1 /* 2 * SMP support for power macintosh. 3 * 4 * We support both the old "powersurge" SMP architecture 5 * and the current Core99 (G4 PowerMac) machines. 6 * 7 * Note that we don't support the very first rev. of 8 * Apple/DayStar 2 CPUs board, the one with the funky 9 * watchdog. Hopefully, none of these should be there except 10 * maybe internally to Apple. I should probably still add some 11 * code to detect this card though and disable SMP. --BenH. 12 * 13 * Support Macintosh G4 SMP by Troy Benjegerdes (hozer@drgw.net) 14 * and Ben Herrenschmidt <benh@kernel.crashing.org>. 15 * 16 * Support for DayStar quad CPU cards 17 * Copyright (C) XLR8, Inc. 1994-2000 18 * 19 * This program is free software; you can redistribute it and/or 20 * modify it under the terms of the GNU General Public License 21 * as published by the Free Software Foundation; either version 22 * 2 of the License, or (at your option) any later version. 23 */ 24 #include <linux/kernel.h> 25 #include <linux/sched.h> 26 #include <linux/smp.h> 27 #include <linux/interrupt.h> 28 #include <linux/kernel_stat.h> 29 #include <linux/delay.h> 30 #include <linux/init.h> 31 #include <linux/spinlock.h> 32 #include <linux/errno.h> 33 #include <linux/hardirq.h> 34 #include <linux/cpu.h> 35 #include <linux/compiler.h> 36 37 #include <asm/ptrace.h> 38 #include <linux/atomic.h> 39 #include <asm/code-patching.h> 40 #include <asm/irq.h> 41 #include <asm/page.h> 42 #include <asm/pgtable.h> 43 #include <asm/sections.h> 44 #include <asm/io.h> 45 #include <asm/prom.h> 46 #include <asm/smp.h> 47 #include <asm/machdep.h> 48 #include <asm/pmac_feature.h> 49 #include <asm/time.h> 50 #include <asm/mpic.h> 51 #include <asm/cacheflush.h> 52 #include <asm/keylargo.h> 53 #include <asm/pmac_low_i2c.h> 54 #include <asm/pmac_pfunc.h> 55 56 #include "pmac.h" 57 58 #undef DEBUG 59 60 #ifdef DEBUG 61 #define DBG(fmt...) udbg_printf(fmt) 62 #else 63 #define DBG(fmt...) 64 #endif 65 66 extern void __secondary_start_pmac_0(void); 67 extern int pmac_pfunc_base_install(void); 68 69 static void (*pmac_tb_freeze)(int freeze); 70 static u64 timebase; 71 static int tb_req; 72 73 #ifdef CONFIG_PPC_PMAC32_PSURGE 74 75 /* 76 * Powersurge (old powermac SMP) support. 77 */ 78 79 /* Addresses for powersurge registers */ 80 #define HAMMERHEAD_BASE 0xf8000000 81 #define HHEAD_CONFIG 0x90 82 #define HHEAD_SEC_INTR 0xc0 83 84 /* register for interrupting the primary processor on the powersurge */ 85 /* N.B. this is actually the ethernet ROM! */ 86 #define PSURGE_PRI_INTR 0xf3019000 87 88 /* register for storing the start address for the secondary processor */ 89 /* N.B. this is the PCI config space address register for the 1st bridge */ 90 #define PSURGE_START 0xf2800000 91 92 /* Daystar/XLR8 4-CPU card */ 93 #define PSURGE_QUAD_REG_ADDR 0xf8800000 94 95 #define PSURGE_QUAD_IRQ_SET 0 96 #define PSURGE_QUAD_IRQ_CLR 1 97 #define PSURGE_QUAD_IRQ_PRIMARY 2 98 #define PSURGE_QUAD_CKSTOP_CTL 3 99 #define PSURGE_QUAD_PRIMARY_ARB 4 100 #define PSURGE_QUAD_BOARD_ID 6 101 #define PSURGE_QUAD_WHICH_CPU 7 102 #define PSURGE_QUAD_CKSTOP_RDBK 8 103 #define PSURGE_QUAD_RESET_CTL 11 104 105 #define PSURGE_QUAD_OUT(r, v) (out_8(quad_base + ((r) << 4) + 4, (v))) 106 #define PSURGE_QUAD_IN(r) (in_8(quad_base + ((r) << 4) + 4) & 0x0f) 107 #define PSURGE_QUAD_BIS(r, v) (PSURGE_QUAD_OUT((r), PSURGE_QUAD_IN(r) | (v))) 108 #define PSURGE_QUAD_BIC(r, v) (PSURGE_QUAD_OUT((r), PSURGE_QUAD_IN(r) & ~(v))) 109 110 /* virtual addresses for the above */ 111 static volatile u8 __iomem *hhead_base; 112 static