1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2002 Benjamin Herrenschmidt (benh@kernel.crashing.org)
4 *
5 * Todo: - add support for the OF persistent properties
6 */
7 #include <linux/export.h>
8 #include <linux/kernel.h>
9 #include <linux/stddef.h>
10 #include <linux/string.h>
11 #include <linux/nvram.h>
12 #include <linux/init.h>
13 #include <linux/delay.h>
14 #include <linux/errno.h>
15 #include <linux/adb.h>
16 #include <linux/pmu.h>
17 #include <linux/memblock.h>
18 #include <linux/completion.h>
19 #include <linux/spinlock.h>
20 #include <linux/of_address.h>
21 #include <asm/sections.h>
22 #include <asm/io.h>
23 #include <asm/machdep.h>
24 #include <asm/nvram.h>
25
26 #include "pmac.h"
27
28 #define DEBUG
29
30 #ifdef DEBUG
31 #define DBG(x...) printk(x)
32 #else
33 #define DBG(x...)
34 #endif
35
36 #define NVRAM_SIZE 0x2000 /* 8kB of non-volatile RAM */
37
38 #define CORE99_SIGNATURE 0x5a
39 #define CORE99_ADLER_START 0x14
40
41 /* On Core99, nvram is either a sharp, a micron or an AMD flash */
42 #define SM_FLASH_STATUS_DONE 0x80
43 #define SM_FLASH_STATUS_ERR 0x38
44
45 #define SM_FLASH_CMD_ERASE_CONFIRM 0xd0
46 #define SM_FLASH_CMD_ERASE_SETUP 0x20
47 #define SM_FLASH_CMD_RESET 0xff
48 #define SM_FLASH_CMD_WRITE_SETUP 0x40
49 #define SM_FLASH_CMD_CLEAR_STATUS 0x50
50 #define SM_FLASH_CMD_READ_STATUS 0x70
51
52 /* CHRP NVRAM header */
53 struct chrp_header {
54 u8 signature;
55 u8 cksum;
56 u16 len;
57 char name[12];
58 u8 data[];
59 };
60
61 struct core99_header {
62 struct chrp_header hdr;
63 u32 adler;
64 u32 generation;
65 u32 reserved[2];
66 };
67
68 /*
69 * Read and write the non-volatile RAM on PowerMacs and CHRP machines.
70 */
71 static int nvram_naddrs;
72 static volatile unsigned char __iomem *nvram_data;
73 static int is_core_99;
74 static int core99_bank;
75 static int nvram_partitions[3];
76 // XXX Turn that into a sem
77 static DEFINE_RAW_SPINLOCK(nv_lock);
78
79 static int (*core99_write_bank)(int bank, u8* datas);
80 static int (*core99_erase_bank)(int bank);
81
82 static char *nvram_image;
83
84
core99_nvram_read_byte(int addr)85 static unsigned char core99_nvram_read_byte(int addr)
86 {
87 if (nvram_image == NULL)
88 return 0xff;
89 return nvram_image[addr];
90 }
91
core99_nvram_write_byte(int addr,unsigned char val)92 static void core99_nvram_write_byte(int addr, unsigned char val)
93 {
94 if (nvram_image == NULL)
95 return;
96 nvram_image[addr] = val;
97 }
98
core99_nvram_read(char * buf,size_t count,loff_t * index)99 static ssize_t core99_nvram_read(char *buf, size_t count, loff_t *index)
100 {
101 int i;
102
103 if (nvram_image == NULL)
104 return -ENODEV;
105 if (*index > NVRAM_SIZE)
106 return 0;
107
108 i = *index;
109 if (i + count > NVRAM_SIZE)
110 count = NVRAM_SIZE - i;
111
112 memcpy(buf, &nvram_image[i], count);
113 *index = i + count;
114 return count;
115 }
116
core99_nvram_write(char * buf,size_t count,loff_t * index)117 static ssize_t core99_nvram_write(char *buf, size_t count, loff_t *index)
118 {
119 int i;
