1 /*
2  * The file intends to implement the platform dependent EEH operations on
3  * powernv platform. Actually, the powernv was created in order to fully
4  * hypervisor support.
5  *
6  * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/atomic.h>
15 #include <linux/debugfs.h>
16 #include <linux/delay.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/list.h>
21 #include <linux/msi.h>
22 #include <linux/of.h>
23 #include <linux/pci.h>
24 #include <linux/proc_fs.h>
25 #include <linux/rbtree.h>
26 #include <linux/sched.h>
27 #include <linux/seq_file.h>
28 #include <linux/spinlock.h>
29 
30 #include <asm/eeh.h>
31 #include <asm/eeh_event.h>
32 #include <asm/firmware.h>
33 #include <asm/io.h>
34 #include <asm/iommu.h>
35 #include <asm/machdep.h>
36 #include <asm/msi_bitmap.h>
37 #include <asm/opal.h>
38 #include <asm/ppc-pci.h>
39 #include <asm/pnv-pci.h>
40 
41 #include "powernv.h"
42 #include "pci.h"
43 
44 static bool pnv_eeh_nb_init = false;
45 static int eeh_event_irq = -EINVAL;
46 
47 static int pnv_eeh_init(void)
48 {
49 	struct pci_controller *hose;
50 	struct pnv_phb *phb;
51 	int max_diag_size = PNV_PCI_DIAG_BUF_SIZE;
52 
53 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
54 		pr_warn("%s: OPAL is required !\n",
55 			__func__);
56 		return -EINVAL;
57 	}
58 
59 	/* Set probe mode */
60 	eeh_add_flag(EEH_PROBE_MODE_DEV);
61 
62 	/*
63 	 * P7IOC blocks PCI config access to frozen PE, but PHB3
64 	 * doesn't do that. So we have to selectively enable I/O
65 	 * prior to collecting error log.
66 	 */
67 	list_for_each_entry(hose, &hose_list, list_node) {
68 		phb = hose->private_data;
69 
70 		if (phb->model == PNV_PHB_MODEL_P7IOC)
71 			eeh_add_flag(EEH_ENABLE_IO_FOR_LOG);
72 
73 		if (phb->diag_data_size > max_diag_size)
74 			max_diag_size = phb->diag_data_size;
75 
76 		/*
77 		 * PE#0 should be regarded as valid by EEH core
78 		 * if it's not the reserved one. Currently, we
79 		 * have the reserved PE#255 and PE#127 for PHB3
80 		 * and P7IOC separately. So we should regard
81 		 * PE#0 as valid for PHB3 and P7IOC.
82 		 */
83 		if (phb->ioda.reserved_pe_idx != 0)
84 			eeh_add_flag(EEH_VALID_PE_ZERO);
85 
86 		break;
87 	}
88 
89 	eeh_set_pe_aux_size(max_diag_size);
90 
91 	return 0;
92 }
93 
94 static irqreturn_t pnv_eeh_event(int irq, void *data)
95 {
96 	/*
97 	 * We simply send a special EEH event if EEH has been
98 	 * enabled. We don't care about EEH events until we've
99 	 * finished processing the outstanding ones. Event processing
100 	 * gets unmasked in next_error() if EEH is enabled.
101 	 */
102 	disable_irq_nosync(irq);
103 
104 	if (eeh_enabled())
105 		eeh_send_failure_event(NULL);
106 
107 	return IRQ_HANDLED;
108 }
109 
110 #ifdef CONFIG_DEBUG_FS
111 static ssize_t pnv_eeh_ei_write(struct file *filp,
112 				const char __user *user_buf,
113 				size_t count, loff_t *ppos)
114 {
115 	struct pci_controller *hose = filp->private_data;
116 	struct eeh_pe *pe;
117 	int pe_no, type, func;
118 	unsigned long addr, mask;
119 	char buf[50];
120 	int ret;
121 
122 	if (!eeh_ops || !eeh_ops->err_inject)
123 		return -ENXIO;
124 
125 	/* Copy over argument buffer */
126 	ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
127 	if (!ret)
128 		return -EFAULT;
129 
130 	/* Retrieve parameters */
131 	ret = sscanf(buf, "%x:%x:%x:%lx:%lx",
132 		     &pe_no, &type, &func, &addr, &mask);
133 	if (ret != 5)
134 		return -EINVAL;
135 
136 	/* Retrieve PE */
137 	pe = eeh_pe_get(hose, pe_no, 0);
138 	if (!pe)
139 		return -ENODEV;
140 
141 	/* Do error injection */
142 	ret = eeh_ops->err_inject(pe, type, func, addr, mask);
143 	return ret < 0 ? ret : count;
144 }
145 
146 static const struct file_operations pnv_eeh_ei_fops = {
147 	.open	= simple_open,
148 	.llseek	= no_llseek,
149 	.write	= pnv_eeh_ei_write,
150 };
151 
152 static int pnv_eeh_dbgfs_set(void *data, int offset, u64 val)
153 {
154 	struct pci_controller *hose = data;
155 	struct pnv_phb *phb = hose->private_data;
156 
157 	out_be64(phb->regs + offset, val);
158 	return 0;
159 }
160 
161 static int pnv_eeh_dbgfs_get(void *data, int offset, u64 *val)
162 {
163 	struct pci_controller *hose = data;
164 	struct pnv_phb *phb = hose->private_data;
165 
166 	*val = in_be64(phb->regs + offset);
167 	return 0;
168 }
169 
170 #define PNV_EEH_DBGFS_ENTRY(name, reg)				\
171 static int pnv_eeh_dbgfs_set_##name(void *data, u64 val)	\
172 {								\
173 	return pnv_eeh_dbgfs_set(data, reg, val);		\
174 }								\
175 								\
176 static int pnv_eeh_dbgfs_get_##name(void *data, u64 *val)	\
177 {								\
178 	return pnv_eeh_dbgfs_get(data, reg, val);		\
179 }								\
180 								\
181 DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_dbgfs_ops_##name,		\
182 			pnv_eeh_dbgfs_get_##name,		\
183                         pnv_eeh_dbgfs_set_##name,		\
184 			"0x%llx\n")
185 
186 PNV_EEH_DBGFS_ENTRY(outb, 0xD10);
187 PNV_EEH_DBGFS_ENTRY(inbA, 0xD90);
188 PNV_EEH_DBGFS_ENTRY(inbB, 0xE10);
189 
190 #endif /* CONFIG_DEBUG_FS */
191 
192 /**
193  * pnv_eeh_post_init - EEH platform dependent post initialization
194  *
195  * EEH platform dependent post initialization on powernv. When
196  * the function is called, the EEH PEs and devices should have
197  * been built. If the I/O cache staff has been built, EEH is
198  * ready to supply service.
199  */
200 static int pnv_eeh_post_init(void)
201 {
202 	struct pci_controller *hose;
203 	struct pnv_phb *phb;
204 	int ret = 0;
205 
206 	/* Register OPAL event notifier */
207 	if (!pnv_eeh_nb_init) {
208 		eeh_event_irq = opal_event_request(ilog2(OPAL_EVENT_PCI_ERROR));
209 		if (eeh_event_irq < 0) {
210 			pr_err("%s: Can't register OPAL event interrupt (%d)\n",
211 			       __func__, eeh_event_irq);
212 			return eeh_event_irq;
213 		}
214 
215 		ret = request_irq(eeh_event_irq, pnv_eeh_event,
216 				IRQ_TYPE_LEVEL_HIGH, "opal-eeh", NULL);
217 		if (ret < 0) {
218 			irq_dispose_mapping(eeh_event_irq);
219 			pr_err("%s: Can't request OPAL event interrupt (%d)\n",
220 			       __func__, eeh_event_irq);
221 			return ret;
222 		}
223 
224 		pnv_eeh_nb_init = true;
225 	}
226 
227 	if (!eeh_enabled())
228 		disable_irq(eeh_event_irq);
229 
230 	list_for_each_entry(hose, &hose_list, list_node) {
231 		phb = hose->private_data;
232 
233 		/*
234 		 * If EEH is enabled, we're going to rely on that.
235 		 * Otherwise, we restore to conventional mechanism
236 		 * to clear frozen PE during PCI config access.