volatile u8 __iomem *quad_base; 113 static volatile u32 __iomem *psurge_pri_intr; 114 static volatile u8 __iomem *psurge_sec_intr; 115 static volatile u32 __iomem *psurge_start; 116 117 /* values for psurge_type */ 118 #define PSURGE_NONE -1 119 #define PSURGE_DUAL 0 120 #define PSURGE_QUAD_OKEE 1 121 #define PSURGE_QUAD_COTTON 2 122 #define PSURGE_QUAD_ICEGRASS 3 123 124 /* what sort of powersurge board we have */ 125 static int psurge_type = PSURGE_NONE; 126 127 /* irq for secondary cpus to report */ 128 static struct irq_domain *psurge_host; 129 int psurge_secondary_virq; 130 131 /* 132 * Set and clear IPIs for powersurge. 133 */ 134 static inline void psurge_set_ipi(int cpu) 135 { 136 if (psurge_type == PSURGE_NONE) 137 return; 138 if (cpu == 0) 139 in_be32(psurge_pri_intr); 140 else if (psurge_type == PSURGE_DUAL) 141 out_8(psurge_sec_intr, 0); 142 else 143 PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_SET, 1 << cpu); 144 } 145 146 static inline void psurge_clr_ipi(int cpu) 147 { 148 if (cpu > 0) { 149 switch(psurge_type) { 150 case PSURGE_DUAL: 151 out_8(psurge_sec_intr, ~0); 152 case PSURGE_NONE: 153 break; 154 default: 155 PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_CLR, 1 << cpu); 156 } 157 } 158 } 159 160 /* 161 * On powersurge (old SMP powermac architecture) we don't have 162 * separate IPIs for separate messages like openpic does. Instead 163 * use the generic demux helpers 164 * -- paulus. 165 */ 166 static irqreturn_t psurge_ipi_intr(int irq, void *d) 167 { 168 psurge_clr_ipi(smp_processor_id()); 169 smp_ipi_demux(); 170 171 return IRQ_HANDLED; 172 } 173 174 static void smp_psurge_cause_ipi(int cpu, unsigned long data) 175 { 176 psurge_set_ipi(cpu); 177 } 178 179 static int psurge_host_map(struct irq_domain *h, unsigned int virq, 180 irq_hw_number_t hw) 181 { 182 irq_set_chip_and_handler(virq, &dummy_irq_chip, handle_percpu_irq); 183 184 return 0; 185 } 186 187 static const struct irq_domain_ops psurge_host_ops = { 188 .map = psurge_host_map, 189 }; 190 191 static int psurge_secondary_ipi_init(void) 192 { 193 int rc = -ENOMEM; 194 195 psurge_host = irq_domain_add_nomap(NULL, ~0, &psurge_host_ops, NULL); 196 197 if (psurge_host) 198 psurge_secondary_virq = irq_create_direct_mapping(psurge_host); 199 200 if (psurge_secondary_virq) 201 rc = request_irq(psurge_secondary_virq, psurge_ipi_intr, 202 IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL); 203 204 if (rc) 205 pr_err("Failed to setup secondary cpu IPI\n"); 206 207 return rc; 208 } 209 210 /* 211 * Determine a quad card presence. We read the board ID register, we 212 * force the data bus to change to something else, and we read it again. 213 * It it's stable, then the register probably exist (ugh !) 214 */ 215 static int __init psurge_quad_probe(void) 216 { 217 int type; 218 unsigned int i; 219 220 type = PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID); 221 if (type < PSURGE_QUAD_OKEE || type > PSURGE_QUAD_ICEGRASS 222 || type != PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID)) 223 return PSURGE_DUAL; 224 225 /* looks OK, try a slightly more rigorous test */ 226 /* bogus is not necessarily cacheline-aligned, 227 though I don't suppose that really matters. -- paulus */ 228 for (i = 0; i < 100; i++) { 229 volatile u32 bogus[8]; 230 bogus[(0+i)%8] = 0x00000000; 231 bogus[(1+i)%8] = 0x55555555; 232 bogus[(2+i)%8] = 0xFFFFFFFF; 233 bogus[(3+i)%8] = 0xAAAAAAAA; 234 bogus[(4+i)%8] = 0x33333333; 235 bogus[(5+i)%8] = 0xCCCCCCCC; 236 bogus[(6+i)%8] = 0xCCCCCCCC; 237 bogus[(7+i)%8] = 