120
121 if (nvram_image == NULL)
122 return -ENODEV;
123 if (*index > NVRAM_SIZE)
124 return 0;
125
126 i = *index;
127 if (i + count > NVRAM_SIZE)
128 count = NVRAM_SIZE - i;
129
130 memcpy(&nvram_image[i], buf, count);
131 *index = i + count;
132 return count;
133 }
134
core99_nvram_size(void)135 static ssize_t core99_nvram_size(void)
136 {
137 if (nvram_image == NULL)
138 return -ENODEV;
139 return NVRAM_SIZE;
140 }
141
142 #ifdef CONFIG_PPC32
143 static volatile unsigned char __iomem *nvram_addr;
144 static int nvram_mult;
145
ppc32_nvram_size(void)146 static ssize_t ppc32_nvram_size(void)
147 {
148 return NVRAM_SIZE;
149 }
150
direct_nvram_read_byte(int addr)151 static unsigned char direct_nvram_read_byte(int addr)
152 {
153 return in_8(&nvram_data[(addr & (NVRAM_SIZE - 1)) * nvram_mult]);
154 }
155
direct_nvram_write_byte(int addr,unsigned char val)156 static void direct_nvram_write_byte(int addr, unsigned char val)
157 {
158 out_8(&nvram_data[(addr & (NVRAM_SIZE - 1)) * nvram_mult], val);
159 }
160
161
indirect_nvram_read_byte(int addr)162 static unsigned char indirect_nvram_read_byte(int addr)
163 {
164 unsigned char val;
165 unsigned long flags;
166
167 raw_spin_lock_irqsave(&nv_lock, flags);
168 out_8(nvram_addr, addr >> 5);
169 val = in_8(&nvram_data[(addr & 0x1f) << 4]);
170 raw_spin_unlock_irqrestore(&nv_lock, flags);
171
172 return val;
173 }
174
indirect_nvram_write_byte(int addr,unsigned char val)175 static void indirect_nvram_write_byte(int addr, unsigned char val)
176 {
177 unsigned long flags;
178
179 raw_spin_lock_irqsave(&nv_lock, flags);
180 out_8(nvram_addr, addr >> 5);
181 out_8(&nvram_data[(addr & 0x1f) << 4], val);
182 raw_spin_unlock_irqrestore(&nv_lock, flags);
183 }
184
185
186 #ifdef CONFIG_ADB_PMU
187
pmu_nvram_complete(struct adb_request * req)188 static void pmu_nvram_complete(struct adb_request *req)
189 {
190 if (req->arg)
191 complete((struct completion *)req->arg);
192 }
193
pmu_nvram_read_byte(int addr)194 static unsigned char pmu_nvram_read_byte(int addr)
195 {
196 struct adb_request req;
197 DECLARE_COMPLETION_ONSTACK(req_complete);
198
199 req.arg = system_state == SYSTEM_RUNNING ? &req_complete : NULL;
200 if (pmu_request(&req, pmu_nvram_complete, 3, PMU_READ_NVRAM,
201 (addr >> 8) & 0xff, addr & 0xff))
202 return 0xff;
203 if (system_state == SYSTEM_RUNNING)
204 wait_for_completion(&req_complete);
205 while (!req.complete)
206 pmu_poll();
207 return req.reply[0];
208 }
209
pmu_nvram_write_byte(int addr,unsigned char val)210 static void pmu_nvram_write_byte(int addr, unsigned char val)
211 {
212 struct adb_request req;
213 DECLARE_COMPLETION_ONSTACK(req_complete);
214
215 req.arg = system_state == SYSTEM_RUNNING ? &req_complete : NULL;
216 if (pmu_request(&req, pmu_nvram_complete, 4, PMU_WRITE_NVRAM,
217 (addr >> 8) & 0xff, addr & 0xff, val))
218 return;
219 if (system_state == SYSTEM_RUNNING)
220 wait_for_completion(&req_complete);
221 while (!req.complete)
222 pmu_poll();
223 }
224
225 #endif /* CONFIG_ADB_PMU */