237 		 */
238 		if (eeh_enabled())
239 			phb->flags |= PNV_PHB_FLAG_EEH;
240 		else
241 			phb->flags &= ~PNV_PHB_FLAG_EEH;
242 
243 		/* Create debugfs entries */
244 #ifdef CONFIG_DEBUG_FS
245 		if (phb->has_dbgfs || !phb->dbgfs)
246 			continue;
247 
248 		phb->has_dbgfs = 1;
249 		debugfs_create_file("err_injct", 0200,
250 				    phb->dbgfs, hose,
251 				    &pnv_eeh_ei_fops);
252 
253 		debugfs_create_file("err_injct_outbound", 0600,
254 				    phb->dbgfs, hose,
255 				    &pnv_eeh_dbgfs_ops_outb);
256 		debugfs_create_file("err_injct_inboundA", 0600,
257 				    phb->dbgfs, hose,
258 				    &pnv_eeh_dbgfs_ops_inbA);
259 		debugfs_create_file("err_injct_inboundB", 0600,
260 				    phb->dbgfs, hose,
261 				    &pnv_eeh_dbgfs_ops_inbB);
262 #endif /* CONFIG_DEBUG_FS */
263 	}
264 
265 	return ret;
266 }
267 
268 static int pnv_eeh_find_cap(struct pci_dn *pdn, int cap)
269 {
270 	int pos = PCI_CAPABILITY_LIST;
271 	int cnt = 48;   /* Maximal number of capabilities */
272 	u32 status, id;
273 
274 	if (!pdn)
275 		return 0;
276 
277 	/* Check if the device supports capabilities */
278 	pnv_pci_cfg_read(pdn, PCI_STATUS, 2, &status);
279 	if (!(status & PCI_STATUS_CAP_LIST))
280 		return 0;
281 
282 	while (cnt--) {
283 		pnv_pci_cfg_read(pdn, pos, 1, &pos);
284 		if (pos < 0x40)
285 			break;
286 
287 		pos &= ~3;
288 		pnv_pci_cfg_read(pdn, pos + PCI_CAP_LIST_ID, 1, &id);
289 		if (id == 0xff)
290 			break;
291 
292 		/* Found */
293 		if (id == cap)
294 			return pos;
295 
296 		/* Next one */
297 		pos += PCI_CAP_LIST_NEXT;
298 	}
299 
300 	return 0;
301 }
302 
303 static int pnv_eeh_find_ecap(struct pci_dn *pdn, int cap)
304 {
305 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
306 	u32 header;
307 	int pos = 256, ttl = (4096 - 256) / 8;
308 
309 	if (!edev || !edev->pcie_cap)
310 		return 0;
311 	if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
312 		return 0;
313 	else if (!header)
314 		return 0;
315 
316 	while (ttl-- > 0) {
317 		if (PCI_EXT_CAP_ID(header) == cap && pos)
318 			return pos;
319 
320 		pos = PCI_EXT_CAP_NEXT(header);
321 		if (pos < 256)
322 			break;
323 
324 		if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
325 			break;
326 	}
327 
328 	return 0;
329 }
330 
331 /**
332  * pnv_eeh_probe - Do probe on PCI device
333  * @pdn: PCI device node
334  * @data: unused
335  *
336  * When EEH module is installed during system boot, all PCI devices
337  * are checked one by one to see if it supports EEH. The function
338  * is introduced for the purpose. By default, EEH has been enabled
339  * on all PCI devices. That's to say, we only need do necessary
340  * initialization on the corresponding eeh device and create PE
341  * accordingly.
342  *
343  * It's notable that's unsafe to retrieve the EEH device through
344  * the corresponding PCI device. During the PCI device hotplug, which
345  * was possiblly triggered by EEH core, the binding between EEH device
346  * and the PCI device isn't built yet.
347  */
348 static void *pnv_eeh_probe(struct pci_dn *pdn, void *data)
349 {
350 	struct pci_controller *hose = pdn->phb;
351 	struct pnv_phb *phb = hose->private_data;
352 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
353 	uint32_t pcie_flags;
354 	int ret;
355 	int config_addr = (pdn->busno << 8) | (pdn->devfn);
356 
357 	/*
358 	 * When probing the root bridge, which doesn't have any
359 	 * subordinate PCI devices. We don't have OF node for
360 	 * the root bridge. So it's not reasonable to continue
361 	 * the probing.
362 	 */
363 	if (!edev || edev->pe)
364 		return NULL;
365 
366 	/* Skip for PCI-ISA bridge */
367 	if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_ISA)
368 		return NULL;
369 
370 	/* Initialize eeh device */
371 	edev->class_code = pdn->class_code;
372 	edev->mode	&= 0xFFFFFF00;
373 	edev->pcix_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_PCIX);
374 	edev->pcie_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_EXP);
375 	edev->af_cap   = pnv_eeh_find_cap(pdn, PCI_CAP_ID_AF);
376 	edev->aer_cap  = pnv_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR);
377 	if ((edev->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) {
378 		edev->mode |= EEH_DEV_BRIDGE;
379 		if (edev->pcie_cap) {
380 			pnv_pci_cfg_read(pdn, edev->pcie_cap + PCI_EXP_FLAGS,
381 					 2, &pcie_flags);
382 			pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4;
383 			if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT)
384 				edev->mode |= EEH_DEV_ROOT_PORT;
385 			else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM)
386 				edev->mode |= EEH_DEV_DS_PORT;
387 		}
388 	}
389 
390 	edev->pe_config_addr = phb->ioda.pe_rmap[config_addr];
391 
392 	/* Create PE */
393 	ret = eeh_add_to_parent_pe(edev);
394 	if (ret) {
395 		pr_warn("%s: Can't add PCI dev %04x:%02x:%02x.%01x to parent PE (%x)\n",
396 			__func__, hose->global_number, pdn->busno,
397 			PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn), ret);
398 		return NULL;
399 	}
400 
401 	/*
402 	 * If the PE contains any one of following adapters, the
403 	 * PCI config space can't be accessed when dumping EEH log.
404 	 * Otherwise, we will run into fenced PHB caused by shortage
405 	 * of outbound credits in the adapter. The PCI config access
406 	 * should be blocked until PE reset. MMIO access is dropped
407 	 * by hardware certainly. In order to drop PCI config requests,
408 	 * one more flag (EEH_PE_CFG_RESTRICTED) is introduced, which
409 	 * will be checked in the backend for PE state retrival. If
410 	 * the PE becomes frozen for the first time and the flag has
411 	 * been set for the PE, we will set EEH_PE_CFG_BLOCKED for
412 	 * that PE to block its config space.
413 	 *
414 	 * Broadcom BCM5718 2-ports NICs (14e4:1656)
415 	 * Broadcom Austin 4-ports NICs (14e4:1657)
416 	 * Broadcom Shiner 4-ports 1G NICs (14e4:168a)
417 	 * Broadcom Shiner 2-ports 10G NICs (14e4:168e)
418 	 */
419 	if ((pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
420 	     pdn->device_id == 0x1656) ||
421 	    (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
422 	     pdn->device_id == 0x1657) ||
423 	    (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
424 	     pdn->device_id == 0x168a) ||
425 	    (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
426 	     pdn->device_id == 0x168e))
427 		edev->pe->state |= EEH_PE_CFG_RESTRICTED;
428 
429 	/*
430 	 * Cache the PE primary bus, which can't be fetched when
431 	 * full hotplug is in progress. In that case, all child
432 	 * PCI devices of the PE are expected to be removed prior
433 	 * to PE reset.
434 	 */
435 	if (!(edev->pe->state & EEH_PE_PRI_BUS)) {
436 		edev->pe->bus = pci_find_bus(hose->global_number,
437 					     pdn->busno);
438 		if (edev->pe->bus)
439 			edev->pe->state |= EEH_PE_PRI_BUS;
440 	}
441 
442 	/*
443 	 * Enable EEH explicitly so that we will do EEH check
444 	 * while accessing I/O stuff
445 	 */
446 	eeh_add_flag(EEH_ENABLED);
447 
448 	/* Save memory bars */
449 	eeh_save_bars(edev);
450 
451 	return NULL;
452 }
453 
454 /**
455  * pnv_eeh_set_option - Initialize EEH or MMIO/DMA reenable
456  * @pe: EEH PE
457  * @option: operation to be issued
458  *
459  * The function is used to control the EEH functionality globally.
