1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PowerNV Platform dependent EEH operations
4  *
5  * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013.
6  */
7 
8 #include <linux/atomic.h>
9 #include <linux/debugfs.h>
10 #include <linux/delay.h>
11 #include <linux/export.h>
12 #include <linux/init.h>
13 #include <linux/interrupt.h>
14 #include <linux/list.h>
15 #include <linux/msi.h>
16 #include <linux/of.h>
17 #include <linux/pci.h>
18 #include <linux/proc_fs.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/spinlock.h>
23 
24 #include <asm/eeh.h>
25 #include <asm/eeh_event.h>
26 #include <asm/firmware.h>
27 #include <asm/io.h>
28 #include <asm/iommu.h>
29 #include <asm/machdep.h>
30 #include <asm/msi_bitmap.h>
31 #include <asm/opal.h>
32 #include <asm/ppc-pci.h>
33 #include <asm/pnv-pci.h>
34 
35 #include "powernv.h"
36 #include "pci.h"
37 #include "../../../../drivers/pci/pci.h"
38 
39 static int eeh_event_irq = -EINVAL;
40 
41 void pnv_pcibios_bus_add_device(struct pci_dev *pdev)
42 {
43 	dev_dbg(&pdev->dev, "EEH: Setting up device\n");
44 	eeh_probe_device(pdev);
45 }
46 
47 static int pnv_eeh_init(void)
48 {
49 	struct pci_controller *hose;
50 	struct pnv_phb *phb;
51 	int max_diag_size = PNV_PCI_DIAG_BUF_SIZE;
52 
53 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
54 		pr_warn("%s: OPAL is required !\n",
55 			__func__);
56 		return -EINVAL;
57 	}
58 
59 	/* Set probe mode */
60 	eeh_add_flag(EEH_PROBE_MODE_DEV);
61 
62 	/*
63 	 * P7IOC blocks PCI config access to frozen PE, but PHB3
64 	 * doesn't do that. So we have to selectively enable I/O
65 	 * prior to collecting error log.
66 	 */
67 	list_for_each_entry(hose, &hose_list, list_node) {
68 		phb = hose->private_data;
69 
70 		if (phb->model == PNV_PHB_MODEL_P7IOC)
71 			eeh_add_flag(EEH_ENABLE_IO_FOR_LOG);
72 
73 		if (phb->diag_data_size > max_diag_size)
74 			max_diag_size = phb->diag_data_size;
75 
76 		/*
77 		 * PE#0 should be regarded as valid by EEH core
78 		 * if it's not the reserved one. Currently, we
79 		 * have the reserved PE#255 and PE#127 for PHB3
80 		 * and P7IOC separately. So we should regard
81 		 * PE#0 as valid for PHB3 and P7IOC.
82 		 */
83 		if (phb->ioda.reserved_pe_idx != 0)
84 			eeh_add_flag(EEH_VALID_PE_ZERO);
85 
86 		break;
87 	}
88 
89 	eeh_set_pe_aux_size(max_diag_size);
90 	ppc_md.pcibios_bus_add_device = pnv_pcibios_bus_add_device;
91 
92 	return 0;
93 }
94 
95 static irqreturn_t pnv_eeh_event(int irq, void *data)
96 {
97 	/*
98 	 * We simply send a special EEH event if EEH has been
99 	 * enabled. We don't care about EEH events until we've
100 	 * finished processing the outstanding ones. Event processing
101 	 * gets unmasked in next_error() if EEH is enabled.
102 	 */
103 	disable_irq_nosync(irq);
104 
105 	if (eeh_enabled())
106 		eeh_send_failure_event(NULL);
107 
108 	return IRQ_HANDLED;
109 }
110 
111 #ifdef CONFIG_DEBUG_FS
112 static ssize_t pnv_eeh_ei_write(struct file *filp,
113 				const char __user *user_buf,
114 				size_t count, loff_t *ppos)
115 {
116 	struct pci_controller *hose = filp->private_data;
117 	struct eeh_pe *pe;
118 	int pe_no, type, func;
119 	unsigned long addr, mask;
120 	char buf[50];
121 	int ret;
122 
123 	if (!eeh_ops || !eeh_ops->err_inject)
124 		return -ENXIO;
125 
126 	/* Copy over argument buffer */
127 	ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
128 	if (!ret)
129 		return -EFAULT;
130 
131 	/* Retrieve parameters */
132 	ret = sscanf(buf, "%x:%x:%x:%lx:%lx",
133 		     &pe_no, &type, &func, &addr, &mask);
134 	if (ret != 5)
135 		return -EINVAL;
136 
137 	/* Retrieve PE */
138 	pe = eeh_pe_get(hose, pe_no, 0);
139 	if (!pe)
140 		return -ENODEV;
141 
142 	/* Do error injection */
143 	ret = eeh_ops->err_inject(pe, type, func, addr, mask);
144 	return ret < 0 ? ret : count;
145 }
146 
147 static const struct file_operations pnv_eeh_ei_fops = {
148 	.open	= simple_open,
149 	.llseek	= no_llseek,
150 	.write	= pnv_eeh_ei_write,
151 };
152 
153 static int pnv_eeh_dbgfs_set(void *data, int offset, u64 val)
154 {
155 	struct pci_controller *hose = data;
156 	struct pnv_phb *phb = hose->private_data;
157 
158 	out_be64(phb->regs + offset, val);
159 	return 0;
160 }
161 
162 static int pnv_eeh_dbgfs_get(void *data, int offset, u64 *val)
163 {
164 	struct pci_controller *hose = data;
165 	struct pnv_phb *phb = hose->private_data;
166 
167 	*val = in_be64(phb->regs + offset);
168 	return 0;
169 }
170 
171 #define PNV_EEH_DBGFS_ENTRY(name, reg)				\
172 static int pnv_eeh_dbgfs_set_##name(void *data, u64 val)	\
173 {								\
174 	return pnv_eeh_dbgfs_set(data, reg, val);		\
175 }								\
176 								\
177 static int pnv_eeh_dbgfs_get_##name(void *data, u64 *val)	\
178 {								\
179 	return pnv_eeh_dbgfs_get(data, reg, val);		\
180 }								\
181 								\
182 DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_dbgfs_ops_##name,		\
183 			pnv_eeh_dbgfs_get_##name,		\
184                         pnv_eeh_dbgfs_set_##name,		\
185 			"0x%llx\n")
186 
187 PNV_EEH_DBGFS_ENTRY(outb, 0xD10);
188 PNV_EEH_DBGFS_ENTRY(inbA, 0xD90);
189 PNV_EEH_DBGFS_ENTRY(inbB, 0xE10);
190 
191 #endif /* CONFIG_DEBUG_FS */
192 
193 void pnv_eeh_enable_phbs(void)
194 {
195 	struct pci_controller *hose;
196 	struct pnv_phb *phb;
197 
198 	list_for_each_entry(hose, &hose_list, list_node) {
199 		phb = hose->private_data;
200 		/*
201 		 * If EEH is enabled, we're going to rely on that.
202 		 * Otherwise, we restore to conventional mechanism
203 		 * to clear frozen PE during PCI config access.
204 		 */
205 		if (eeh_enabled())
206 			phb->flags |= PNV_PHB_FLAG_EEH;
207 		else
208 			phb->flags &= ~PNV_PHB_FLAG_EEH;
209 	}
210 }
211 
212 /**
213  * pnv_eeh_post_init - EEH platform dependent post initialization
214  *
215  * EEH platform dependent post initialization on powernv. When
216  * the function is called, the EEH PEs and devices should have
217  * been built. If the I/O cache staff has been built, EEH is
218  * ready to supply service.
