1 /* 2 * The file intends to implement the platform dependent EEH operations on 3 * powernv platform. Actually, the powernv was created in order to fully 4 * hypervisor support. 5 * 6 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/atomic.h> 15 #include <linux/debugfs.h> 16 #include <linux/delay.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/interrupt.h> 20 #include <linux/list.h> 21 #include <linux/msi.h> 22 #include <linux/of.h> 23 #include <linux/pci.h> 24 #include <linux/proc_fs.h> 25 #include <linux/rbtree.h> 26 #include <linux/sched.h> 27 #include <linux/seq_file.h> 28 #include <linux/spinlock.h> 29 30 #include <asm/eeh.h> 31 #include <asm/eeh_event.h> 32 #include <asm/firmware.h> 33 #include <asm/io.h> 34 #include <asm/iommu.h> 35 #include <asm/machdep.h> 36 #include <asm/msi_bitmap.h> 37 #include <asm/opal.h> 38 #include <asm/ppc-pci.h> 39 40 #include "powernv.h" 41 #include "pci.h" 42 43 static bool pnv_eeh_nb_init = false; 44 static int eeh_event_irq = -EINVAL; 45 46 static int pnv_eeh_init(void) 47 { 48 struct pci_controller *hose; 49 struct pnv_phb *phb; 50 51 if (!firmware_has_feature(FW_FEATURE_OPAL)) { 52 pr_warn("%s: OPAL is required !\n", 53 __func__); 54 return -EINVAL; 55 } 56 57 /* Set probe mode */ 58 eeh_add_flag(EEH_PROBE_MODE_DEV); 59 60 /* 61 * P7IOC blocks PCI config access to frozen PE, but PHB3 62 * doesn't do that. So we have to selectively enable I/O 63 * prior to collecting error log. 64 */ 65 list_for_each_entry(hose, &hose_list, list_node) { 66 phb = hose->private_data; 67 68 if (phb->model == PNV_PHB_MODEL_P7IOC) 69 eeh_add_flag(EEH_ENABLE_IO_FOR_LOG); 70 71 /* 72 * PE#0 should be regarded as valid by EEH core 73 * if it's not the reserved one. Currently, we 74 * have the reserved PE#255 and PE#127 for PHB3 75 * and P7IOC separately. So we should regard 76 * PE#0 as valid for PHB3 and P7IOC. 77 */ 78 if (phb->ioda.reserved_pe != 0) 79 eeh_add_flag(EEH_VALID_PE_ZERO); 80 81 break; 82 } 83 84 return 0; 85 } 86 87 static irqreturn_t pnv_eeh_event(int irq, void *data) 88 { 89 /* 90 * We simply send a special EEH event if EEH has been 91 * enabled. We don't care about EEH events until we've 92 * finished processing the outstanding ones. Event processing 93 * gets unmasked in next_error() if EEH is enabled. 94 */ 95 disable_irq_nosync(irq); 96 97 if (eeh_enabled()) 98 eeh_send_failure_event(NULL); 99 100 return IRQ_HANDLED; 101 } 102 103 #ifdef CONFIG_DEBUG_FS 104 static ssize_t pnv_eeh_ei_write(struct file *filp, 105 const char __user *user_buf, 106 size_t count, loff_t *ppos) 107 { 108 struct pci_controller *hose = filp->private_data; 109 struct eeh_dev *edev; 110 struct eeh_pe *pe; 111 int pe_no, type, func; 112 unsigned long addr, mask; 113 char buf[50]; 114 int ret; 115 116 if (!eeh_ops || !eeh_ops->err_inject) 117 return -ENXIO; 118 119 /* Copy over argument buffer */ 120 ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count); 121 if (!ret) 122 return -EFAULT; 123 124 /* Retrieve parameters */ 125 ret = sscanf(buf, "%x:%x:%x:%lx:%lx", 126 &pe_no, &type, &func, &addr, &mask); 127 if (ret != 5) 128 return -EINVAL; 129 130 /* Retrieve PE */ 131 edev = kzalloc(sizeof(*edev), GFP_KERNEL); 132 if (!edev) 133 return -ENOMEM; 134 edev->phb = hose; 135 edev->pe_config_addr = pe_no; 136 pe = eeh_pe_get(edev); 137 kfree(edev); 138 if (!pe) 139 return -ENODEV; 140 141 /* Do error injection */ 142 ret = eeh_ops->err_inject(pe, type, func, addr, mask); 143 return ret < 0 ? ret : count; 144 } 145 146 static const struct file_operations pnv_eeh_ei_fops = { 147 .open = simple_open, 148 .llseek = no_llseek, 149 .write = pnv_eeh_ei_write, 150 }; 151 152 static int pnv_eeh_dbgfs_set(void *data, int offset, u64 val) 153 { 154 struct pci_controller *hose = data; 155 struct pnv_phb *phb = hose->private_data; 156 157 out_be64(phb->regs + offset, val); 158 return 0; 159 } 160 161 static int pnv_eeh_dbgfs_get(void *data, int offset, u64 *val) 162 { 163 struct pci_controller *hose = data; 164 struct pnv_phb *phb = hose->private_data; 165 166 *val = in_be64(phb->regs + offset); 167 return 0; 168 } 169 170 static int pnv_eeh_outb_dbgfs_set(void *data, u64 val) 171 { 172 return pnv_eeh_dbgfs_set(data, 0xD10, val); 173 } 174 175 static int pnv_eeh_outb_dbgfs_get(void *data, u64 *val) 176 { 177 return pnv_eeh_dbgfs_get(data, 0xD10, val); 178 } 179 180 static int pnv_eeh_inbA_dbgfs_set(void *data, u64 val) 181 { 182 return pnv_eeh_dbgfs_set(data, 0xD90, val); 183 } 184 185 static int pnv_eeh_inbA_dbgfs_get(void *data, u64 *val) 186 { 187 return pnv_eeh_dbgfs_get(data, 0xD90, val); 188 } 189 190 static int pnv_eeh_inbB_dbgfs_set(void *data, u64 val) 191 { 192 return pnv_eeh_dbgfs_set(data, 0xE10, val); 193 } 194 195 static int pnv_eeh_inbB_dbgfs_get(void *data, u64 *val) 196 { 197 return pnv_eeh_dbgfs_get(data, 0xE10, val); 198 } 199 200 DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_outb_dbgfs_ops, pnv_eeh_outb_dbgfs_get, 201 pnv_eeh_outb_dbgfs_set, "0x%llx\n"); 202 DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_inbA_dbgfs_ops, pnv_eeh_inbA_dbgfs_get, 203 pnv_eeh_inbA_dbgfs_set, "0x%llx\n"); 204 DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_inbB_dbgfs_ops, pnv_eeh_inbB_dbgfs_get, 205 pnv_eeh_inbB_dbgfs_set, "0x%llx\n"); 206 #endif /* CONFIG_DEBUG_FS */ 207 208 /** 209 * pnv_eeh_post_init - EEH platform dependent post initialization 210 * 211 * EEH platform dependent post initialization on powernv. When 212 * the function is called, the EEH PEs and devices should have 213 * been built. If the I/O cache staff has been built, EEH is 214 * ready to supply service. 