460  * Currently, following options are support according to PAPR:
461  * Enable EEH, Disable EEH, Enable MMIO and Enable DMA
462  */
463 static int pnv_eeh_set_option(struct eeh_pe *pe, int option)
464 {
465 	struct pci_controller *hose = pe->phb;
466 	struct pnv_phb *phb = hose->private_data;
467 	bool freeze_pe = false;
468 	int opt;
469 	s64 rc;
470 
471 	switch (option) {
472 	case EEH_OPT_DISABLE:
473 		return -EPERM;
474 	case EEH_OPT_ENABLE:
475 		return 0;
476 	case EEH_OPT_THAW_MMIO:
477 		opt = OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO;
478 		break;
479 	case EEH_OPT_THAW_DMA:
480 		opt = OPAL_EEH_ACTION_CLEAR_FREEZE_DMA;
481 		break;
482 	case EEH_OPT_FREEZE_PE:
483 		freeze_pe = true;
484 		opt = OPAL_EEH_ACTION_SET_FREEZE_ALL;
485 		break;
486 	default:
487 		pr_warn("%s: Invalid option %d\n", __func__, option);
488 		return -EINVAL;
489 	}
490 
491 	/* Freeze master and slave PEs if PHB supports compound PEs */
492 	if (freeze_pe) {
493 		if (phb->freeze_pe) {
494 			phb->freeze_pe(phb, pe->addr);
495 			return 0;
496 		}
497 
498 		rc = opal_pci_eeh_freeze_set(phb->opal_id, pe->addr, opt);
499 		if (rc != OPAL_SUCCESS) {
500 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
501 				__func__, rc, phb->hose->global_number,
502 				pe->addr);
503 			return -EIO;
504 		}
505 
506 		return 0;
507 	}
508 
509 	/* Unfreeze master and slave PEs if PHB supports */
510 	if (phb->unfreeze_pe)
511 		return phb->unfreeze_pe(phb, pe->addr, opt);
512 
513 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe->addr, opt);
514 	if (rc != OPAL_SUCCESS) {
515 		pr_warn("%s: Failure %lld enable %d for PHB#%x-PE#%x\n",
516 			__func__, rc, option, phb->hose->global_number,
517 			pe->addr);
518 		return -EIO;
519 	}
520 
521 	return 0;
522 }
523 
524 /**
525  * pnv_eeh_get_pe_addr - Retrieve PE address
526  * @pe: EEH PE
527  *
528  * Retrieve the PE address according to the given tranditional
529  * PCI BDF (Bus/Device/Function) address.
530  */
531 static int pnv_eeh_get_pe_addr(struct eeh_pe *pe)
532 {
533 	return pe->addr;
534 }
535 
536 static void pnv_eeh_get_phb_diag(struct eeh_pe *pe)
537 {
538 	struct pnv_phb *phb = pe->phb->private_data;
539 	s64 rc;
540 
541 	rc = opal_pci_get_phb_diag_data2(phb->opal_id, pe->data,
542 					 phb->diag_data_size);
543 	if (rc != OPAL_SUCCESS)
544 		pr_warn("%s: Failure %lld getting PHB#%x diag-data\n",
545 			__func__, rc, pe->phb->global_number);
546 }
547 
548 static int pnv_eeh_get_phb_state(struct eeh_pe *pe)
549 {
550 	struct pnv_phb *phb = pe->phb->private_data;
551 	u8 fstate;
552 	__be16 pcierr;
553 	s64 rc;
554 	int result = 0;
555 
556 	rc = opal_pci_eeh_freeze_status(phb->opal_id,
557 					pe->addr,
558 					&fstate,
559 					&pcierr,
560 					NULL);
561 	if (rc != OPAL_SUCCESS) {
562 		pr_warn("%s: Failure %lld getting PHB#%x state\n",
563 			__func__, rc, phb->hose->global_number);
564 		return EEH_STATE_NOT_SUPPORT;
565 	}
566 
567 	/*
568 	 * Check PHB state. If the PHB is frozen for the
569 	 * first time, to dump the PHB diag-data.
570 	 */
571 	if (be16_to_cpu(pcierr) != OPAL_EEH_PHB_ERROR) {
572 		result = (EEH_STATE_MMIO_ACTIVE  |
573 			  EEH_STATE_DMA_ACTIVE   |
574 			  EEH_STATE_MMIO_ENABLED |
575 			  EEH_STATE_DMA_ENABLED);
576 	} else if (!(pe->state & EEH_PE_ISOLATED)) {
577 		eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
578 		pnv_eeh_get_phb_diag(pe);
579 
580 		if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
581 			pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
582 	}
583 
584 	return result;
585 }
586 
587 static int pnv_eeh_get_pe_state(struct eeh_pe *pe)
588 {
589 	struct pnv_phb *phb = pe->phb->private_data;
590 	u8 fstate;
591 	__be16 pcierr;
592 	s64 rc;
593 	int result;
594 
595 	/*
596 	 * We don't clobber hardware frozen state until PE
597 	 * reset is completed. In order to keep EEH core
598 	 * moving forward, we have to return operational
599 	 * state during PE reset.
600 	 */
601 	if (pe->state & EEH_PE_RESET) {
602 		result = (EEH_STATE_MMIO_ACTIVE  |
603 			  EEH_STATE_DMA_ACTIVE   |
604 			  EEH_STATE_MMIO_ENABLED |
605 			  EEH_STATE_DMA_ENABLED);
606 		return result;
607 	}
608 
609 	/*
610 	 * Fetch PE state from hardware. If the PHB
611 	 * supports compound PE, let it handle that.
612 	 */
613 	if (phb->get_pe_state) {
614 		fstate = phb->get_pe_state(phb, pe->addr);
615 	} else {
616 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
617 						pe->addr,
618 						&fstate,
619 						&pcierr,
620 						NULL);
621 		if (rc != OPAL_SUCCESS) {
622 			pr_warn("%s: Failure %lld getting PHB#%x-PE%x state\n",
623 				__func__, rc, phb->hose->global_number,
624 				pe->addr);
625 			return EEH_STATE_NOT_SUPPORT;
626 		}
627 	}
628 
629 	/* Figure out state */
630 	switch (fstate) {
631 	case OPAL_EEH_STOPPED_NOT_FROZEN:
632 		result = (EEH_STATE_MMIO_ACTIVE  |
633 			  EEH_STATE_DMA_ACTIVE   |
634 			  EEH_STATE_MMIO_ENABLED |
635 			  EEH_STATE_DMA_ENABLED);
636 		break;
637 	case OPAL_EEH_STOPPED_MMIO_FREEZE:
638 		result = (EEH_STATE_DMA_ACTIVE |
639 			  EEH_STATE_DMA_ENABLED);
640 		break;
641 	case OPAL_EEH_STOPPED_DMA_FREEZE:
642 		result = (EEH_STATE_MMIO_ACTIVE |
643 			  EEH_STATE_MMIO_ENABLED);
644 		break;
645 	case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE:
646 		result = 0;
647 		break;
648 	case OPAL_EEH_STOPPED_RESET:
649 		result = EEH_STATE_RESET_ACTIVE;
650 		break;
651 	case OPAL_EEH_STOPPED_TEMP_UNAVAIL:
652 		result = EEH_STATE_UNAVAILABLE;
653 		break;
654 	case OPAL_EEH_STOPPED_PERM_UNAVAIL:
655 		result = EEH_STATE_NOT_SUPPORT;
656 		break;
657 	default:
658 		result = EEH_STATE_NOT_SUPPORT;
659 		pr_warn("%s: Invalid PHB#%x-PE#%x state %x\n",
660 			__func__, phb->hose->global_number,
661 			pe->addr, fstate);
662 	}
663 
664 	/*
665 	 * If PHB supports compound PE, to freeze all
666 	 * slave PEs for consistency.
667 	 *
668 	 * If the PE is switching to frozen state for the
669 	 * first time, to dump the PHB diag-data.
670 	 */
671 	if (!(result & EEH_STATE_NOT_SUPPORT) &&
672 	    !(result & EEH_STATE_UNAVAILABLE) &&
673 	    !(result & EEH_STATE_MMIO_ACTIVE) &&
674 	    !(result & EEH_STATE_DMA_ACTIVE)  &&
675 	    !(pe->state & EEH_PE_ISOLATED)) {
676 		if (phb->freeze_pe)
677 			phb->freeze_pe(phb, pe->addr);
678 
679 		eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
680 		pnv_eeh_get_phb_diag(pe);
681 
682 		if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
683 			pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
684 	}
685 
686 	return result;
687 }
688 
689 /**
690  * pnv_eeh_get_state - Retrieve PE state
691  * @pe: EEH PE
692  * @delay: delay while PE state is temporarily unavailable
693  *
694  * Retrieve the state of the specified PE. For IODA-compitable
695  * platform, it should be retrieved from IODA table. Therefore,
696  * we prefer passing down to hardware implementation to handle
697  * it.