219  */
220 int pnv_eeh_post_init(void)
221 {
222 	struct pci_controller *hose;
223 	struct pnv_phb *phb;
224 	int ret = 0;
225 
226 	eeh_show_enabled();
227 
228 	/* Register OPAL event notifier */
229 	eeh_event_irq = opal_event_request(ilog2(OPAL_EVENT_PCI_ERROR));
230 	if (eeh_event_irq < 0) {
231 		pr_err("%s: Can't register OPAL event interrupt (%d)\n",
232 		       __func__, eeh_event_irq);
233 		return eeh_event_irq;
234 	}
235 
236 	ret = request_irq(eeh_event_irq, pnv_eeh_event,
237 			  IRQ_TYPE_LEVEL_HIGH, "opal-eeh", NULL);
238 	if (ret < 0) {
239 		irq_dispose_mapping(eeh_event_irq);
240 		pr_err("%s: Can't request OPAL event interrupt (%d)\n",
241 		       __func__, eeh_event_irq);
242 		return ret;
243 	}
244 
245 	if (!eeh_enabled())
246 		disable_irq(eeh_event_irq);
247 
248 	pnv_eeh_enable_phbs();
249 
250 	list_for_each_entry(hose, &hose_list, list_node) {
251 		phb = hose->private_data;
252 
253 		/* Create debugfs entries */
254 #ifdef CONFIG_DEBUG_FS
255 		if (phb->has_dbgfs || !phb->dbgfs)
256 			continue;
257 
258 		phb->has_dbgfs = 1;
259 		debugfs_create_file("err_injct", 0200,
260 				    phb->dbgfs, hose,
261 				    &pnv_eeh_ei_fops);
262 
263 		debugfs_create_file("err_injct_outbound", 0600,
264 				    phb->dbgfs, hose,
265 				    &pnv_eeh_dbgfs_ops_outb);
266 		debugfs_create_file("err_injct_inboundA", 0600,
267 				    phb->dbgfs, hose,
268 				    &pnv_eeh_dbgfs_ops_inbA);
269 		debugfs_create_file("err_injct_inboundB", 0600,
270 				    phb->dbgfs, hose,
271 				    &pnv_eeh_dbgfs_ops_inbB);
272 #endif /* CONFIG_DEBUG_FS */
273 	}
274 
275 	return ret;
276 }
277 
278 static int pnv_eeh_find_cap(struct pci_dn *pdn, int cap)
279 {
280 	int pos = PCI_CAPABILITY_LIST;
281 	int cnt = 48;   /* Maximal number of capabilities */
282 	u32 status, id;
283 
284 	if (!pdn)
285 		return 0;
286 
287 	/* Check if the device supports capabilities */
288 	pnv_pci_cfg_read(pdn, PCI_STATUS, 2, &status);
289 	if (!(status & PCI_STATUS_CAP_LIST))
290 		return 0;
291 
292 	while (cnt--) {
293 		pnv_pci_cfg_read(pdn, pos, 1, &pos);
294 		if (pos < 0x40)
295 			break;
296 
297 		pos &= ~3;
298 		pnv_pci_cfg_read(pdn, pos + PCI_CAP_LIST_ID, 1, &id);
299 		if (id == 0xff)
300 			break;
301 
302 		/* Found */
303 		if (id == cap)
304 			return pos;
305 
306 		/* Next one */
307 		pos += PCI_CAP_LIST_NEXT;
308 	}
309 
310 	return 0;
311 }
312 
313 static int pnv_eeh_find_ecap(struct pci_dn *pdn, int cap)
314 {
315 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
316 	u32 header;
317 	int pos = 256, ttl = (4096 - 256) / 8;
318 
319 	if (!edev || !edev->pcie_cap)
320 		return 0;
321 	if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
322 		return 0;
323 	else if (!header)
324 		return 0;
325 
326 	while (ttl-- > 0) {
327 		if (PCI_EXT_CAP_ID(header) == cap && pos)
328 			return pos;
329 
330 		pos = PCI_EXT_CAP_NEXT(header);
331 		if (pos < 256)
332 			break;
333 
334 		if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
335 			break;
336 	}
337 
338 	return 0;
339 }
340 
341 /**
342  * pnv_eeh_probe - Do probe on PCI device
343  * @pdev: pci_dev to probe
344  *
345  * Create, or find the existing, eeh_dev for this pci_dev.
346  */
347 static struct eeh_dev *pnv_eeh_probe(struct pci_dev *pdev)
348 {
349 	struct pci_dn *pdn = pci_get_pdn(pdev);
350 	struct pci_controller *hose = pdn->phb;
351 	struct pnv_phb *phb = hose->private_data;
352 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
353 	uint32_t pcie_flags;
354 	int ret;
355 	int config_addr = (pdn->busno << 8) | (pdn->devfn);
356 
357 	/*
358 	 * When probing the root bridge, which doesn't have any
359 	 * subordinate PCI devices. We don't have OF node for
360 	 * the root bridge. So it's not reasonable to continue
361 	 * the probing.
362 	 */
363 	if (!edev || edev->pe)
364 		return NULL;
365 
366 	/* already configured? */
367 	if (edev->pdev) {
368 		pr_debug("%s: found existing edev for %04x:%02x:%02x.%01x\n",
369 			__func__, hose->global_number, config_addr >> 8,
370 			PCI_SLOT(config_addr), PCI_FUNC(config_addr));
371 		return edev;
372 	}
373 
374 	/* Skip for PCI-ISA bridge */
375 	if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_ISA)
376 		return NULL;
377 
378 	eeh_edev_dbg(edev, "Probing device\n");
379 
380 	/* Initialize eeh device */
381 	edev->class_code = pdn->class_code;
382 	edev->mode	&= 0xFFFFFF00;
383 	edev->pcix_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_PCIX);
384 	edev->pcie_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_EXP);
385 	edev->af_cap   = pnv_eeh_find_cap(pdn, PCI_CAP_ID_AF);
386 	edev->aer_cap  = pnv_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR);
387 	if ((edev->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) {
388 		edev->mode |= EEH_DEV_BRIDGE;
389 		if (edev->pcie_cap) {
390 			pnv_pci_cfg_read(pdn, edev->pcie_cap + PCI_EXP_FLAGS,
391 					 2, &pcie_flags);
392 			pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4;
393 			if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT)
394 				edev->mode |= EEH_DEV_ROOT_PORT;
395 			else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM)
396 				edev->mode |= EEH_DEV_DS_PORT;
397 		}
398 	}
399 
400 	edev->pe_config_addr = phb->ioda.pe_rmap[config_addr];
401 
402 	/* Create PE */
403 	ret = eeh_add_to_parent_pe(edev);
404 	if (ret) {
405 		eeh_edev_warn(edev, "Failed to add device to PE (code %d)\n", ret);
406 		return NULL;
407 	}
408 
409 	/*
410 	 * If the PE contains any one of following adapters, the
411 	 * PCI config space can't be accessed when dumping EEH log.
412 	 * Otherwise, we will run into fenced PHB caused by shortage
413 	 * of outbound credits in the adapter. The PCI config access
414 	 * should be blocked until PE reset. MMIO access is dropped
415 	 * by hardware certainly. In order to drop PCI config requests,
416 	 * one more flag (EEH_PE_CFG_RESTRICTED) is introduced, which
417 	 * will be checked in the backend for PE state retrival. If
418 	 * the PE becomes frozen for the first time and the flag has
419 	 * been set for the PE, we will set EEH_PE_CFG_BLOCKED for
420 	 * that PE to block its config space.
421 	 *
422 	 * Broadcom BCM5718 2-ports NICs (14e4:1656)
423 	 * Broadcom Austin 4-ports NICs (14e4:1657)
424 	 * Broadcom Shiner 4-ports 1G NICs (14e4:168a)
425 	 * Broadcom Shiner 2-ports 10G NICs (14e4:168e)
426 	 */
427 	if ((pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
428 	     pdn->device_id == 0x1656) ||
429 	    (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
430 	     pdn->device_id == 0x1657) ||
431 	    (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
432 	     pdn->device_id == 0x168a) ||
433 	    (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
434 	     pdn->device_id == 0x168e))
435 		edev->pe->state |= EEH_PE_CFG_RESTRICTED;
436 
437 	/*
438 	 * Cache the PE primary bus, which can't be fetched when
439 	 * full hotplug is in progress. In that case, all child
440 	 * PCI devices of the PE are expected to be removed prior
441 	 * to PE reset.
442 	 */
443 	if (!(edev->pe->state & EEH_PE_PRI_BUS)) {
444 		edev->pe->bus = pci_find_bus(hose->global_number,
445 					     pdn->busno);
446 		if (edev->pe->bus)
447 			edev->pe->state |= EEH_PE_PRI_BUS;
448 	}
449 
450 	/*
451 	 * Enable EEH explicitly so that we will do EEH check
452 	 * while accessing I/O stuff
453 	 */
454 	if (!eeh_has_flag(EEH_ENABLED)) {
455 		enable_irq(eeh_event_irq);
456 		pnv_eeh_enable_phbs();
457 		eeh_add_flag(EEH_ENABLED);
458 	}
459 
460 	/* Save memory bars */
461 	eeh_save_bars(edev);
462 
463 	eeh_edev_dbg(edev, "EEH enabled on device\n");
464 
465 	return edev;
466 }
467 
468 /**
469  * pnv_eeh_set_option - Initialize EEH or MMIO/DMA reenable
470  * @pe: EEH PE
471  * @option: operation to be issued
472  *
473  * The function is used to control the EEH functionality globally.
