1 /*
2  * The file intends to implement the platform dependent EEH operations on
3  * powernv platform. Actually, the powernv was created in order to fully
4  * hypervisor support.
5  *
6  * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/atomic.h>
15 #include <linux/debugfs.h>
16 #include <linux/delay.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/list.h>
21 #include <linux/msi.h>
22 #include <linux/of.h>
23 #include <linux/pci.h>
24 #include <linux/proc_fs.h>
25 #include <linux/rbtree.h>
26 #include <linux/sched.h>
27 #include <linux/seq_file.h>
28 #include <linux/spinlock.h>
29 
30 #include <asm/eeh.h>
31 #include <asm/eeh_event.h>
32 #include <asm/firmware.h>
33 #include <asm/io.h>
34 #include <asm/iommu.h>
35 #include <asm/machdep.h>
36 #include <asm/msi_bitmap.h>
37 #include <asm/opal.h>
38 #include <asm/ppc-pci.h>
39 
40 #include "powernv.h"
41 #include "pci.h"
42 
43 static bool pnv_eeh_nb_init = false;
44 static int eeh_event_irq = -EINVAL;
45 
46 static int pnv_eeh_init(void)
47 {
48 	struct pci_controller *hose;
49 	struct pnv_phb *phb;
50 
51 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
52 		pr_warn("%s: OPAL is required !\n",
53 			__func__);
54 		return -EINVAL;
55 	}
56 
57 	/* Set probe mode */
58 	eeh_add_flag(EEH_PROBE_MODE_DEV);
59 
60 	/*
61 	 * P7IOC blocks PCI config access to frozen PE, but PHB3
62 	 * doesn't do that. So we have to selectively enable I/O
63 	 * prior to collecting error log.
64 	 */
65 	list_for_each_entry(hose, &hose_list, list_node) {
66 		phb = hose->private_data;
67 
68 		if (phb->model == PNV_PHB_MODEL_P7IOC)
69 			eeh_add_flag(EEH_ENABLE_IO_FOR_LOG);
70 
71 		/*
72 		 * PE#0 should be regarded as valid by EEH core
73 		 * if it's not the reserved one. Currently, we
74 		 * have the reserved PE#255 and PE#127 for PHB3
75 		 * and P7IOC separately. So we should regard
76 		 * PE#0 as valid for PHB3 and P7IOC.
77 		 */
78 		if (phb->ioda.reserved_pe_idx != 0)
79 			eeh_add_flag(EEH_VALID_PE_ZERO);
80 
81 		break;
82 	}
83 
84 	return 0;
85 }
86 
87 static irqreturn_t pnv_eeh_event(int irq, void *data)
88 {
89 	/*
90 	 * We simply send a special EEH event if EEH has been
91 	 * enabled. We don't care about EEH events until we've
92 	 * finished processing the outstanding ones. Event processing
93 	 * gets unmasked in next_error() if EEH is enabled.
94 	 */
95 	disable_irq_nosync(irq);
96 
97 	if (eeh_enabled())
98 		eeh_send_failure_event(NULL);
99 
100 	return IRQ_HANDLED;
101 }
102 
103 #ifdef CONFIG_DEBUG_FS
104 static ssize_t pnv_eeh_ei_write(struct file *filp,
105 				const char __user *user_buf,
106 				size_t count, loff_t *ppos)
107 {
108 	struct pci_controller *hose = filp->private_data;
109 	struct eeh_dev *edev;
110 	struct eeh_pe *pe;
111 	int pe_no, type, func;
112 	unsigned long addr, mask;
113 	char buf[50];
114 	int ret;
115 
116 	if (!eeh_ops || !eeh_ops->err_inject)
117 		return -ENXIO;
118 
119 	/* Copy over argument buffer */
120 	ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
121 	if (!ret)
122 		return -EFAULT;
123 
124 	/* Retrieve parameters */
125 	ret = sscanf(buf, "%x:%x:%x:%lx:%lx",
126 		     &pe_no, &type, &func, &addr, &mask);
127 	if (ret != 5)
128 		return -EINVAL;
129 
130 	/* Retrieve PE */
131 	edev = kzalloc(sizeof(*edev), GFP_KERNEL);
132 	if (!edev)
133 		return -ENOMEM;
134 	edev->phb = hose;
135 	edev->pe_config_addr = pe_no;
136 	pe = eeh_pe_get(edev);
137 	kfree(edev);
138 	if (!pe)
139 		return -ENODEV;
140 
141 	/* Do error injection */
142 	ret = eeh_ops->err_inject(pe, type, func, addr, mask);
143 	return ret < 0 ? ret : count;
144 }
145 
146 static const struct file_operations pnv_eeh_ei_fops = {
147 	.open	= simple_open,
148 	.llseek	= no_llseek,
149 	.write	= pnv_eeh_ei_write,
150 };
151 
152 static int pnv_eeh_dbgfs_set(void *data, int offset, u64 val)
153 {
154 	struct pci_controller *hose = data;
155 	struct pnv_phb *phb = hose->private_data;
156 
157 	out_be64(phb->regs + offset, val);
158 	return 0;
159 }
160 
161 static int pnv_eeh_dbgfs_get(void *data, int offset, u64 *val)
162 {
163 	struct pci_controller *hose = data;
164 	struct pnv_phb *phb = hose->private_data;
165 
166 	*val = in_be64(phb->regs + offset);
167 	return 0;
168 }
169 
170 #define PNV_EEH_DBGFS_ENTRY(name, reg)				\
171 static int pnv_eeh_dbgfs_set_##name(void *data, u64 val)	\
172 {								\
173 	return pnv_eeh_dbgfs_set(data, reg, val);		\
174 }								\
175 								\
176 static int pnv_eeh_dbgfs_get_##name(void *data, u64 *val)	\
177 {								\
178 	return pnv_eeh_dbgfs_get(data, reg, val);		\
179 }								\
180 								\
181 DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_dbgfs_ops_##name,		\
182 			pnv_eeh_dbgfs_get_##name,		\
183                         pnv_eeh_dbgfs_set_##name,		\
184 			"0x%llx\n")
185 
186 PNV_EEH_DBGFS_ENTRY(outb, 0xD10);
187 PNV_EEH_DBGFS_ENTRY(inbA, 0xD90);
188 PNV_EEH_DBGFS_ENTRY(inbB, 0xE10);
189 
190 #endif /* CONFIG_DEBUG_FS */
191 
192 /**
193  * pnv_eeh_post_init - EEH platform dependent post initialization
194  *
195  * EEH platform dependent post initialization on powernv. When
196  * the function is called, the EEH PEs and devices should have
197  * been built. If the I/O cache staff has been built, EEH is
198  * ready to supply service.
199  */
200 static int pnv_eeh_post_init(void)
201 {
202 	struct pci_controller *hose;
203 	struct pnv_phb *phb;
204 	int ret = 0;
205 
206 	/* Register OPAL event notifier */
207 	if (!pnv_eeh_nb_init) {
208 		eeh_event_irq = opal_event_request(ilog2(OPAL_EVENT_PCI_ERROR));
209 		if (eeh_event_irq < 0) {
210 			pr_err("%s: Can't register OPAL event interrupt (%d)\n",
211 			       __func__, eeh_event_irq);
212 			return eeh_event_irq;
213 		}
214 
215 		ret = request_irq(eeh_event_irq, pnv_eeh_event,
216 				IRQ_TYPE_LEVEL_HIGH, "opal-eeh", NULL);
217 		if (ret < 0) {
218 			irq_dispose_mapping(eeh_event_irq);
219 			pr_err("%s: Can't request OPAL event interrupt (%d)\n",
220 			       __func__, eeh_event_irq);
221 			return ret;
222 		}
223 
224 		pnv_eeh_nb_init = true;
225 	}
226 
227 	if (!eeh_enabled())
228 		disable_irq(eeh_event_irq);
229 
230 	list_for_each_entry(hose, &hose_list, list_node) {
231 		phb = hose->private_data;
232 
233 		/*
234 		 * If EEH is enabled, we're going to rely on that.
235 		 * Otherwise, we restore to conventional mechanism
236 		 * to clear frozen PE during PCI config access.