698  */
699 static int pnv_eeh_get_state(struct eeh_pe *pe, int *delay)
700 {
701 	int ret;
702 
703 	if (pe->type & EEH_PE_PHB)
704 		ret = pnv_eeh_get_phb_state(pe);
705 	else
706 		ret = pnv_eeh_get_pe_state(pe);
707 
708 	if (!delay)
709 		return ret;
710 
711 	/*
712 	 * If the PE state is temporarily unavailable,
713 	 * to inform the EEH core delay for default
714 	 * period (1 second)
715 	 */
716 	*delay = 0;
717 	if (ret & EEH_STATE_UNAVAILABLE)
718 		*delay = 1000;
719 
720 	return ret;
721 }
722 
723 static s64 pnv_eeh_poll(unsigned long id)
724 {
725 	s64 rc = OPAL_HARDWARE;
726 
727 	while (1) {
728 		rc = opal_pci_poll(id);
729 		if (rc <= 0)
730 			break;
731 
732 		if (system_state < SYSTEM_RUNNING)
733 			udelay(1000 * rc);
734 		else
735 			msleep(rc);
736 	}
737 
738 	return rc;
739 }
740 
741 int pnv_eeh_phb_reset(struct pci_controller *hose, int option)
742 {
743 	struct pnv_phb *phb = hose->private_data;
744 	s64 rc = OPAL_HARDWARE;
745 
746 	pr_debug("%s: Reset PHB#%x, option=%d\n",
747 		 __func__, hose->global_number, option);
748 
749 	/* Issue PHB complete reset request */
750 	if (option == EEH_RESET_FUNDAMENTAL ||
751 	    option == EEH_RESET_HOT)
752 		rc = opal_pci_reset(phb->opal_id,
753 				    OPAL_RESET_PHB_COMPLETE,
754 				    OPAL_ASSERT_RESET);
755 	else if (option == EEH_RESET_DEACTIVATE)
756 		rc = opal_pci_reset(phb->opal_id,
757 				    OPAL_RESET_PHB_COMPLETE,
758 				    OPAL_DEASSERT_RESET);
759 	if (rc < 0)
760 		goto out;
761 
762 	/*
763 	 * Poll state of the PHB until the request is done
764 	 * successfully. The PHB reset is usually PHB complete
765 	 * reset followed by hot reset on root bus. So we also
766 	 * need the PCI bus settlement delay.
767 	 */
768 	if (rc > 0)
769 		rc = pnv_eeh_poll(phb->opal_id);
770 	if (option == EEH_RESET_DEACTIVATE) {
771 		if (system_state < SYSTEM_RUNNING)
772 			udelay(1000 * EEH_PE_RST_SETTLE_TIME);
773 		else
774 			msleep(EEH_PE_RST_SETTLE_TIME);
775 	}
776 out:
777 	if (rc != OPAL_SUCCESS)
778 		return -EIO;
779 
780 	return 0;
781 }
782 
783 static int pnv_eeh_root_reset(struct pci_controller *hose, int option)
784 {
785 	struct pnv_phb *phb = hose->private_data;
786 	s64 rc = OPAL_HARDWARE;
787 
788 	pr_debug("%s: Reset PHB#%x, option=%d\n",
789 		 __func__, hose->global_number, option);
790 
791 	/*
792 	 * During the reset deassert time, we needn't care
793 	 * the reset scope because the firmware does nothing
794 	 * for fundamental or hot reset during deassert phase.
795 	 */
796 	if (option == EEH_RESET_FUNDAMENTAL)
797 		rc = opal_pci_reset(phb->opal_id,
798 				    OPAL_RESET_PCI_FUNDAMENTAL,
799 				    OPAL_ASSERT_RESET);
800 	else if (option == EEH_RESET_HOT)
801 		rc = opal_pci_reset(phb->opal_id,
802 				    OPAL_RESET_PCI_HOT,
803 				    OPAL_ASSERT_RESET);
804 	else if (option == EEH_RESET_DEACTIVATE)
805 		rc = opal_pci_reset(phb->opal_id,
806 				    OPAL_RESET_PCI_HOT,
807 				    OPAL_DEASSERT_RESET);
808 	if (rc < 0)
809 		goto out;
810 
811 	/* Poll state of the PHB until the request is done */
812 	if (rc > 0)
813 		rc = pnv_eeh_poll(phb->opal_id);
814 	if (option == EEH_RESET_DEACTIVATE)
815 		msleep(EEH_PE_RST_SETTLE_TIME);
816 out:
817 	if (rc != OPAL_SUCCESS)
818 		return -EIO;
819 
820 	return 0;
821 }
822 
823 static int __pnv_eeh_bridge_reset(struct pci_dev *dev, int option)
824 {
825 	struct pci_dn *pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
826 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
827 	int aer = edev ? edev->aer_cap : 0;
828 	u32 ctrl;
829 
830 	pr_debug("%s: Reset PCI bus %04x:%02x with option %d\n",
831 		 __func__, pci_domain_nr(dev->bus),
832 		 dev->bus->number, option);
833 
834 	switch (option) {
835 	case EEH_RESET_FUNDAMENTAL:
836 	case EEH_RESET_HOT:
837 		/* Don't report linkDown event */
838 		if (aer) {
839 			eeh_ops->read_config(pdn, aer + PCI_ERR_UNCOR_MASK,
840 					     4, &ctrl);
841 			ctrl |= PCI_ERR_UNC_SURPDN;
842 			eeh_ops->write_config(pdn, aer + PCI_ERR_UNCOR_MASK,
843 					      4, ctrl);
844 		}
845 
846 		eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &ctrl);
847 		ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
848 		eeh_ops->write_config(pdn, PCI_BRIDGE_CONTROL, 2, ctrl);
849 
850 		msleep(EEH_PE_RST_HOLD_TIME);
851 		break;
852 	case EEH_RESET_DEACTIVATE:
853 		eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &ctrl);
854 		ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
855 		eeh_ops->write_config(pdn, PCI_BRIDGE_CONTROL, 2, ctrl);
856 
857 		msleep(EEH_PE_RST_SETTLE_TIME);
858 
859 		/* Continue reporting linkDown event */
860 		if (aer) {
861 			eeh_ops->read_config(pdn, aer + PCI_ERR_UNCOR_MASK,
862 					     4, &ctrl);
863 			ctrl &= ~PCI_ERR_UNC_SURPDN;
864 			eeh_ops->write_config(pdn, aer + PCI_ERR_UNCOR_MASK,
865 					      4, ctrl);
866 		}
867 
868 		break;
869 	}
870 
871 	return 0;
872 }
873 
874 static int pnv_eeh_bridge_reset(struct pci_dev *pdev, int option)
875 {
876 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
877 	struct pnv_phb *phb = hose->private_data;
878 	struct device_node *dn = pci_device_to_OF_node(pdev);
879 	uint64_t id = PCI_SLOT_ID(phb->opal_id,
880 				  (pdev->bus->number << 8) | pdev->devfn);
881 	uint8_t scope;
882 	int64_t rc;
883 
884 	/* Hot reset to the bus if firmware cannot handle */
885 	if (!dn || !of_get_property(dn, "ibm,reset-by-firmware", NULL))
886 		return __pnv_eeh_bridge_reset(pdev, option);
887 
888 	switch (option) {
889 	case EEH_RESET_FUNDAMENTAL:
890 		scope = OPAL_RESET_PCI_FUNDAMENTAL;
891 		break;
892 	case EEH_RESET_HOT:
893 		scope = OPAL_RESET_PCI_HOT;
894 		break;
895 	case EEH_RESET_DEACTIVATE:
896 		return 0;
897 	default:
898 		dev_dbg(&pdev->dev, "%s: Unsupported reset %d\n",
899 			__func__, option);
900 		return -EINVAL;
901 	}
902 
903 	rc = opal_pci_reset(id, scope, OPAL_ASSERT_RESET);
904 	if (rc <= OPAL_SUCCESS)
905 		goto out;
906 
907 	rc = pnv_eeh_poll(id);
908 out:
909 	return (rc == OPAL_SUCCESS) ? 0 : -EIO;
910 }
911 
912 void pnv_pci_reset_secondary_bus(struct pci_dev *dev)
913 {
914 	struct pci_controller *hose;
915 
916 	if (pci_is_root_bus(dev->bus)) {
917 		hose = pci_bus_to_host(dev->bus);
918 		pnv_eeh_root_reset(hose, EEH_RESET_HOT);
919 		pnv_eeh_root_reset(hose, EEH_RESET_DEACTIVATE);
920 	} else {
921 		pnv_eeh_bridge_reset(dev, EEH_RESET_HOT);
922 		pnv_eeh_bridge_reset(dev, EEH_RESET_DEACTIVATE);
923 	}
924 }
925 
926 static void pnv_eeh_wait_for_pending(struct pci_dn *pdn, const char *type,
927 				     int pos, u16 mask)
928 {
929 	int i, status = 0;
930 
931 	/* Wait for Transaction Pending bit to be cleared */
932 	for (i = 0; i < 4; i++) {
933 		eeh_ops->read_config(pdn, pos, 2, &status);
934 		if (!(status & mask))
935 			return;
936 
937 		msleep((1 << i) * 100);
938 	}
939 
940 	pr_warn("%s: Pending transaction while issuing %sFLR to %04x:%02x:%02x.%01x\n",
941 		__func__, type,
942 		pdn->phb->global_number, pdn->busno,
943 		PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
944 }
945 
946 static int pnv_eeh_do_flr(struct pci_dn *pdn, int option)
947 {
948 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
949 	u32 reg = 0;
950 
951 	if (WARN_ON(!edev->pcie_cap))
952 		return -ENOTTY;
953 
954 	eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP, 4, &reg);
955 	if (!(reg & PCI_EXP_DEVCAP_FLR))
956 		return -ENOTTY;
957 
958 	switch (option) {
959 	case EEH_RESET_HOT:
960 	case EEH_RESET_FUNDAMENTAL:
961 		pnv_eeh_wait_for_pending(pdn, "",
962 					 edev->pcie_cap + PCI_EXP_DEVSTA,
963 					 PCI_EXP_DEVSTA_TRPND);
964 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
965 				     4, &reg);
966 		reg |= PCI_EXP_DEVCTL_BCR_FLR;
967 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
968 				      4, reg);
969 		msleep(EEH_PE_RST_HOLD_TIME);
970 		break;
971 	case EEH_RESET_DEACTIVATE:
972 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
973 				     4, &reg);
974 		reg &= ~PCI_EXP_DEVCTL_BCR_FLR;
975 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
976 				      4, reg);
977 		msleep(EEH_PE_RST_SETTLE_TIME);
978 		break;
979 	}
980 
981 	return 0;
982 }
983 
984 static int pnv_eeh_do_af_flr(struct pci_dn *pdn, int option)
985 {
986 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
987 	u32 cap = 0;
988 
989 	if (WARN_ON(!edev->af_cap))
990 		return -ENOTTY;
991 
992 	eeh_ops->read_config(pdn, edev->af_cap + PCI_AF_CAP, 1, &cap);
993 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
994 		return -ENOTTY;
995 
996 	switch (option) {
997 	case EEH_RESET_HOT:
998 	case EEH_RESET_FUNDAMENTAL:
999 		/*
1000 		 * Wait for Transaction Pending bit to clear. A word-aligned
1001 		 * test is used, so we use the conrol offset rather than status
1002 		 * and shift the test bit to match.