215 */ 216 static int pnv_eeh_post_init(void) 217 { 218 struct pci_controller *hose; 219 struct pnv_phb *phb; 220 int ret = 0; 221 222 /* Register OPAL event notifier */ 223 if (!pnv_eeh_nb_init) { 224 eeh_event_irq = opal_event_request(ilog2(OPAL_EVENT_PCI_ERROR)); 225 if (eeh_event_irq < 0) { 226 pr_err("%s: Can't register OPAL event interrupt (%d)\n", 227 __func__, eeh_event_irq); 228 return eeh_event_irq; 229 } 230 231 ret = request_irq(eeh_event_irq, pnv_eeh_event, 232 IRQ_TYPE_LEVEL_HIGH, "opal-eeh", NULL); 233 if (ret < 0) { 234 irq_dispose_mapping(eeh_event_irq); 235 pr_err("%s: Can't request OPAL event interrupt (%d)\n", 236 __func__, eeh_event_irq); 237 return ret; 238 } 239 240 pnv_eeh_nb_init = true; 241 } 242 243 if (!eeh_enabled()) 244 disable_irq(eeh_event_irq); 245 246 list_for_each_entry(hose, &hose_list, list_node) { 247 phb = hose->private_data; 248 249 /* 250 * If EEH is enabled, we're going to rely on that. 251 * Otherwise, we restore to conventional mechanism 252 * to clear frozen PE during PCI config access. 253 */ 254 if (eeh_enabled()) 255 phb->flags |= PNV_PHB_FLAG_EEH; 256 else 257 phb->flags &= ~PNV_PHB_FLAG_EEH; 258 259 /* Create debugfs entries */ 260 #ifdef CONFIG_DEBUG_FS 261 if (phb->has_dbgfs || !phb->dbgfs) 262 continue; 263 264 phb->has_dbgfs = 1; 265 debugfs_create_file("err_injct", 0200, 266 phb->dbgfs, hose, 267 &pnv_eeh_ei_fops); 268 269 debugfs_create_file("err_injct_outbound", 0600, 270 phb->dbgfs, hose, 271 &pnv_eeh_outb_dbgfs_ops); 272 debugfs_create_file("err_injct_inboundA", 0600, 273 phb->dbgfs, hose, 274 &pnv_eeh_inbA_dbgfs_ops); 275 debugfs_create_file("err_injct_inboundB", 0600, 276 phb->dbgfs, hose, 277 &pnv_eeh_inbB_dbgfs_ops); 278 #endif /* CONFIG_DEBUG_FS */ 279 } 280 281 return ret; 282 } 283 284 static int pnv_eeh_find_cap(struct pci_dn *pdn, int cap) 285 { 286 int pos = PCI_CAPABILITY_LIST; 287 int cnt = 48; /* Maximal number of capabilities */ 288 u32 status, id; 289 290 if (!pdn) 291 return 0; 292 293 /* Check if the device supports capabilities */ 294 pnv_pci_cfg_read(pdn, PCI_STATUS, 2, &status); 295 if (!(status & PCI_STATUS_CAP_LIST)) 296 return 0; 297 298 while (cnt--) { 299 pnv_pci_cfg_read(pdn, pos, 1, &pos); 300 if (pos < 0x40) 301 break; 302 303 pos &= ~3; 304 pnv_pci_cfg_read(pdn, pos + PCI_CAP_LIST_ID, 1, &id); 305 if (id == 0xff) 306 break; 307 308 /* Found */ 309 if (id == cap) 310 return pos; 311 312 /* Next one */ 313 pos += PCI_CAP_LIST_NEXT; 314 } 315 316 return 0; 317 } 318 319 static int pnv_eeh_find_ecap(struct pci_dn *pdn, int cap) 320 { 321 struct eeh_dev *edev = pdn_to_eeh_dev(pdn); 322 u32 header; 323 int pos = 256, ttl = (4096 - 256) / 8; 324 325 if (!edev || !edev->pcie_cap) 326 return 0; 327 if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL) 328 return 0; 329 else if (!header) 330 return 0; 331 332 while (ttl-- > 0) { 333 if (PCI_EXT_CAP_ID(header) == cap && pos) 334 return pos; 335 336 pos = PCI_EXT_CAP_NEXT(header); 337 if (pos < 256) 338 break; 339 340 if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL) 341 break; 342 } 343 344 return 0; 345 } 346 347 /** 348 * pnv_eeh_probe - Do probe on PCI device 349 * @pdn: PCI device node 350 * @data: unused 351 * 352 * When EEH module is installed during system boot, all PCI devices 353 * are checked one by one to see if it supports EEH. The function 354 * is introduced for the purpose. By default, EEH has been enabled 355 * on all PCI devices. That's to say, we only need do necessary 356 * initialization on the corresponding eeh device and create PE 357 * accordingly. 358 * 359 * It's notable that's unsafe to retrieve the EEH device through 360 * the corresponding PCI device. During the PCI device hotplug, which 361 * was possiblly triggered by EEH core, the binding between EEH device 362 * and the PCI device isn't built yet. 363 */ 364 static void *pnv_eeh_probe(struct pci_dn *pdn, void *data) 365 { 366 struct pci_controller *hose = pdn->phb; 367 struct pnv_phb *phb = hose->private_data; 368 struct eeh_dev *edev = pdn_to_eeh_dev(pdn); 369 uint32_t pcie_flags; 370 int ret; 371 372 /* 373 * When probing the root bridge, which doesn't have any 374 * subordinate PCI devices. We don't have OF node for 375 * the root bridge. So it's not reasonable to continue 376 * the probing. 377 */ 378 if (!edev || edev->pe) 379 return NULL; 380 381 /* Skip for PCI-ISA bridge */ 382 if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_ISA) 383 return NULL; 384 385 /* Initialize eeh device */ 386 edev->class_code = pdn->class_code; 387 edev->mode &= 0xFFFFFF00; 388 edev->pcix_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_PCIX); 389 edev->pcie_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_EXP); 390 edev->aer_cap = pnv_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR); 391 if ((edev->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) { 392 edev->mode |= EEH_DEV_BRIDGE; 393 if (edev->pcie_cap) { 394 pnv_pci_cfg_read(pdn, edev->pcie_cap + PCI_EXP_FLAGS, 395 2, &pcie_flags); 396 pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4; 397 if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT) 398 edev->mode |= EEH_DEV_ROOT_PORT; 399 else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM) 400 edev->mode |= EEH_DEV_DS_PORT; 401 } 402 } 403 404 edev->config_addr = (pdn->busno << 8) | (pdn->devfn); 405 edev->pe_config_addr = phb->ioda.pe_rmap[edev->config_addr]; 406 407 /* Create PE */ 408 ret = eeh_add_to_parent_pe(edev); 409 if (ret) { 410 pr_warn("%s: Can't add PCI dev %04x:%02x:%02x.