237 		 */
238 		if (eeh_enabled())
239 			phb->flags |= PNV_PHB_FLAG_EEH;
240 		else
241 			phb->flags &= ~PNV_PHB_FLAG_EEH;
242 
243 		/* Create debugfs entries */
244 #ifdef CONFIG_DEBUG_FS
245 		if (phb->has_dbgfs || !phb->dbgfs)
246 			continue;
247 
248 		phb->has_dbgfs = 1;
249 		debugfs_create_file("err_injct", 0200,
250 				    phb->dbgfs, hose,
251 				    &pnv_eeh_ei_fops);
252 
253 		debugfs_create_file("err_injct_outbound", 0600,
254 				    phb->dbgfs, hose,
255 				    &pnv_eeh_dbgfs_ops_outb);
256 		debugfs_create_file("err_injct_inboundA", 0600,
257 				    phb->dbgfs, hose,
258 				    &pnv_eeh_dbgfs_ops_inbA);
259 		debugfs_create_file("err_injct_inboundB", 0600,
260 				    phb->dbgfs, hose,
261 				    &pnv_eeh_dbgfs_ops_inbB);
262 #endif /* CONFIG_DEBUG_FS */
263 	}
264 
265 	return ret;
266 }
267 
268 static int pnv_eeh_find_cap(struct pci_dn *pdn, int cap)
269 {
270 	int pos = PCI_CAPABILITY_LIST;
271 	int cnt = 48;   /* Maximal number of capabilities */
272 	u32 status, id;
273 
274 	if (!pdn)
275 		return 0;
276 
277 	/* Check if the device supports capabilities */
278 	pnv_pci_cfg_read(pdn, PCI_STATUS, 2, &status);
279 	if (!(status & PCI_STATUS_CAP_LIST))
280 		return 0;
281 
282 	while (cnt--) {
283 		pnv_pci_cfg_read(pdn, pos, 1, &pos);
284 		if (pos < 0x40)
285 			break;
286 
287 		pos &= ~3;
288 		pnv_pci_cfg_read(pdn, pos + PCI_CAP_LIST_ID, 1, &id);
289 		if (id == 0xff)
290 			break;
291 
292 		/* Found */
293 		if (id == cap)
294 			return pos;
295 
296 		/* Next one */
297 		pos += PCI_CAP_LIST_NEXT;
298 	}
299 
300 	return 0;
301 }
302 
303 static int pnv_eeh_find_ecap(struct pci_dn *pdn, int cap)
304 {
305 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
306 	u32 header;
307 	int pos = 256, ttl = (4096 - 256) / 8;
308 
309 	if (!edev || !edev->pcie_cap)
310 		return 0;
311 	if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
312 		return 0;
313 	else if (!header)
314 		return 0;
315 
316 	while (ttl-- > 0) {
317 		if (PCI_EXT_CAP_ID(header) == cap && pos)
318 			return pos;
319 
320 		pos = PCI_EXT_CAP_NEXT(header);
321 		if (pos < 256)
322 			break;
323 
324 		if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
325 			break;
326 	}
327 
328 	return 0;
329 }
330 
331 /**
332  * pnv_eeh_probe - Do probe on PCI device
333  * @pdn: PCI device node
334  * @data: unused
335  *
336  * When EEH module is installed during system boot, all PCI devices
337  * are checked one by one to see if it supports EEH. The function
338  * is introduced for the purpose. By default, EEH has been enabled
339  * on all PCI devices. That's to say, we only need do necessary
340  * initialization on the corresponding eeh device and create PE
341  * accordingly.
342  *
343  * It's notable that's unsafe to retrieve the EEH device through
344  * the corresponding PCI device. During the PCI device hotplug, which
345  * was possiblly triggered by EEH core, the binding between EEH device
346  * and the PCI device isn't built yet.
347  */
348 static void *pnv_eeh_probe(struct pci_dn *pdn, void *data)
349 {
350 	struct pci_controller *hose = pdn->phb;
351 	struct pnv_phb *phb = hose->private_data;
352 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
353 	uint32_t pcie_flags;
354 	int ret;
355 
356 	/*
357 	 * When probing the root bridge, which doesn't have any
358 	 * subordinate PCI devices. We don't have OF node for
359 	 * the root bridge. So it's not reasonable to continue
360 	 * the probing.
361 	 */
362 	if (!edev || edev->pe)
363 		return NULL;
364 
365 	/* Skip for PCI-ISA bridge */
366 	if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_ISA)
367 		return NULL;
368 
369 	/* Initialize eeh device */
370 	edev->class_code = pdn->class_code;
371 	edev->mode	&= 0xFFFFFF00;
372 	edev->pcix_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_PCIX);
373 	edev->pcie_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_EXP);
374 	edev->af_cap   = pnv_eeh_find_cap(pdn, PCI_CAP_ID_AF);
375 	edev->aer_cap  = pnv_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR);
376 	if ((edev->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) {
377 		edev->mode |= EEH_DEV_BRIDGE;
378 		if (edev->pcie_cap) {
379 			pnv_pci_cfg_read(pdn, edev->pcie_cap + PCI_EXP_FLAGS,
380 					 2, &pcie_flags);
381 			pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4;
382 			if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT)
383 				edev->mode |= EEH_DEV_ROOT_PORT;
384 			else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM)
385 				edev->mode |= EEH_DEV_DS_PORT;
386 		}
387 	}
388 
389 	edev->config_addr    = (pdn->busno << 8) | (pdn->devfn);
390 	edev->pe_config_addr = phb->ioda.pe_rmap[edev->config_addr];
391 
392 	/* Create PE */
393 	ret = eeh_add_to_parent_pe(edev);
394 	if (ret) {
395 		pr_warn("%s: Can't add PCI dev %04x:%02x:%02x.%01x to parent PE (%d)\n",
396 			__func__, hose->global_number, pdn->busno,
397 			PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn), ret);
398 		return NULL;
399 	}
400 
401 	/*
402 	 * If the PE contains any one of following adapters, the
403 	 * PCI config space can't be accessed when dumping EEH log.
404 	 * Otherwise, we will run into fenced PHB caused by shortage
405 	 * of outbound credits in the adapter. The PCI config access
406 	 * should be blocked until PE reset. MMIO access is dropped
407 	 * by hardware certainly. In order to drop PCI config requests,
408 	 * one more flag (EEH_PE_CFG_RESTRICTED) is introduced, which
409 	 * will be checked in the backend for PE state retrival. If
410 	 * the PE becomes frozen for the first time and the flag has
411 	 * been set for the PE, we will set EEH_PE_CFG_BLOCKED for
412 	 * that PE to block its config space.
413 	 *
414 	 * Broadcom Austin 4-ports NICs (14e4:1657)
415 	 * Broadcom Shiner 4-ports 1G NICs (14e4:168a)
416 	 * Broadcom Shiner 2-ports 10G NICs (14e4:168e)
417 	 */
418 	if ((pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
419 	     pdn->device_id == 0x1657) ||
420 	    (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
421 	     pdn->device_id == 0x168a) ||
422 	    (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
423 	     pdn->device_id == 0x168e))
424 		edev->pe->state |= EEH_PE_CFG_RESTRICTED;
425 
426 	/*
427 	 * Cache the PE primary bus, which can't be fetched when
428 	 * full hotplug is in progress. In that case, all child
429 	 * PCI devices of the PE are expected to be removed prior
430 	 * to PE reset.
431 	 */
432 	if (!(edev->pe->state & EEH_PE_PRI_BUS)) {
433 		edev->pe->bus = pci_find_bus(hose->global_number,
434 					     pdn->busno);
435 		if (edev->pe->bus)
436 			edev->pe->state |= EEH_PE_PRI_BUS;
437 	}
438 
439 	/*
440 	 * Enable EEH explicitly so that we will do EEH check
441 	 * while accessing I/O stuff
442 	 */
443 	eeh_add_flag(EEH_ENABLED);
444 
445 	/* Save memory bars */
446 	eeh_save_bars(edev);
447 
448 	return NULL;
449 }
450 
451 /**
452  * pnv_eeh_set_option - Initialize EEH or MMIO/DMA reenable
453  * @pe: EEH PE
454  * @option: operation to be issued
455  *
456  * The function is used to control the EEH functionality globally.