474  * Currently, following options are support according to PAPR:
475  * Enable EEH, Disable EEH, Enable MMIO and Enable DMA
476  */
477 static int pnv_eeh_set_option(struct eeh_pe *pe, int option)
478 {
479 	struct pci_controller *hose = pe->phb;
480 	struct pnv_phb *phb = hose->private_data;
481 	bool freeze_pe = false;
482 	int opt;
483 	s64 rc;
484 
485 	switch (option) {
486 	case EEH_OPT_DISABLE:
487 		return -EPERM;
488 	case EEH_OPT_ENABLE:
489 		return 0;
490 	case EEH_OPT_THAW_MMIO:
491 		opt = OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO;
492 		break;
493 	case EEH_OPT_THAW_DMA:
494 		opt = OPAL_EEH_ACTION_CLEAR_FREEZE_DMA;
495 		break;
496 	case EEH_OPT_FREEZE_PE:
497 		freeze_pe = true;
498 		opt = OPAL_EEH_ACTION_SET_FREEZE_ALL;
499 		break;
500 	default:
501 		pr_warn("%s: Invalid option %d\n", __func__, option);
502 		return -EINVAL;
503 	}
504 
505 	/* Freeze master and slave PEs if PHB supports compound PEs */
506 	if (freeze_pe) {
507 		if (phb->freeze_pe) {
508 			phb->freeze_pe(phb, pe->addr);
509 			return 0;
510 		}
511 
512 		rc = opal_pci_eeh_freeze_set(phb->opal_id, pe->addr, opt);
513 		if (rc != OPAL_SUCCESS) {
514 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
515 				__func__, rc, phb->hose->global_number,
516 				pe->addr);
517 			return -EIO;
518 		}
519 
520 		return 0;
521 	}
522 
523 	/* Unfreeze master and slave PEs if PHB supports */
524 	if (phb->unfreeze_pe)
525 		return phb->unfreeze_pe(phb, pe->addr, opt);
526 
527 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe->addr, opt);
528 	if (rc != OPAL_SUCCESS) {
529 		pr_warn("%s: Failure %lld enable %d for PHB#%x-PE#%x\n",
530 			__func__, rc, option, phb->hose->global_number,
531 			pe->addr);
532 		return -EIO;
533 	}
534 
535 	return 0;
536 }
537 
538 /**
539  * pnv_eeh_get_pe_addr - Retrieve PE address
540  * @pe: EEH PE
541  *
542  * Retrieve the PE address according to the given tranditional
543  * PCI BDF (Bus/Device/Function) address.
544  */
545 static int pnv_eeh_get_pe_addr(struct eeh_pe *pe)
546 {
547 	return pe->addr;
548 }
549 
550 static void pnv_eeh_get_phb_diag(struct eeh_pe *pe)
551 {
552 	struct pnv_phb *phb = pe->phb->private_data;
553 	s64 rc;
554 
555 	rc = opal_pci_get_phb_diag_data2(phb->opal_id, pe->data,
556 					 phb->diag_data_size);
557 	if (rc != OPAL_SUCCESS)
558 		pr_warn("%s: Failure %lld getting PHB#%x diag-data\n",
559 			__func__, rc, pe->phb->global_number);
560 }
561 
562 static int pnv_eeh_get_phb_state(struct eeh_pe *pe)
563 {
564 	struct pnv_phb *phb = pe->phb->private_data;
565 	u8 fstate = 0;
566 	__be16 pcierr = 0;
567 	s64 rc;
568 	int result = 0;
569 
570 	rc = opal_pci_eeh_freeze_status(phb->opal_id,
571 					pe->addr,
572 					&fstate,
573 					&pcierr,
574 					NULL);
575 	if (rc != OPAL_SUCCESS) {
576 		pr_warn("%s: Failure %lld getting PHB#%x state\n",
577 			__func__, rc, phb->hose->global_number);
578 		return EEH_STATE_NOT_SUPPORT;
579 	}
580 
581 	/*
582 	 * Check PHB state. If the PHB is frozen for the
583 	 * first time, to dump the PHB diag-data.
584 	 */
585 	if (be16_to_cpu(pcierr) != OPAL_EEH_PHB_ERROR) {
586 		result = (EEH_STATE_MMIO_ACTIVE  |
587 			  EEH_STATE_DMA_ACTIVE   |
588 			  EEH_STATE_MMIO_ENABLED |
589 			  EEH_STATE_DMA_ENABLED);
590 	} else if (!(pe->state & EEH_PE_ISOLATED)) {
591 		eeh_pe_mark_isolated(pe);
592 		pnv_eeh_get_phb_diag(pe);
593 
594 		if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
595 			pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
596 	}
597 
598 	return result;
599 }
600 
601 static int pnv_eeh_get_pe_state(struct eeh_pe *pe)
602 {
603 	struct pnv_phb *phb = pe->phb->private_data;
604 	u8 fstate = 0;
605 	__be16 pcierr = 0;
606 	s64 rc;
607 	int result;
608 
609 	/*
610 	 * We don't clobber hardware frozen state until PE
611 	 * reset is completed. In order to keep EEH core
612 	 * moving forward, we have to return operational
613 	 * state during PE reset.
614 	 */
615 	if (pe->state & EEH_PE_RESET) {
616 		result = (EEH_STATE_MMIO_ACTIVE  |
617 			  EEH_STATE_DMA_ACTIVE   |
618 			  EEH_STATE_MMIO_ENABLED |
619 			  EEH_STATE_DMA_ENABLED);
620 		return result;
621 	}
622 
623 	/*
624 	 * Fetch PE state from hardware. If the PHB
625 	 * supports compound PE, let it handle that.
626 	 */
627 	if (phb->get_pe_state) {
628 		fstate = phb->get_pe_state(phb, pe->addr);
629 	} else {
630 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
631 						pe->addr,
632 						&fstate,
633 						&pcierr,
634 						NULL);
635 		if (rc != OPAL_SUCCESS) {
636 			pr_warn("%s: Failure %lld getting PHB#%x-PE%x state\n",
637 				__func__, rc, phb->hose->global_number,
638 				pe->addr);
639 			return EEH_STATE_NOT_SUPPORT;
640 		}
641 	}
642 
643 	/* Figure out state */
644 	switch (fstate) {
645 	case OPAL_EEH_STOPPED_NOT_FROZEN:
646 		result = (EEH_STATE_MMIO_ACTIVE  |
647 			  EEH_STATE_DMA_ACTIVE   |
648 			  EEH_STATE_MMIO_ENABLED |
649 			  EEH_STATE_DMA_ENABLED);
650 		break;
651 	case OPAL_EEH_STOPPED_MMIO_FREEZE:
652 		result = (EEH_STATE_DMA_ACTIVE |
653 			  EEH_STATE_DMA_ENABLED);
654 		break;
655 	case OPAL_EEH_STOPPED_DMA_FREEZE:
656 		result = (EEH_STATE_MMIO_ACTIVE |
657 			  EEH_STATE_MMIO_ENABLED);
658 		break;
659 	case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE:
660 		result = 0;
661 		break;
662 	case OPAL_EEH_STOPPED_RESET:
663 		result = EEH_STATE_RESET_ACTIVE;
664 		break;
665 	case OPAL_EEH_STOPPED_TEMP_UNAVAIL:
666 		result = EEH_STATE_UNAVAILABLE;
667 		break;
668 	case OPAL_EEH_STOPPED_PERM_UNAVAIL:
669 		result = EEH_STATE_NOT_SUPPORT;
670 		break;
671 	default:
672 		result = EEH_STATE_NOT_SUPPORT;
673 		pr_warn("%s: Invalid PHB#%x-PE#%x state %x\n",
674 			__func__, phb->hose->global_number,
675 			pe->addr, fstate);
676 	}
677 
678 	/*
679 	 * If PHB supports compound PE, to freeze all
680 	 * slave PEs for consistency.
681 	 *
682 	 * If the PE is switching to frozen state for the
683 	 * first time, to dump the PHB diag-data.
