),
1346 				be64_to_cpu(data->bi.biFenceStatus));
1347 		break;
1348 	case OPAL_P7IOC_DIAG_TYPE_CI:
1349 		pr_info("P7IOC diag-data for CI Port %d\n\n",
1350 			data->ci.ciPort);
1351 		pnv_eeh_dump_hub_diag_common(data);
1352 		if (data->ci.ciPortStatus || data->ci.ciPortLdcp)
1353 			pr_info("  CI:  %016llx %016llx\n",
1354 				be64_to_cpu(data->ci.ciPortStatus),
1355 				be64_to_cpu(data->ci.ciPortLdcp));
1356 		break;
1357 	case OPAL_P7IOC_DIAG_TYPE_MISC:
1358 		pr_info("P7IOC diag-data for MISC\n\n");
1359 		pnv_eeh_dump_hub_diag_common(data);
1360 		break;
1361 	case OPAL_P7IOC_DIAG_TYPE_I2C:
1362 		pr_info("P7IOC diag-data for I2C\n\n");
1363 		pnv_eeh_dump_hub_diag_common(data);
1364 		break;
1365 	default:
1366 		pr_warn("%s: Invalid type of HUB#%llx diag-data (%d)\n",
1367 			__func__, phb->hub_id, data->type);
1368 	}
1369 }
1370 
1371 static int pnv_eeh_get_pe(struct pci_controller *hose,
1372 			  u16 pe_no, struct eeh_pe **pe)
1373 {
1374 	struct pnv_phb *phb = hose->private_data;
1375 	struct pnv_ioda_pe *pnv_pe;
1376 	struct eeh_pe *dev_pe;
1377 	struct eeh_dev edev;
1378 
1379 	/*
1380 	 * If PHB supports compound PE, to fetch
1381 	 * the master PE because slave PE is invisible
1382 	 * to EEH core.
1383 	 */
1384 	pnv_pe = &phb->ioda.pe_array[pe_no];
1385 	if (pnv_pe->flags & PNV_IODA_PE_SLAVE) {
1386 		pnv_pe = pnv_pe->master;
1387 		WARN_ON(!pnv_pe ||
1388 			!(pnv_pe->flags & PNV_IODA_PE_MASTER));
1389 		pe_no = pnv_pe->pe_number;
1390 	}
1391 
1392 	/* Find the PE according to PE# */
1393 	memset(&edev, 0, sizeof(struct eeh_dev));
1394 	edev.phb = hose;
1395 	edev.pe_config_addr = pe_no;
1396 	dev_pe = eeh_pe_get(&edev);
1397 	if (!dev_pe)
1398 		return -EEXIST;
1399 
1400 	/* Freeze the (compound) PE */
1401 	*pe = dev_pe;
1402 	if (!(dev_pe->state & EEH_PE_ISOLATED))
1403 		phb->freeze_pe(phb, pe_no);
1404 
1405 	/*
1406 	 * At this point, we're sure the (compound) PE should
1407 	 * have been frozen. However, we still need poke until
1408 	 * hitting the frozen PE on top level.
1409 	 */
1410 	dev_pe = dev_pe->parent;
1411 	while (dev_pe && !(dev_pe->type & EEH_PE_PHB)) {
1412 		int ret;
1413 		int active_flags = (EEH_STATE_MMIO_ACTIVE |
1414 				    EEH_STATE_DMA_ACTIVE);
1415 
1416 		ret = eeh_ops->get_state(dev_pe, NULL);
1417 		if (ret <= 0 || (ret & active_flags) == active_flags) {
1418 			dev_pe = dev_pe->parent;
1419 			continue;
1420 		}
1421 
1422 		/* Frozen parent PE */
1423 		*pe = dev_pe;
1424 		if (!(dev_pe->state & EEH_PE_ISOLATED))
1425 			phb->freeze_pe(phb, dev_pe->addr);
1426 
1427 		/* Next one */
1428 		dev_pe = dev_pe->parent;
1429 	}
1430 
1431 	return 0;
1432 }
1433 
1434 /**
1435  * pnv_eeh_next_error - Retrieve next EEH error to handle
1436  * @pe: Affected PE
1437  *
1438  * The function is expected to be called by EEH core while it gets
1439  * special EEH event (without binding PE). The function calls to
1440  * OPAL APIs for next error to handle. The informational error is
1441  * handled internally by platform. However, the dead IOC, dead PHB,
1442  * fenced PHB and frozen PE should be handled by EEH core eventually.