0x33333333; 238 wmb(); 239 asm volatile("dcbf 0,%0" : : "r" (bogus) : "memory"); 240 mb(); 241 if (type != PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID)) 242 return PSURGE_DUAL; 243 } 244 return type; 245 } 246 247 static void __init psurge_quad_init(void) 248 { 249 int procbits; 250 251 if (ppc_md.progress) ppc_md.progress("psurge_quad_init", 0x351); 252 procbits = ~PSURGE_QUAD_IN(PSURGE_QUAD_WHICH_CPU); 253 if (psurge_type == PSURGE_QUAD_ICEGRASS) 254 PSURGE_QUAD_BIS(PSURGE_QUAD_RESET_CTL, procbits); 255 else 256 PSURGE_QUAD_BIC(PSURGE_QUAD_CKSTOP_CTL, procbits); 257 mdelay(33); 258 out_8(psurge_sec_intr, ~0); 259 PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_CLR, procbits); 260 PSURGE_QUAD_BIS(PSURGE_QUAD_RESET_CTL, procbits); 261 if (psurge_type != PSURGE_QUAD_ICEGRASS) 262 PSURGE_QUAD_BIS(PSURGE_QUAD_CKSTOP_CTL, procbits); 263 PSURGE_QUAD_BIC(PSURGE_QUAD_PRIMARY_ARB, procbits); 264 mdelay(33); 265 PSURGE_QUAD_BIC(PSURGE_QUAD_RESET_CTL, procbits); 266 mdelay(33); 267 PSURGE_QUAD_BIS(PSURGE_QUAD_PRIMARY_ARB, procbits); 268 mdelay(33); 269 } 270 271 static int __init smp_psurge_probe(void) 272 { 273 int i, ncpus; 274 struct device_node *dn; 275 276 /* We don't do SMP on the PPC601 -- paulus */ 277 if (PVR_VER(mfspr(SPRN_PVR)) == 1) 278 return 1; 279 280 /* 281 * The powersurge cpu board can be used in the generation 282 * of powermacs that have a socket for an upgradeable cpu card, 283 * including the 7500, 8500, 9500, 9600. 284 * The device tree doesn't tell you if you have 2 cpus because 285 * OF doesn't know anything about the 2nd processor. 286 * Instead we look for magic bits in magic registers, 287 * in the hammerhead memory controller in the case of the 288 * dual-cpu powersurge board. -- paulus. 289 */ 290 dn = of_find_node_by_name(NULL, "hammerhead"); 291 if (dn == NULL) 292 return 1; 293 of_node_put(dn); 294 295 hhead_base = ioremap(HAMMERHEAD_BASE, 0x800); 296 quad_base = ioremap(PSURGE_QUAD_REG_ADDR, 1024); 297 psurge_sec_intr = hhead_base + HHEAD_SEC_INTR; 298 299 psurge_type = psurge_quad_probe(); 300 if (psurge_type != PSURGE_DUAL) { 301 psurge_quad_init(); 302 /* All released cards using this HW design have 4 CPUs */ 303 ncpus = 4; 304 /* No sure how timebase sync works on those, let's use SW */ 305 smp_ops->give_timebase = smp_generic_give_timebase; 306 smp_ops->take_timebase = smp_generic_take_timebase; 307 } else { 308 iounmap(quad_base); 309 if ((in_8(hhead_base + HHEAD_CONFIG) & 0x02) == 0) { 310 /* not a dual-cpu card */ 311 iounmap(hhead_base); 312 psurge_type = PSURGE_NONE; 313 return 1; 314 } 315 ncpus = 2; 316 } 317 318 if (psurge_secondary_ipi_init()) 319 return 1; 320 321 psurge_start = ioremap(PSURGE_START, 4); 322 psurge_pri_intr = ioremap(PSURGE_PRI_INTR, 4); 323 324 /* This is necessary because OF doesn't know about the 325 * secondary cpu(s), and thus there aren't nodes in the 326 * device tree for them, and smp_setup_cpu_maps hasn't 327 * set their bits in cpu_present_mask. 328 */ 329 if (ncpus > NR_CPUS) 330 ncpus = NR_CPUS; 331 for (i = 1; i < ncpus ; ++i) 332 set_cpu_present(i, true); 333 334 if (ppc_md.progress) ppc_md.progress("smp_psurge_probe - done", 0x352); 335 336 return ncpus; 337 } 338 339 static int __init smp_psurge_kick_cpu(int nr) 340 { 341 unsigned long start = __pa(__secondary_start_pmac_0) + nr * 8; 342 unsigned long a, flags; 343 int i, j; 344 345 /* Defining this here is evil ... but I prefer hiding that 346 * crap to avoid giving people ideas that they can do the 347 * same. 348 */ 349 extern volatile