226 #endif /* CONFIG_PPC32 */
227
chrp_checksum(struct chrp_header * hdr)228 static u8 chrp_checksum(struct chrp_header* hdr)
229 {
230 u8 *ptr;
231 u16 sum = hdr->signature;
232 for (ptr = (u8 *)&hdr->len; ptr < hdr->data; ptr++)
233 sum += *ptr;
234 while (sum > 0xFF)
235 sum = (sum & 0xFF) + (sum>>8);
236 return sum;
237 }
238
core99_calc_adler(u8 * buffer)239 static u32 core99_calc_adler(u8 *buffer)
240 {
241 int cnt;
242 u32 low, high;
243
244 buffer += CORE99_ADLER_START;
245 low = 1;
246 high = 0;
247 for (cnt=0; cnt<(NVRAM_SIZE-CORE99_ADLER_START); cnt++) {
248 if ((cnt % 5000) == 0) {
249 high %= 65521UL;
250 high %= 65521UL;
251 }
252 low += buffer[cnt];
253 high += low;
254 }
255 low %= 65521UL;
256 high %= 65521UL;
257
258 return (high << 16) | low;
259 }
260
core99_check(u8 * datas)261 static u32 __init core99_check(u8 *datas)
262 {
263 struct core99_header* hdr99 = (struct core99_header*)datas;
264
265 if (hdr99->hdr.signature != CORE99_SIGNATURE) {
266 DBG("Invalid signature\n");
267 return 0;
268 }
269 if (hdr99->hdr.cksum != chrp_checksum(&hdr99->hdr)) {
270 DBG("Invalid checksum\n");
271 return 0;
272 }
273 if (hdr99->adler != core99_calc_adler(datas)) {
274 DBG("Invalid adler\n");
275 return 0;
276 }
277 return hdr99->generation;
278 }
279
sm_erase_bank(int bank)280 static int sm_erase_bank(int bank)
281 {
282 int stat;
283 unsigned long timeout;
284
285 u8 __iomem *base = (u8 __iomem *)nvram_data + core99_bank*NVRAM_SIZE;
286
287 DBG("nvram: Sharp/Micron Erasing bank %d...\n", bank);
288
289 out_8(base, SM_FLASH_CMD_ERASE_SETUP);
290 out_8(base, SM_FLASH_CMD_ERASE_CONFIRM);
291 timeout = 0;
292 do {
293 if (++timeout > 1000000) {
294 printk(KERN_ERR "nvram: Sharp/Micron flash erase timeout !\n");
295 break;
296 }
297 out_8(base, SM_FLASH_CMD_READ_STATUS);
298 stat = in_8(base);
299 } while (!(stat & SM_FLASH_STATUS_DONE));
300
301 out_8(base, SM_FLASH_CMD_CLEAR_STATUS);
302 out_8(base, SM_FLASH_CMD_RESET);
303
304 if (memchr_inv(base, 0xff, NVRAM_SIZE)) {
305 printk(KERN_ERR "nvram: Sharp/Micron flash erase failed !\n");
306 return -ENXIO;
307 }
308 return 0;
309 }
310
sm_write_bank(int bank,u8 * datas)311 static int sm_write_bank(int bank, u8* datas)
312 {
313 int i, stat = 0;
314 unsigned long timeout;
315
316 u8 __iomem *base = (u8 __iomem *)nvram_data + core99_bank*NVRAM_SIZE;
317
318 DBG("nvram: Sharp/Micron Writing bank %d...\n", bank);
319
320 for (i=0; i<NVRAM_SIZE; i++) {
321 out_8(base+i, SM_FLASH_CMD_WRITE_SETUP);
322 udelay(1);
323 out_8(base+i, datas[i]);
324 timeout = 0;
325 do {
326 if (++timeout > 1000000) {
327 printk(KERN_ERR "nvram: Sharp/Micron flash write timeout !\n");
328 break;
329 }
330 out_8(base, SM_FLASH_CMD_READ_STATUS);
331 stat = in_8(base);
332 } while (!(stat & SM_FLASH_STATUS_DONE));
333 if (!(stat & SM_FLASH_STATUS_DONE))
334 break;
335 }
336 out_8(base, SM_FLASH_CMD_CLEAR_STATUS);
337 out_8(base, SM_FLASH_CMD_RESET);
338 if (memcmp(base, datas, NVRAM_SIZE)) {
339 printk(KERN_ERR "nvram: Sharp/Micron flash write failed !\n");