%01x to parent PE (%d)\n", 411 __func__, hose->global_number, pdn->busno, 412 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn), ret); 413 return NULL; 414 } 415 416 /* 417 * If the PE contains any one of following adapters, the 418 * PCI config space can't be accessed when dumping EEH log. 419 * Otherwise, we will run into fenced PHB caused by shortage 420 * of outbound credits in the adapter. The PCI config access 421 * should be blocked until PE reset. MMIO access is dropped 422 * by hardware certainly. In order to drop PCI config requests, 423 * one more flag (EEH_PE_CFG_RESTRICTED) is introduced, which 424 * will be checked in the backend for PE state retrival. If 425 * the PE becomes frozen for the first time and the flag has 426 * been set for the PE, we will set EEH_PE_CFG_BLOCKED for 427 * that PE to block its config space. 428 * 429 * Broadcom Austin 4-ports NICs (14e4:1657) 430 * Broadcom Shiner 4-ports 1G NICs (14e4:168a) 431 * Broadcom Shiner 2-ports 10G NICs (14e4:168e) 432 */ 433 if ((pdn->vendor_id == PCI_VENDOR_ID_BROADCOM && 434 pdn->device_id == 0x1657) || 435 (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM && 436 pdn->device_id == 0x168a) || 437 (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM && 438 pdn->device_id == 0x168e)) 439 edev->pe->state |= EEH_PE_CFG_RESTRICTED; 440 441 /* 442 * Cache the PE primary bus, which can't be fetched when 443 * full hotplug is in progress. In that case, all child 444 * PCI devices of the PE are expected to be removed prior 445 * to PE reset. 446 */ 447 if (!edev->pe->bus) 448 edev->pe->bus = pci_find_bus(hose->global_number, 449 pdn->busno); 450 451 /* 452 * Enable EEH explicitly so that we will do EEH check 453 * while accessing I/O stuff 454 */ 455 eeh_add_flag(EEH_ENABLED); 456 457 /* Save memory bars */ 458 eeh_save_bars(edev); 459 460 return NULL; 461 } 462 463 /** 464 * pnv_eeh_set_option - Initialize EEH or MMIO/DMA reenable 465 * @pe: EEH PE 466 * @option: operation to be issued 467 * 468 * The function is used to control the EEH functionality globally. 469 * Currently, following options are support according to PAPR: 470 * Enable EEH, Disable EEH, Enable MMIO and Enable DMA 471 */ 472 static int pnv_eeh_set_option(struct eeh_pe *pe, int option) 473 { 474 struct pci_controller *hose = pe->phb; 475 struct pnv_phb *phb = hose->private_data; 476 bool freeze_pe = false; 477 int opt; 478 s64 rc; 479 480 switch (option) { 481 case EEH_OPT_DISABLE: 482 return -EPERM; 483 case EEH_OPT_ENABLE: 484 return 0; 485 case EEH_OPT_THAW_MMIO: 486 opt = OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO; 487 break; 488 case EEH_OPT_THAW_DMA: 489 opt = OPAL_EEH_ACTION_CLEAR_FREEZE_DMA; 490 break; 491 case EEH_OPT_FREEZE_PE: 492 freeze_pe = true; 493 opt = OPAL_EEH_ACTION_SET_FREEZE_ALL; 494 break; 495 default: 496 pr_warn("%s: Invalid option %d\n", __func__, option); 497 return -EINVAL; 498 } 499 500 /* Freeze master and slave PEs if PHB supports compound PEs */ 501 if (freeze_pe) { 502 if (phb->freeze_pe) { 503 phb->freeze_pe(phb, pe->addr); 504 return 0; 505 } 506 507 rc = opal_pci_eeh_freeze_set(phb->opal_id, pe->addr, opt); 508 if (rc != OPAL_SUCCESS) { 509 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", 510 __func__, rc, phb->hose->global_number, 511 pe->addr); 512 return -EIO; 513 } 514 515 return 0; 516 } 517 518 /* Unfreeze master and slave PEs if PHB supports */ 519 if (phb->unfreeze_pe) 520 return phb->unfreeze_pe(phb, pe->addr, opt); 521 522 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe->addr, opt); 523 if (rc != OPAL_SUCCESS) { 524 pr_warn("%s: Failure %lld enable %d for PHB#%x-PE#%x\n", 525 __func__, rc, option, phb->hose->global_number, 526 pe->addr); 527 return -EIO; 528 } 529 530 return 0; 531 } 532 533 /** 534 * pnv_eeh_get_pe_addr - Retrieve PE address 535 * @pe: EEH PE 536 * 537 * Retrieve the PE address according to the given tranditional 538 * PCI BDF (Bus/Device/Function) address. 539 */ 540 static int pnv_eeh_get_pe_addr(struct eeh_pe *pe) 541 { 542 return pe->addr; 543 } 544 545 static void pnv_eeh_get_phb_diag(struct eeh_pe *pe) 546 { 547 struct pnv_phb *phb = pe->phb->private_data; 548 s64 rc; 549 550 rc = opal_pci_get_phb_diag_data2(phb->opal_id, pe->data, 551 PNV_PCI_DIAG_BUF_SIZE); 552 if (rc != OPAL_SUCCESS) 553 pr_warn("%s: Failure %lld getting PHB#%x diag-data\n", 554 __func__, rc, pe->phb->global_number); 555 } 556 557 static int pnv_eeh_get_phb_state(struct eeh_pe *pe) 558 { 559 struct pnv_phb *phb = pe->phb->private_data; 560 u8 fstate; 561 __be16 pcierr; 562 s64 rc; 563 int result = 0; 564 565 rc = opal_pci_eeh_freeze_status(phb->opal_id, 566 pe->addr, 567 &fstate, 568 &pcierr, 569 NULL); 570 if (rc != OPAL_SUCCESS) { 571 pr_warn("%s: Failure %lld getting PHB#%x state\n", 572 __func__, rc, phb->hose->global_number); 573 return EEH_STATE_NOT_SUPPORT; 574 } 575 576 /* 577 * Check PHB state. If the PHB is frozen for the 578 * first time, to dump the PHB diag-data. 579 */ 580 if (be16_to_cpu(pcierr) != OPAL_EEH_PHB_ERROR) { 581 result = (EEH_STATE_MMIO_ACTIVE | 582 EEH_STATE_DMA_ACTIVE | 583 EEH_STATE_MMIO_ENABLED | 584 EEH_STATE_DMA_ENABLED); 585 } else if (!