1443  */
1444 static int pnv_eeh_next_error(struct eeh_pe **pe)
1445 {
1446 	struct pci_controller *hose;
1447 	struct pnv_phb *phb;
1448 	struct eeh_pe *phb_pe, *parent_pe;
1449 	__be64 frozen_pe_no;
1450 	__be16 err_type, severity;
1451 	int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
1452 	long rc;
1453 	int state, ret = EEH_NEXT_ERR_NONE;
1454 
1455 	/*
1456 	 * While running here, it's safe to purge the event queue. The
1457 	 * event should still be masked.
1458 	 */
1459 	eeh_remove_event(NULL, false);
1460 
1461 	list_for_each_entry(hose, &hose_list, list_node) {
1462 		/*
1463 		 * If the subordinate PCI buses of the PHB has been
1464 		 * removed or is exactly under error recovery, we
1465 		 * needn't take care of it any more.
1466 		 */
1467 		phb = hose->private_data;
1468 		phb_pe = eeh_phb_pe_get(hose);
1469 		if (!phb_pe || (phb_pe->state & EEH_PE_ISOLATED))
1470 			continue;
1471 
1472 		rc = opal_pci_next_error(phb->opal_id,
1473 					 &frozen_pe_no, &err_type, &severity);
1474 		if (rc != OPAL_SUCCESS) {
1475 			pr_devel("%s: Invalid return value on "
1476 				 "PHB#%x (0x%lx) from opal_pci_next_error",
1477 				 __func__, hose->global_number, rc);
1478 			continue;
1479 		}
1480 
1481 		/* If the PHB doesn't have error, stop processing */
1482 		if (be16_to_cpu(err_type) == OPAL_EEH_NO_ERROR ||
1483 		    be16_to_cpu(severity) == OPAL_EEH_SEV_NO_ERROR) {
1484 			pr_devel("%s: No error found on PHB#%x\n",
1485 				 __func__, hose->global_number);
1486 			continue;
1487 		}
1488 
1489 		/*
1490 		 * Processing the error. We're expecting the error with
1491 		 * highest priority reported upon multiple errors on the
1492 		 * specific PHB.
1493 		 */
1494 		pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n",
1495 			__func__, be16_to_cpu(err_type),
1496 			be16_to_cpu(severity), be64_to_cpu(frozen_pe_no),
1497 			hose->global_number);
1498 		switch (be16_to_cpu(err_type)) {
1499 		case OPAL_EEH_IOC_ERROR:
1500 			if (be16_to_cpu(severity) == OPAL_EEH_SEV_IOC_DEAD) {
1501 				pr_err("EEH: dead IOC detected\n");
1502 				ret = EEH_NEXT_ERR_DEAD_IOC;
1503 			} else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
1504 				pr_info("EEH: IOC informative error "
1505 					"detected\n");
1506 				pnv_eeh_get_and_dump_hub_diag(hose);
1507 				ret = EEH_NEXT_ERR_NONE;
1508 			}
1509 
1510 			break;
1511 		case OPAL_EEH_PHB_ERROR:
1512 			if (be16_to_cpu(severity) == OPAL_EEH_SEV_PHB_DEAD) {
1513 				*pe = phb_pe;
1514 				pr_err("EEH: dead PHB#%x detected, "
1515 				       "location: %s\n",
1516 					hose->global_number,
1517 					eeh_pe_loc_get(phb_pe));
1518 				ret = EEH_NEXT_ERR_DEAD_PHB;
1519 			} else if (be16_to_cpu(severity) ==
1520 				   OPAL_EEH_SEV_PHB_FENCED) {
1521 				*pe = phb_pe;
1522 				pr_err("EEH: Fenced PHB#%x detected, "
1523 				       "location: %s\n",
1524 					hose->global_number,
1525 					eeh_pe_loc_get(phb_pe));
1526 				ret = EEH_NEXT_ERR_FENCED_PHB;
1527 			} else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
1528 				pr_info("EEH: PHB#%x informative error "
1529 					"detected, location: %s\n",
1530 					hose->global_number,
1531 					eeh_pe_loc_get(phb_pe));
1532 				pnv_eeh_get_phb_diag(phb_pe);
1533 				pnv_pci_dump_phb_diag_data(hose, phb_pe->data);
1534 				ret = EEH_NEXT_ERR_NONE;
1535 			}
1536 
1537 			break;
1538 		case OPAL_EEH_PE_ERROR:
1539 			/*
1540 			 * If we can't find the corresponding PE, we
1541 			 * just try to unfreeze.