340 return -ENXIO;
341 }
342 return 0;
343 }
344
amd_erase_bank(int bank)345 static int amd_erase_bank(int bank)
346 {
347 int stat = 0;
348 unsigned long timeout;
349
350 u8 __iomem *base = (u8 __iomem *)nvram_data + core99_bank*NVRAM_SIZE;
351
352 DBG("nvram: AMD Erasing bank %d...\n", bank);
353
354 /* Unlock 1 */
355 out_8(base+0x555, 0xaa);
356 udelay(1);
357 /* Unlock 2 */
358 out_8(base+0x2aa, 0x55);
359 udelay(1);
360
361 /* Sector-Erase */
362 out_8(base+0x555, 0x80);
363 udelay(1);
364 out_8(base+0x555, 0xaa);
365 udelay(1);
366 out_8(base+0x2aa, 0x55);
367 udelay(1);
368 out_8(base, 0x30);
369 udelay(1);
370
371 timeout = 0;
372 do {
373 if (++timeout > 1000000) {
374 printk(KERN_ERR "nvram: AMD flash erase timeout !\n");
375 break;
376 }
377 stat = in_8(base) ^ in_8(base);
378 } while (stat != 0);
379
380 /* Reset */
381 out_8(base, 0xf0);
382 udelay(1);
383
384 if (memchr_inv(base, 0xff, NVRAM_SIZE)) {
385 printk(KERN_ERR "nvram: AMD flash erase failed !\n");
386 return -ENXIO;
387 }
388 return 0;
389 }
390
amd_write_bank(int bank,u8 * datas)391 static int amd_write_bank(int bank, u8* datas)
392 {
393 int i, stat = 0;
394 unsigned long timeout;
395
396 u8 __iomem *base = (u8 __iomem *)nvram_data + core99_bank*NVRAM_SIZE;
397
398 DBG("nvram: AMD Writing bank %d...\n", bank);
399
400 for (i=0; i<NVRAM_SIZE; i++) {
401 /* Unlock 1 */
402 out_8(base+0x555, 0xaa);
403 udelay(1);
404 /* Unlock 2 */
405 out_8(base+0x2aa, 0x55);
406 udelay(1);
407
408 /* Write single word */
409 out_8(base+0x555, 0xa0);
410 udelay(1);
411 out_8(base+i, datas[i]);
412
413 timeout = 0;
414 do {
415 if (++timeout > 1000000) {
416 printk(KERN_ERR "nvram: AMD flash write timeout !\n");
417 break;
418 }
419 stat = in_8(base) ^ in_8(base);
420 } while (stat != 0);
421 if (stat != 0)
422 break;
423 }
424
425 /* Reset */
426 out_8(base, 0xf0);
427 udelay(1);
428
429 if (memcmp(base, datas, NVRAM_SIZE)) {
430 printk(KERN_ERR "nvram: AMD flash write failed !\n");
431 return -ENXIO;
432 }
433 return 0;
434 }
435
lookup_partitions(void)436 static void __init lookup_partitions(void)
437 {
438 u8 buffer[17];
439 int i, offset;
440 struct chrp_header* hdr;
441
442 if (pmac_newworld) {
443 nvram_partitions[pmac_nvram_OF] = -1;
444 nvram_partitions[pmac_nvram_XPRAM] = -1;
445 nvram_partitions[pmac_nvram_NR] = -1;
446 hdr = (struct chrp_header *)buffer;
447
448 offset = 0;
449 buffer[16] = 0;
450 do {
451 for (i=0;i<16;i++)
452 buffer[i] = ppc_md.nvram_read_val(offset+i);
453 if (!strcmp(hdr->name, "common"))
454 nvram_partitions[pmac_nvram_OF] = offset + 0x10;
455 if (!strcmp(hdr->name, "APL,MacOS75")) {
456 nvram_partitions[pmac_nvram_XPRAM] = offset + 0x10;
457 nvram_partitions[pmac_nvram_NR] = offset + 0x110;
458 }
459 offset += (hdr->len * 0x10);
460 } while(offset < NVRAM_SIZE);
461 } else {
462 nvram_partitions[pmac_nvram_OF] = 0x1800;
463 nvram_partitions[pmac_nvram_XPRAM] = 0x1300;
464 nvram_partitions[pmac_nvram_NR] = 0x1400;
465 }