(pe->state & EEH_PE_ISOLATED)) { 586 eeh_pe_state_mark(pe, EEH_PE_ISOLATED); 587 pnv_eeh_get_phb_diag(pe); 588 589 if (eeh_has_flag(EEH_EARLY_DUMP_LOG)) 590 pnv_pci_dump_phb_diag_data(pe->phb, pe->data); 591 } 592 593 return result; 594 } 595 596 static int pnv_eeh_get_pe_state(struct eeh_pe *pe) 597 { 598 struct pnv_phb *phb = pe->phb->private_data; 599 u8 fstate; 600 __be16 pcierr; 601 s64 rc; 602 int result; 603 604 /* 605 * We don't clobber hardware frozen state until PE 606 * reset is completed. In order to keep EEH core 607 * moving forward, we have to return operational 608 * state during PE reset. 609 */ 610 if (pe->state & EEH_PE_RESET) { 611 result = (EEH_STATE_MMIO_ACTIVE | 612 EEH_STATE_DMA_ACTIVE | 613 EEH_STATE_MMIO_ENABLED | 614 EEH_STATE_DMA_ENABLED); 615 return result; 616 } 617 618 /* 619 * Fetch PE state from hardware. If the PHB 620 * supports compound PE, let it handle that. 621 */ 622 if (phb->get_pe_state) { 623 fstate = phb->get_pe_state(phb, pe->addr); 624 } else { 625 rc = opal_pci_eeh_freeze_status(phb->opal_id, 626 pe->addr, 627 &fstate, 628 &pcierr, 629 NULL); 630 if (rc != OPAL_SUCCESS) { 631 pr_warn("%s: Failure %lld getting PHB#%x-PE%x state\n", 632 __func__, rc, phb->hose->global_number, 633 pe->addr); 634 return EEH_STATE_NOT_SUPPORT; 635 } 636 } 637 638 /* Figure out state */ 639 switch (fstate) { 640 case OPAL_EEH_STOPPED_NOT_FROZEN: 641 result = (EEH_STATE_MMIO_ACTIVE | 642 EEH_STATE_DMA_ACTIVE | 643 EEH_STATE_MMIO_ENABLED | 644 EEH_STATE_DMA_ENABLED); 645 break; 646 case OPAL_EEH_STOPPED_MMIO_FREEZE: 647 result = (EEH_STATE_DMA_ACTIVE | 648 EEH_STATE_DMA_ENABLED); 649 break; 650 case OPAL_EEH_STOPPED_DMA_FREEZE: 651 result = (EEH_STATE_MMIO_ACTIVE | 652 EEH_STATE_MMIO_ENABLED); 653 break; 654 case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE: 655 result = 0; 656 break; 657 case OPAL_EEH_STOPPED_RESET: 658 result = EEH_STATE_RESET_ACTIVE; 659 break; 660 case OPAL_EEH_STOPPED_TEMP_UNAVAIL: 661 result = EEH_STATE_UNAVAILABLE; 662 break; 663 case OPAL_EEH_STOPPED_PERM_UNAVAIL: 664 result = EEH_STATE_NOT_SUPPORT; 665 break; 666 default: 667 result = EEH_STATE_NOT_SUPPORT; 668 pr_warn("%s: Invalid PHB#%x-PE#%x state %x\n", 669 __func__, phb->hose->global_number, 670 pe->addr, fstate); 671 } 672 673 /* 674 * If PHB supports compound PE, to freeze all 675 * slave PEs for consistency. 676 * 677 * If the PE is switching to frozen state for the 678 * first time, to dump the PHB diag-data. 679 */ 680 if (!(result & EEH_STATE_NOT_SUPPORT) && 681 !(result & EEH_STATE_UNAVAILABLE) && 682 !(result & EEH_STATE_MMIO_ACTIVE) && 683 !(result & EEH_STATE_DMA_ACTIVE) && 684 !(pe->state & EEH_PE_ISOLATED)) { 685 if (phb->freeze_pe) 686 phb->freeze_pe(phb, pe->addr); 687 688 eeh_pe_state_mark(pe, EEH_PE_ISOLATED); 689 pnv_eeh_get_phb_diag(pe); 690 691 if (eeh_has_flag(EEH_EARLY_DUMP_LOG)) 692 pnv_pci_dump_phb_diag_data(pe->phb, pe->data); 693 } 694 695 return result; 696 } 697 698 /** 699 * pnv_eeh_get_state - Retrieve PE state 700 * @pe: EEH PE 701 * @delay: delay while PE state is temporarily unavailable 702 * 703 * Retrieve the state of the specified PE. For IODA-compitable 704 * platform, it should be retrieved from IODA table. Therefore, 705 * we prefer passing down to hardware implementation to handle 706 * it. 707 */ 708 static int pnv_eeh_get_state(struct eeh_pe *pe, int *delay) 709 { 710 int ret; 711 712 if (pe->type & EEH_PE_PHB) 713 ret = pnv_eeh_get_phb_state(pe); 714 else 715 ret = pnv_eeh_get_pe_state(pe); 716 717 if (!delay) 718 return ret; 719 720 /* 721 * If the PE state is temporarily unavailable, 722 * to inform the EEH core delay for default 723 * period (1 second) 724 */ 725 *delay = 0; 726 if (ret & EEH_STATE_UNAVAILABLE) 727 *delay = 1000; 728 729 return ret; 730 } 731 732 static s64 pnv_eeh_phb_poll(struct pnv_phb *phb) 733 { 734 s64 rc = OPAL_HARDWARE; 735 736 while (1) { 737 rc = opal_pci_poll(phb->opal_id); 738 if (rc <= 0) 739 break; 740 741 if (system_state < SYSTEM_RUNNING) 742 udelay(1000 * rc); 743 else 744 msleep(rc); 745 } 746 747 return rc; 748 } 749 750 int pnv_eeh_phb_reset(struct pci_controller *hose, int option) 751 { 752 struct pnv_phb *phb = hose->private_data; 753 s64 rc = OPAL_HARDWARE; 754 755 pr_debug("%s: Reset PHB#%x, option=%d\n", 756 __func__, hose->global_number, option); 757 758 /* Issue PHB complete reset request */ 759 if (option == EEH_RESET_FUNDAMENTAL || 760 option == EEH_RESET_HOT) 761 rc = opal_pci_reset(phb->opal_id, 762 OPAL_RESET_PHB_COMPLETE, 763 OPAL_ASSERT_RESET); 764 else if (option == EEH_RESET_DEACTIVATE) 765 rc = opal_pci_reset(phb->opal_id, 766 OPAL_RESET_PHB_COMPLETE, 767 OPAL_DEASSERT_RESET); 768 if (rc < 0) 769 goto out; 770 771 /* 772 * Poll state of the PHB until the request is done 773 * successfully. The PHB reset is usually PHB complete 774 * reset followed by hot reset on root bus. So we also 775 * need the PCI bus settlement delay. 776 */ 777 rc = pnv_eeh_phb_poll(phb); 778 if (option == EEH_RESET_DEACTIVATE) { 779 if (system_state < SYSTEM_RUNNING) 780 udelay(1000 * EEH_PE_RST_SETTLE_TIME); 781 else 782 msleep(EEH_PE_RST_SETTLE_TIME); 783 } 784 out: 785 if (rc != OPAL_SUCCESS) 786 return -EIO; 787 788 return 0; 789 } 790 791 static int pnv_eeh_root_reset(struct pci_controller *hose, int option) 792 { 793 struct pnv_phb *phb = hose->private_data; 794 s64 rc = OPAL_HARDWARE; 795 796 pr_debug("%s: Reset PHB#%x, option=%d\n", 797 __func__, hose->global_number, option); 798 799 /* 800 * During the reset deassert time, we needn't care 801 * the reset scope because the firmware does nothing 802 * for fundamental or hot reset during deassert phase. 