457  * Currently, following options are support according to PAPR:
458  * Enable EEH, Disable EEH, Enable MMIO and Enable DMA
459  */
460 static int pnv_eeh_set_option(struct eeh_pe *pe, int option)
461 {
462 	struct pci_controller *hose = pe->phb;
463 	struct pnv_phb *phb = hose->private_data;
464 	bool freeze_pe = false;
465 	int opt;
466 	s64 rc;
467 
468 	switch (option) {
469 	case EEH_OPT_DISABLE:
470 		return -EPERM;
471 	case EEH_OPT_ENABLE:
472 		return 0;
473 	case EEH_OPT_THAW_MMIO:
474 		opt = OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO;
475 		break;
476 	case EEH_OPT_THAW_DMA:
477 		opt = OPAL_EEH_ACTION_CLEAR_FREEZE_DMA;
478 		break;
479 	case EEH_OPT_FREEZE_PE:
480 		freeze_pe = true;
481 		opt = OPAL_EEH_ACTION_SET_FREEZE_ALL;
482 		break;
483 	default:
484 		pr_warn("%s: Invalid option %d\n", __func__, option);
485 		return -EINVAL;
486 	}
487 
488 	/* Freeze master and slave PEs if PHB supports compound PEs */
489 	if (freeze_pe) {
490 		if (phb->freeze_pe) {
491 			phb->freeze_pe(phb, pe->addr);
492 			return 0;
493 		}
494 
495 		rc = opal_pci_eeh_freeze_set(phb->opal_id, pe->addr, opt);
496 		if (rc != OPAL_SUCCESS) {
497 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
498 				__func__, rc, phb->hose->global_number,
499 				pe->addr);
500 			return -EIO;
501 		}
502 
503 		return 0;
504 	}
505 
506 	/* Unfreeze master and slave PEs if PHB supports */
507 	if (phb->unfreeze_pe)
508 		return phb->unfreeze_pe(phb, pe->addr, opt);
509 
510 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe->addr, opt);
511 	if (rc != OPAL_SUCCESS) {
512 		pr_warn("%s: Failure %lld enable %d for PHB#%x-PE#%x\n",
513 			__func__, rc, option, phb->hose->global_number,
514 			pe->addr);
515 		return -EIO;
516 	}
517 
518 	return 0;
519 }
520 
521 /**
522  * pnv_eeh_get_pe_addr - Retrieve PE address
523  * @pe: EEH PE
524  *
525  * Retrieve the PE address according to the given tranditional
526  * PCI BDF (Bus/Device/Function) address.
527  */
528 static int pnv_eeh_get_pe_addr(struct eeh_pe *pe)
529 {
530 	return pe->addr;
531 }
532 
533 static void pnv_eeh_get_phb_diag(struct eeh_pe *pe)
534 {
535 	struct pnv_phb *phb = pe->phb->private_data;
536 	s64 rc;
537 
538 	rc = opal_pci_get_phb_diag_data2(phb->opal_id, pe->data,
539 					 PNV_PCI_DIAG_BUF_SIZE);
540 	if (rc != OPAL_SUCCESS)
541 		pr_warn("%s: Failure %lld getting PHB#%x diag-data\n",
542 			__func__, rc, pe->phb->global_number);
543 }
544 
545 static int pnv_eeh_get_phb_state(struct eeh_pe *pe)
546 {
547 	struct pnv_phb *phb = pe->phb->private_data;
548 	u8 fstate;
549 	__be16 pcierr;
550 	s64 rc;
551 	int result = 0;
552 
553 	rc = opal_pci_eeh_freeze_status(phb->opal_id,
554 					pe->addr,
555 					&fstate,
556 					&pcierr,
557 					NULL);
558 	if (rc != OPAL_SUCCESS) {
559 		pr_warn("%s: Failure %lld getting PHB#%x state\n",
560 			__func__, rc, phb->hose->global_number);
561 		return EEH_STATE_NOT_SUPPORT;
562 	}
563 
564 	/*
565 	 * Check PHB state. If the PHB is frozen for the
566 	 * first time, to dump the PHB diag-data.
567 	 */
568 	if (be16_to_cpu(pcierr) != OPAL_EEH_PHB_ERROR) {
569 		result = (EEH_STATE_MMIO_ACTIVE  |
570 			  EEH_STATE_DMA_ACTIVE   |
571 			  EEH_STATE_MMIO_ENABLED |
572 			  EEH_STATE_DMA_ENABLED);
573 	} else if (!(pe->state & EEH_PE_ISOLATED)) {
574 		eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
575 		pnv_eeh_get_phb_diag(pe);
576 
577 		if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
578 			pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
579 	}
580 
581 	return result;
582 }
583 
584 static int pnv_eeh_get_pe_state(struct eeh_pe *pe)
585 {
586 	struct pnv_phb *phb = pe->phb->private_data;
587 	u8 fstate;
588 	__be16 pcierr;
589 	s64 rc;
590 	int result;
591 
592 	/*
593 	 * We don't clobber hardware frozen state until PE
594 	 * reset is completed. In order to keep EEH core
595 	 * moving forward, we have to return operational
596 	 * state during PE reset.
597 	 */
598 	if (pe->state & EEH_PE_RESET) {
599 		result = (EEH_STATE_MMIO_ACTIVE  |
600 			  EEH_STATE_DMA_ACTIVE   |
601 			  EEH_STATE_MMIO_ENABLED |
602 			  EEH_STATE_DMA_ENABLED);
603 		return result;
604 	}
605 
606 	/*
607 	 * Fetch PE state from hardware. If the PHB
608 	 * supports compound PE, let it handle that.
609 	 */
610 	if (phb->get_pe_state) {
611 		fstate = phb->get_pe_state(phb, pe->addr);
612 	} else {
613 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
614 						pe->addr,
615 						&fstate,
616 						&pcierr,
617 						NULL);
618 		if (rc != OPAL_SUCCESS) {
619 			pr_warn("%s: Failure %lld getting PHB#%x-PE%x state\n",
620 				__func__, rc, phb->hose->global_number,
621 				pe->addr);
622 			return EEH_STATE_NOT_SUPPORT;
623 		}
624 	}
625 
626 	/* Figure out state */
627 	switch (fstate) {
628 	case OPAL_EEH_STOPPED_NOT_FROZEN:
629 		result = (EEH_STATE_MMIO_ACTIVE  |
630 			  EEH_STATE_DMA_ACTIVE   |
631 			  EEH_STATE_MMIO_ENABLED |
632 			  EEH_STATE_DMA_ENABLED);
633 		break;
634 	case OPAL_EEH_STOPPED_MMIO_FREEZE:
635 		result = (EEH_STATE_DMA_ACTIVE |
636 			  EEH_STATE_DMA_ENABLED);
637 		break;
638 	case OPAL_EEH_STOPPED_DMA_FREEZE:
639 		result = (EEH_STATE_MMIO_ACTIVE |
640 			  EEH_STATE_MMIO_ENABLED);
641 		break;
642 	case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE:
643 		result = 0;
644 		break;
645 	case OPAL_EEH_STOPPED_RESET:
646 		result = EEH_STATE_RESET_ACTIVE;
647 		break;
648 	case OPAL_EEH_STOPPED_TEMP_UNAVAIL:
649 		result = EEH_STATE_UNAVAILABLE;
650 		break;
651 	case OPAL_EEH_STOPPED_PERM_UNAVAIL:
652 		result = EEH_STATE_NOT_SUPPORT;
653 		break;
654 	default:
655 		result = EEH_STATE_NOT_SUPPORT;
656 		pr_warn("%s: Invalid PHB#%x-PE#%x state %x\n",
657 			__func__, phb->hose->global_number,
658 			pe->addr, fstate);
659 	}
660 
661 	/*
662 	 * If PHB supports compound PE, to freeze all
663 	 * slave PEs for consistency.
664 	 *
665 	 * If the PE is switching to frozen state for the
666 	 * first time, to dump the PHB diag-data.
667 	 */
668 	if (!(result & EEH_STATE_NOT_SUPPORT) &&
669 	    !(result & EEH_STATE_UNAVAILABLE) &&
670 	    !(result & EEH_STATE_MMIO_ACTIVE) &&
671 	    !(result & EEH_STATE_DMA_ACTIVE)  &&
672 	    !(pe->state & EEH_PE_ISOLATED)) {
673 		if (phb->freeze_pe)
674 			phb->freeze_pe(phb, pe->addr);
675 
676 		eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
677 		pnv_eeh_get_phb_diag(pe);
678 
679 		if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
680 			pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
681 	}
682 
683 	return result;
684 }
685 
686 /**
687  * pnv_eeh_get_state - Retrieve PE state
688  * @pe: EEH PE
689  * @delay: delay while PE state is temporarily unavailable
690  *
691  * Retrieve the state of the specified PE. For IODA-compitable
692  * platform, it should be retrieved from IODA table. Therefore,
693  * we prefer passing down to hardware implementation to handle
694  * it.