684 	 */
685 	if (!(result & EEH_STATE_NOT_SUPPORT) &&
686 	    !(result & EEH_STATE_UNAVAILABLE) &&
687 	    !(result & EEH_STATE_MMIO_ACTIVE) &&
688 	    !(result & EEH_STATE_DMA_ACTIVE)  &&
689 	    !(pe->state & EEH_PE_ISOLATED)) {
690 		if (phb->freeze_pe)
691 			phb->freeze_pe(phb, pe->addr);
692 
693 		eeh_pe_mark_isolated(pe);
694 		pnv_eeh_get_phb_diag(pe);
695 
696 		if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
697 			pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
698 	}
699 
700 	return result;
701 }
702 
703 /**
704  * pnv_eeh_get_state - Retrieve PE state
705  * @pe: EEH PE
706  * @delay: delay while PE state is temporarily unavailable
707  *
708  * Retrieve the state of the specified PE. For IODA-compitable
709  * platform, it should be retrieved from IODA table. Therefore,
710  * we prefer passing down to hardware implementation to handle
711  * it.
712  */
713 static int pnv_eeh_get_state(struct eeh_pe *pe, int *delay)
714 {
715 	int ret;
716 
717 	if (pe->type & EEH_PE_PHB)
718 		ret = pnv_eeh_get_phb_state(pe);
719 	else
720 		ret = pnv_eeh_get_pe_state(pe);
721 
722 	if (!delay)
723 		return ret;
724 
725 	/*
726 	 * If the PE state is temporarily unavailable,
727 	 * to inform the EEH core delay for default
728 	 * period (1 second)
729 	 */
730 	*delay = 0;
731 	if (ret & EEH_STATE_UNAVAILABLE)
732 		*delay = 1000;
733 
734 	return ret;
735 }
736 
737 static s64 pnv_eeh_poll(unsigned long id)
738 {
739 	s64 rc = OPAL_HARDWARE;
740 
741 	while (1) {
742 		rc = opal_pci_poll(id);
743 		if (rc <= 0)
744 			break;
745 
746 		if (system_state < SYSTEM_RUNNING)
747 			udelay(1000 * rc);
748 		else
749 			msleep(rc);
750 	}
751 
752 	return rc;
753 }
754 
755 int pnv_eeh_phb_reset(struct pci_controller *hose, int option)
756 {
757 	struct pnv_phb *phb = hose->private_data;
758 	s64 rc = OPAL_HARDWARE;
759 
760 	pr_debug("%s: Reset PHB#%x, option=%d\n",
761 		 __func__, hose->global_number, option);
762 
763 	/* Issue PHB complete reset request */
764 	if (option == EEH_RESET_FUNDAMENTAL ||
765 	    option == EEH_RESET_HOT)
766 		rc = opal_pci_reset(phb->opal_id,
767 				    OPAL_RESET_PHB_COMPLETE,
768 				    OPAL_ASSERT_RESET);
769 	else if (option == EEH_RESET_DEACTIVATE)
770 		rc = opal_pci_reset(phb->opal_id,
771 				    OPAL_RESET_PHB_COMPLETE,
772 				    OPAL_DEASSERT_RESET);
773 	if (rc < 0)
774 		goto out;
775 
776 	/*
777 	 * Poll state of the PHB until the request is done
778 	 * successfully. The PHB reset is usually PHB complete
779 	 * reset followed by hot reset on root bus. So we also
780 	 * need the PCI bus settlement delay.
781 	 */
782 	if (rc > 0)
783 		rc = pnv_eeh_poll(phb->opal_id);
784 	if (option == EEH_RESET_DEACTIVATE) {
785 		if (system_state < SYSTEM_RUNNING)
786 			udelay(1000 * EEH_PE_RST_SETTLE_TIME);
787 		else
788 			msleep(EEH_PE_RST_SETTLE_TIME);
789 	}
790 out:
791 	if (rc != OPAL_SUCCESS)
792 		return -EIO;
793 
794 	return 0;
795 }
796 
797 static int pnv_eeh_root_reset(struct pci_controller *hose, int option)
798 {
799 	struct pnv_phb *phb = hose->private_data;
800 	s64 rc = OPAL_HARDWARE;
801 
802 	pr_debug("%s: Reset PHB#%x, option=%d\n",
803 		 __func__, hose->global_number, option);
804 
805 	/*
806 	 * During the reset deassert time, we needn't care
807 	 * the reset scope because the firmware does nothing
808 	 * for fundamental or hot reset during deassert phase.
809 	 */
810 	if (option == EEH_RESET_FUNDAMENTAL)
811 		rc = opal_pci_reset(phb->opal_id,
812 				    OPAL_RESET_PCI_FUNDAMENTAL,
813 				    OPAL_ASSERT_RESET);
814 	else if (option == EEH_RESET_HOT)
815 		rc = opal_pci_reset(phb->opal_id,
816 				    OPAL_RESET_PCI_HOT,
817 				    OPAL_ASSERT_RESET);
818 	else if (option == EEH_RESET_DEACTIVATE)
819 		rc = opal_pci_reset(phb->opal_id,
820 				    OPAL_RESET_PCI_HOT,
821 				    OPAL_DEASSERT_RESET);
822 	if (rc < 0)
823 		goto out;
824 
825 	/* Poll state of the PHB until the request is done */
826 	if (rc > 0)
827 		rc = pnv_eeh_poll(phb->opal_id);
828 	if (option == EEH_RESET_DEACTIVATE)
829 		msleep(EEH_PE_RST_SETTLE_TIME);
830 out:
831 	if (rc != OPAL_SUCCESS)
832 		return -EIO;
833 
834 	return 0;
835 }
836 
837 static int __pnv_eeh_bridge_reset(struct pci_dev *dev, int option)
838 {
839 	struct pci_dn *pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
840 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
841 	int aer = edev ? edev->aer_cap : 0;
842 	u32 ctrl;
843 
844 	pr_debug("%s: Secondary Reset PCI bus %04x:%02x with option %d\n",
845 		 __func__, pci_domain_nr(dev->bus),
846 		 dev->bus->number, option);
847 
848 	switch (option) {
849 	case EEH_RESET_FUNDAMENTAL:
850 	case EEH_RESET_HOT:
851 		/* Don't report linkDown event */
852 		if (aer) {
853 			eeh_ops->read_config(pdn, aer + PCI_ERR_UNCOR_MASK,
854 					     4, &ctrl);
855 			ctrl |= PCI_ERR_UNC_SURPDN;
856 			eeh_ops->write_config(pdn, aer + PCI_ERR_UNCOR_MASK,
857 					      4, ctrl);
858 		}
859 
860 		eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &ctrl);
861 		ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
862 		eeh_ops->write_config(pdn, PCI_BRIDGE_CONTROL, 2, ctrl);
863 
864 		msleep(EEH_PE_RST_HOLD_TIME);
865 		break;
866 	case EEH_RESET_DEACTIVATE:
867 		eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &ctrl);
868 		ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
869 		eeh_ops->write_config(pdn, PCI_BRIDGE_CONTROL, 2, ctrl);
870 
871 		msleep(EEH_PE_RST_SETTLE_TIME);
872 
873 		/* Continue reporting linkDown event */
874 		if (aer) {
875 			eeh_ops->read_config(pdn, aer + PCI_ERR_UNCOR_MASK,
876 					     4, &ctrl);
877 			ctrl &= ~PCI_ERR_UNC_SURPDN;
878 			eeh_ops->write_config(pdn, aer + PCI_ERR_UNCOR_MASK,
879 					      4, ctrl);
880 		}
881 
882 		break;
883 	}
884 
885 	return 0;
886 }
887 
888 static int pnv_eeh_bridge_reset(struct pci_dev *pdev, int option)
889 {
890 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
891 	struct pnv_phb *phb = hose->private_data;
892 	struct device_node *dn = pci_device_to_OF_node(pdev);
893 	uint64_t id = PCI_SLOT_ID(phb->opal_id,
894 				  (pdev->bus->number << 8) | pdev->devfn);
895 	uint8_t scope;
896 	int64_t rc;
897 
898 	/* Hot reset to the bus if firmware cannot handle */
899 	if (!dn || !of_get_property(dn, "ibm,reset-by-firmware", NULL))
900 		return __pnv_eeh_bridge_reset(pdev, option);
901 
902 	pr_debug("%s: FW reset PCI bus %04x:%02x with option %d\n",
903 		 __func__, pci_domain_nr(pdev->bus),
904 		 pdev->bus->number, option);
905 
906 	switch (option) {
907 	case EEH_RESET_FUNDAMENTAL:
908 		scope = OPAL_RESET_PCI_FUNDAMENTAL;
909 		break;
910 	case EEH_RESET_HOT:
911 		scope = OPAL_RESET_PCI_HOT;
912 		break;
913 	case EEH_RESET_DEACTIVATE:
914 		return 0;
915 	default:
916 		dev_dbg(&pdev->dev, "%s: Unsupported reset %d\n",
917 			__func__, option);
918 		return -EINVAL;
919 	}
920 
921 	rc = opal_pci_reset(id, scope, OPAL_ASSERT_RESET);