1003 		 */
1004 		pnv_eeh_wait_for_pending(pdn, "AF",
1005 					 edev->af_cap + PCI_AF_CTRL,
1006 					 PCI_AF_STATUS_TP << 8);
1007 		eeh_ops->write_config(pdn, edev->af_cap + PCI_AF_CTRL,
1008 				      1, PCI_AF_CTRL_FLR);
1009 		msleep(EEH_PE_RST_HOLD_TIME);
1010 		break;
1011 	case EEH_RESET_DEACTIVATE:
1012 		eeh_ops->write_config(pdn, edev->af_cap + PCI_AF_CTRL, 1, 0);
1013 		msleep(EEH_PE_RST_SETTLE_TIME);
1014 		break;
1015 	}
1016 
1017 	return 0;
1018 }
1019 
1020 static int pnv_eeh_reset_vf_pe(struct eeh_pe *pe, int option)
1021 {
1022 	struct eeh_dev *edev;
1023 	struct pci_dn *pdn;
1024 	int ret;
1025 
1026 	/* The VF PE should have only one child device */
1027 	edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, list);
1028 	pdn = eeh_dev_to_pdn(edev);
1029 	if (!pdn)
1030 		return -ENXIO;
1031 
1032 	ret = pnv_eeh_do_flr(pdn, option);
1033 	if (!ret)
1034 		return ret;
1035 
1036 	return pnv_eeh_do_af_flr(pdn, option);
1037 }
1038 
1039 /**
1040  * pnv_eeh_reset - Reset the specified PE
1041  * @pe: EEH PE
1042  * @option: reset option
1043  *
1044  * Do reset on the indicated PE. For PCI bus sensitive PE,
1045  * we need to reset the parent p2p bridge. The PHB has to
1046  * be reinitialized if the p2p bridge is root bridge. For
1047  * PCI device sensitive PE, we will try to reset the device
1048  * through FLR. For now, we don't have OPAL APIs to do HARD
1049  * reset yet, so all reset would be SOFT (HOT) reset.
1050  */
1051 static int pnv_eeh_reset(struct eeh_pe *pe, int option)
1052 {
1053 	struct pci_controller *hose = pe->phb;
1054 	struct pnv_phb *phb;
1055 	struct pci_bus *bus;
1056 	int64_t rc;
1057 
1058 	/*
1059 	 * For PHB reset, we always have complete reset. For those PEs whose
1060 	 * primary bus derived from root complex (root bus) or root port
1061 	 * (usually bus#1), we apply hot or fundamental reset on the root port.
1062 	 * For other PEs, we always have hot reset on the PE primary bus.
1063 	 *
1064 	 * Here, we have different design to pHyp, which always clear the
1065 	 * frozen state during PE reset. However, the good idea here from
1066 	 * benh is to keep frozen state before we get PE reset done completely
1067 	 * (until BAR restore). With the frozen state, HW drops illegal IO
1068 	 * or MMIO access, which can incur recrusive frozen PE during PE
1069 	 * reset. The side effect is that EEH core has to clear the frozen
1070 	 * state explicitly after BAR restore.
1071 	 */
1072 	if (pe->type & EEH_PE_PHB)
1073 		return pnv_eeh_phb_reset(hose, option);
1074 
1075 	/*
1076 	 * The frozen PE might be caused by PAPR error injection
1077 	 * registers, which are expected to be cleared after hitting
1078 	 * frozen PE as stated in the hardware spec. Unfortunately,
1079 	 * that's not true on P7IOC. So we have to clear it manually
1080 	 * to avoid recursive EEH errors during recovery.
1081 	 */
1082 	phb = hose->private_data;
1083 	if (phb->model == PNV_PHB_MODEL_P7IOC &&
1084 	    (option == EEH_RESET_HOT ||
1085 	     option == EEH_RESET_FUNDAMENTAL)) {
1086 		rc = opal_pci_reset(phb->opal_id,
1087 				    OPAL_RESET_PHB_ERROR,
1088 				    OPAL_ASSERT_RESET);
1089 		if (rc != OPAL_SUCCESS) {
1090 			pr_warn("%s: Failure %lld clearing error injection registers\n",
1091 				__func__, rc);
1092 			return -EIO;
1093 		}
1094 	}
1095 
1096 	if (pe->type & EEH_PE_VF)
1097 		return pnv_eeh_reset_vf_pe(pe, option);
1098 
1099 	bus = eeh_pe_bus_get(pe);
1100 	if (!bus) {
1101 		pr_err("%s: Cannot find PCI bus for PHB#%x-PE#%x\n",
1102 			__func__, pe->phb->global_number, pe->addr);
1103 		return -EIO;
1104 	}
1105 
1106 	/*
1107 	 * If dealing with the root bus (or the bus underneath the
1108 	 * root port), we reset the bus underneath the root port.
1109 	 *
1110 	 * The cxl driver depends on this behaviour for bi-modal card
1111 	 * switching.
1112 	 */
1113 	if (pci_is_root_bus(bus) ||
1114 	    pci_is_root_bus(bus->parent))
1115 		return pnv_eeh_root_reset(hose, option);
1116 
1117 	return pnv_eeh_bridge_reset(bus->self, option);
1118 }
1119 
1120 /**
1121  * pnv_eeh_wait_state - Wait for PE state
1122  * @pe: EEH PE
1123  * @max_wait: maximal period in millisecond
1124  *
1125  * Wait for the state of associated PE. It might take some time
1126  * to retrieve the PE's state.
1127  */
1128 static int pnv_eeh_wait_state(struct eeh_pe *pe, int max_wait)
1129 {
1130 	int ret;
1131 	int mwait;
1132 
1133 	while (1) {
1134 		ret = pnv_eeh_get_state(pe, &mwait);
1135 
1136 		/*
1137 		 * If the PE's state is temporarily unavailable,
1138 		 * we have to wait for the specified time. Otherwise,
1139 		 * the PE's state will be returned immediately.
1140 		 */
1141 		if (ret != EEH_STATE_UNAVAILABLE)
1142 			return ret;
1143 
1144 		if (max_wait <= 0) {
1145 			pr_warn("%s: Timeout getting PE#%x's state (%d)\n",
1146 				__func__, pe->addr, max_wait);
1147 			return EEH_STATE_NOT_SUPPORT;
1148 		}
1149 
1150 		max_wait -= mwait;
1151 		msleep(mwait);
1152 	}
1153 
1154 	return EEH_STATE_NOT_SUPPORT;
1155 }
1156 
1157 /**
1158  * pnv_eeh_get_log - Retrieve error log
1159  * @pe: EEH PE
1160  * @severity: temporary or permanent error log
1161  * @drv_log: driver log to be combined with retrieved error log
1162  * @len: length of driver log
1163  *
1164  * Retrieve the temporary or permanent error from the PE.
1165  */
1166 static int pnv_eeh_get_log(struct eeh_pe *pe, int severity,
1167 			   char *drv_log, unsigned long len)
1168 {
1169 	if (!eeh_has_flag(EEH_EARLY_DUMP_LOG))
1170 		pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
1171 
1172 	return 0;
1173 }
1174 
1175 /**
1176  * pnv_eeh_configure_bridge - Configure PCI bridges in the indicated PE
1177  * @pe: EEH PE
1178  *
1179  * The function will be called to reconfigure the bridges included
1180  * in the specified PE so that the mulfunctional PE would be recovered
1181  * again.