803 */ 804 if (option == EEH_RESET_FUNDAMENTAL) 805 rc = opal_pci_reset(phb->opal_id, 806 OPAL_RESET_PCI_FUNDAMENTAL, 807 OPAL_ASSERT_RESET); 808 else if (option == EEH_RESET_HOT) 809 rc = opal_pci_reset(phb->opal_id, 810 OPAL_RESET_PCI_HOT, 811 OPAL_ASSERT_RESET); 812 else if (option == EEH_RESET_DEACTIVATE) 813 rc = opal_pci_reset(phb->opal_id, 814 OPAL_RESET_PCI_HOT, 815 OPAL_DEASSERT_RESET); 816 if (rc < 0) 817 goto out; 818 819 /* Poll state of the PHB until the request is done */ 820 rc = pnv_eeh_phb_poll(phb); 821 if (option == EEH_RESET_DEACTIVATE) 822 msleep(EEH_PE_RST_SETTLE_TIME); 823 out: 824 if (rc != OPAL_SUCCESS) 825 return -EIO; 826 827 return 0; 828 } 829 830 static int pnv_eeh_bridge_reset(struct pci_dev *dev, int option) 831 { 832 struct pci_dn *pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn); 833 struct eeh_dev *edev = pdn_to_eeh_dev(pdn); 834 int aer = edev ? edev->aer_cap : 0; 835 u32 ctrl; 836 837 pr_debug("%s: Reset PCI bus %04x:%02x with option %d\n", 838 __func__, pci_domain_nr(dev->bus), 839 dev->bus->number, option); 840 841 switch (option) { 842 case EEH_RESET_FUNDAMENTAL: 843 case EEH_RESET_HOT: 844 /* Don't report linkDown event */ 845 if (aer) { 846 eeh_ops->read_config(pdn, aer + PCI_ERR_UNCOR_MASK, 847 4, &ctrl); 848 ctrl |= PCI_ERR_UNC_SURPDN; 849 eeh_ops->write_config(pdn, aer + PCI_ERR_UNCOR_MASK, 850 4, ctrl); 851 } 852 853 eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &ctrl); 854 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 855 eeh_ops->write_config(pdn, PCI_BRIDGE_CONTROL, 2, ctrl); 856 857 msleep(EEH_PE_RST_HOLD_TIME); 858 break; 859 case EEH_RESET_DEACTIVATE: 860 eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &ctrl); 861 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 862 eeh_ops->write_config(pdn, PCI_BRIDGE_CONTROL, 2, ctrl); 863 864 msleep(EEH_PE_RST_SETTLE_TIME); 865 866 /* Continue reporting linkDown event */ 867 if (aer) { 868 eeh_ops->read_config(pdn, aer + PCI_ERR_UNCOR_MASK, 869 4, &ctrl); 870 ctrl &= ~PCI_ERR_UNC_SURPDN; 871 eeh_ops->write_config(pdn, aer + PCI_ERR_UNCOR_MASK, 872 4, ctrl); 873 } 874 875 break; 876 } 877 878 return 0; 879 } 880 881 void pnv_pci_reset_secondary_bus(struct pci_dev *dev) 882 { 883 struct pci_controller *hose; 884 885 if (pci_is_root_bus(dev->bus)) { 886 hose = pci_bus_to_host(dev->bus); 887 pnv_eeh_root_reset(hose, EEH_RESET_HOT); 888 pnv_eeh_root_reset(hose, EEH_RESET_DEACTIVATE); 889 } else { 890 pnv_eeh_bridge_reset(dev, EEH_RESET_HOT); 891 pnv_eeh_bridge_reset(dev, EEH_RESET_DEACTIVATE); 892 } 893 } 894 895 /** 896 * pnv_eeh_reset - Reset the specified PE 897 * @pe: EEH PE 898 * @option: reset option 899 * 900 * Do reset on the indicated PE. For PCI bus sensitive PE, 901 * we need to reset the parent p2p bridge. The PHB has to 902 * be reinitialized if the p2p bridge is root bridge. For 903 * PCI device sensitive PE, we will try to reset the device 904 * through FLR. For now, we don't have OPAL APIs to do HARD 905 * reset yet, so all reset would be SOFT (HOT) reset. 906 */ 907 static int pnv_eeh_reset(struct eeh_pe *pe, int option) 908 { 909 struct pci_controller *hose = pe->phb; 910 struct pci_bus *bus; 911 int ret; 912 913 /* 914 * For PHB reset, we always have complete reset. For those PEs whose 915 * primary bus derived from root complex (root bus) or root port 916 * (usually bus#1), we apply hot or fundamental reset on the root port. 917 * For other PEs, we always have hot reset on the PE primary bus. 918 * 919 * Here, we have different design to pHyp, which always clear the 920 * frozen state during PE reset. However, the good idea here from 921 * benh is to keep frozen state before we get PE reset done completely 922 * (until BAR restore). With the frozen state, HW drops illegal IO 923 * or MMIO access, which can incur recrusive frozen PE during PE 924 * reset. The side effect is that EEH core has to clear the frozen 925 * state explicitly after BAR restore. 926 */ 927 if (pe->type & EEH_PE_PHB) { 928 ret = pnv_eeh_phb_reset(hose, option); 929 } else { 930 struct pnv_phb *phb; 931 s64 rc; 932 933 /* 934 * The frozen PE might be caused by PAPR error injection 935 * registers, which are expected to be cleared after hitting 936 * frozen PE as stated in the hardware spec. Unfortunately, 937 * that's not true on P7IOC. So we have to clear it manually 938 * to avoid recursive EEH errors during recovery. 939 */ 940 phb = hose->private_data; 941 if (phb->model == PNV_PHB_MODEL_P7IOC && 942 (option == EEH_RESET_HOT || 943 option == EEH_RESET_FUNDAMENTAL)) { 944 rc = opal_pci_reset(phb->opal_id, 945 OPAL_RESET_PHB_ERROR, 946 OPAL_ASSERT_RESET); 947 if (rc != OPAL_SUCCESS) { 948 pr_warn("%s: Failure %lld clearing " 949 "error injection registers\n", 950 __func__, rc); 951 return -EIO; 952 } 953 } 954 955 bus = eeh_pe_bus_get(pe); 956 if (pci_is_root_bus(bus) || 957 pci_is_root_bus(bus->parent)) 958 ret = pnv_eeh_root_reset(hose, option); 959 else 960 ret = pnv_eeh_bridge_reset(bus->self, option); 961 } 962 963 return ret; 964 } 965 966 /** 967 * pnv_eeh_wait_state - Wait for PE state 968 * @pe: EEH PE 969 * @max_wait: maximal period in millisecond 970 * 971 * Wait for the state of associated PE. It might take some time 972 * to retrieve the PE's state. 973 */ 974 static int pnv_eeh_wait_state(struct eeh_pe *pe, int max_wait) 975 { 976 int ret; 977 int mwait; 978 979 while (1) { 980 ret = pnv_eeh_get_state(pe, &mwait); 981 982 /* 983 * If the PE's state is temporarily unavailable, 984 * we have to wait for the specified time. Otherwise, 985 * the PE's state will be returned immediately. 