922 	if (rc <= OPAL_SUCCESS)
923 		goto out;
924 
925 	rc = pnv_eeh_poll(id);
926 out:
927 	return (rc == OPAL_SUCCESS) ? 0 : -EIO;
928 }
929 
930 void pnv_pci_reset_secondary_bus(struct pci_dev *dev)
931 {
932 	struct pci_controller *hose;
933 
934 	if (pci_is_root_bus(dev->bus)) {
935 		hose = pci_bus_to_host(dev->bus);
936 		pnv_eeh_root_reset(hose, EEH_RESET_HOT);
937 		pnv_eeh_root_reset(hose, EEH_RESET_DEACTIVATE);
938 	} else {
939 		pnv_eeh_bridge_reset(dev, EEH_RESET_HOT);
940 		pnv_eeh_bridge_reset(dev, EEH_RESET_DEACTIVATE);
941 	}
942 }
943 
944 static void pnv_eeh_wait_for_pending(struct pci_dn *pdn, const char *type,
945 				     int pos, u16 mask)
946 {
947 	int i, status = 0;
948 
949 	/* Wait for Transaction Pending bit to be cleared */
950 	for (i = 0; i < 4; i++) {
951 		eeh_ops->read_config(pdn, pos, 2, &status);
952 		if (!(status & mask))
953 			return;
954 
955 		msleep((1 << i) * 100);
956 	}
957 
958 	pr_warn("%s: Pending transaction while issuing %sFLR to %04x:%02x:%02x.%01x\n",
959 		__func__, type,
960 		pdn->phb->global_number, pdn->busno,
961 		PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
962 }
963 
964 static int pnv_eeh_do_flr(struct pci_dn *pdn, int option)
965 {
966 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
967 	u32 reg = 0;
968 
969 	if (WARN_ON(!edev->pcie_cap))
970 		return -ENOTTY;
971 
972 	eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP, 4, &reg);
973 	if (!(reg & PCI_EXP_DEVCAP_FLR))
974 		return -ENOTTY;
975 
976 	switch (option) {
977 	case EEH_RESET_HOT:
978 	case EEH_RESET_FUNDAMENTAL:
979 		pnv_eeh_wait_for_pending(pdn, "",
980 					 edev->pcie_cap + PCI_EXP_DEVSTA,
981 					 PCI_EXP_DEVSTA_TRPND);
982 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
983 				     4, &reg);
984 		reg |= PCI_EXP_DEVCTL_BCR_FLR;
985 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
986 				      4, reg);
987 		msleep(EEH_PE_RST_HOLD_TIME);
988 		break;
989 	case EEH_RESET_DEACTIVATE:
990 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
991 				     4, &reg);
992 		reg &= ~PCI_EXP_DEVCTL_BCR_FLR;
993 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
994 				      4, reg);
995 		msleep(EEH_PE_RST_SETTLE_TIME);
996 		break;
997 	}
998 
999 	return 0;
1000 }
1001 
1002 static int pnv_eeh_do_af_flr(struct pci_dn *pdn, int option)
1003 {
1004 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1005 	u32 cap = 0;
1006 
1007 	if (WARN_ON(!edev->af_cap))
1008 		return -ENOTTY;
1009 
1010 	eeh_ops->read_config(pdn, edev->af_cap + PCI_AF_CAP, 1, &cap);
1011 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
1012 		return -ENOTTY;
1013 
1014 	switch (option) {
1015 	case EEH_RESET_HOT:
1016 	case EEH_RESET_FUNDAMENTAL:
1017 		/*
1018 		 * Wait for Transaction Pending bit to clear. A word-aligned
1019 		 * test is used, so we use the conrol offset rather than status
1020 		 * and shift the test bit to match.
1021 		 */
1022 		pnv_eeh_wait_for_pending(pdn, "AF",
1023 					 edev->af_cap + PCI_AF_CTRL,
1024 					 PCI_AF_STATUS_TP << 8);
1025 		eeh_ops->write_config(pdn, edev->af_cap + PCI_AF_CTRL,
1026 				      1, PCI_AF_CTRL_FLR);
1027 		msleep(EEH_PE_RST_HOLD_TIME);
1028 		break;
1029 	case EEH_RESET_DEACTIVATE:
1030 		eeh_ops->write_config(pdn, edev->af_cap + PCI_AF_CTRL, 1, 0);
1031 		msleep(EEH_PE_RST_SETTLE_TIME);
1032 		break;
1033 	}
1034 
1035 	return 0;
1036 }
1037 
1038 static int pnv_eeh_reset_vf_pe(struct eeh_pe *pe, int option)
1039 {
1040 	struct eeh_dev *edev;
1041 	struct pci_dn *pdn;
1042 	int ret;
1043 
1044 	/* The VF PE should have only one child device */
1045 	edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, entry);
1046 	pdn = eeh_dev_to_pdn(edev);
1047 	if (!pdn)
1048 		return -ENXIO;
1049 
1050 	ret = pnv_eeh_do_flr(pdn, option);
1051 	if (!ret)
1052 		return ret;
1053 
1054 	return pnv_eeh_do_af_flr(pdn, option);
1055 }
1056 
1057 /**
1058  * pnv_eeh_reset - Reset the specified PE
1059  * @pe: EEH PE
1060  * @option: reset option
1061  *
1062  * Do reset on the indicated PE. For PCI bus sensitive PE,
1063  * we need to reset the parent p2p bridge. The PHB has to
1064  * be reinitialized if the p2p bridge is root bridge. For
1065  * PCI device sensitive PE, we will try to reset the device
1066  * through FLR. For now, we don't have OPAL APIs to do HARD
1067  * reset yet, so all reset would be SOFT (HOT) reset.
1068  */
1069 static int pnv_eeh_reset(struct eeh_pe *pe, int option)
1070 {
1071 	struct pci_controller *hose = pe->phb;
1072 	struct pnv_phb *phb;
1073 	struct pci_bus *bus;
1074 	int64_t rc;
1075 
1076 	/*
1077 	 * For PHB reset, we always have complete reset. For those PEs whose
1078 	 * primary bus derived from root complex (root bus) or root port
1079 	 * (usually bus#1), we apply hot or fundamental reset on the root port.
1080 	 * For other PEs, we always have hot reset on the PE primary bus.
1081 	 *
1082 	 * Here, we have different design to pHyp, which always clear the
1083 	 * frozen state during PE reset. However, the good idea here from
1084 	 * benh is to keep frozen state before we get PE reset done completely
1085 	 * (until BAR restore). With the frozen state, HW drops illegal IO
1086 	 * or MMIO access, which can incur recrusive frozen PE during PE
1087 	 * reset. The side effect is that EEH core has to clear the frozen
1088 	 * state explicitly after BAR restore.
1089 	 */
1090 	if (pe->type & EEH_PE_PHB)
1091 		return pnv_eeh_phb_reset(hose, option);
1092 
1093 	/*
1094 	 * The frozen PE might be caused by PAPR error injection
1095 	 * registers, which are expected to be cleared after hitting
1096 	 * frozen PE as stated in the hardware spec. Unfortunately,
1097 	 * that's not true on P7IOC. So we have to clear it manually
1098 	 * to avoid recursive EEH errors during recovery.
1099 	 */
1100 	phb = hose->private_data;
1101 	if (phb->model == PNV_PHB_MODEL_P7IOC &&
1102 	    (option == EEH_RESET_HOT ||
1103 	     option == EEH_RESET_FUNDAMENTAL)) {
1104 		rc = opal_pci_reset(phb->opal_id,
1105 				    OPAL_RESET_PHB_ERROR,
1106 				    OPAL_ASSERT_RESET);
1107 		if (rc != OPAL_SUCCESS) {
1108 			pr_warn("%s: Failure %lld clearing error injection registers\n",
1109 				__func__, rc);
1110 			return -EIO;
1111 		}
1112 	}
1113 
1114 	if (pe->type & EEH_PE_VF)
1115 		return pnv_eeh_reset_vf_pe(pe, option);
1116 
1117 	bus = eeh_pe_bus_get(pe);
1118 	if (!bus) {
1119 		pr_err("%s: Cannot find PCI bus for PHB#%x-PE#%x\n",
1120 			__func__, pe->phb->global_number, pe->addr);
1121 		return -EIO;
1122 	}
1123 
1124 	if (pci_is_root_bus(bus))
1125 		return pnv_eeh_root_reset(hose, option);
1126 
1127 	/*
1128 	 * For hot resets try use the generic PCI error recovery reset
1129 	 * functions. These correctly handles the case where the secondary
1130 	 * bus is behind a hotplug slot and it will use the slot provided
1131 	 * reset methods to prevent spurious hotplug events during the reset.