1182  */
1183 static int pnv_eeh_configure_bridge(struct eeh_pe *pe)
1184 {
1185 	return 0;
1186 }
1187 
1188 /**
1189  * pnv_pe_err_inject - Inject specified error to the indicated PE
1190  * @pe: the indicated PE
1191  * @type: error type
1192  * @func: specific error type
1193  * @addr: address
1194  * @mask: address mask
1195  *
1196  * The routine is called to inject specified error, which is
1197  * determined by @type and @func, to the indicated PE for
1198  * testing purpose.
1199  */
1200 static int pnv_eeh_err_inject(struct eeh_pe *pe, int type, int func,
1201 			      unsigned long addr, unsigned long mask)
1202 {
1203 	struct pci_controller *hose = pe->phb;
1204 	struct pnv_phb *phb = hose->private_data;
1205 	s64 rc;
1206 
1207 	if (type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR &&
1208 	    type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64) {
1209 		pr_warn("%s: Invalid error type %d\n",
1210 			__func__, type);
1211 		return -ERANGE;
1212 	}
1213 
1214 	if (func < OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_ADDR ||
1215 	    func > OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_TARGET) {
1216 		pr_warn("%s: Invalid error function %d\n",
1217 			__func__, func);
1218 		return -ERANGE;
1219 	}
1220 
1221 	/* Firmware supports error injection ? */
1222 	if (!opal_check_token(OPAL_PCI_ERR_INJECT)) {
1223 		pr_warn("%s: Firmware doesn't support error injection\n",
1224 			__func__);
1225 		return -ENXIO;
1226 	}
1227 
1228 	/* Do error injection */
1229 	rc = opal_pci_err_inject(phb->opal_id, pe->addr,
1230 				 type, func, addr, mask);
1231 	if (rc != OPAL_SUCCESS) {
1232 		pr_warn("%s: Failure %lld injecting error "
1233 			"%d-%d to PHB#%x-PE#%x\n",
1234 			__func__, rc, type, func,
1235 			hose->global_number, pe->addr);
1236 		return -EIO;
1237 	}
1238 
1239 	return 0;
1240 }
1241 
1242 static inline bool pnv_eeh_cfg_blocked(struct pci_dn *pdn)
1243 {
1244 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1245 
1246 	if (!edev || !edev->pe)
1247 		return false;
1248 
1249 	/*
1250 	 * We will issue FLR or AF FLR to all VFs, which are contained
1251 	 * in VF PE. It relies on the EEH PCI config accessors. So we
1252 	 * can't block them during the window.
1253 	 */
1254 	if (edev->physfn && (edev->pe->state & EEH_PE_RESET))
1255 		return false;
1256 
1257 	if (edev->pe->state & EEH_PE_CFG_BLOCKED)
1258 		return true;
1259 
1260 	return false;
1261 }
1262 
1263 static int pnv_eeh_read_config(struct pci_dn *pdn,
1264 			       int where, int size, u32 *val)
1265 {
1266 	if (!pdn)
1267 		return PCIBIOS_DEVICE_NOT_FOUND;
1268 
1269 	if (pnv_eeh_cfg_blocked(pdn)) {
1270 		*val = 0xFFFFFFFF;
1271 		return PCIBIOS_SET_FAILED;
1272 	}
1273 
1274 	return pnv_pci_cfg_read(pdn, where, size, val);
1275 }
1276 
1277 static int pnv_eeh_write_config(struct pci_dn *pdn,
1278 				int where, int size, u32 val)
1279 {
1280 	if (!pdn)
1281 		return PCIBIOS_DEVICE_NOT_FOUND;
1282 
1283 	if (pnv_eeh_cfg_blocked(pdn))
1284 		return PCIBIOS_SET_FAILED;
1285 
1286 	return pnv_pci_cfg_write(pdn, where, size, val);
1287 }
1288 
1289 static void pnv_eeh_dump_hub_diag_common(struct OpalIoP7IOCErrorData *data)
1290 {
1291 	/* GEM */
1292 	if (data->gemXfir || data->gemRfir ||
1293 	    data->gemRirqfir || data->gemMask || data->gemRwof)
1294 		pr_info("  GEM: %016llx %016llx %016llx %016llx %016llx\n",
1295 			be64_to_cpu(data->gemXfir),
1296 			be64_to_cpu(data->gemRfir),
1297 			be64_to_cpu(data->gemRirqfir),
1298 			be64_to_cpu(data->gemMask),
1299 			be64_to_cpu(data->gemRwof));
1300 
1301 	/* LEM */
1302 	if (data->lemFir || data->lemErrMask ||
1303 	    data->lemAction0 || data->lemAction1 || data->lemWof)
1304 		pr_info("  LEM: %016llx %016llx %016llx %016llx %016llx\n",
1305 			be64_to_cpu(data->lemFir),
1306 			be64_to_cpu(data->lemErrMask),
1307 			be64_to_cpu(data->lemAction0),
1308 			be64_to_cpu(data->lemAction1),
1309 			be64_to_cpu(data->lemWof));
1310 }
1311 
1312 static void pnv_eeh_get_and_dump_hub_diag(struct pci_controller *hose)
1313 {
1314 	struct pnv_phb *phb = hose->private_data;
1315 	struct OpalIoP7IOCErrorData *data =
1316 		(struct OpalIoP7IOCErrorData*)phb->diag_data;
1317 	long rc;
1318 
1319 	rc = opal_pci_get_hub_diag_data(phb->hub_id, data, sizeof(*data));
1320 	if (rc != OPAL_SUCCESS) {
1321 		pr_warn("%s: Failed to get HUB#%llx diag-data (%ld)\n",
1322 			__func__, phb->hub_id, rc);
1323 		return;
1324 	}
1325 
1326 	switch (be16_to_cpu(data->type)) {
1327 	case OPAL_P7IOC_DIAG_TYPE_RGC:
1328 		pr_info("P7IOC diag-data for RGC\n\n");
1329 		pnv_eeh_dump_hub_diag_common(data);
1330 		if (data->rgc.rgcStatus || data->rgc.rgcLdcp)
1331 			pr_info("  RGC: %016llx %016llx\n",
1332 				be64_to_cpu(data->rgc.rgcStatus),
1333 				be64_to_cpu(data->rgc.rgcLdcp));
1334 		break;
1335 	case OPAL_P7IOC_DIAG_TYPE_BI:
1336 		pr_info("P7IOC diag-data for BI %s\n\n",
1337 			data->bi.biDownbound ? "Downbound" : "Upbound");
1338 		pnv_eeh_dump_hub_diag_common(data);
1339 		if (data->bi.biLdcp0 || data->bi.biLdcp1 ||
1340 		    data->bi.biLdcp2 || data->bi.biFenceStatus)
1341 			pr_info("  BI:  %016llx %016llx %016llx %016llx\n",
1342 				be64_to_cpu(data->bi.biLdcp0),
1343 				be64_to_cpu(data->bi.biLdcp1),
1344 				be64_to_cpu(data->bi.biLdcp2),
1345 				be64_to_cpu(data->bi.biFenceStatus));
1346 		break;
1347 	case OPAL_P7IOC_DIAG_TYPE_CI:
1348 		pr_info("P7IOC diag-data for CI Port %d\n\n",
1349 			data->ci.ciPort);
1350 		pnv_eeh_dump_hub_diag_common(data);
1351 		if (data->ci.ciPortStatus || data->ci.ciPortLdcp)
1352 			pr_info("  CI:  %016llx %016llx\n",
1353 				be64_to_cpu(data->ci.ciPortStatus),
1354 				be64_to_cpu(data->ci.ciPortLdcp));
1355 		break;
1356 	case OPAL_P7IOC_DIAG_TYPE_MISC:
1357 		pr_info("P7IOC diag-data for MISC\n\n");
1358 		pnv_eeh_dump_hub_diag_common(data);
1359 		break;
1360 	case OPAL_P7IOC_DIAG_TYPE_I2C:
1361 		pr_info("P7IOC diag-data for I2C\n\n");
1362 		pnv_eeh_dump_hub_diag_common(data);
1363 		break;
1364 	default:
1365 		pr_warn("%s: Invalid type of HUB#%llx diag-data (%d)\n",
1366 			__func__, phb->hub_id, data->type);
1367 	}
1368 }
1369 
1370 static int pnv_eeh_get_pe(struct pci_controller *hose,
1371 			  u16 pe_no, struct eeh_pe **pe)
1372 {
1373 	struct pnv_phb *phb = hose->private_data;
1374 	struct pnv_ioda_pe *pnv_pe;
1375 	struct eeh_pe *dev_pe;
1376 
1377 	/*
1378 	 * If PHB supports compound PE, to fetch
1379 	 * the master PE because slave PE is invisible
1380 	 * to EEH core.