unsigned int cpu_callin_map[NR_CPUS]; 350 351 /* may need to flush here if secondary bats aren't setup */ 352 for (a = KERNELBASE; a < KERNELBASE + 0x800000; a += 32) 353 asm volatile("dcbf 0,%0" : : "r" (a) : "memory"); 354 asm volatile("sync"); 355 356 if (ppc_md.progress) ppc_md.progress("smp_psurge_kick_cpu", 0x353); 357 358 /* This is going to freeze the timeebase, we disable interrupts */ 359 local_irq_save(flags); 360 361 out_be32(psurge_start, start); 362 mb(); 363 364 psurge_set_ipi(nr); 365 366 /* 367 * We can't use udelay here because the timebase is now frozen. 368 */ 369 for (i = 0; i < 2000; ++i) 370 asm volatile("nop" : : : "memory"); 371 psurge_clr_ipi(nr); 372 373 /* 374 * Also, because the timebase is frozen, we must not return to the 375 * caller which will try to do udelay's etc... Instead, we wait -here- 376 * for the CPU to callin. 377 */ 378 for (i = 0; i < 100000 && !cpu_callin_map[nr]; ++i) { 379 for (j = 1; j < 10000; j++) 380 asm volatile("nop" : : : "memory"); 381 asm volatile("sync" : : : "memory"); 382 } 383 if (!cpu_callin_map[nr]) 384 goto stuck; 385 386 /* And we do the TB sync here too for standard dual CPU cards */ 387 if (psurge_type == PSURGE_DUAL) { 388 while(!tb_req) 389 barrier(); 390 tb_req = 0; 391 mb(); 392 timebase = get_tb(); 393 mb(); 394 while (timebase) 395 barrier(); 396 mb(); 397 } 398 stuck: 399 /* now interrupt the secondary, restarting both TBs */ 400 if (psurge_type == PSURGE_DUAL) 401 psurge_set_ipi(1); 402 403 if (ppc_md.progress) ppc_md.progress("smp_psurge_kick_cpu - done", 0x354); 404 405 return 0; 406 } 407 408 static struct irqaction psurge_irqaction = { 409 .handler = psurge_ipi_intr, 410 .flags = IRQF_PERCPU | IRQF_NO_THREAD, 411 .name = "primary IPI", 412 }; 413 414 static void __init smp_psurge_setup_cpu(int cpu_nr) 415 { 416 if (cpu_nr != 0 || !psurge_start) 417 return; 418 419 /* reset the entry point so if we get another intr we won't 420 * try to startup again */ 421 out_be32(psurge_start, 0x100); 422 if (setup_irq(irq_create_mapping(NULL, 30), &psurge_irqaction)) 423 printk(KERN_ERR "Couldn't get primary IPI interrupt"); 424 } 425 426 void __init smp_psurge_take_timebase(void) 427 { 428 if (psurge_type != PSURGE_DUAL) 429 return; 430 431 tb_req = 1; 432 mb(); 433 while (!timebase) 434 barrier(); 435 mb(); 436 set_tb(timebase >> 32, timebase & 0xffffffff); 437 timebase = 0; 438 mb(); 439 set_dec(tb_ticks_per_jiffy/2); 440 } 441 442 void __init smp_psurge_give_timebase(void) 443 { 444 /* Nothing to do here */ 445 } 446 447 /* PowerSurge-style Macs */ 448 struct smp_ops_t psurge_smp_ops = { 449 .message_pass = NULL, /* Use smp_muxed_ipi_message_pass */ 450 .cause_ipi = smp_psurge_cause_ipi, 451 .probe = smp_psurge_probe, 452 .kick_cpu = smp_psurge_kick_cpu, 453 .setup_cpu = smp_psurge_setup_cpu, 454 .give_timebase = smp_psurge_give_timebase, 455 .take_timebase = smp_psurge_take_timebase, 456 }; 457 #endif /* CONFIG_PPC_PMAC32_PSURGE */ 458 459 /* 460 * Core 99 and later support 461 */ 462 463 464 static void smp_core99_give_timebase(void) 465 { 466 unsigned long flags; 467 468 local_irq_save(flags); 469 470 while(!tb_req) 471 barrier(); 472 tb_req = 0; 473 (*pmac_tb_freeze)(1); 474 mb(); 475 timebase = get_tb(); 476 mb(); 477 while (timebase) 478 barrier(); 479 mb(); 480 (*pmac_tb_freeze)(0); 481 mb(); 482 483 local_irq_restore(flags); 484 } 485 486 487 static void smp_core99_take_timebase(void) 488 { 489 unsigned long flags; 490 491 local_irq_save(flags); 492 493 tb_req = 1; 494 mb(); 495 while (!timebase) 496 barrier(); 497 mb(); 498 set_tb(timebase >> 32, timebase & 0xffffffff); 499 timebase = 0; 500 mb(); 501 502 local_irq_restore(flags); 503 } 504 505 #ifdef CONFIG_PPC64 506 /* 507 * G5s enable/disable the timebase via an i2c-connected clock chip. 508 */ 509 static struct pmac_i2c_bus *pmac_tb_clock_chip_host; 510 static u8 pmac_tb_pulsar_addr; 511 512 static void smp_core99_cypress_tb_freeze(int freeze) 513 { 514 u8 data; 515 int rc; 516 517 /* Strangely, the device-tree says address is 0xd2, but darwin 518 * accesses 0xd0 ... 