1132 	 *
1133 	 * Fundemental resets need to be handled internally to EEH since the
1134 	 * PCI core doesn't really have a concept of a fundemental reset,
1135 	 * mainly because there's no standard way to generate one. Only a
1136 	 * few devices require an FRESET so it should be fine.
1137 	 */
1138 	if (option != EEH_RESET_FUNDAMENTAL) {
1139 		/*
1140 		 * NB: Skiboot and pnv_eeh_bridge_reset() also no-op the
1141 		 *     de-assert step. It's like the OPAL reset API was
1142 		 *     poorly designed or something...
1143 		 */
1144 		if (option == EEH_RESET_DEACTIVATE)
1145 			return 0;
1146 
1147 		rc = pci_bus_error_reset(bus->self);
1148 		if (!rc)
1149 			return 0;
1150 	}
1151 
1152 	/* otherwise, use the generic bridge reset. this might call into FW */
1153 	if (pci_is_root_bus(bus->parent))
1154 		return pnv_eeh_root_reset(hose, option);
1155 	return pnv_eeh_bridge_reset(bus->self, option);
1156 }
1157 
1158 /**
1159  * pnv_eeh_get_log - Retrieve error log
1160  * @pe: EEH PE
1161  * @severity: temporary or permanent error log
1162  * @drv_log: driver log to be combined with retrieved error log
1163  * @len: length of driver log
1164  *
1165  * Retrieve the temporary or permanent error from the PE.
1166  */
1167 static int pnv_eeh_get_log(struct eeh_pe *pe, int severity,
1168 			   char *drv_log, unsigned long len)
1169 {
1170 	if (!eeh_has_flag(EEH_EARLY_DUMP_LOG))
1171 		pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
1172 
1173 	return 0;
1174 }
1175 
1176 /**
1177  * pnv_eeh_configure_bridge - Configure PCI bridges in the indicated PE
1178  * @pe: EEH PE
1179  *
1180  * The function will be called to reconfigure the bridges included
1181  * in the specified PE so that the mulfunctional PE would be recovered
1182  * again.
1183  */
1184 static int pnv_eeh_configure_bridge(struct eeh_pe *pe)
1185 {
1186 	return 0;
1187 }
1188 
1189 /**
1190  * pnv_pe_err_inject - Inject specified error to the indicated PE
1191  * @pe: the indicated PE
1192  * @type: error type
1193  * @func: specific error type
1194  * @addr: address
1195  * @mask: address mask
1196  *
1197  * The routine is called to inject specified error, which is
1198  * determined by @type and @func, to the indicated PE for
1199  * testing purpose.
1200  */
1201 static int pnv_eeh_err_inject(struct eeh_pe *pe, int type, int func,
1202 			      unsigned long addr, unsigned long mask)
1203 {
1204 	struct pci_controller *hose = pe->phb;
1205 	struct pnv_phb *phb = hose->private_data;
1206 	s64 rc;
1207 
1208 	if (type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR &&
1209 	    type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64) {
1210 		pr_warn("%s: Invalid error type %d\n",
1211 			__func__, type);
1212 		return -ERANGE;
1213 	}
1214 
1215 	if (func < OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_ADDR ||
1216 	    func > OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_TARGET) {
1217 		pr_warn("%s: Invalid error function %d\n",
1218 			__func__, func);
1219 		return -ERANGE;
1220 	}
1221 
1222 	/* Firmware supports error injection ? */
1223 	if (!opal_check_token(OPAL_PCI_ERR_INJECT)) {
1224 		pr_warn("%s: Firmware doesn't support error injection\n",
1225 			__func__);
1226 		return -ENXIO;
1227 	}
1228 
1229 	/* Do error injection */
1230 	rc = opal_pci_err_inject(phb->opal_id, pe->addr,
1231 				 type, func, addr, mask);
1232 	if (rc != OPAL_SUCCESS) {
1233 		pr_warn("%s: Failure %lld injecting error "
1234 			"%d-%d to PHB#%x-PE#%x\n",
1235 			__func__, rc, type, func,
1236 			hose->global_number, pe->addr);
1237 		return -EIO;
1238 	}
1239 
1240 	return 0;
1241 }
1242 
1243 static inline bool pnv_eeh_cfg_blocked(struct pci_dn *pdn)
1244 {
1245 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1246 
1247 	if (!edev || !edev->pe)
1248 		return false;
1249 
1250 	/*
1251 	 * We will issue FLR or AF FLR to all VFs, which are contained
1252 	 * in VF PE. It relies on the EEH PCI config accessors. So we
1253 	 * can't block them during the window.
1254 	 */
1255 	if (edev->physfn && (edev->pe->state & EEH_PE_RESET))
1256 		return false;
1257 
1258 	if (edev->pe->state & EEH_PE_CFG_BLOCKED)
1259 		return true;
1260 
1261 	return false;
1262 }
1263 
1264 static int pnv_eeh_read_config(struct pci_dn *pdn,
1265 			       int where, int size, u32 *val)
1266 {
1267 	if (!pdn)
1268 		return PCIBIOS_DEVICE_NOT_FOUND;
1269 
1270 	if (pnv_eeh_cfg_blocked(pdn)) {
1271 		*val = 0xFFFFFFFF;
1272 		return PCIBIOS_SET_FAILED;
1273 	}
1274 
1275 	return pnv_pci_cfg_read(pdn, where, size, val);
1276 }
1277 
1278 static int pnv_eeh_write_config(struct pci_dn *pdn,
1279 				int where, int size, u32 val)
1280 {
1281 	if (!pdn)
1282 		return PCIBIOS_DEVICE_NOT_FOUND;
1283 
1284 	if (pnv_eeh_cfg_blocked(pdn))
1285 		return PCIBIOS_SET_FAILED;
1286 
1287 	return pnv_pci_cfg_write(pdn, where, size, val);
1288 }
1289 
1290 static void pnv_eeh_dump_hub_diag_common(struct OpalIoP7IOCErrorData *data)
1291 {
1292 	/* GEM */
1293 	if (data->gemXfir || data->gemRfir ||
1294 	    data->gemRirqfir || data->gemMask || data->gemRwof)
1295 		pr_info("  GEM: %016llx %016llx %016llx %016llx %016llx\n",
1296 			be64_to_cpu(data->gemXfir),
1297 			be64_to_cpu(data->gemRfir),
1298 			be64_to_cpu(data->gemRirqfir),
1299 			be64_to_cpu(data->gemMask),
1300 			be64_to_cpu(data->gemRwof));
1301 
1302 	/* LEM */
1303 	if (data->lemFir || data->lemErrMask ||
1304 	    data->lemAction0 || data->lemAction1 || data->lemWof)
1305 		pr_info("  LEM: %016llx %016llx %016llx %016llx %016llx\n",
1306 			be64_to_cpu(data->lemFir),
1307 			be64_to_cpu(data->lemErrMask),
1308 			be64_to_cpu(data->lemAction0),
1309 			be64_to_cpu(data->lemAction1),
1310 			be64_to_cpu(data->lemWof));
1311 }
1312 
1313 static void pnv_eeh_get_and_dump_hub_diag(struct pci_controller *hose)
1314 {
1315 	struct pnv_phb *phb = hose->private_data;
1316 	struct OpalIoP7IOCErrorData *data =
1317 		(struct OpalIoP7IOCErrorData*)phb->diag_data;
1318 	long rc;
1319 
1320 	rc = opal_pci_get_hub_diag_data(phb->hub_id, data, sizeof(*data));
1321 	if (rc != OPAL_SUCCESS) {
1322 		pr_warn("%s: Failed to get HUB#%llx diag-data (%ld)\n",
1323 			__func__, phb->hub_id, rc);
1324 		return;
1325 	}
1326 
1327 	switch (be16_to_cpu(data->type)) {
1328 	case OPAL_P7IOC_DIAG_TYPE_RGC:
1329 		pr_info("P7IOC diag-data for RGC\n\n");
1330 		pnv_eeh_dump_hub_diag_common(data);
1331 		if (data->rgc.rgcStatus || data->rgc.rgcLdcp)
1332 			pr_info("  RGC: %016llx %016llx\n",
1333 				be64_to_cpu(data->rgc.rgcStatus),
1334 				be64_to_cpu(data->rgc.rgcLdcp));
1335 		break;
1336 	case OPAL_P7IOC_DIAG_TYPE_BI:
1337 		pr_info("P7IOC diag-data for BI %s\n\n",
1338 			data->bi.biDownbound ? "Downbound" : "Upbound");
1339 		pnv_eeh_dump_hub_diag_common(data);
1340 		if (data->bi.biLdcp0 || data->bi.biLdcp1 ||
1341 		    data->bi.biLdcp2 || data->bi.biFenceStatus)
1342 			pr_info("  BI:  %016llx %016llx %016llx %016llx\n",
1343 				be64_to_cpu(data->bi.biLdcp0),
1344 				be64_to_cpu(data->bi.biLdcp1),
1345 				be64_to_cpu(data->bi.biLdcp2),
1346 				be64_to_cpu(data->bi.biFenceStatus));
1347 		break;
1348 	case OPAL_P7IOC_DIAG_TYPE_CI:
1349 		pr_info("P7IOC diag-data for CI Port %d\n\n",
1350 			data->ci.ciPort);
1351 		pnv_eeh_dump_hub_diag_common(data);
1352 		if (data->ci.ciPortStatus || data->ci.ciPortLdcp)
1353 			pr_info("  CI:  %016llx %016llx\n",
1354 				be64_to_cpu(data->ci.ciPortStatus),
1355 				be64_to_cpu(data->ci.ciPortLdcp));
1356 		break;
1357 	case OPAL_P7IOC_DIAG_TYPE_MISC:
1358 		pr_info("P7IOC diag-data for MISC\n\n");
1359 		pnv_eeh_dump_hub_diag_common(data);
1360 		break;
1361 	case OPAL_P7IOC_DIAG_TYPE_I2C:
1362 		pr_info("P7IOC diag-data for I2C\n\n");
1363 		pnv_eeh_dump_hub_diag_common(data);
1364 		break;
1365 	default:
1366 		pr_warn("%s: Invalid type of HUB#%llx diag-data (%d)\n",
1367 			__func__, phb->hub_id, data->type);
1368 	}
1369 }
1370 
1371 static int pnv_eeh_get_pe(struct pci_controller *hose,
1372 			  u16 pe_no, struct eeh_pe **pe)
1373 {
1374 	struct pnv_phb *phb = hose->private_data;
1375 	struct pnv_ioda_pe *pnv_pe;
1376 	struct eeh_pe *dev_pe;
1377 
1378 	/*
1379 	 * If PHB supports compound PE, to fetch
1380 	 * the master PE because slave PE is invisible
1381 	 * to EEH core.