1381 	 */
1382 	pnv_pe = &phb->ioda.pe_array[pe_no];
1383 	if (pnv_pe->flags & PNV_IODA_PE_SLAVE) {
1384 		pnv_pe = pnv_pe->master;
1385 		WARN_ON(!pnv_pe ||
1386 			!(pnv_pe->flags & PNV_IODA_PE_MASTER));
1387 		pe_no = pnv_pe->pe_number;
1388 	}
1389 
1390 	/* Find the PE according to PE# */
1391 	dev_pe = eeh_pe_get(hose, pe_no, 0);
1392 	if (!dev_pe)
1393 		return -EEXIST;
1394 
1395 	/* Freeze the (compound) PE */
1396 	*pe = dev_pe;
1397 	if (!(dev_pe->state & EEH_PE_ISOLATED))
1398 		phb->freeze_pe(phb, pe_no);
1399 
1400 	/*
1401 	 * At this point, we're sure the (compound) PE should
1402 	 * have been frozen. However, we still need poke until
1403 	 * hitting the frozen PE on top level.
1404 	 */
1405 	dev_pe = dev_pe->parent;
1406 	while (dev_pe && !(dev_pe->type & EEH_PE_PHB)) {
1407 		int ret;
1408 		int active_flags = (EEH_STATE_MMIO_ACTIVE |
1409 				    EEH_STATE_DMA_ACTIVE);
1410 
1411 		ret = eeh_ops->get_state(dev_pe, NULL);
1412 		if (ret <= 0 || (ret & active_flags) == active_flags) {
1413 			dev_pe = dev_pe->parent;
1414 			continue;
1415 		}
1416 
1417 		/* Frozen parent PE */
1418 		*pe = dev_pe;
1419 		if (!(dev_pe->state & EEH_PE_ISOLATED))
1420 			phb->freeze_pe(phb, dev_pe->addr);
1421 
1422 		/* Next one */
1423 		dev_pe = dev_pe->parent;
1424 	}
1425 
1426 	return 0;
1427 }
1428 
1429 /**
1430  * pnv_eeh_next_error - Retrieve next EEH error to handle
1431  * @pe: Affected PE
1432  *
1433  * The function is expected to be called by EEH core while it gets
1434  * special EEH event (without binding PE). The function calls to
1435  * OPAL APIs for next error to handle. The informational error is
1436  * handled internally by platform. However, the dead IOC, dead PHB,
1437  * fenced PHB and frozen PE should be handled by EEH core eventually.
1438  */
1439 static int pnv_eeh_next_error(struct eeh_pe **pe)
1440 {
1441 	struct pci_controller *hose;
1442 	struct pnv_phb *phb;
1443 	struct eeh_pe *phb_pe, *parent_pe;
1444 	__be64 frozen_pe_no;
1445 	__be16 err_type, severity;
1446 	int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
1447 	long rc;
1448 	int state, ret = EEH_NEXT_ERR_NONE;
1449 
1450 	/*
1451 	 * While running here, it's safe to purge the event queue. The
1452 	 * event should still be masked.
1453 	 */
1454 	eeh_remove_event(NULL, false);
1455 
1456 	list_for_each_entry(hose, &hose_list, list_node) {
1457 		/*
1458 		 * If the subordinate PCI buses of the PHB has been
1459 		 * removed or is exactly under error recovery, we
1460 		 * needn't take care of it any more.
1461 		 */
1462 		phb = hose->private_data;
1463 		phb_pe = eeh_phb_pe_get(hose);
1464 		if (!phb_pe || (phb_pe->state & EEH_PE_ISOLATED))
1465 			continue;
1466 
1467 		rc = opal_pci_next_error(phb->opal_id,
1468 					 &frozen_pe_no, &err_type, &severity);
1469 		if (rc != OPAL_SUCCESS) {
1470 			pr_devel("%s: Invalid return value on "
1471 				 "PHB#%x (0x%lx) from opal_pci_next_error",
1472 				 __func__, hose->global_number, rc);
1473 			continue;
1474 		}
1475 
1476 		/* If the PHB doesn't have error, stop processing */
1477 		if (be16_to_cpu(err_type) == OPAL_EEH_NO_ERROR ||
1478 		    be16_to_cpu(severity) == OPAL_EEH_SEV_NO_ERROR) {
1479 			pr_devel("%s: No error found on PHB#%x\n",
1480 				 __func__, hose->global_number);
1481 			continue;
1482 		}
1483 
1484 		/*
1485 		 * Processing the error. We're expecting the error with
1486 		 * highest priority reported upon multiple errors on the
1487 		 * specific PHB.
1488 		 */
1489 		pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n",
1490 			__func__, be16_to_cpu(err_type),
1491 			be16_to_cpu(severity), be64_to_cpu(frozen_pe_no),
1492 			hose->global_number);
1493 		switch (be16_to_cpu(err_type)) {
1494 		case OPAL_EEH_IOC_ERROR:
1495 			if (be16_to_cpu(severity) == OPAL_EEH_SEV_IOC_DEAD) {
1496 				pr_err("EEH: dead IOC detected\n");
1497 				ret = EEH_NEXT_ERR_DEAD_IOC;
1498 			} else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
1499 				pr_info("EEH: IOC informative error "
1500 					"detected\n");
1501 				pnv_eeh_get_and_dump_hub_diag(hose);
1502 				ret = EEH_NEXT_ERR_NONE;
1503 			}
1504 
1505 			break;
1506 		case OPAL_EEH_PHB_ERROR:
1507 			if (be16_to_cpu(severity) == OPAL_EEH_SEV_PHB_DEAD) {
1508 				*pe = phb_pe;
1509 				pr_err("EEH: dead PHB#%x detected, "
1510 				       "location: %s\n",
1511 					hose->global_number,
1512 					eeh_pe_loc_get(phb_pe));
1513 				ret = EEH_NEXT_ERR_DEAD_PHB;
1514 			} else if (be16_to_cpu(severity) ==
1515 				   OPAL_EEH_SEV_PHB_FENCED) {
1516 				*pe = phb_pe;
1517 				pr_err("EEH: Fenced PHB#%x detected, "
1518 				       "location: %s\n",
1519 					hose->global_number,
1520 					eeh_pe_loc_get(phb_pe));
1521 				ret = EEH_NEXT_ERR_FENCED_PHB;
1522 			} else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
1523 				pr_info("EEH: PHB#%x informative error "
1524 					"detected, location: %s\n",
1525 					hose->global_number,
1526 					eeh_pe_loc_get(phb_pe));
1527 				pnv_eeh_get_phb_diag(phb_pe);
1528 				pnv_pci_dump_phb_diag_data(hose, phb_pe->data);
1529 				ret = EEH_NEXT_ERR_NONE;
1530 			}
1531 
1532 			break;
1533 		case OPAL_EEH_PE_ERROR:
1534 			/*
1535 			 * If we can't find the corresponding PE, we
1536 			 * just try to unfreeze.
1537 			 */
1538 			if (pnv_eeh_get_pe(hose,
1539 				be64_to_cpu(frozen_pe_no), pe)) {
1540 				pr_info("EEH: Clear non-existing PHB#%x-PE#%llx\n",
1541 					hose->global_number, be64_to_cpu(frozen_pe_no));
1542 				pr_info("EEH: PHB location: %s\n",
1543 					eeh_pe_loc_get(phb_pe));
1544 
1545 				/* Dump PHB diag-data */
1546 				rc = opal_pci_get_phb_diag_data2(phb->opal_id,
1547 					phb->diag_data, phb->diag_data_size);
1548 				if (rc == OPAL_SUCCESS)
1549 					pnv_pci_dump_phb_diag_data(hose,
1550 							phb->diag_data);
1551 
1552 				/* Try best to clear it */
1553 				opal_pci_eeh_freeze_clear(phb->opal_id,
1554 					be64_to_cpu(frozen_pe_no),
1555 					OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
1556 				ret = EEH_NEXT_ERR_NONE;
1557 			} else if ((*pe)->state & EEH_PE_ISOLATED ||
1558 				   eeh_pe_passed(*pe)) {
1559 				ret = EEH_NEXT_ERR_NONE;
1560 			} else {
1561 				pr_err("EEH: Frozen PE#%x "
1562 				       "on PHB#%x detected\n",
1563 				       (*pe)->addr,
1564 					(*pe)->phb->global_number);
1565 				pr_err("EEH: PE location: %s, "
1566 				       "PHB location: %s\n",
1567 				       eeh_pe_loc_get(*pe),
1568 				       eeh_pe_loc_get(phb_pe));
1569 				ret = EEH_NEXT_ERR_FROZEN_PE;
1570 			}
1571 
1572 			break;
1573 		default:
1574 			pr_warn("%s: Unexpected error type %d\n",
1575 				__func__, be16_to_cpu(err_type));
1576 		}
1577 
1578 		/*
1579 		 * EEH core will try recover from fenced PHB or
1580 		 * frozen PE. In the time for frozen PE, EEH core
1581 		 * enable IO path for that before collecting logs,
1582 		 * but it ruins the site. So we have to dump the
1583 		 * log in advance here.