695  */
696 static int pnv_eeh_get_state(struct eeh_pe *pe, int *delay)
697 {
698 	int ret;
699 
700 	if (pe->type & EEH_PE_PHB)
701 		ret = pnv_eeh_get_phb_state(pe);
702 	else
703 		ret = pnv_eeh_get_pe_state(pe);
704 
705 	if (!delay)
706 		return ret;
707 
708 	/*
709 	 * If the PE state is temporarily unavailable,
710 	 * to inform the EEH core delay for default
711 	 * period (1 second)
712 	 */
713 	*delay = 0;
714 	if (ret & EEH_STATE_UNAVAILABLE)
715 		*delay = 1000;
716 
717 	return ret;
718 }
719 
720 static s64 pnv_eeh_phb_poll(struct pnv_phb *phb)
721 {
722 	s64 rc = OPAL_HARDWARE;
723 
724 	while (1) {
725 		rc = opal_pci_poll(phb->opal_id);
726 		if (rc <= 0)
727 			break;
728 
729 		if (system_state < SYSTEM_RUNNING)
730 			udelay(1000 * rc);
731 		else
732 			msleep(rc);
733 	}
734 
735 	return rc;
736 }
737 
738 int pnv_eeh_phb_reset(struct pci_controller *hose, int option)
739 {
740 	struct pnv_phb *phb = hose->private_data;
741 	s64 rc = OPAL_HARDWARE;
742 
743 	pr_debug("%s: Reset PHB#%x, option=%d\n",
744 		 __func__, hose->global_number, option);
745 
746 	/* Issue PHB complete reset request */
747 	if (option == EEH_RESET_FUNDAMENTAL ||
748 	    option == EEH_RESET_HOT)
749 		rc = opal_pci_reset(phb->opal_id,
750 				    OPAL_RESET_PHB_COMPLETE,
751 				    OPAL_ASSERT_RESET);
752 	else if (option == EEH_RESET_DEACTIVATE)
753 		rc = opal_pci_reset(phb->opal_id,
754 				    OPAL_RESET_PHB_COMPLETE,
755 				    OPAL_DEASSERT_RESET);
756 	if (rc < 0)
757 		goto out;
758 
759 	/*
760 	 * Poll state of the PHB until the request is done
761 	 * successfully. The PHB reset is usually PHB complete
762 	 * reset followed by hot reset on root bus. So we also
763 	 * need the PCI bus settlement delay.
764 	 */
765 	rc = pnv_eeh_phb_poll(phb);
766 	if (option == EEH_RESET_DEACTIVATE) {
767 		if (system_state < SYSTEM_RUNNING)
768 			udelay(1000 * EEH_PE_RST_SETTLE_TIME);
769 		else
770 			msleep(EEH_PE_RST_SETTLE_TIME);
771 	}
772 out:
773 	if (rc != OPAL_SUCCESS)
774 		return -EIO;
775 
776 	return 0;
777 }
778 
779 static int pnv_eeh_root_reset(struct pci_controller *hose, int option)
780 {
781 	struct pnv_phb *phb = hose->private_data;
782 	s64 rc = OPAL_HARDWARE;
783 
784 	pr_debug("%s: Reset PHB#%x, option=%d\n",
785 		 __func__, hose->global_number, option);
786 
787 	/*
788 	 * During the reset deassert time, we needn't care
789 	 * the reset scope because the firmware does nothing
790 	 * for fundamental or hot reset during deassert phase.
791 	 */
792 	if (option == EEH_RESET_FUNDAMENTAL)
793 		rc = opal_pci_reset(phb->opal_id,
794 				    OPAL_RESET_PCI_FUNDAMENTAL,
795 				    OPAL_ASSERT_RESET);
796 	else if (option == EEH_RESET_HOT)
797 		rc = opal_pci_reset(phb->opal_id,
798 				    OPAL_RESET_PCI_HOT,
799 				    OPAL_ASSERT_RESET);
800 	else if (option == EEH_RESET_DEACTIVATE)
801 		rc = opal_pci_reset(phb->opal_id,
802 				    OPAL_RESET_PCI_HOT,
803 				    OPAL_DEASSERT_RESET);
804 	if (rc < 0)
805 		goto out;
806 
807 	/* Poll state of the PHB until the request is done */
808 	rc = pnv_eeh_phb_poll(phb);
809 	if (option == EEH_RESET_DEACTIVATE)
810 		msleep(EEH_PE_RST_SETTLE_TIME);
811 out:
812 	if (rc != OPAL_SUCCESS)
813 		return -EIO;
814 
815 	return 0;
816 }
817 
818 static int pnv_eeh_bridge_reset(struct pci_dev *dev, int option)
819 {
820 	struct pci_dn *pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
821 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
822 	int aer = edev ? edev->aer_cap : 0;
823 	u32 ctrl;
824 
825 	pr_debug("%s: Reset PCI bus %04x:%02x with option %d\n",
826 		 __func__, pci_domain_nr(dev->bus),
827 		 dev->bus->number, option);
828 
829 	switch (option) {
830 	case EEH_RESET_FUNDAMENTAL:
831 	case EEH_RESET_HOT:
832 		/* Don't report linkDown event */
833 		if (aer) {
834 			eeh_ops->read_config(pdn, aer + PCI_ERR_UNCOR_MASK,
835 					     4, &ctrl);
836 			ctrl |= PCI_ERR_UNC_SURPDN;
837 			eeh_ops->write_config(pdn, aer + PCI_ERR_UNCOR_MASK,
838 					      4, ctrl);
839 		}
840 
841 		eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &ctrl);
842 		ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
843 		eeh_ops->write_config(pdn, PCI_BRIDGE_CONTROL, 2, ctrl);
844 
845 		msleep(EEH_PE_RST_HOLD_TIME);
846 		break;
847 	case EEH_RESET_DEACTIVATE:
848 		eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &ctrl);
849 		ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
850 		eeh_ops->write_config(pdn, PCI_BRIDGE_CONTROL, 2, ctrl);
851 
852 		msleep(EEH_PE_RST_SETTLE_TIME);
853 
854 		/* Continue reporting linkDown event */
855 		if (aer) {
856 			eeh_ops->read_config(pdn, aer + PCI_ERR_UNCOR_MASK,
857 					     4, &ctrl);
858 			ctrl &= ~PCI_ERR_UNC_SURPDN;
859 			eeh_ops->write_config(pdn, aer + PCI_ERR_UNCOR_MASK,
860 					      4, ctrl);
861 		}
862 
863 		break;
864 	}
865 
866 	return 0;
867 }
868 
869 void pnv_pci_reset_secondary_bus(struct pci_dev *dev)
870 {
871 	struct pci_controller *hose;
872 
873 	if (pci_is_root_bus(dev->bus)) {
874 		hose = pci_bus_to_host(dev->bus);
875 		pnv_eeh_root_reset(hose, EEH_RESET_HOT);
876 		pnv_eeh_root_reset(hose, EEH_RESET_DEACTIVATE);
877 	} else {
878 		pnv_eeh_bridge_reset(dev, EEH_RESET_HOT);
879 		pnv_eeh_bridge_reset(dev, EEH_RESET_DEACTIVATE);
880 	}
881 }
882 
883 static void pnv_eeh_wait_for_pending(struct pci_dn *pdn, const char *type,
884 				     int pos, u16 mask)
885 {
886 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
887 	int i, status = 0;
888 
889 	/* Wait for Transaction Pending bit to be cleared */
890 	for (i = 0; i < 4; i++) {
891 		eeh_ops->read_config(pdn, pos, 2, &status);
892 		if (!(status & mask))
893 			return;
894 
895 		msleep((1 << i) * 100);
896 	}
897 
898 	pr_warn("%s: Pending transaction while issuing %sFLR to %04x:%02x:%02x.%01x\n",
899 		__func__, type,
900 		edev->phb->global_number, pdn->busno,
901 		PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
902 }
903 
904 static int pnv_eeh_do_flr(struct pci_dn *pdn, int option)
905 {
906 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
907 	u32 reg = 0;
908 
909 	if (WARN_ON(!edev->pcie_cap))
910 		return -ENOTTY;
911 
912 	eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP, 4, &reg);
913 	if (!(reg & PCI_EXP_DEVCAP_FLR))
914 		return -ENOTTY;
915 
916 	switch (option) {
917 	case EEH_RESET_HOT:
918 	case EEH_RESET_FUNDAMENTAL:
919 		pnv_eeh_wait_for_pending(pdn, "",
920 					 edev->pcie_cap + PCI_EXP_DEVSTA,
921 					 PCI_EXP_DEVSTA_TRPND);
922 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
923 				     4, &reg);
924 		reg |= PCI_EXP_DEVCTL_BCR_FLR;
925 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
926 				      4, reg);
927 		msleep(EEH_PE_RST_HOLD_TIME);
928 		break;
929 	case EEH_RESET_DEACTIVATE:
930 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
931 				     4, &reg);
932 		reg &= ~PCI_EXP_DEVCTL_BCR_FLR;
933 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
934 				      4, reg);
935 		msleep(EEH_PE_RST_SETTLE_TIME);
936 		break;
937 	}
938 
939 	return 0;
940 }
941 
942 static int pnv_eeh_do_af_flr(struct pci_dn *pdn, int option)
943 {
944 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
945 	u32 cap = 0;
946 
947 	if (WARN_ON(!edev->af_cap))
948 		return -ENOTTY;
949 
950 	eeh_ops->read_config(pdn, edev->af_cap + PCI_AF_CAP, 1, &cap);
951 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
952 		return -ENOTTY;
953 
954 	switch (option) {
955 	case EEH_RESET_HOT:
956 	case EEH_RESET_FUNDAMENTAL:
957 		/*
958 		 * Wait for Transaction Pending bit to clear. A word-aligned
959 		 * test is used, so we use the conrol offset rather than status
960 		 * and shift the test bit to match.