466 DBG("nvram: OF partition at 0x%x\n", nvram_partitions[pmac_nvram_OF]);
467 DBG("nvram: XP partition at 0x%x\n", nvram_partitions[pmac_nvram_XPRAM]);
468 DBG("nvram: NR partition at 0x%x\n", nvram_partitions[pmac_nvram_NR]);
469 }
470
core99_nvram_sync(void)471 static void core99_nvram_sync(void)
472 {
473 struct core99_header* hdr99;
474 unsigned long flags;
475
476 if (!is_core_99 || !nvram_data || !nvram_image)
477 return;
478
479 raw_spin_lock_irqsave(&nv_lock, flags);
480 if (!memcmp(nvram_image, (u8*)nvram_data + core99_bank*NVRAM_SIZE,
481 NVRAM_SIZE))
482 goto bail;
483
484 DBG("Updating nvram...\n");
485
486 hdr99 = (struct core99_header*)nvram_image;
487 hdr99->generation++;
488 hdr99->hdr.signature = CORE99_SIGNATURE;
489 hdr99->hdr.cksum = chrp_checksum(&hdr99->hdr);
490 hdr99->adler = core99_calc_adler(nvram_image);
491 core99_bank = core99_bank ? 0 : 1;
492 if (core99_erase_bank)
493 if (core99_erase_bank(core99_bank)) {
494 printk("nvram: Error erasing bank %d\n", core99_bank);
495 goto bail;
496 }
497 if (core99_write_bank)
498 if (core99_write_bank(core99_bank, nvram_image))
499 printk("nvram: Error writing bank %d\n", core99_bank);
500 bail:
501 raw_spin_unlock_irqrestore(&nv_lock, flags);
502
503 #ifdef DEBUG
504 mdelay(2000);
505 #endif
506 }
507
core99_nvram_setup(struct device_node * dp,unsigned long addr)508 static int __init core99_nvram_setup(struct device_node *dp, unsigned long addr)
509 {
510 int i;
511 u32 gen_bank0, gen_bank1;
512
513 if (nvram_naddrs < 1) {
514 printk(KERN_ERR "nvram: no address\n");
515 return -EINVAL;
516 }
517 nvram_image = memblock_alloc(NVRAM_SIZE, SMP_CACHE_BYTES);
518 if (!nvram_image)
519 panic("%s: Failed to allocate %u bytes\n", __func__,
520 NVRAM_SIZE);
521 nvram_data = ioremap(addr, NVRAM_SIZE*2);
522 nvram_naddrs = 1; /* Make sure we get the correct case */
523
524 DBG("nvram: Checking bank 0...\n");
525
526 gen_bank0 = core99_check((u8 *)nvram_data);
527 gen_bank1 = core99_check((u8 *)nvram_data + NVRAM_SIZE);
528 core99_bank = (gen_bank0 < gen_bank1) ? 1 : 0;
529
530 DBG("nvram: gen0=%d, gen1=%d\n", gen_bank0, gen_bank1);
531 DBG("nvram: Active bank is: %d\n", core99_bank);
532
533 for (i=0; i<NVRAM_SIZE; i++)
534 nvram_image[i] = nvram_data[i + core99_bank*NVRAM_SIZE];
535
536 ppc_md.nvram_read_val = core99_nvram_read_byte;
537 ppc_md.nvram_write_val = core99_nvram_write_byte;
538 ppc_md.nvram_read = core99_nvram_read;
539 ppc_md.nvram_write = core99_nvram_write;
540 ppc_md.nvram_size = core99_nvram_size;
541 ppc_md.nvram_sync = core99_nvram_sync;
542 ppc_md.machine_shutdown = core99_nvram_sync;
543 /*
544 * Maybe we could be smarter here though making an exclusive list
545 * of known flash chips is a bit nasty as older OF didn't provide us
546 * with a useful "compatible" entry. A solution would be to really
547 * identify the chip using flash id commands and base ourselves on
548 * a list of known chips IDs
549 */
550 if (of_device_is_compatible(dp, "amd-0137")) {
551 core99_erase_bank = amd_erase_bank;
552 core99_write_bank = amd_write_bank;