519 */ 520 pmac_i2c_setmode(pmac_tb_clock_chip_host, 521 pmac_i2c_mode_combined); 522 rc = pmac_i2c_xfer(pmac_tb_clock_chip_host, 523 0xd0 | pmac_i2c_read, 524 1, 0x81, &data, 1); 525 if (rc != 0) 526 goto bail; 527 528 data = (data & 0xf3) | (freeze ? 0x00 : 0x0c); 529 530 pmac_i2c_setmode(pmac_tb_clock_chip_host, pmac_i2c_mode_stdsub); 531 rc = pmac_i2c_xfer(pmac_tb_clock_chip_host, 532 0xd0 | pmac_i2c_write, 533 1, 0x81, &data, 1); 534 535 bail: 536 if (rc != 0) { 537 printk("Cypress Timebase %s rc: %d\n", 538 freeze ? "freeze" : "unfreeze", rc); 539 panic("Timebase freeze failed !\n"); 540 } 541 } 542 543 544 static void smp_core99_pulsar_tb_freeze(int freeze) 545 { 546 u8 data; 547 int rc; 548 549 pmac_i2c_setmode(pmac_tb_clock_chip_host, 550 pmac_i2c_mode_combined); 551 rc = pmac_i2c_xfer(pmac_tb_clock_chip_host, 552 pmac_tb_pulsar_addr | pmac_i2c_read, 553 1, 0x2e, &data, 1); 554 if (rc != 0) 555 goto bail; 556 557 data = (data & 0x88) | (freeze ? 0x11 : 0x22); 558 559 pmac_i2c_setmode(pmac_tb_clock_chip_host, pmac_i2c_mode_stdsub); 560 rc = pmac_i2c_xfer(pmac_tb_clock_chip_host, 561 pmac_tb_pulsar_addr | pmac_i2c_write, 562 1, 0x2e, &data, 1); 563 bail: 564 if (rc != 0) { 565 printk(KERN_ERR "Pulsar Timebase %s rc: %d\n", 566 freeze ? "freeze" : "unfreeze", rc); 567 panic("Timebase freeze failed !\n"); 568 } 569 } 570 571 static void __init smp_core99_setup_i2c_hwsync(int ncpus) 572 { 573 struct device_node *cc = NULL; 574 struct device_node *p; 575 const char *name = NULL; 576 const u32 *reg; 577 int ok; 578 579 /* Look for the clock chip */ 580 for_each_node_by_name(cc, "i2c-hwclock") { 581 p = of_get_parent(cc); 582 ok = p && of_device_is_compatible(p, "uni-n-i2c"); 583 of_node_put(p); 584 if (!ok) 585 continue; 586 587 pmac_tb_clock_chip_host = pmac_i2c_find_bus(cc); 588 if (pmac_tb_clock_chip_host == NULL) 589 continue; 590 reg = of_get_property(cc, "reg", NULL); 591 if (reg == NULL) 592 continue; 593 switch (*reg) { 594 case 0xd2: 595 if (of_device_is_compatible(cc,"pulsar-legacy-slewing")) { 596 pmac_tb_freeze = smp_core99_pulsar_tb_freeze; 597 pmac_tb_pulsar_addr = 0xd2; 598 name = "Pulsar"; 599 } else if (of_device_is_compatible(cc, "cy28508")) { 600 pmac_tb_freeze = smp_core99_cypress_tb_freeze; 601 name = "Cypress"; 602 } 603 break; 604 case 0xd4: 605 pmac_tb_freeze = smp_core99_pulsar_tb_freeze; 606 pmac_tb_pulsar_addr = 0xd4; 607 name = "Pulsar"; 608 break; 609 } 610 if (pmac_tb_freeze != NULL) 611 break; 612 } 613 if (pmac_tb_freeze != NULL) { 614 /* Open i2c bus for synchronous access */ 615 if (pmac_i2c_open(pmac_tb_clock_chip_host, 1)) { 616 printk(KERN_ERR "Failed top open i2c bus for clock" 617 " sync, fallback to software sync !