961 		 */
962 		pnv_eeh_wait_for_pending(pdn, "AF",
963 					 edev->af_cap + PCI_AF_CTRL,
964 					 PCI_AF_STATUS_TP << 8);
965 		eeh_ops->write_config(pdn, edev->af_cap + PCI_AF_CTRL,
966 				      1, PCI_AF_CTRL_FLR);
967 		msleep(EEH_PE_RST_HOLD_TIME);
968 		break;
969 	case EEH_RESET_DEACTIVATE:
970 		eeh_ops->write_config(pdn, edev->af_cap + PCI_AF_CTRL, 1, 0);
971 		msleep(EEH_PE_RST_SETTLE_TIME);
972 		break;
973 	}
974 
975 	return 0;
976 }
977 
978 static int pnv_eeh_reset_vf_pe(struct eeh_pe *pe, int option)
979 {
980 	struct eeh_dev *edev;
981 	struct pci_dn *pdn;
982 	int ret;
983 
984 	/* The VF PE should have only one child device */
985 	edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, list);
986 	pdn = eeh_dev_to_pdn(edev);
987 	if (!pdn)
988 		return -ENXIO;
989 
990 	ret = pnv_eeh_do_flr(pdn, option);
991 	if (!ret)
992 		return ret;
993 
994 	return pnv_eeh_do_af_flr(pdn, option);
995 }
996 
997 /**
998  * pnv_eeh_reset - Reset the specified PE
999  * @pe: EEH PE
1000  * @option: reset option
1001  *
1002  * Do reset on the indicated PE. For PCI bus sensitive PE,
1003  * we need to reset the parent p2p bridge. The PHB has to
1004  * be reinitialized if the p2p bridge is root bridge. For
1005  * PCI device sensitive PE, we will try to reset the device
1006  * through FLR. For now, we don't have OPAL APIs to do HARD
1007  * reset yet, so all reset would be SOFT (HOT) reset.
1008  */
1009 static int pnv_eeh_reset(struct eeh_pe *pe, int option)
1010 {
1011 	struct pci_controller *hose = pe->phb;
1012 	struct pnv_phb *phb;
1013 	struct pci_bus *bus;
1014 	int64_t rc;
1015 
1016 	/*
1017 	 * For PHB reset, we always have complete reset. For those PEs whose
1018 	 * primary bus derived from root complex (root bus) or root port
1019 	 * (usually bus#1), we apply hot or fundamental reset on the root port.
1020 	 * For other PEs, we always have hot reset on the PE primary bus.
1021 	 *
1022 	 * Here, we have different design to pHyp, which always clear the
1023 	 * frozen state during PE reset. However, the good idea here from
1024 	 * benh is to keep frozen state before we get PE reset done completely
1025 	 * (until BAR restore). With the frozen state, HW drops illegal IO
1026 	 * or MMIO access, which can incur recrusive frozen PE during PE
1027 	 * reset. The side effect is that EEH core has to clear the frozen
1028 	 * state explicitly after BAR restore.
1029 	 */
1030 	if (pe->type & EEH_PE_PHB)
1031 		return pnv_eeh_phb_reset(hose, option);
1032 
1033 	/*
1034 	 * The frozen PE might be caused by PAPR error injection
1035 	 * registers, which are expected to be cleared after hitting
1036 	 * frozen PE as stated in the hardware spec. Unfortunately,
1037 	 * that's not true on P7IOC. So we have to clear it manually
1038 	 * to avoid recursive EEH errors during recovery.
1039 	 */
1040 	phb = hose->private_data;
1041 	if (phb->model == PNV_PHB_MODEL_P7IOC &&
1042 	    (option == EEH_RESET_HOT ||
1043 	     option == EEH_RESET_FUNDAMENTAL)) {
1044 		rc = opal_pci_reset(phb->opal_id,
1045 				    OPAL_RESET_PHB_ERROR,
1046 				    OPAL_ASSERT_RESET);
1047 		if (rc != OPAL_SUCCESS) {
1048 			pr_warn("%s: Failure %lld clearing error injection registers\n",
1049 				__func__, rc);
1050 			return -EIO;
1051 		}
1052 	}
1053 
1054 	bus = eeh_pe_bus_get(pe);
1055 	if (pe->type & EEH_PE_VF)
1056 		return pnv_eeh_reset_vf_pe(pe, option);
1057 
1058 	if (pci_is_root_bus(bus) ||
1059 	    pci_is_root_bus(bus->parent))
1060 		return pnv_eeh_root_reset(hose, option);
1061 
1062 	return pnv_eeh_bridge_reset(bus->self, option);
1063 }
1064 
1065 /**
1066  * pnv_eeh_wait_state - Wait for PE state
1067  * @pe: EEH PE
1068  * @max_wait: maximal period in millisecond
1069  *
1070  * Wait for the state of associated PE. It might take some time
1071  * to retrieve the PE's state.
1072  */
1073 static int pnv_eeh_wait_state(struct eeh_pe *pe, int max_wait)
1074 {
1075 	int ret;
1076 	int mwait;
1077 
1078 	while (1) {
1079 		ret = pnv_eeh_get_state(pe, &mwait);
1080 
1081 		/*
1082 		 * If the PE's state is temporarily unavailable,
1083 		 * we have to wait for the specified time. Otherwise,
1084 		 * the PE's state will be returned immediately.
1085 		 */
1086 		if (ret != EEH_STATE_UNAVAILABLE)
1087 			return ret;
1088 
1089 		if (max_wait <= 0) {
1090 			pr_warn("%s: Timeout getting PE#%x's state (%d)\n",
1091 				__func__, pe->addr, max_wait);
1092 			return EEH_STATE_NOT_SUPPORT;
1093 		}
1094 
1095 		max_wait -= mwait;
1096 		msleep(mwait);
1097 	}
1098 
1099 	return EEH_STATE_NOT_SUPPORT;
1100 }
1101 
1102 /**
1103  * pnv_eeh_get_log - Retrieve error log
1104  * @pe: EEH PE
1105  * @severity: temporary or permanent error log
1106  * @drv_log: driver log to be combined with retrieved error log
1107  * @len: length of driver log
1108  *
1109  * Retrieve the temporary or permanent error from the PE.
1110  */
1111 static int pnv_eeh_get_log(struct eeh_pe *pe, int severity,
1112 			   char *drv_log, unsigned long len)
1113 {
1114 	if (!eeh_has_flag(EEH_EARLY_DUMP_LOG))
1115 		pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
1116 
1117 	return 0;
1118 }
1119 
1120 /**
1121  * pnv_eeh_configure_bridge - Configure PCI bridges in the indicated PE
1122  * @pe: EEH PE
1123  *
1124  * The function will be called to reconfigure the bridges included
1125  * in the specified PE so that the mulfunctional PE would be recovered
1126  * again.
1127  */
1128 static int pnv_eeh_configure_bridge(struct eeh_pe *pe)
1129 {
1130 	return 0;
1131 }
1132 
1133 /**
1134  * pnv_pe_err_inject - Inject specified error to the indicated PE
1135  * @pe: the indicated PE
1136  * @type: error type
1137  * @func: specific error type
1138  * @addr: address
1139  * @mask: address mask
1140  *
1141  * The routine is called to inject specified error, which is
1142  * determined by @type and @func, to the indicated PE for
1143  * testing purpose.