1382 	 */
1383 	pnv_pe = &phb->ioda.pe_array[pe_no];
1384 	if (pnv_pe->flags & PNV_IODA_PE_SLAVE) {
1385 		pnv_pe = pnv_pe->master;
1386 		WARN_ON(!pnv_pe ||
1387 			!(pnv_pe->flags & PNV_IODA_PE_MASTER));
1388 		pe_no = pnv_pe->pe_number;
1389 	}
1390 
1391 	/* Find the PE according to PE# */
1392 	dev_pe = eeh_pe_get(hose, pe_no, 0);
1393 	if (!dev_pe)
1394 		return -EEXIST;
1395 
1396 	/* Freeze the (compound) PE */
1397 	*pe = dev_pe;
1398 	if (!(dev_pe->state & EEH_PE_ISOLATED))
1399 		phb->freeze_pe(phb, pe_no);
1400 
1401 	/*
1402 	 * At this point, we're sure the (compound) PE should
1403 	 * have been frozen. However, we still need poke until
1404 	 * hitting the frozen PE on top level.
1405 	 */
1406 	dev_pe = dev_pe->parent;
1407 	while (dev_pe && !(dev_pe->type & EEH_PE_PHB)) {
1408 		int ret;
1409 		ret = eeh_ops->get_state(dev_pe, NULL);
1410 		if (ret <= 0 || eeh_state_active(ret)) {
1411 			dev_pe = dev_pe->parent;
1412 			continue;
1413 		}
1414 
1415 		/* Frozen parent PE */
1416 		*pe = dev_pe;
1417 		if (!(dev_pe->state & EEH_PE_ISOLATED))
1418 			phb->freeze_pe(phb, dev_pe->addr);
1419 
1420 		/* Next one */
1421 		dev_pe = dev_pe->parent;
1422 	}
1423 
1424 	return 0;
1425 }
1426 
1427 /**
1428  * pnv_eeh_next_error - Retrieve next EEH error to handle
1429  * @pe: Affected PE
1430  *
1431  * The function is expected to be called by EEH core while it gets
1432  * special EEH event (without binding PE). The function calls to
1433  * OPAL APIs for next error to handle. The informational error is
1434  * handled internally by platform. However, the dead IOC, dead PHB,
1435  * fenced PHB and frozen PE should be handled by EEH core eventually.
1436  */
1437 static int pnv_eeh_next_error(struct eeh_pe **pe)
1438 {
1439 	struct pci_controller *hose;
1440 	struct pnv_phb *phb;
1441 	struct eeh_pe *phb_pe, *parent_pe;
1442 	__be64 frozen_pe_no;
1443 	__be16 err_type, severity;
1444 	long rc;
1445 	int state, ret = EEH_NEXT_ERR_NONE;
1446 
1447 	/*
1448 	 * While running here, it's safe to purge the event queue. The
1449 	 * event should still be masked.
1450 	 */
1451 	eeh_remove_event(NULL, false);
1452 
1453 	list_for_each_entry(hose, &hose_list, list_node) {
1454 		/*
1455 		 * If the subordinate PCI buses of the PHB has been
1456 		 * removed or is exactly under error recovery, we
1457 		 * needn't take care of it any more.
1458 		 */
1459 		phb = hose->private_data;
1460 		phb_pe = eeh_phb_pe_get(hose);
1461 		if (!phb_pe || (phb_pe->state & EEH_PE_ISOLATED))
1462 			continue;
1463 
1464 		rc = opal_pci_next_error(phb->opal_id,
1465 					 &frozen_pe_no, &err_type, &severity);
1466 		if (rc != OPAL_SUCCESS) {
1467 			pr_devel("%s: Invalid return value on "
1468 				 "PHB#%x (0x%lx) from opal_pci_next_error",
1469 				 __func__, hose->global_number, rc);
1470 			continue;
1471 		}
1472 
1473 		/* If the PHB doesn't have error, stop processing */
1474 		if (be16_to_cpu(err_type) == OPAL_EEH_NO_ERROR ||
1475 		    be16_to_cpu(severity) == OPAL_EEH_SEV_NO_ERROR) {
1476 			pr_devel("%s: No error found on PHB#%x\n",
1477 				 __func__, hose->global_number);
1478 			continue;
1479 		}
1480 
1481 		/*
1482 		 * Processing the error. We're expecting the error with
1483 		 * highest priority reported upon multiple errors on the
1484 		 * specific PHB.
1485 		 */
1486 		pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n",
1487 			__func__, be16_to_cpu(err_type),
1488 			be16_to_cpu(severity), be64_to_cpu(frozen_pe_no),
1489 			hose->global_number);
1490 		switch (be16_to_cpu(err_type)) {
1491 		case OPAL_EEH_IOC_ERROR:
1492 			if (be16_to_cpu(severity) == OPAL_EEH_SEV_IOC_DEAD) {
1493 				pr_err("EEH: dead IOC detected\n");
1494 				ret = EEH_NEXT_ERR_DEAD_IOC;
1495 			} else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
1496 				pr_info("EEH: IOC informative error "
1497 					"detected\n");
1498 				pnv_eeh_get_and_dump_hub_diag(hose);
1499 				ret = EEH_NEXT_ERR_NONE;
1500 			}
1501 
1502 			break;
1503 		case OPAL_EEH_PHB_ERROR:
1504 			if (be16_to_cpu(severity) == OPAL_EEH_SEV_PHB_DEAD) {
1505 				*pe = phb_pe;
1506 				pr_err("EEH: dead PHB#%x detected, "
1507 				       "location: %s\n",
1508 					hose->global_number,
1509 					eeh_pe_loc_get(phb_pe));
1510 				ret = EEH_NEXT_ERR_DEAD_PHB;
1511 			} else if (be16_to_cpu(severity) ==
1512 				   OPAL_EEH_SEV_PHB_FENCED) {
1513 				*pe = phb_pe;
1514 				pr_err("EEH: Fenced PHB#%x detected, "
1515 				       "location: %s\n",
1516 					hose->global_number,
1517 					eeh_pe_loc_get(phb_pe));
1518 				ret = EEH_NEXT_ERR_FENCED_PHB;
1519 			} else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
1520 				pr_info("EEH: PHB#%x informative error "
1521 					"detected, location: %s\n",
1522 					hose->global_number,
1523 					eeh_pe_loc_get(phb_pe));
1524 				pnv_eeh_get_phb_diag(phb_pe);
1525 				pnv_pci_dump_phb_diag_data(hose, phb_pe->data);
1526 				ret = EEH_NEXT_ERR_NONE;
1527 			}
1528 
1529 			break;
1530 		case OPAL_EEH_PE_ERROR:
1531 			/*
1532 			 * If we can't find the corresponding PE, we
1533 			 * just try to unfreeze.