1584 		 */
1585 		if ((ret == EEH_NEXT_ERR_FROZEN_PE  ||
1586 		    ret == EEH_NEXT_ERR_FENCED_PHB) &&
1587 		    !((*pe)->state & EEH_PE_ISOLATED)) {
1588 			eeh_pe_state_mark(*pe, EEH_PE_ISOLATED);
1589 			pnv_eeh_get_phb_diag(*pe);
1590 
1591 			if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
1592 				pnv_pci_dump_phb_diag_data((*pe)->phb,
1593 							   (*pe)->data);
1594 		}
1595 
1596 		/*
1597 		 * We probably have the frozen parent PE out there and
1598 		 * we need have to handle frozen parent PE firstly.
1599 		 */
1600 		if (ret == EEH_NEXT_ERR_FROZEN_PE) {
1601 			parent_pe = (*pe)->parent;
1602 			while (parent_pe) {
1603 				/* Hit the ceiling ? */
1604 				if (parent_pe->type & EEH_PE_PHB)
1605 					break;
1606 
1607 				/* Frozen parent PE ? */
1608 				state = eeh_ops->get_state(parent_pe, NULL);
1609 				if (state > 0 &&
1610 				    (state & active_flags) != active_flags)
1611 					*pe = parent_pe;
1612 
1613 				/* Next parent level */
1614 				parent_pe = parent_pe->parent;
1615 			}
1616 
1617 			/* We possibly migrate to another PE */
1618 			eeh_pe_state_mark(*pe, EEH_PE_ISOLATED);
1619 		}
1620 
1621 		/*
1622 		 * If we have no errors on the specific PHB or only
1623 		 * informative error there, we continue poking it.
1624 		 * Otherwise, we need actions to be taken by upper
1625 		 * layer.
1626 		 */
1627 		if (ret > EEH_NEXT_ERR_INF)
1628 			break;
1629 	}
1630 
1631 	/* Unmask the event */
1632 	if (ret == EEH_NEXT_ERR_NONE && eeh_enabled())
1633 		enable_irq(eeh_event_irq);
1634 
1635 	return ret;
1636 }
1637 
1638 static int pnv_eeh_restore_vf_config(struct pci_dn *pdn)
1639 {
1640 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1641 	u32 devctl, cmd, cap2, aer_capctl;
1642 	int old_mps;
1643 
1644 	if (edev->pcie_cap) {
1645 		/* Restore MPS */
1646 		old_mps = (ffs(pdn->mps) - 8) << 5;
1647 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
1648 				     2, &devctl);
1649 		devctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
1650 		devctl |= old_mps;
1651 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
1652 				      2, devctl);
1653 
1654 		/* Disable Completion Timeout */
1655 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP2,
1656 				     4, &cap2);
1657 		if (cap2 & 0x10) {
1658 			eeh_ops->read_config(pdn,
1659 					     edev->pcie_cap + PCI_EXP_DEVCTL2,
1660 					     4, &cap2);
1661 			cap2 |= 0x10;
1662 			eeh_ops->write_config(pdn,
1663 					      edev->pcie_cap + PCI_EXP_DEVCTL2,
1664 					      4, cap2);
1665 		}
1666 	}
1667 
1668 	/* Enable SERR and parity checking */
1669 	eeh_ops->read_config(pdn, PCI_COMMAND, 2, &cmd);
1670 	cmd |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR);
1671 	eeh_ops->write_config(pdn, PCI_COMMAND, 2, cmd);
1672 
1673 	/* Enable report various errors */
1674 	if (edev->pcie_cap) {
1675 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
1676 				     2, &devctl);
1677 		devctl &= ~PCI_EXP_DEVCTL_CERE;
1678 		devctl |= (PCI_EXP_DEVCTL_NFERE |
1679 			   PCI_EXP_DEVCTL_FERE |
1680 			   PCI_EXP_DEVCTL_URRE);
1681 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
1682 				      2, devctl);
1683 	}
1684 
1685 	/* Enable ECRC generation and check */
1686 	if (edev->pcie_cap && edev->aer_cap) {
1687 		eeh_ops->read_config(pdn, edev->aer_cap + PCI_ERR_CAP,
1688 				     4, &aer_capctl);
1689 		aer_capctl |= (PCI_ERR_CAP_ECRC_GENE | PCI_ERR_CAP_ECRC_CHKE);
1690 		eeh_ops->write_config(pdn, edev->aer_cap + PCI_ERR_CAP,
1691 				      4, aer_capctl);
1692 	}
1693 
1694 	return 0;
1695 }
1696 
1697 static int pnv_eeh_restore_config(struct pci_dn *pdn)
1698 {
1699 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1700 	struct pnv_phb *phb;
1701 	s64 ret;
1702 	int config_addr = (pdn->busno << 8) | (pdn->devfn);
1703 
1704 	if (!edev)
1705 		return -EEXIST;
1706 
1707 	/*
1708 	 * We have to restore the PCI config space after reset since the
1709 	 * firmware can't see SRIOV VFs.
1710 	 *
1711 	 * FIXME: The MPS, error routing rules, timeout setting are worthy
1712 	 * to be exported by firmware in extendible way.
1713 	 */
1714 	if (edev->physfn) {
1715 		ret = pnv_eeh_restore_vf_config(pdn);
1716 	} else {
1717 		phb = pdn->phb->private_data;
1718 		ret = opal_pci_reinit(phb->opal_id,
1719 				      OPAL_REINIT_PCI_DEV, config_addr);
1720 	}
1721 
1722 	if (ret) {
1723 		pr_warn("%s: Can't reinit PCI dev 0x%x (%lld)\n",
1724 			__func__, config_addr, ret);
1725 		return -EIO;
1726 	}
1727 
1728 	return 0;
1729 }
1730 
1731 static struct eeh_ops pnv_eeh_ops = {
1732 	.name                   = "powernv",
1733 	.init                   = pnv_eeh_init,
1734 	.post_init              = pnv_eeh_post_init,
1735 	.probe			= pnv_eeh_probe,
1736 	.set_option             = pnv_eeh_set_option,
1737 	.get_pe_addr            = pnv_eeh_get_pe_addr,
1738 	.get_state              = pnv_eeh_get_state,
1739 	.reset                  = pnv_eeh_reset,
1740 	.wait_state             = pnv_eeh_wait_state,
1741 	.get_log                = pnv_eeh_get_log,
1742 	.configure_bridge       = pnv_eeh_configure_bridge,
1743 	.err_inject		= pnv_eeh_err_inject,
1744 	.read_config            = pnv_eeh_read_config,
1745 	.write_config           = pnv_eeh_write_config,
1746 	.next_error		= pnv_eeh_next_error,
1747 	.restore_config		= pnv_eeh_restore_config
1748 };
1749 
1750 void pcibios_bus_add_device(struct pci_dev *pdev)
1751 {
1752 	struct pci_dn *pdn = pci_get_pdn(pdev);
1753 
1754 	if (!pdev->is_virtfn)
1755 		return;
1756 
1757 	/*
1758 	 * The following operations will fail if VF's sysfs files
1759 	 * aren't created or its resources aren't finalized.
1760 	 */
1761 	eeh_add_device_early(pdn);
1762 	eeh_add_device_late(pdev);
1763 	eeh_sysfs_add_device(pdev);
1764 }
1765 
1766 #ifdef CONFIG_PCI_IOV
1767 static void pnv_pci_fixup_vf_mps(struct pci_dev *pdev)
1768 {
1769 	struct pci_dn *pdn = pci_get_pdn(pdev);
1770 	int parent_mps;
1771 
1772 	if (!pdev->is_virtfn)
1773 		return;
1774 
1775 	/* Synchronize MPS for VF and PF */
1776 	parent_mps = pcie_get_mps(pdev->physfn);
1777 	if ((128 << pdev->pcie_mpss) >= parent_mps)
1778 		pcie_set_mps(pdev, parent_mps);
1779 	pdn->mps = pcie_get_mps(pdev);
1780 }
1781 DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pnv_pci_fixup_vf_mps);
1782 #endif /* CONFIG_PCI_IOV */
1783 
1784 /**
1785  * eeh_powernv_init - Register platform dependent EEH operations
1786  *
1787  * EEH initialization on powernv platform. This function should be
1788  * called before any EEH related functions.
1789  */
1790 static int __init eeh_powernv_init(void)
1791 {
1792 	int ret = -EINVAL;
1793 
1794 	ret = eeh_ops_register(&pnv_eeh_ops);
1795 	if (!ret)
1796 		pr_info("EEH: PowerNV platform initialized\n");
1797 	else
1798 		pr_info("EEH: Failed to initialize PowerNV platform (%d)\n", ret);
1799 
1800 	return ret;
1801 }
1802 machine_early_initcall(powernv, eeh_powernv_init);
1803