986 */ 987 if (ret != EEH_STATE_UNAVAILABLE) 988 return ret; 989 990 if (max_wait <= 0) { 991 pr_warn("%s: Timeout getting PE#%x's state (%d)\n", 992 __func__, pe->addr, max_wait); 993 return EEH_STATE_NOT_SUPPORT; 994 } 995 996 max_wait -= mwait; 997 msleep(mwait); 998 } 999 1000 return EEH_STATE_NOT_SUPPORT; 1001 } 1002 1003 /** 1004 * pnv_eeh_get_log - Retrieve error log 1005 * @pe: EEH PE 1006 * @severity: temporary or permanent error log 1007 * @drv_log: driver log to be combined with retrieved error log 1008 * @len: length of driver log 1009 * 1010 * Retrieve the temporary or permanent error from the PE. 1011 */ 1012 static int pnv_eeh_get_log(struct eeh_pe *pe, int severity, 1013 char *drv_log, unsigned long len) 1014 { 1015 if (!eeh_has_flag(EEH_EARLY_DUMP_LOG)) 1016 pnv_pci_dump_phb_diag_data(pe->phb, pe->data); 1017 1018 return 0; 1019 } 1020 1021 /** 1022 * pnv_eeh_configure_bridge - Configure PCI bridges in the indicated PE 1023 * @pe: EEH PE 1024 * 1025 * The function will be called to reconfigure the bridges included 1026 * in the specified PE so that the mulfunctional PE would be recovered 1027 * again. 1028 */ 1029 static int pnv_eeh_configure_bridge(struct eeh_pe *pe) 1030 { 1031 return 0; 1032 } 1033 1034 /** 1035 * pnv_pe_err_inject - Inject specified error to the indicated PE 1036 * @pe: the indicated PE 1037 * @type: error type 1038 * @func: specific error type 1039 * @addr: address 1040 * @mask: address mask 1041 * 1042 * The routine is called to inject specified error, which is 1043 * determined by @type and @func, to the indicated PE for 1044 * testing purpose. 1045 */ 1046 static int pnv_eeh_err_inject(struct eeh_pe *pe, int type, int func, 1047 unsigned long addr, unsigned long mask) 1048 { 1049 struct pci_controller *hose = pe->phb; 1050 struct pnv_phb *phb = hose->private_data; 1051 s64 rc; 1052 1053 if (type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR && 1054 type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64) { 1055 pr_warn("%s: Invalid error type %d\n", 1056 __func__, type); 1057 return -ERANGE; 1058 } 1059 1060 if (func < OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_ADDR || 1061 func > OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_TARGET) { 1062 pr_warn("%s: Invalid error function %d\n", 1063 __func__, func); 1064 return -ERANGE; 1065 } 1066 1067 /* Firmware supports error injection ? */ 1068 if (!opal_check_token(OPAL_PCI_ERR_INJECT)) { 1069 pr_warn("%s: Firmware doesn't support error injection\n", 1070 __func__); 1071 return -ENXIO; 1072 } 1073 1074 /* Do error injection */ 1075 rc = opal_pci_err_inject(phb->opal_id, pe->addr, 1076 type, func, addr, mask); 1077 if (rc != OPAL_SUCCESS) { 1078 pr_warn("%s: Failure %lld injecting error " 1079 "%d-%d to PHB#%x-PE#%x\n", 1080 __func__, rc, type, func, 1081 hose->global_number, pe->addr); 1082 return -EIO; 1083 } 1084 1085 return 0; 1086 } 1087 1088 static inline bool pnv_eeh_cfg_blocked(struct pci_dn *pdn) 1089 { 1090 struct eeh_dev *edev = pdn_to_eeh_dev(pdn); 1091 1092 if (!edev || !edev->pe) 1093 return false; 1094 1095 if (edev->pe->state & EEH_PE_CFG_BLOCKED) 1096 return true; 1097 1098 return false; 1099 } 1100 1101 static int pnv_eeh_read_config(struct pci_dn *pdn, 1102 int where, int size, u32 *val) 1103 { 1104 if (!pdn) 1105 return PCIBIOS_DEVICE_NOT_FOUND; 1106 1107 if (pnv_eeh_cfg_blocked(pdn)) { 1108 *val = 0xFFFFFFFF; 1109 return PCIBIOS_SET_FAILED; 1110 } 1111 1112 return pnv_pci_cfg_read(pdn, where, size, val); 1113 } 1114 1115 static int pnv_eeh_write_config(struct pci_dn *pdn, 1116 int where, int size, u32 val) 1117 { 1118 if (!pdn) 1119 return PCIBIOS_DEVICE_NOT_FOUND; 1120 1121 if (pnv_eeh_cfg_blocked(pdn)) 1122 return PCIBIOS_SET_FAILED; 1123 1124 return pnv_pci_cfg_write(pdn, where, size, val); 1125 } 1126 1127 static void pnv_eeh_dump_hub_diag_common(struct OpalIoP7IOCErrorData *data) 1128 { 1129 /* GEM */ 1130 if (data->gemXfir || data->gemRfir || 1131 data->gemRirqfir || data->gemMask || data->gemRwof) 1132 pr_info(" GEM: %016llx %016llx %016llx %016llx %016llx\n", 1133 be64_to_cpu(data->gemXfir), 1134 be64_to_cpu(data->gemRfir), 1135 be64_to_cpu(data->gemRirqfir), 1136 be64_to_cpu(data->gemMask), 1137 be64_to_cpu(data->gemRwof)); 1138 1139 /* LEM */ 1140 if (data->lemFir || data->lemErrMask || 1141 data->lemAction0 || data->lemAction1 || data->lemWof) 1142 pr_info(" LEM: %016llx %016llx %016llx %016llx %016llx\n", 1143 be64_to_cpu(data->lemFir), 1144 be64_to_cpu(data->lemErrMask), 1145 be64_to_cpu(data->lemAction0), 1146 be64_to_cpu(data->lemAction1), 1147 be64_to_cpu(data->lemWof)); 1148 } 1149 1150 static void pnv_eeh_get_and_dump_hub_diag(struct pci_controller *hose) 1151 { 1152 struct pnv_phb *phb = hose->private_data; 1153 struct OpalIoP7IOCErrorData *data = &phb->diag.hub_diag; 1154 long rc; 1155 1156 rc = opal_pci_get_hub_diag_data(phb->hub_id, data, sizeof(*data)); 1157 if (rc != OPAL_SUCCESS) { 1158 pr_warn("%s: Failed to get HUB#%llx diag-data (%ld)\n", 1159 __func__, phb->hub_id, rc); 1160 return; 1161 } 1162 1163 switch (data->type) { 1164 case OPAL_P7IOC_DIAG_TYPE_RGC: 1165 pr_info("P7IOC diag-data for RGC\n\n"); 1166 pnv_eeh_dump_hub_diag_common(data); 1167 if (data->rgc.rgcStatus || data->rgc.rgcLdcp) 1168 pr_info(" RGC: %016llx %016llx\n", 1169 be64_to_cpu(data->rgc.rgcStatus), 1170 be64_to_cpu(data->rgc.rgcLdcp)); 1171 break; 1172 case OPAL_P7IOC_DIAG_TYPE_BI: 1173 pr_info("P7IOC diag-data for BI %s\n\n", 1174 data->bi.biDownbound ? "Downbound" : "Upbound"); 1175 