1542 			 */
1543 			if (pnv_eeh_get_pe(hose,
1544 				be64_to_cpu(frozen_pe_no), pe)) {
1545 				pr_info("EEH: Clear non-existing PHB#%x-PE#%llx\n",
1546 					hose->global_number, be64_to_cpu(frozen_pe_no));
1547 				pr_info("EEH: PHB location: %s\n",
1548 					eeh_pe_loc_get(phb_pe));
1549 
1550 				/* Dump PHB diag-data */
1551 				rc = opal_pci_get_phb_diag_data2(phb->opal_id,
1552 					phb->diag.blob, PNV_PCI_DIAG_BUF_SIZE);
1553 				if (rc == OPAL_SUCCESS)
1554 					pnv_pci_dump_phb_diag_data(hose,
1555 							phb->diag.blob);
1556 
1557 				/* Try best to clear it */
1558 				opal_pci_eeh_freeze_clear(phb->opal_id,
1559 					be64_to_cpu(frozen_pe_no),
1560 					OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
1561 				ret = EEH_NEXT_ERR_NONE;
1562 			} else if ((*pe)->state & EEH_PE_ISOLATED ||
1563 				   eeh_pe_passed(*pe)) {
1564 				ret = EEH_NEXT_ERR_NONE;
1565 			} else {
1566 				pr_err("EEH: Frozen PE#%x "
1567 				       "on PHB#%x detected\n",
1568 				       (*pe)->addr,
1569 					(*pe)->phb->global_number);
1570 				pr_err("EEH: PE location: %s, "
1571 				       "PHB location: %s\n",
1572 				       eeh_pe_loc_get(*pe),
1573 				       eeh_pe_loc_get(phb_pe));
1574 				ret = EEH_NEXT_ERR_FROZEN_PE;
1575 			}
1576 
1577 			break;
1578 		default:
1579 			pr_warn("%s: Unexpected error type %d\n",
1580 				__func__, be16_to_cpu(err_type));
1581 		}
1582 
1583 		/*
1584 		 * EEH core will try recover from fenced PHB or
1585 		 * frozen PE. In the time for frozen PE, EEH core
1586 		 * enable IO path for that before collecting logs,
1587 		 * but it ruins the site. So we have to dump the
1588 		 * log in advance here.
1589 		 */
1590 		if ((ret == EEH_NEXT_ERR_FROZEN_PE  ||
1591 		    ret == EEH_NEXT_ERR_FENCED_PHB) &&
1592 		    !((*pe)->state & EEH_PE_ISOLATED)) {
1593 			eeh_pe_state_mark(*pe, EEH_PE_ISOLATED);
1594 			pnv_eeh_get_phb_diag(*pe);
1595 
1596 			if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
1597 				pnv_pci_dump_phb_diag_data((*pe)->phb,
1598 							   (*pe)->data);
1599 		}
1600 
1601 		/*
1602 		 * We probably have the frozen parent PE out there and
1603 		 * we need have to handle frozen parent PE firstly.