553 } else {
554 core99_erase_bank = sm_erase_bank;
555 core99_write_bank = sm_write_bank;
556 }
557 return 0;
558 }
559
pmac_nvram_init(void)560 int __init pmac_nvram_init(void)
561 {
562 struct device_node *dp;
563 struct resource r1, r2;
564 unsigned int s1 = 0, s2 = 0;
565 int err = 0;
566
567 nvram_naddrs = 0;
568
569 dp = of_find_node_by_name(NULL, "nvram");
570 if (dp == NULL) {
571 printk(KERN_ERR "Can't find NVRAM device\n");
572 return -ENODEV;
573 }
574
575 /* Try to obtain an address */
576 if (of_address_to_resource(dp, 0, &r1) == 0) {
577 nvram_naddrs = 1;
578 s1 = resource_size(&r1);
579 if (of_address_to_resource(dp, 1, &r2) == 0) {
580 nvram_naddrs = 2;
581 s2 = resource_size(&r2);
582 }
583 }
584
585 is_core_99 = of_device_is_compatible(dp, "nvram,flash");
586 if (is_core_99) {
587 err = core99_nvram_setup(dp, r1.start);
588 goto bail;
589 }
590
591 #ifdef CONFIG_PPC32
592 if (machine_is(chrp) && nvram_naddrs == 1) {
593 nvram_data = ioremap(r1.start, s1);
594 nvram_mult = 1;
595 ppc_md.nvram_read_val = direct_nvram_read_byte;
596 ppc_md.nvram_write_val = direct_nvram_write_byte;
597 ppc_md.nvram_size = ppc32_nvram_size;
598 } else if (nvram_naddrs == 1) {
599 nvram_data = ioremap(r1.start, s1);
600 nvram_mult = (s1 + NVRAM_SIZE - 1) / NVRAM_SIZE;
601 ppc_md.nvram_read_val = direct_nvram_read_byte;
602 ppc_md.nvram_write_val = direct_nvram_write_byte;
603 ppc_md.nvram_size = ppc32_nvram_size;
604 } else if (nvram_naddrs == 2) {
605 nvram_addr = ioremap(r1.start, s1);
606 nvram_data = ioremap(r2.start, s2);
607 ppc_md.nvram_read_val = indirect_nvram_read_byte;
608 ppc_md.nvram_write_val = indirect_nvram_write_byte;
609 ppc_md.nvram_size = ppc32_nvram_size;
610 } else if (nvram_naddrs == 0 && sys_ctrler == SYS_CTRLER_PMU) {
611 #ifdef CONFIG_ADB_PMU
612 nvram_naddrs = -1;
613 ppc_md.nvram_read_val = pmu_nvram_read_byte;
614 ppc_md.nvram_write_val = pmu_nvram_write_byte;
615 ppc_md.nvram_size = ppc32_nvram_size;
616 #endif /* CONFIG_ADB_PMU */
617 } else {
618 printk(KERN_ERR "Incompatible type of NVRAM\n");
619 err = -ENXIO;
620 }
621 #endif /* CONFIG_PPC32 */
622 bail:
623 of_node_put(dp);
624 if (err == 0)
625 lookup_partitions();
626 return err;
627 }
628
pmac_get_partition(int partition)629 int pmac_get_partition(int partition)
630 {
631 return nvram_partitions[partition];
632 }
633
pmac_xpram_read(int xpaddr)634 u8 pmac_xpram_read(int xpaddr)
635 {
636 int offset = pmac_get_partition(pmac_nvram_XPRAM);
637
638 if (offset < 0 || xpaddr < 0 || xpaddr > 0x100)
639 return 0xff;
640
641 return ppc_md.nvram_read_val(xpaddr + offset);
642 }
643
pmac_xpram_write(int xpaddr,u8 data)644 void pmac_xpram_write(int xpaddr, u8 data)
645 {
646 int offset = pmac_get_partition(pmac_nvram_XPRAM);
647
648 if (offset < 0 || xpaddr < 0 || xpaddr > 0x100)
649 return;
650
651 ppc_md.nvram_write_val(xpaddr + offset, data);
652 }
653
654 EXPORT_SYMBOL(pmac_get_partition);
655 EXPORT_SYMBOL(pmac_xpram_read);
656 EXPORT_SYMBOL(pmac_xpram_write);
657