\n"); 618 goto no_i2c_sync; 619 } 620 printk(KERN_INFO "Processor timebase sync using %s i2c clock\n", 621 name); 622 return; 623 } 624 no_i2c_sync: 625 pmac_tb_freeze = NULL; 626 pmac_tb_clock_chip_host = NULL; 627 } 628 629 630 631 /* 632 * Newer G5s uses a platform function 633 */ 634 635 static void smp_core99_pfunc_tb_freeze(int freeze) 636 { 637 struct device_node *cpus; 638 struct pmf_args args; 639 640 cpus = of_find_node_by_path("/cpus"); 641 BUG_ON(cpus == NULL); 642 args.count = 1; 643 args.u[0].v = !freeze; 644 pmf_call_function(cpus, "cpu-timebase", &args); 645 of_node_put(cpus); 646 } 647 648 #else /* CONFIG_PPC64 */ 649 650 /* 651 * SMP G4 use a GPIO to enable/disable the timebase. 652 */ 653 654 static unsigned int core99_tb_gpio; /* Timebase freeze GPIO */ 655 656 static void smp_core99_gpio_tb_freeze(int freeze) 657 { 658 if (freeze) 659 pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, core99_tb_gpio, 4); 660 else 661 pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, core99_tb_gpio, 0); 662 pmac_call_feature(PMAC_FTR_READ_GPIO, NULL, core99_tb_gpio, 0); 663 } 664 665 666 #endif /* !CONFIG_PPC64 */ 667 668 /* L2 and L3 cache settings to pass from CPU0 to CPU1 on G4 cpus */ 669 volatile static long int core99_l2_cache; 670 volatile static long int core99_l3_cache; 671 672 static void core99_init_caches(int cpu) 673 { 674 #ifndef CONFIG_PPC64 675 if (!cpu_has_feature(CPU_FTR_L2CR)) 676 return; 677 678 if (cpu == 0) { 679 core99_l2_cache = _get_L2CR(); 680 printk("CPU0: L2CR is %lx\n", core99_l2_cache); 681 } else { 682 printk("CPU%d: L2CR was %lx\n", cpu, _get_L2CR()); 683 _set_L2CR(0); 684 _set_L2CR(core99_l2_cache); 685 printk("CPU%d: L2CR set to %lx\n", cpu, core99_l2_cache); 686 } 687 688 if (!cpu_has_feature(CPU_FTR_L3CR)) 689 return; 690 691 if (cpu == 0){ 692 core99_l3_cache = _get_L3CR(); 693 printk("CPU0: L3CR is %lx\n", core99_l3_cache); 694 } else { 695 printk("CPU%d: L3CR was %lx\n", cpu, _get_L3CR()); 696 _set_L3CR(0); 697 _set_L3CR(core99_l3_cache); 698 printk("CPU%d: L3CR set to %lx\n", cpu, core99_l3_cache); 699 } 700 #endif /* !CONFIG_PPC64 */ 701 } 702 703 static void __init smp_core99_setup(int ncpus) 704 { 705 #ifdef CONFIG_PPC64 706 707 /* i2c based HW sync on some G5s */ 708 if (of_machine_is_compatible("PowerMac7,2") || 709 of_machine_is_compatible("PowerMac7,3") || 710 of_machine_is_compatible("RackMac3,1")) 711 smp_core99_setup_i2c_hwsync(ncpus); 712 713 /* pfunc based HW sync on recent G5s */ 714 if (pmac_tb_freeze == NULL) { 715 struct device_node *cpus = 716 of_find_node_by_path("/cpus"); 717 if (cpus && 718 of_get_property(cpus, "platform-cpu-timebase", NULL)) { 719 pmac_tb_freeze = smp_core99_pfunc_tb_freeze; 720 printk(KERN_INFO "Processor timebase sync using" 721 " platform function\n"); 722 } 723 } 724 725 #else /* CONFIG_PPC64 */ 726 727 /* GPIO based HW sync on ppc32 Core99 */ 728 if (pmac_tb_freeze == NULL && !of_machine_is_compatible("MacRISC4")) { 729 struct device_node *cpu; 730 const u32 *tbprop = NULL; 731 732 core99_tb_gpio = KL_GPIO_TB_ENABLE; /* default value */ 733 cpu = of_find_node_by_type(NULL, "cpu"); 734 if (cpu != NULL) { 735 tbprop = of_get_property(cpu, "timebase-enable", NULL); 736 if (tbprop) 737 core99_tb_gpio = *tbprop; 738 of_node_put(cpu); 739 } 740 pmac_tb_freeze = smp_core99_gpio_tb_freeze; 741 printk(KERN_INFO "Processor timebase sync using" 742 " GPIO 0x%02x\n", core99_tb_gpio); 743 } 744 745 #endif /* CONFIG_PPC64 */ 746 747 /* No timebase sync, fallback to software */ 748 if (pmac_tb_freeze == NULL) { 749 smp_ops->give_timebase = smp_generic_give_timebase; 750 smp_ops->take_timebase = smp_generic_take_timebase; 751 printk(KERN_INFO "Processor timebase sync using software\n"); 752 } 753 754 #ifndef CONFIG_PPC64 755 { 756 int i; 757 758 /* XXX should get this from reg properties */ 759 for (i = 1; i < ncpus; ++i) 