1604 		 */
1605 		if (ret == EEH_NEXT_ERR_FROZEN_PE) {
1606 			parent_pe = (*pe)->parent;
1607 			while (parent_pe) {
1608 				/* Hit the ceiling ? */
1609 				if (parent_pe->type & EEH_PE_PHB)
1610 					break;
1611 
1612 				/* Frozen parent PE ? */
1613 				state = eeh_ops->get_state(parent_pe, NULL);
1614 				if (state > 0 &&
1615 				    (state & active_flags) != active_flags)
1616 					*pe = parent_pe;
1617 
1618 				/* Next parent level */
1619 				parent_pe = parent_pe->parent;
1620 			}
1621 
1622 			/* We possibly migrate to another PE */
1623 			eeh_pe_state_mark(*pe, EEH_PE_ISOLATED);
1624 		}
1625 
1626 		/*
1627 		 * If we have no errors on the specific PHB or only
1628 		 * informative error there, we continue poking it.
1629 		 * Otherwise, we need actions to be taken by upper
1630 		 * layer.
1631 		 */
1632 		if (ret > EEH_NEXT_ERR_INF)
1633 			break;
1634 	}
1635 
1636 	/* Unmask the event */
1637 	if (ret == EEH_NEXT_ERR_NONE && eeh_enabled())
1638 		enable_irq(eeh_event_irq);
1639 
1640 	return ret;
1641 }
1642 
1643 static int pnv_eeh_restore_vf_config(struct pci_dn *pdn)
1644 {
1645 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1646 	u32 devctl, cmd, cap2, aer_capctl;
1647 	int old_mps;
1648 
1649 	if (edev->pcie_cap) {
1650 		/* Restore MPS */
1651 		old_mps = (ffs(pdn->mps) - 8) << 5;
1652 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
1653 				     2, &devctl);
1654 		devctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
1655 		devctl |= old_mps;
1656 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
1657 				      2, devctl);
1658 
1659 		/* Disable Completion Timeout */
1660 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP2,
1661 				     4, &cap2);
1662 		if (cap2 & 0x10) {
1663 			eeh_ops->read_config(pdn,
1664 					     edev->pcie_cap + PCI_EXP_DEVCTL2,
1665 					     4, &cap2);
1666 			cap2 |= 0x10;
1667 			eeh_ops->write_config(pdn,
1668 					      edev->pcie_cap + PCI_EXP_DEVCTL2,
1669 					      4, cap2);
1670 		}
1671 	}
1672 
1673 	/* Enable SERR and parity checking */
1674 	eeh_ops->read_config(pdn, PCI_COMMAND, 2, &cmd);
1675 	cmd |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR);
1676 	eeh_ops->write_config(pdn, PCI_COMMAND, 2, cmd);
1677 
1678 	/* Enable report various errors */
1679 	if (edev->pcie_cap) {
1680 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
1681 				     2, &devctl);
1682 		devctl &= ~PCI_EXP_DEVCTL_CERE;
1683 		devctl |= (PCI_EXP_DEVCTL_NFERE |
1684 			   PCI_EXP_DEVCTL_FERE |
1685 			   PCI_EXP_DEVCTL_URRE);
1686 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
1687 				      2, devctl);
1688 	}
1689 
1690 	/* Enable ECRC generation and check */
1691 	if (edev->pcie_cap && edev->aer_cap) {
1692 		eeh_ops->read_config(pdn, edev->aer_cap + PCI_ERR_CAP,
1693 				     4, &aer_capctl);
1694 		aer_capctl |= (PCI_ERR_CAP_ECRC_GENE | PCI_ERR_CAP_ECRC_CHKE);
1695 		eeh_ops->write_config(pdn, edev->aer_cap + PCI_ERR_CAP,
1696 				      4, aer_capctl);
1697 	}
1698 
1699 	return 0;
1700 }
1701 
1702 static int pnv_eeh_restore_config(struct pci_dn *pdn)
1703 {
1704 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1705 	struct pnv_phb *phb;
1706 	s64 ret;
1707 
1708 	if (!edev)
1709 		return -EEXIST;
1710 
1711 	/*
1712 	 * We have to restore the PCI config space after reset since the
1713 	 * firmware can't see SRIOV VFs.