1144  */
1145 static int pnv_eeh_err_inject(struct eeh_pe *pe, int type, int func,
1146 			      unsigned long addr, unsigned long mask)
1147 {
1148 	struct pci_controller *hose = pe->phb;
1149 	struct pnv_phb *phb = hose->private_data;
1150 	s64 rc;
1151 
1152 	if (type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR &&
1153 	    type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64) {
1154 		pr_warn("%s: Invalid error type %d\n",
1155 			__func__, type);
1156 		return -ERANGE;
1157 	}
1158 
1159 	if (func < OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_ADDR ||
1160 	    func > OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_TARGET) {
1161 		pr_warn("%s: Invalid error function %d\n",
1162 			__func__, func);
1163 		return -ERANGE;
1164 	}
1165 
1166 	/* Firmware supports error injection ? */
1167 	if (!opal_check_token(OPAL_PCI_ERR_INJECT)) {
1168 		pr_warn("%s: Firmware doesn't support error injection\n",
1169 			__func__);
1170 		return -ENXIO;
1171 	}
1172 
1173 	/* Do error injection */
1174 	rc = opal_pci_err_inject(phb->opal_id, pe->addr,
1175 				 type, func, addr, mask);
1176 	if (rc != OPAL_SUCCESS) {
1177 		pr_warn("%s: Failure %lld injecting error "
1178 			"%d-%d to PHB#%x-PE#%x\n",
1179 			__func__, rc, type, func,
1180 			hose->global_number, pe->addr);
1181 		return -EIO;
1182 	}
1183 
1184 	return 0;
1185 }
1186 
1187 static inline bool pnv_eeh_cfg_blocked(struct pci_dn *pdn)
1188 {
1189 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1190 
1191 	if (!edev || !edev->pe)
1192 		return false;
1193 
1194 	/*
1195 	 * We will issue FLR or AF FLR to all VFs, which are contained
1196 	 * in VF PE. It relies on the EEH PCI config accessors. So we
1197 	 * can't block them during the window.
1198 	 */
1199 	if (edev->physfn && (edev->pe->state & EEH_PE_RESET))
1200 		return false;
1201 
1202 	if (edev->pe->state & EEH_PE_CFG_BLOCKED)
1203 		return true;
1204 
1205 	return false;
1206 }
1207 
1208 static int pnv_eeh_read_config(struct pci_dn *pdn,
1209 			       int where, int size, u32 *val)
1210 {
1211 	if (!pdn)
1212 		return PCIBIOS_DEVICE_NOT_FOUND;
1213 
1214 	if (pnv_eeh_cfg_blocked(pdn)) {
1215 		*val = 0xFFFFFFFF;
1216 		return PCIBIOS_SET_FAILED;
1217 	}
1218 
1219 	return pnv_pci_cfg_read(pdn, where, size, val);
1220 }
1221 
1222 static int pnv_eeh_write_config(struct pci_dn *pdn,
1223 				int where, int size, u32 val)
1224 {
1225 	if (!pdn)
1226 		return PCIBIOS_DEVICE_NOT_FOUND;
1227 
1228 	if (pnv_eeh_cfg_blocked(pdn))
1229 		return PCIBIOS_SET_FAILED;
1230 
1231 	return pnv_pci_cfg_write(pdn, where, size, val);
1232 }
1233 
1234 static void pnv_eeh_dump_hub_diag_common(struct OpalIoP7IOCErrorData *data)
1235 {
1236 	/* GEM */
1237 	if (data->gemXfir || data->gemRfir ||
1238 	    data->gemRirqfir || data->gemMask || data->gemRwof)
1239 		pr_info("  GEM: %016llx %016llx %016llx %016llx %016llx\n",
1240 			be64_to_cpu(data->gemXfir),
1241 			be64_to_cpu(data->gemRfir),
1242 			be64_to_cpu(data->gemRirqfir),
1243 			be64_to_cpu(data->gemMask),
1244 			be64_to_cpu(data->gemRwof));
1245 
1246 	/* LEM */
1247 	if (data->lemFir || data->lemErrMask ||
1248 	    data->lemAction0 || data->lemAction1 || data->lemWof)
1249 		pr_info("  LEM: %016llx %016llx %016llx %016llx %016llx\n",
1250 			be64_to_cpu(data->lemFir),
1251 			be64_to_cpu(data->lemErrMask),
1252 			be64_to_cpu(data->lemAction0),
1253 			be64_to_cpu(data->lemAction1),
1254 			be64_to_cpu(data->lemWof));
1255 }
1256 
1257 static void pnv_eeh_get_and_dump_hub_diag(struct pci_controller *hose)
1258 {
1259 	struct pnv_phb *phb = hose->private_data;
1260 	struct OpalIoP7IOCErrorData *data = &phb->diag.hub_diag;
1261 	long rc;
1262 
1263 	rc = opal_pci_get_hub_diag_data(phb->hub_id, data, sizeof(*data));
1264 	if (rc != OPAL_SUCCESS) {
1265 		pr_warn("%s: Failed to get HUB#%llx diag-data (%ld)\n",
1266 			__func__, phb->hub_id, rc);
1267 		return;
1268 	}
1269 
1270 	switch (data->type) {
1271 	case OPAL_P7IOC_DIAG_TYPE_RGC:
1272 		pr_info("P7IOC diag-data for RGC\n\n");
1273 		pnv_eeh_dump_hub_diag_common(data);
1274 		if (data->rgc.rgcStatus || data->rgc.rgcLdcp)
1275 			pr_info("  RGC: %016llx %016llx\n",
1276 				be64_to_cpu(data->rgc.rgcStatus),
1277 				be64_to_cpu(data->rgc.rgcLdcp));
1278 		break;
1279 	case OPAL_P7IOC_DIAG_TYPE_BI:
1280 		pr_info("P7IOC diag-data for BI %s\n\n",
1281 			data->bi.biDownbound ? "Downbound" : "Upbound");
1282 		pnv_eeh_dump_hub_diag_common(data);
1283 		if (data->bi.biLdcp0 || data->bi.biLdcp1 ||
1284 		    data->bi.biLdcp2 || data->bi.biFenceStatus)
1285 			pr_info("  BI:  %016llx %016llx %016llx %016llx\n",
1286 				be64_to_cpu(data->bi.biLdcp0),
1287 				be64_to_cpu(data->bi.biLdcp1),
1288 				be64_to_cpu(data->bi.biLdcp2),
1289 				be64_to_cpu(data->bi.biFenceStatus));
1290 		break;
1291 	case OPAL_P7IOC_DIAG_TYPE_CI:
1292 		pr_info("P7IOC diag-data for CI Port %d\n\n",
1293 			data->ci.ciPort);
1294 		pnv_eeh_dump_hub_diag_common(data);
1295 		if (data->ci.ciPortStatus || data->ci.ciPortLdcp)
1296 			pr_info("  CI:  %016llx %016llx\n",
1297 				be64_to_cpu(data->ci.ciPortStatus),
1298 				be64_to_cpu(data->ci.ciPortLdcp));
1299 		break;
1300 	case OPAL_P7IOC_DIAG_TYPE_MISC:
1301 		pr_info("P7IOC diag-data for MISC\n\n");
1302 		pnv_eeh_dump_hub_diag_common(data);
1303 		break;
1304 	case OPAL_P7IOC_DIAG_TYPE_I2C:
1305 		pr_info("P7IOC diag-data for I2C\n\n");
1306 		pnv_eeh_dump_hub_diag_common(data);
1307 		break;
1308 	default:
1309 		pr_warn("%s: Invalid type of HUB#%llx diag-data (%d)\n",
1310 			__func__, phb->hub_id, data->type);
1311 	}
1312 }
1313 
1314 static int pnv_eeh_get_pe(struct pci_controller *hose,
1315 			  u16 pe_no, struct eeh_pe **pe)
1316 {
1317 	struct pnv_phb *phb = hose->private_data;
1318 	struct pnv_ioda_pe *pnv_pe;
1319 	struct eeh_pe *dev_pe;
1320 	struct eeh_dev edev;
1321 
1322 	/*
1323 	 * If PHB supports compound PE, to fetch
1324 	 * the master PE because slave PE is invisible
1325 	 * to EEH core.
1326 	 */
1327 	pnv_pe = &phb->ioda.pe_array[pe_no];
1328 	if (pnv_pe->flags & PNV_IODA_PE_SLAVE) {
1329 		pnv_pe = pnv_pe->master;
1330 		WARN_ON(!pnv_pe ||
1331 			!(pnv_pe->flags & PNV_IODA_PE_MASTER));
1332 		pe_no = pnv_pe->pe_number;
1333 	}
1334 
1335 	/* Find the PE according to PE# */
1336 	memset(&edev, 0, sizeof(struct eeh_dev));
1337 	edev.phb = hose;
1338 	edev.pe_config_addr = pe_no;
1339 	dev_pe = eeh_pe_get(&edev);
1340 	if (!dev_pe)
1341 		return -EEXIST;
1342 
1343 	/* Freeze the (compound) PE */
1344 	*pe = dev_pe;
1345 	if (!(dev_pe->state & EEH_PE_ISOLATED))
1346 		phb->freeze_pe(phb, pe_no);
1347 
1348 	/*
1349 	 * At this point, we're sure the (compound) PE should
1350 	 * have been frozen. However, we still need poke until
1351 	 * hitting the frozen PE on top level.