pnv_eeh_dump_hub_diag_common(data); 1176 if (data->bi.biLdcp0 || data->bi.biLdcp1 || 1177 data->bi.biLdcp2 || data->bi.biFenceStatus) 1178 pr_info(" BI: %016llx %016llx %016llx %016llx\n", 1179 be64_to_cpu(data->bi.biLdcp0), 1180 be64_to_cpu(data->bi.biLdcp1), 1181 be64_to_cpu(data->bi.biLdcp2), 1182 be64_to_cpu(data->bi.biFenceStatus)); 1183 break; 1184 case OPAL_P7IOC_DIAG_TYPE_CI: 1185 pr_info("P7IOC diag-data for CI Port %d\n\n", 1186 data->ci.ciPort); 1187 pnv_eeh_dump_hub_diag_common(data); 1188 if (data->ci.ciPortStatus || data->ci.ciPortLdcp) 1189 pr_info(" CI: %016llx %016llx\n", 1190 be64_to_cpu(data->ci.ciPortStatus), 1191 be64_to_cpu(data->ci.ciPortLdcp)); 1192 break; 1193 case OPAL_P7IOC_DIAG_TYPE_MISC: 1194 pr_info("P7IOC diag-data for MISC\n\n"); 1195 pnv_eeh_dump_hub_diag_common(data); 1196 break; 1197 case OPAL_P7IOC_DIAG_TYPE_I2C: 1198 pr_info("P7IOC diag-data for I2C\n\n"); 1199 pnv_eeh_dump_hub_diag_common(data); 1200 break; 1201 default: 1202 pr_warn("%s: Invalid type of HUB#%llx diag-data (%d)\n", 1203 __func__, phb->hub_id, data->type); 1204 } 1205 } 1206 1207 static int pnv_eeh_get_pe(struct pci_controller *hose, 1208 u16 pe_no, struct eeh_pe **pe) 1209 { 1210 struct pnv_phb *phb = hose->private_data; 1211 struct pnv_ioda_pe *pnv_pe; 1212 struct eeh_pe *dev_pe; 1213 struct eeh_dev edev; 1214 1215 /* 1216 * If PHB supports compound PE, to fetch 1217 * the master PE because slave PE is invisible 1218 * to EEH core. 1219 */ 1220 pnv_pe = &phb->ioda.pe_array[pe_no]; 1221 if (pnv_pe->flags & PNV_IODA_PE_SLAVE) { 1222 pnv_pe = pnv_pe->master; 1223 WARN_ON(!pnv_pe || 1224 !(pnv_pe->flags & PNV_IODA_PE_MASTER)); 1225 pe_no = pnv_pe->pe_number; 1226 } 1227 1228 /* Find the PE according to PE# */ 1229 memset(&edev, 0, sizeof(struct eeh_dev)); 1230 edev.phb = hose; 1231 edev.pe_config_addr = pe_no; 1232 dev_pe = eeh_pe_get(&edev); 1233 if (!dev_pe) 1234 return -EEXIST; 1235 1236 /* Freeze the (compound) PE */ 1237 *pe = dev_pe; 1238 if (!(dev_pe->state & EEH_PE_ISOLATED)) 1239 phb->freeze_pe(phb, pe_no); 1240 1241 /* 1242 * At this point, we're sure the (compound) PE should 1243 * have been frozen. However, we still need poke until 1244 * hitting the frozen PE on top level. 1245 */ 1246 dev_pe = dev_pe->parent; 1247 while (dev_pe && !(dev_pe->type & EEH_PE_PHB)) { 1248 int ret; 1249 int active_flags = (EEH_STATE_MMIO_ACTIVE | 1250 EEH_STATE_DMA_ACTIVE); 1251 1252 ret = eeh_ops->get_state(dev_pe, NULL); 1253 if (ret <= 0 || (ret & active_flags) == active_flags) { 1254 dev_pe = dev_pe->parent; 1255 continue; 1256 } 1257 1258 /* Frozen parent PE */ 1259 *pe = dev_pe; 1260 if (!(dev_pe->state & EEH_PE_ISOLATED)) 1261 phb->freeze_pe(phb, dev_pe->addr); 1262 1263 /* Next one */ 1264 dev_pe = dev_pe->parent; 1265 } 1266 1267 return 0; 1268 } 1269 1270 /** 1271 * pnv_eeh_next_error - Retrieve next EEH error to handle 1272 * @pe: Affected PE 1273 * 1274 * The function is expected to be called by EEH core while it gets 1275 * special EEH event (without binding PE). The function calls to 1276 * OPAL APIs for next error to handle. The informational error is 1277 * handled internally by platform. However, the dead IOC, dead PHB, 1278 * fenced PHB and frozen PE should be handled by EEH core eventually. 1279 */ 1280 static int pnv_eeh_next_error(struct eeh_pe **pe) 1281 { 1282 struct pci_controller *hose; 1283 struct pnv_phb *phb; 1284 struct eeh_pe *phb_pe, *parent_pe; 1285 __be64 frozen_pe_no; 1286 __be16 err_type, severity; 1287 int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE); 1288 long rc; 1289 int state, ret = EEH_NEXT_ERR_NONE; 1290 1291 /* 1292 * While running here, it's safe to purge the event queue. The 1293 * event should still be masked. 1294 */ 1295 eeh_remove_event(NULL, false); 1296 1297 list_for_each_entry(hose, &hose_list, list_node) { 1298 /* 1299 * If the subordinate PCI buses of the PHB has been 1300 * removed or is exactly under error recovery, we 1301 * needn't take care of it any more. 1302 */ 1303 phb = hose->private_data; 1304 phb_pe = eeh_phb_pe_get(hose); 1305 if (!phb_pe || (phb_pe->state & EEH_PE_ISOLATED)) 1306 continue; 1307 1308 rc = opal_pci_next_error(phb->opal_id, 1309 &frozen_pe_no, &err_type, &severity); 1310 if (rc != OPAL_SUCCESS) { 1311 pr_devel("%s: Invalid return value on " 1312 "PHB#%x (0x%lx) from opal_pci_next_error", 1313 __func__, hose->global_number, rc); 1314 continue; 1315 } 1316 1317 /* If the PHB doesn't have error, stop processing */ 1318 if (be16_to_cpu(err_type) == OPAL_EEH_NO_ERROR || 1319 be16_to_cpu(severity) == OPAL_EEH_SEV_NO_ERROR) { 1320 pr_devel("%s: No error found on PHB#%x\n", 1321 __func__, hose->global_number); 1322 continue; 1323 } 1324 1325 /* 1326 * Processing the error. We're expecting the error with 1327 * highest priority reported upon multiple errors on the 1328 * specific PHB. 1329 */ 1330 pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n", 1331 __func__, be16_to_cpu(err_type), 1332 be16_to_cpu(severity), be64_to_cpu(frozen_pe_no), 1333 hose->global_number); 1334 switch (be16_to_cpu(err_type)) { 1335 case OPAL_EEH_IOC_ERROR: 1336 if (be16_to_cpu(severity) == OPAL_EEH_SEV_IOC_DEAD) { 1337 pr_err("EEH: dead IOC detected\n"); 1338 ret = EEH_NEXT_ERR_DEAD_IOC; 1339 } else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) { 1340 pr_info("EEH: IOC informative error " 1341 "detected\n"); 1342 pnv_eeh_get_and_dump_hub_diag(hose); 1343 ret = EEH_NEXT_ERR_NONE; 1344 } 1345 1346 break; 1347 case OPAL_EEH_PHB_ERROR: 1348 if (be16_to_cpu(severity) == OPAL_EEH_SEV_PHB_DEAD) { 