1534 			 */
1535 			if (pnv_eeh_get_pe(hose,
1536 				be64_to_cpu(frozen_pe_no), pe)) {
1537 				pr_info("EEH: Clear non-existing PHB#%x-PE#%llx\n",
1538 					hose->global_number, be64_to_cpu(frozen_pe_no));
1539 				pr_info("EEH: PHB location: %s\n",
1540 					eeh_pe_loc_get(phb_pe));
1541 
1542 				/* Dump PHB diag-data */
1543 				rc = opal_pci_get_phb_diag_data2(phb->opal_id,
1544 					phb->diag_data, phb->diag_data_size);
1545 				if (rc == OPAL_SUCCESS)
1546 					pnv_pci_dump_phb_diag_data(hose,
1547 							phb->diag_data);
1548 
1549 				/* Try best to clear it */
1550 				opal_pci_eeh_freeze_clear(phb->opal_id,
1551 					be64_to_cpu(frozen_pe_no),
1552 					OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
1553 				ret = EEH_NEXT_ERR_NONE;
1554 			} else if ((*pe)->state & EEH_PE_ISOLATED ||
1555 				   eeh_pe_passed(*pe)) {
1556 				ret = EEH_NEXT_ERR_NONE;
1557 			} else {
1558 				pr_err("EEH: Frozen PE#%x "
1559 				       "on PHB#%x detected\n",
1560 				       (*pe)->addr,
1561 					(*pe)->phb->global_number);
1562 				pr_err("EEH: PE location: %s, "
1563 				       "PHB location: %s\n",
1564 				       eeh_pe_loc_get(*pe),
1565 				       eeh_pe_loc_get(phb_pe));
1566 				ret = EEH_NEXT_ERR_FROZEN_PE;
1567 			}
1568 
1569 			break;
1570 		default:
1571 			pr_warn("%s: Unexpected error type %d\n",
1572 				__func__, be16_to_cpu(err_type));
1573 		}
1574 
1575 		/*
1576 		 * EEH core will try recover from fenced PHB or
1577 		 * frozen PE. In the time for frozen PE, EEH core
1578 		 * enable IO path for that before collecting logs,
1579 		 * but it ruins the site. So we have to dump the
1580 		 * log in advance here.
1581 		 */
1582 		if ((ret == EEH_NEXT_ERR_FROZEN_PE  ||
1583 		    ret == EEH_NEXT_ERR_FENCED_PHB) &&
1584 		    !((*pe)->state & EEH_PE_ISOLATED)) {
1585 			eeh_pe_mark_isolated(*pe);
1586 			pnv_eeh_get_phb_diag(*pe);
1587 
1588 			if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
1589 				pnv_pci_dump_phb_diag_data((*pe)->phb,
1590 							   (*pe)->data);
1591 		}
1592 
1593 		/*
1594 		 * We probably have the frozen parent PE out there and
1595 		 * we need have to handle frozen parent PE firstly.
1596 		 */
1597 		if (ret == EEH_NEXT_ERR_FROZEN_PE) {
1598 			parent_pe = (*pe)->parent;
1599 			while (parent_pe) {
1600 				/* Hit the ceiling ? */
1601 				if (parent_pe->type & EEH_PE_PHB)
1602 					break;
1603 
1604 				/* Frozen parent PE ? */
1605 				state = eeh_ops->get_state(parent_pe, NULL);
1606 				if (state > 0 && !eeh_state_active(state))
1607 					*pe = parent_pe;
1608 
1609 				/* Next parent level */
1610 				parent_pe = parent_pe->parent;
1611 			}
1612 
1613 			/* We possibly migrate to another PE */
1614 			eeh_pe_mark_isolated(*pe);
1615 		}
1616 
1617 		/*
1618 		 * If we have no errors on the specific PHB or only
1619 		 * informative error there, we continue poking it.
1620 		 * Otherwise, we need actions to be taken by upper
1621 		 * layer.
1622 		 */
1623 		if (ret > EEH_NEXT_ERR_INF)
1624 			break;
1625 	}
1626 
1627 	/* Unmask the event */
1628 	if (ret == EEH_NEXT_ERR_NONE && eeh_enabled())
1629 		enable_irq(eeh_event_irq);
1630 
1631 	return ret;
1632 }
1633 
1634 static int pnv_eeh_restore_config(struct pci_dn *pdn)
1635 {
1636 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1637 	struct pnv_phb *phb;
1638 	s64 ret = 0;
1639 	int config_addr = (pdn->busno << 8) | (pdn->devfn);
1640 
1641 	if (!edev)
1642 		return -EEXIST;
1643 
1644 	/*
1645 	 * We have to restore the PCI config space after reset since the
1646 	 * firmware can't see SRIOV VFs.
1647 	 *
1648 	 * FIXME: The MPS, error routing rules, timeout setting are worthy
1649 	 * to be exported by firmware in extendible way.
1650 	 */
1651 	if (edev->physfn) {
1652 		ret = eeh_restore_vf_config(pdn);
1653 	} else {
1654 		phb = pdn->phb->private_data;
1655 		ret = opal_pci_reinit(phb->opal_id,
1656 				      OPAL_REINIT_PCI_DEV, config_addr);
1657 	}
1658 
1659 	if (ret) {
1660 		pr_warn("%s: Can't reinit PCI dev 0x%x (%lld)\n",
1661 			__func__, config_addr, ret);
1662 		return -EIO;
1663 	}
1664 
1665 	return ret;
1666 }
1667 
1668 static struct eeh_ops pnv_eeh_ops = {
1669 	.name                   = "powernv",
1670 	.init                   = pnv_eeh_init,
1671 	.probe			= pnv_eeh_probe,
1672 	.set_option             = pnv_eeh_set_option,
1673 	.get_pe_addr            = pnv_eeh_get_pe_addr,
1674 	.get_state              = pnv_eeh_get_state,
1675 	.reset                  = pnv_eeh_reset,
1676 	.get_log                = pnv_eeh_get_log,
1677 	.configure_bridge       = pnv_eeh_configure_bridge,
1678 	.err_inject		= pnv_eeh_err_inject,
1679 	.read_config            = pnv_eeh_read_config,
1680 	.write_config           = pnv_eeh_write_config,
1681 	.next_error		= pnv_eeh_next_error,
1682 	.restore_config		= pnv_eeh_restore_config,
1683 	.notify_resume		= NULL
1684 };
1685 
1686 #ifdef CONFIG_PCI_IOV
1687 static void pnv_pci_fixup_vf_mps(struct pci_dev *pdev)
1688 {
1689 	struct pci_dn *pdn = pci_get_pdn(pdev);
1690 	int parent_mps;
1691 
1692 	if (!pdev->is_virtfn)
1693 		return;
1694 
1695 	/* Synchronize MPS for VF and PF */
1696 	parent_mps = pcie_get_mps(pdev->physfn);
1697 	if ((128 << pdev->pcie_mpss) >= parent_mps)
1698 		pcie_set_mps(pdev, parent_mps);
1699 	pdn->mps = pcie_get_mps(pdev);
1700 }
1701 DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pnv_pci_fixup_vf_mps);
1702 #endif /* CONFIG_PCI_IOV */
1703 
1704 /**
1705  * eeh_powernv_init - Register platform dependent EEH operations
1706  *
1707  * EEH initialization on powernv platform. This function should be
1708  * called before any EEH related functions.
1709  */
1710 static int __init eeh_powernv_init(void)
1711 {
1712 	int ret = -EINVAL;
1713 
1714 	ret = eeh_ops_register(&pnv_eeh_ops);
1715 	if (!ret)
1716 		pr_info("EEH: PowerNV platform initialized\n");
1717 	else
1718 		pr_info("EEH: Failed to initialize PowerNV platform (%d)\n", ret);
1719 
1720 	return ret;
1721 }
1722 machine_early_initcall(powernv, eeh_powernv_init);
1723