1352 	 */
1353 	dev_pe = dev_pe->parent;
1354 	while (dev_pe && !(dev_pe->type & EEH_PE_PHB)) {
1355 		int ret;
1356 		int active_flags = (EEH_STATE_MMIO_ACTIVE |
1357 				    EEH_STATE_DMA_ACTIVE);
1358 
1359 		ret = eeh_ops->get_state(dev_pe, NULL);
1360 		if (ret <= 0 || (ret & active_flags) == active_flags) {
1361 			dev_pe = dev_pe->parent;
1362 			continue;
1363 		}
1364 
1365 		/* Frozen parent PE */
1366 		*pe = dev_pe;
1367 		if (!(dev_pe->state & EEH_PE_ISOLATED))
1368 			phb->freeze_pe(phb, dev_pe->addr);
1369 
1370 		/* Next one */
1371 		dev_pe = dev_pe->parent;
1372 	}
1373 
1374 	return 0;
1375 }
1376 
1377 /**
1378  * pnv_eeh_next_error - Retrieve next EEH error to handle
1379  * @pe: Affected PE
1380  *
1381  * The function is expected to be called by EEH core while it gets
1382  * special EEH event (without binding PE). The function calls to
1383  * OPAL APIs for next error to handle. The informational error is
1384  * handled internally by platform. However, the dead IOC, dead PHB,
1385  * fenced PHB and frozen PE should be handled by EEH core eventually.
1386  */
1387 static int pnv_eeh_next_error(struct eeh_pe **pe)
1388 {
1389 	struct pci_controller *hose;
1390 	struct pnv_phb *phb;
1391 	struct eeh_pe *phb_pe, *parent_pe;
1392 	__be64 frozen_pe_no;
1393 	__be16 err_type, severity;
1394 	int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
1395 	long rc;
1396 	int state, ret = EEH_NEXT_ERR_NONE;
1397 
1398 	/*
1399 	 * While running here, it's safe to purge the event queue. The
1400 	 * event should still be masked.
1401 	 */
1402 	eeh_remove_event(NULL, false);
1403 
1404 	list_for_each_entry(hose, &hose_list, list_node) {
1405 		/*
1406 		 * If the subordinate PCI buses of the PHB has been
1407 		 * removed or is exactly under error recovery, we
1408 		 * needn't take care of it any more.
1409 		 */
1410 		phb = hose->private_data;
1411 		phb_pe = eeh_phb_pe_get(hose);
1412 		if (!phb_pe || (phb_pe->state & EEH_PE_ISOLATED))
1413 			continue;
1414 
1415 		rc = opal_pci_next_error(phb->opal_id,
1416 					 &frozen_pe_no, &err_type, &severity);
1417 		if (rc != OPAL_SUCCESS) {
1418 			pr_devel("%s: Invalid return value on "
1419 				 "PHB#%x (0x%lx) from opal_pci_next_error",
1420 				 __func__, hose->global_number, rc);
1421 			continue;
1422 		}
1423 
1424 		/* If the PHB doesn't have error, stop processing */
1425 		if (be16_to_cpu(err_type) == OPAL_EEH_NO_ERROR ||
1426 		    be16_to_cpu(severity) == OPAL_EEH_SEV_NO_ERROR) {
1427 			pr_devel("%s: No error found on PHB#%x\n",
1428 				 __func__, hose->global_number);
1429 			continue;
1430 		}
1431 
1432 		/*
1433 		 * Processing the error. We're expecting the error with
1434 		 * highest priority reported upon multiple errors on the
1435 		 * specific PHB.
1436 		 */
1437 		pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n",
1438 			__func__, be16_to_cpu(err_type),
1439 			be16_to_cpu(severity), be64_to_cpu(frozen_pe_no),
1440 			hose->global_number);
1441 		switch (be16_to_cpu(err_type)) {
1442 		case OPAL_EEH_IOC_ERROR:
1443 			if (be16_to_cpu(severity) == OPAL_EEH_SEV_IOC_DEAD) {
1444 				pr_err("EEH: dead IOC detected\n");
1445 				ret = EEH_NEXT_ERR_DEAD_IOC;
1446 			} else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
1447 				pr_info("EEH: IOC informative error "
1448 					"detected\n");
1449 				pnv_eeh_get_and_dump_hub_diag(hose);
1450 				ret = EEH_NEXT_ERR_NONE;
1451 			}
1452 
1453 			break;
1454 		case OPAL_EEH_PHB_ERROR:
1455 			if (be16_to_cpu(severity) == OPAL_EEH_SEV_PHB_DEAD) {
1456 				*pe = phb_pe;
1457 				pr_err("EEH: dead PHB#%x detected, "
1458 				       "location: %s\n",
1459 					hose->global_number,
1460 					eeh_pe_loc_get(phb_pe));
1461 				ret = EEH_NEXT_ERR_DEAD_PHB;
1462 			} else if (be16_to_cpu(severity) ==
1463 				   OPAL_EEH_SEV_PHB_FENCED) {
1464 				*pe = phb_pe;
1465 				pr_err("EEH: Fenced PHB#%x detected, "
1466 				       "location: %s\n",
1467 					hose->global_number,
1468 					eeh_pe_loc_get(phb_pe));
1469 				ret = EEH_NEXT_ERR_FENCED_PHB;
1470 			} else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
1471 				pr_info("EEH: PHB#%x informative error "
1472 					"detected, location: %s\n",
1473 					hose->global_number,
1474 					eeh_pe_loc_get(phb_pe));
1475 				pnv_eeh_get_phb_diag(phb_pe);
1476 				pnv_pci_dump_phb_diag_data(hose, phb_pe->data);
1477 				ret = EEH_NEXT_ERR_NONE;
1478 			}
1479 
1480 			break;
1481 		case OPAL_EEH_PE_ERROR:
1482 			/*
1483 			 * If we can't find the corresponding PE, we
1484 			 * just try to unfreeze.
1485 			 */
1486 			if (pnv_eeh_get_pe(hose,
1487 				be64_to_cpu(frozen_pe_no), pe)) {
1488 				pr_info("EEH: Clear non-existing PHB#%x-PE#%llx\n",
1489 					hose->global_number, be64_to_cpu(frozen_pe_no));
1490 				pr_info("EEH: PHB location: %s\n",
1491 					eeh_pe_loc_get(phb_pe));
1492 
1493 				/* Dump PHB diag-data */
1494 				rc = opal_pci_get_phb_diag_data2(phb->opal_id,
1495 					phb->diag.blob, PNV_PCI_DIAG_BUF_SIZE);
1496 				if (rc == OPAL_SUCCESS)
1497 					pnv_pci_dump_phb_diag_data(hose,
1498 							phb->diag.blob);
1499 
1500 				/* Try best to clear it */
1501 				opal_pci_eeh_freeze_clear(phb->opal_id,
1502 					frozen_pe_no,
1503 					OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
1504 				ret = EEH_NEXT_ERR_NONE;
1505 			} else if ((*pe)->state & EEH_PE_ISOLATED ||
1506 				   eeh_pe_passed(*pe)) {
1507 				ret = EEH_NEXT_ERR_NONE;
1508 			} else {
1509 				pr_err("EEH: Frozen PE#%x "
1510 				       "on PHB#%x detected\n",
1511 				       (*pe)->addr,
1512 					(*pe)->phb->global_number);
1513 				pr_err("EEH: PE location: %s, "
1514 				       "PHB location: %s\n",
1515 				       eeh_pe_loc_get(*pe),
1516 				       eeh_pe_loc_get(phb_pe));
1517 				ret = EEH_NEXT_ERR_FROZEN_PE;
1518 			}
1519 
1520 			break;
1521 		default:
1522 			pr_warn("%s: Unexpected error type %d\n",
1523 				__func__, be16_to_cpu(err_type));
1524 		}
1525 
1526 		/*
1527 		 * EEH core will try recover from fenced PHB or
1528 		 * frozen PE. In the time for frozen PE, EEH core
1529 		 * enable IO path for that before collecting logs,
1530 		 * but it ruins the site. So we have to dump the
1531 		 * log in advance here.