760 set_hard_smp_processor_id(i, i); 761 } 762 #endif 763 764 /* 32 bits SMP can't NAP */ 765 if (!of_machine_is_compatible("MacRISC4")) 766 powersave_nap = 0; 767 } 768 769 static int __init smp_core99_probe(void) 770 { 771 struct device_node *cpus; 772 int ncpus = 0; 773 774 if (ppc_md.progress) ppc_md.progress("smp_core99_probe", 0x345); 775 776 /* Count CPUs in the device-tree */ 777 for (cpus = NULL; (cpus = of_find_node_by_type(cpus, "cpu")) != NULL;) 778 ++ncpus; 779 780 printk(KERN_INFO "PowerMac SMP probe found %d cpus\n", ncpus); 781 782 /* Nothing more to do if less than 2 of them */ 783 if (ncpus <= 1) 784 return 1; 785 786 /* We need to perform some early initialisations before we can start 787 * setting up SMP as we are running before initcalls 788 */ 789 pmac_pfunc_base_install(); 790 pmac_i2c_init(); 791 792 /* Setup various bits like timebase sync method, ability to nap, ... */ 793 smp_core99_setup(ncpus); 794 795 /* Install IPIs */ 796 mpic_request_ipis(); 797 798 /* Collect l2cr and l3cr values from CPU 0 */ 799 core99_init_caches(0); 800 801 return ncpus; 802 } 803 804 static int smp_core99_kick_cpu(int nr) 805 { 806 unsigned int save_vector; 807 unsigned long target, flags; 808 unsigned int *vector = (unsigned int *)(PAGE_OFFSET+0x100); 809 810 if (nr < 0 || nr > 3) 811 return -ENOENT; 812 813 if (ppc_md.progress) 814 ppc_md.progress("smp_core99_kick_cpu", 0x346); 815 816 local_irq_save(flags); 817 818 /* Save reset vector */ 819 save_vector = *vector; 820 821 /* Setup fake reset vector that does 822 * b __secondary_start_pmac_0 + nr*8 823 */ 824 target = (unsigned long) __secondary_start_pmac_0 + nr * 8; 825 patch_branch(vector, target, BRANCH_SET_LINK); 826 827 /* Put some life in our friend */ 828 pmac_call_feature(PMAC_FTR_RESET_CPU, NULL, nr, 0); 829 830 /* FIXME: We wait a bit for the CPU to take the exception, I should 831 * instead wait for the entry code to set something for me. Well, 832 * ideally, all that crap will be done in prom.c and the CPU left 833 * in a RAM-based wait loop like CHRP. 834 */ 835 mdelay(1); 836 837 /* Restore our exception vector */ 838 *vector = save_vector; 839 flush_icache_range((unsigned long) vector, (unsigned long) vector + 4); 840 841 local_irq_restore(flags); 842 if (ppc_md.progress) ppc_md.progress("smp_core99_kick_cpu done", 0x347); 843 844 return 0; 845 } 846 847 static void smp_core99_setup_cpu(int cpu_nr) 848 { 849 /* Setup L2/L3 */ 850 if (cpu_nr != 0) 851 core99_init_caches(cpu_nr); 852 853 /* Setup openpic */ 854 mpic_setup_this_cpu(); 855 } 856 857 #ifdef CONFIG_PPC64 858 #ifdef CONFIG_HOTPLUG_CPU 859 static int smp_core99_cpu_notify(struct notifier_block *self, 860 unsigned long action, void *hcpu) 861 { 862 int rc; 863 864 switch(action) { 865 case CPU_UP_PREPARE: 866 case CPU_UP_PREPARE_FROZEN: 867 /* Open i2c bus if it was used for tb sync */ 868 if (pmac_tb_clock_chip_host) { 869 rc = pmac_i2c_open(pmac_tb_clock_chip_host, 1); 870 if (rc) { 871 pr_err("Failed to open i2c bus for time sync\n"); 872 return notifier_from_errno(rc); 873 } 874 } 875 break; 876 case CPU_ONLINE: 877 case CPU_UP_CANCELED: 878 /* Close i2c bus if it was used for tb sync */ 879 if (pmac_tb_clock_chip_host) 880 pmac_i2c_close(pmac_tb_clock_chip_host); 881 break; 882 default: 883 break; 884 } 885 return NOTIFY_OK; 886 } 887 888 static struct notifier_block smp_core99_cpu_nb = { 889 .notifier_call = smp_core99_cpu_notify, 890 }; 891 #endif /* CONFIG_HOTPLUG_CPU */ 892 893 static void __init smp_core99_bringup_done(void) 894 { 895 extern