1349 *pe = phb_pe; 1350 pr_err("EEH: dead PHB#%x detected, " 1351 "location: %s\n", 1352 hose->global_number, 1353 eeh_pe_loc_get(phb_pe)); 1354 ret = EEH_NEXT_ERR_DEAD_PHB; 1355 } else if (be16_to_cpu(severity) == 1356 OPAL_EEH_SEV_PHB_FENCED) { 1357 *pe = phb_pe; 1358 pr_err("EEH: Fenced PHB#%x detected, " 1359 "location: %s\n", 1360 hose->global_number, 1361 eeh_pe_loc_get(phb_pe)); 1362 ret = EEH_NEXT_ERR_FENCED_PHB; 1363 } else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) { 1364 pr_info("EEH: PHB#%x informative error " 1365 "detected, location: %s\n", 1366 hose->global_number, 1367 eeh_pe_loc_get(phb_pe)); 1368 pnv_eeh_get_phb_diag(phb_pe); 1369 pnv_pci_dump_phb_diag_data(hose, phb_pe->data); 1370 ret = EEH_NEXT_ERR_NONE; 1371 } 1372 1373 break; 1374 case OPAL_EEH_PE_ERROR: 1375 /* 1376 * If we can't find the corresponding PE, we 1377 * just try to unfreeze. 1378 */ 1379 if (pnv_eeh_get_pe(hose, 1380 be64_to_cpu(frozen_pe_no), pe)) { 1381 pr_info("EEH: Clear non-existing PHB#%x-PE#%llx\n", 1382 hose->global_number, be64_to_cpu(frozen_pe_no)); 1383 pr_info("EEH: PHB location: %s\n", 1384 eeh_pe_loc_get(phb_pe)); 1385 1386 /* Dump PHB diag-data */ 1387 rc = opal_pci_get_phb_diag_data2(phb->opal_id, 1388 phb->diag.blob, PNV_PCI_DIAG_BUF_SIZE); 1389 if (rc == OPAL_SUCCESS) 1390 pnv_pci_dump_phb_diag_data(hose, 1391 phb->diag.blob); 1392 1393 /* Try best to clear it */ 1394 opal_pci_eeh_freeze_clear(phb->opal_id, 1395 frozen_pe_no, 1396 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 1397 ret = EEH_NEXT_ERR_NONE; 1398 } else if ((*pe)->state & EEH_PE_ISOLATED || 1399 eeh_pe_passed(*pe)) { 1400 ret = EEH_NEXT_ERR_NONE; 1401 } else { 1402 pr_err("EEH: Frozen PE#%x " 1403 "on PHB#%x detected\n", 1404 (*pe)->addr, 1405 (*pe)->phb->global_number); 1406 pr_err("EEH: PE location: %s, " 1407 "PHB location: %s\n", 1408 eeh_pe_loc_get(*pe), 1409 eeh_pe_loc_get(phb_pe)); 1410 ret = EEH_NEXT_ERR_FROZEN_PE; 1411 } 1412 1413 break; 1414 default: 1415 pr_warn("%s: Unexpected error type %d\n", 1416 __func__, be16_to_cpu(err_type)); 1417 } 1418 1419 /* 1420 * EEH core will try recover from fenced PHB or 1421 * frozen PE. In the time for frozen PE, EEH core 1422 * enable IO path for that before collecting logs, 1423 * but it ruins the site. So we have to dump the 1424 * log in advance here. 1425 */ 1426 if ((ret == EEH_NEXT_ERR_FROZEN_PE || 1427 ret == EEH_NEXT_ERR_FENCED_PHB) && 1428 !((*pe)->state & EEH_PE_ISOLATED)) { 1429 eeh_pe_state_mark(*pe, EEH_PE_ISOLATED); 1430 pnv_eeh_get_phb_diag(*pe); 1431 1432 if (eeh_has_flag(EEH_EARLY_DUMP_LOG)) 1433 pnv_pci_dump_phb_diag_data((*pe)->phb, 1434 (*pe)->data); 1435 } 1436 1437 /* 1438 * We probably have the frozen parent PE out there and 1439 * we need have to handle frozen parent PE firstly. 1440 */ 1441 if (ret == EEH_NEXT_ERR_FROZEN_PE) { 1442 parent_pe = (*pe)->parent; 1443 while (parent_pe) { 1444 /* Hit the ceiling ? */ 1445 if (parent_pe->type & EEH_PE_PHB) 1446 break; 1447 1448 /* Frozen parent PE ? */ 1449 state = eeh_ops->get_state(parent_pe, NULL); 1450 if (state > 0 && 1451 (state & active_flags) != active_flags) 1452 *pe = parent_pe; 1453 1454 /* Next parent level */ 1455 parent_pe = parent_pe->parent; 1456 } 1457 1458 /* We possibly migrate to another PE */ 1459 eeh_pe_state_mark(*pe, EEH_PE_ISOLATED); 1460 } 1461 1462 /* 1463 * If we have no errors on the specific PHB or only 1464 * informative error there, we continue poking it. 1465 * Otherwise, we need actions to be taken by upper 1466 * layer. 1467 */ 1468 if (ret > EEH_NEXT_ERR_INF) 1469 break; 1470 } 1471 1472 /* Unmask the event */ 1473 if (ret == EEH_NEXT_ERR_NONE && eeh_enabled()) 1474 enable_irq(eeh_event_irq); 1475 1476 return ret; 1477 } 1478 1479 static int pnv_eeh_restore_config(struct pci_dn *pdn) 1480 { 1481 struct eeh_dev *edev = pdn_to_eeh_dev(pdn); 1482 struct pnv_phb *phb; 1483 s64 ret; 1484 1485 if (!edev) 1486 return -EEXIST; 1487 1488 phb = edev->phb->private_data; 1489 ret = opal_pci_reinit(phb->opal_id, 1490 OPAL_REINIT_PCI_DEV, edev->config_addr); 1491 if (ret) { 1492 pr_warn("%s: Can't reinit PCI dev 0x%x (%lld)\n", 1493 __func__, edev->config_addr, ret); 1494 return -EIO; 1495 } 1496 1497 return 0; 1498 } 1499 1500 static struct eeh_ops pnv_eeh_ops = { 1501 .name = "powernv", 1502 .init = pnv_eeh_init, 1503 .post_init = pnv_eeh_post_init, 1504 .probe = pnv_eeh_probe, 1505 .set_option = pnv_eeh_set_option, 1506 .get_pe_addr = pnv_eeh_get_pe_addr, 1507 .get_state = pnv_eeh_get_state, 1508 .reset = pnv_eeh_reset, 1509 .wait_state = pnv_eeh_wait_state, 1510 .get_log = pnv_eeh_get_log, 1511 .configure_bridge = pnv_eeh_configure_bridge, 1512 .err_inject = pnv_eeh_err_inject, 1513 .read_config = pnv_eeh_read_config, 1514 .write_config = pnv_eeh_write_config, 1515 .next_error = pnv_eeh_next_error, 1516 .restore_config = pnv_eeh_restore_config 1517 }; 1518 1519 /** 1520 * eeh_powernv_init - Register platform dependent EEH operations 1521 * 1522 * EEH initialization on powernv platform. This function should be 1523 * called before any EEH related functions. 1524 */ 1525 static int __init eeh_powernv_init(void) 1526 { 1527 int ret = -EINVAL; 1528 1529 eeh_set_pe_aux_size(PNV_PCI_DIAG_BUF_SIZE); 1530 ret = eeh_ops_register(&pnv_eeh_ops); 1531 if (!ret) 1532 pr_info("EEH: PowerNV platform initialized\n"); 1533 else 1534 pr_info("EEH: Failed to initialize PowerNV platform (%d)\n", ret); 1535 1536 return ret; 1537 } 1538 machine_early_initcall(powernv, eeh_powernv_init); 1539