1714 	 *
1715 	 * FIXME: The MPS, error routing rules, timeout setting are worthy
1716 	 * to be exported by firmware in extendible way.
1717 	 */
1718 	if (edev->physfn) {
1719 		ret = pnv_eeh_restore_vf_config(pdn);
1720 	} else {
1721 		phb = edev->phb->private_data;
1722 		ret = opal_pci_reinit(phb->opal_id,
1723 				      OPAL_REINIT_PCI_DEV, edev->config_addr);
1724 	}
1725 
1726 	if (ret) {
1727 		pr_warn("%s: Can't reinit PCI dev 0x%x (%lld)\n",
1728 			__func__, edev->config_addr, ret);
1729 		return -EIO;
1730 	}
1731 
1732 	return 0;
1733 }
1734 
1735 static struct eeh_ops pnv_eeh_ops = {
1736 	.name                   = "powernv",
1737 	.init                   = pnv_eeh_init,
1738 	.post_init              = pnv_eeh_post_init,
1739 	.probe			= pnv_eeh_probe,
1740 	.set_option             = pnv_eeh_set_option,
1741 	.get_pe_addr            = pnv_eeh_get_pe_addr,
1742 	.get_state              = pnv_eeh_get_state,
1743 	.reset                  = pnv_eeh_reset,
1744 	.wait_state             = pnv_eeh_wait_state,
1745 	.get_log                = pnv_eeh_get_log,
1746 	.configure_bridge       = pnv_eeh_configure_bridge,
1747 	.err_inject		= pnv_eeh_err_inject,
1748 	.read_config            = pnv_eeh_read_config,
1749 	.write_config           = pnv_eeh_write_config,
1750 	.next_error		= pnv_eeh_next_error,
1751 	.restore_config		= pnv_eeh_restore_config
1752 };
1753 
1754 void pcibios_bus_add_device(struct pci_dev *pdev)
1755 {
1756 	struct pci_dn *pdn = pci_get_pdn(pdev);
1757 
1758 	if (!pdev->is_virtfn)
1759 		return;
1760 
1761 	/*
1762 	 * The following operations will fail if VF's sysfs files
1763 	 * aren't created or its resources aren't finalized.
1764 	 */
1765 	eeh_add_device_early(pdn);
1766 	eeh_add_device_late(pdev);
1767 	eeh_sysfs_add_device(pdev);
1768 }
1769 
1770 #ifdef CONFIG_PCI_IOV
1771 static void pnv_pci_fixup_vf_mps(struct pci_dev *pdev)
1772 {
1773 	struct pci_dn *pdn = pci_get_pdn(pdev);
1774 	int parent_mps;
1775 
1776 	if (!pdev->is_virtfn)
1777 		return;
1778 
1779 	/* Synchronize MPS for VF and PF */
1780 	parent_mps = pcie_get_mps(pdev->physfn);
1781 	if ((128 << pdev->pcie_mpss) >= parent_mps)
1782 		pcie_set_mps(pdev, parent_mps);
1783 	pdn->mps = pcie_get_mps(pdev);
1784 }
1785 DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pnv_pci_fixup_vf_mps);
1786 #endif /* CONFIG_PCI_IOV */
1787 
1788 /**
1789  * eeh_powernv_init - Register platform dependent EEH operations
1790  *
1791  * EEH initialization on powernv platform. This function should be
1792  * called before any EEH related functions.
1793  */
1794 static int __init eeh_powernv_init(void)
1795 {
1796 	int ret = -EINVAL;
1797 
1798 	eeh_set_pe_aux_size(PNV_PCI_DIAG_BUF_SIZE);
1799 	ret = eeh_ops_register(&pnv_eeh_ops);
1800 	if (!ret)
1801 		pr_info("EEH: PowerNV platform initialized\n");
1802 	else
1803 		pr_info("EEH: Failed to initialize PowerNV platform (%d)\n", ret);
1804 
1805 	return ret;
1806 }
1807 machine_early_initcall(powernv, eeh_powernv_init);
1808