void g5_phy_disable_cpu1(void); 896 897 /* Close i2c bus if it was used for tb sync */ 898 if (pmac_tb_clock_chip_host) 899 pmac_i2c_close(pmac_tb_clock_chip_host); 900 901 /* If we didn't start the second CPU, we must take 902 * it off the bus. 903 */ 904 if (of_machine_is_compatible("MacRISC4") && 905 num_online_cpus() < 2) { 906 set_cpu_present(1, false); 907 g5_phy_disable_cpu1(); 908 } 909 #ifdef CONFIG_HOTPLUG_CPU 910 register_cpu_notifier(&smp_core99_cpu_nb); 911 #endif 912 913 if (ppc_md.progress) 914 ppc_md.progress("smp_core99_bringup_done", 0x349); 915 } 916 #endif /* CONFIG_PPC64 */ 917 918 #ifdef CONFIG_HOTPLUG_CPU 919 920 static int smp_core99_cpu_disable(void) 921 { 922 int rc = generic_cpu_disable(); 923 if (rc) 924 return rc; 925 926 mpic_cpu_set_priority(0xf); 927 928 return 0; 929 } 930 931 #ifdef CONFIG_PPC32 932 933 static void pmac_cpu_die(void) 934 { 935 int cpu = smp_processor_id(); 936 937 local_irq_disable(); 938 idle_task_exit(); 939 pr_debug("CPU%d offline\n", cpu); 940 generic_set_cpu_dead(cpu); 941 smp_wmb(); 942 mb(); 943 low_cpu_die(); 944 } 945 946 #else /* CONFIG_PPC32 */ 947 948 static void pmac_cpu_die(void) 949 { 950 int cpu = smp_processor_id(); 951 952 local_irq_disable(); 953 idle_task_exit(); 954 955 /* 956 * turn off as much as possible, we'll be 957 * kicked out as this will only be invoked 958 * on core99 platforms for now ... 959 */ 960 961 printk(KERN_INFO "CPU#%d offline\n", cpu); 962 generic_set_cpu_dead(cpu); 963 smp_wmb(); 964 965 /* 966 * Re-enable interrupts. The NAP code needs to enable them 967 * anyways, do it now so we deal with the case where one already 968 * happened while soft-disabled. 969 * We shouldn't get any external interrupts, only decrementer, and the 970 * decrementer handler is safe for use on offline CPUs 971 */ 972 local_irq_enable(); 973 974 while (1) { 975 /* let's not take timer interrupts too often ... */ 976 set_dec(0x7fffffff); 977 978 /* Enter NAP mode */ 979 power4_idle(); 980 } 981 } 982 983 #endif /* else CONFIG_PPC32 */ 984 #endif /* CONFIG_HOTPLUG_CPU */ 985 986 /* Core99 Macs (dual G4s and G5s) */ 987 struct smp_ops_t core99_smp_ops = { 988 .message_pass = smp_mpic_message_pass, 989 .probe = smp_core99_probe, 990 #ifdef CONFIG_PPC64 991 .bringup_done = smp_core99_bringup_done, 992 #endif 993 .kick_cpu = smp_core99_kick_cpu, 994 .setup_cpu = smp_core99_setup_cpu, 995 .give_timebase = smp_core99_give_timebase, 996 .take_timebase = smp_core99_take_timebase, 997 #if defined(CONFIG_HOTPLUG_CPU) 998 .cpu_disable = smp_core99_cpu_disable, 999 .cpu_die = generic_cpu_die, 1000 #endif 1001 }; 1002 1003 void __init pmac_setup_smp(void) 1004 { 1005 struct device_node *np; 1006 1007 /* Check for Core99 */ 1008 np = of_find_node_by_name(NULL, "uni-n"); 1009 if (!np) 1010 np = of_find_node_by_name(NULL, "u3"); 1011 if (!np) 1012 np = of_find_node_by_name(NULL, "u4"); 1013 if (np) { 1014 of_node_put(np); 1015 smp_ops = &core99_smp_ops; 1016 } 1017 #ifdef CONFIG_PPC_PMAC32_PSURGE 1018 else { 1019 /* We have to set bits in cpu_possible_mask here since the 1020 * secondary CPU(s) aren't in the device tree. Various 1021 * things won't be initialized for CPUs not in the possible 1022 * map, so we really need to fix it up here. 1023 */ 1024 int cpu; 1025 1026 for (cpu = 1; cpu < 4 && cpu < NR_CPUS; ++cpu) 1027 set_cpu_possible(cpu, true); 1028 smp_ops = &psurge_smp_ops; 1029 } 1030 #endif /* CONFIG_PPC_PMAC32_PSURGE */ 1031 1032 #ifdef CONFIG_HOTPLUG_CPU 1033 ppc_md.cpu_die = pmac_cpu_die; 1034 #endif 1035 } 1036 1037 1038