1532 		 */
1533 		if ((ret == EEH_NEXT_ERR_FROZEN_PE  ||
1534 		    ret == EEH_NEXT_ERR_FENCED_PHB) &&
1535 		    !((*pe)->state & EEH_PE_ISOLATED)) {
1536 			eeh_pe_state_mark(*pe, EEH_PE_ISOLATED);
1537 			pnv_eeh_get_phb_diag(*pe);
1538 
1539 			if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
1540 				pnv_pci_dump_phb_diag_data((*pe)->phb,
1541 							   (*pe)->data);
1542 		}
1543 
1544 		/*
1545 		 * We probably have the frozen parent PE out there and
1546 		 * we need have to handle frozen parent PE firstly.
1547 		 */
1548 		if (ret == EEH_NEXT_ERR_FROZEN_PE) {
1549 			parent_pe = (*pe)->parent;
1550 			while (parent_pe) {
1551 				/* Hit the ceiling ? */
1552 				if (parent_pe->type & EEH_PE_PHB)
1553 					break;
1554 
1555 				/* Frozen parent PE ? */
1556 				state = eeh_ops->get_state(parent_pe, NULL);
1557 				if (state > 0 &&
1558 				    (state & active_flags) != active_flags)
1559 					*pe = parent_pe;
1560 
1561 				/* Next parent level */
1562 				parent_pe = parent_pe->parent;
1563 			}
1564 
1565 			/* We possibly migrate to another PE */
1566 			eeh_pe_state_mark(*pe, EEH_PE_ISOLATED);
1567 		}
1568 
1569 		/*
1570 		 * If we have no errors on the specific PHB or only
1571 		 * informative error there, we continue poking it.
1572 		 * Otherwise, we need actions to be taken by upper
1573 		 * layer.
1574 		 */
1575 		if (ret > EEH_NEXT_ERR_INF)
1576 			break;
1577 	}
1578 
1579 	/* Unmask the event */
1580 	if (ret == EEH_NEXT_ERR_NONE && eeh_enabled())
1581 		enable_irq(eeh_event_irq);
1582 
1583 	return ret;
1584 }
1585 
1586 static int pnv_eeh_restore_vf_config(struct pci_dn *pdn)
1587 {
1588 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1589 	u32 devctl, cmd, cap2, aer_capctl;
1590 	int old_mps;
1591 
1592 	if (edev->pcie_cap) {
1593 		/* Restore MPS */
1594 		old_mps = (ffs(pdn->mps) - 8) << 5;
1595 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
1596 				     2, &devctl);
1597 		devctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
1598 		devctl |= old_mps;
1599 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
1600 				      2, devctl);
1601 
1602 		/* Disable Completion Timeout */
1603 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP2,
1604 				     4, &cap2);
1605 		if (cap2 & 0x10) {
1606 			eeh_ops->read_config(pdn,
1607 					     edev->pcie_cap + PCI_EXP_DEVCTL2,
1608 					     4, &cap2);
1609 			cap2 |= 0x10;
1610 			eeh_ops->write_config(pdn,
1611 					      edev->pcie_cap + PCI_EXP_DEVCTL2,
1612 					      4, cap2);
1613 		}
1614 	}
1615 
1616 	/* Enable SERR and parity checking */
1617 	eeh_ops->read_config(pdn, PCI_COMMAND, 2, &cmd);
1618 	cmd |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR);
1619 	eeh_ops->write_config(pdn, PCI_COMMAND, 2, cmd);
1620 
1621 	/* Enable report various errors */
1622 	if (edev->pcie_cap) {
1623 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
1624 				     2, &devctl);
1625 		devctl &= ~PCI_EXP_DEVCTL_CERE;
1626 		devctl |= (PCI_EXP_DEVCTL_NFERE |
1627 			   PCI_EXP_DEVCTL_FERE |
1628 			   PCI_EXP_DEVCTL_URRE);
1629 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
1630 				      2, devctl);
1631 	}
1632 
1633 	/* Enable ECRC generation and check */
1634 	if (edev->pcie_cap && edev->aer_cap) {
1635 		eeh_ops->read_config(pdn, edev->aer_cap + PCI_ERR_CAP,
1636 				     4, &aer_capctl);
1637 		aer_capctl |= (PCI_ERR_CAP_ECRC_GENE | PCI_ERR_CAP_ECRC_CHKE);
1638 		eeh_ops->write_config(pdn, edev->aer_cap + PCI_ERR_CAP,
1639 				      4, aer_capctl);
1640 	}
1641 
1642 	return 0;
1643 }
1644 
1645 static int pnv_eeh_restore_config(struct pci_dn *pdn)
1646 {
1647 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1648 	struct pnv_phb *phb;
1649 	s64 ret;
1650 
1651 	if (!edev)
1652 		return -EEXIST;
1653 
1654 	/*
1655 	 * We have to restore the PCI config space after reset since the
1656 	 * firmware can't see SRIOV VFs.
1657 	 *
1658 	 * FIXME: The MPS, error routing rules, timeout setting are worthy
1659 	 * to be exported by firmware in extendible way.
1660 	 */
1661 	if (edev->physfn) {
1662 		ret = pnv_eeh_restore_vf_config(pdn);
1663 	} else {
1664 		phb = edev->phb->private_data;
1665 		ret = opal_pci_reinit(phb->opal_id,
1666 				      OPAL_REINIT_PCI_DEV, edev->config_addr);
1667 	}
1668 
1669 	if (ret) {
1670 		pr_warn("%s: Can't reinit PCI dev 0x%x (%lld)\n",
1671 			__func__, edev->config_addr, ret);
1672 		return -EIO;
1673 	}
1674 
1675 	return 0;
1676 }
1677 
1678 static struct eeh_ops pnv_eeh_ops = {
1679 	.name                   = "powernv",
1680 	.init                   = pnv_eeh_init,
1681 	.post_init              = pnv_eeh_post_init,
1682 	.probe			= pnv_eeh_probe,
1683 	.set_option             = pnv_eeh_set_option,
1684 	.get_pe_addr            = pnv_eeh_get_pe_addr,
1685 	.get_state              = pnv_eeh_get_state,
1686 	.reset                  = pnv_eeh_reset,
1687 	.wait_state             = pnv_eeh_wait_state,
1688 	.get_log                = pnv_eeh_get_log,
1689 	.configure_bridge       = pnv_eeh_configure_bridge,
1690 	.err_inject		= pnv_eeh_err_inject,
1691 	.read_config            = pnv_eeh_read_config,
1692 	.write_config           = pnv_eeh_write_config,
1693 	.next_error		= pnv_eeh_next_error,
1694 	.restore_config		= pnv_eeh_restore_config
1695 };
1696 
1697 void pcibios_bus_add_device(struct pci_dev *pdev)
1698 {
1699 	struct pci_dn *pdn = pci_get_pdn(pdev);
1700 
1701 	if (!pdev->is_virtfn)
1702 		return;
1703 
1704 	/*
1705 	 * The following operations will fail if VF's sysfs files
1706 	 * aren't created or its resources aren't finalized.
1707 	 */
1708 	eeh_add_device_early(pdn);
1709 	eeh_add_device_late(pdev);
1710 	eeh_sysfs_add_device(pdev);
1711 }
1712 
1713 #ifdef CONFIG_PCI_IOV
1714 static void pnv_pci_fixup_vf_mps(struct pci_dev *pdev)
1715 {
1716 	struct pci_dn *pdn = pci_get_pdn(pdev);
1717 	int parent_mps;
1718 
1719 	if (!pdev->is_virtfn)
1720 		return;
1721 
1722 	/* Synchronize MPS for VF and PF */
1723 	parent_mps = pcie_get_mps(pdev->physfn);
1724 	if ((128 << pdev->pcie_mpss) >= parent_mps)
1725 		pcie_set_mps(pdev, parent_mps);
1726 	pdn->mps = pcie_get_mps(pdev);
1727 }
1728 DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pnv_pci_fixup_vf_mps);
1729 #endif /* CONFIG_PCI_IOV */
1730 
1731 /**
1732  * eeh_powernv_init - Register platform dependent EEH operations
1733  *
1734  * EEH initialization on powernv platform. This function should be
1735  * called before any EEH related functions.
1736  */
1737 static int __init eeh_powernv_init(void)
1738 {
1739 	int ret = -EINVAL;
1740 
1741 	eeh_set_pe_aux_size(PNV_PCI_DIAG_BUF_SIZE);
1742 	ret = eeh_ops_register(&pnv_eeh_ops);
1743 	if (!ret)
1744 		pr_info("EEH: PowerNV platform initialized\n");
1745 	else
1746 		pr_info("EEH: Failed to initialize PowerNV platform (%d)\n", ret);
1747 
1748 	return ret;
1749 }
1750 machine_early_initcall(powernv, eeh_powernv_init);
1751