1 /*
2  * spu_switch.c
3  *
4  * (C) Copyright IBM Corp. 2005
5  *
6  * Author: Mark Nutter <mnutter@us.ibm.com>
7  *
8  * Host-side part of SPU context switch sequence outlined in
9  * Synergistic Processor Element, Book IV.
10  *
11  * A fully premptive switch of an SPE is very expensive in terms
12  * of time and system resources.  SPE Book IV indicates that SPE
13  * allocation should follow a "serially reusable device" model,
14  * in which the SPE is assigned a task until it completes.  When
15  * this is not possible, this sequence may be used to premptively
16  * save, and then later (optionally) restore the context of a
17  * program executing on an SPE.
18  *
19  *
20  * This program is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2, or (at your option)
23  * any later version.
24  *
25  * This program is distributed in the hope that it will be useful,
26  * but WITHOUT ANY WARRANTY; without even the implied warranty of
27  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28  * GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with this program; if not, write to the Free Software
32  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/errno.h>
37 #include <linux/hardirq.h>
38 #include <linux/sched.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/smp.h>
43 #include <linux/stddef.h>
44 #include <linux/unistd.h>
45 
46 #include <asm/io.h>
47 #include <asm/spu.h>
48 #include <asm/spu_priv1.h>
49 #include <asm/spu_csa.h>
50 #include <asm/mmu_context.h>
51 
52 #include "spufs.h"
53 
54 #include "spu_save_dump.h"
55 #include "spu_restore_dump.h"
56 
57 #if 0
58 #define POLL_WHILE_TRUE(_c) {				\
59     do {						\
60     } while (_c);					\
61   }
62 #else
63 #define RELAX_SPIN_COUNT				1000
64 #define POLL_WHILE_TRUE(_c) {				\
65     do {						\
66 	int _i;						\
67 	for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
68 	    cpu_relax();				\
69 	}						\
70 	if (unlikely(_c)) yield();			\
71 	else break;					\
72     } while (_c);					\
73   }
74 #endif				/* debug */
75 
76 #define POLL_WHILE_FALSE(_c)	POLL_WHILE_TRUE(!(_c))
77 
78 static inline void acquire_spu_lock(struct spu *spu)
79 {
80 	/* Save, Step 1:
81 	 * Restore, Step 1:
82 	 *    Acquire SPU-specific mutual exclusion lock.
83 	 *    TBD.
84 	 */
85 }
86 
87 static inline void release_spu_lock(struct spu *spu)
88 {
89 	/* Restore, Step 76:
90 	 *    Release SPU-specific mutual exclusion lock.
91 	 *    TBD.
92 	 */
93 }
94 
95 static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
96 {
97 	struct spu_problem __iomem *prob = spu->problem;
98 	u32 isolate_state;
99 
100 	/* Save, Step 2:
101 	 * Save, Step 6:
102 	 *     If SPU_Status[E,L,IS] any field is '1', this
103 	 *     SPU is in isolate state and cannot be context
104 	 *     saved at this time.
105 	 */
106 	isolate_state = SPU_STATUS_ISOLATED_STATE |
107 	    SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS;
108 	return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
109 }
110 
111 static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
112 {
113 	/* Save, Step 3:
114 	 * Restore, Step 2:
115 	 *     Save INT_Mask_class0 in CSA.
116 	 *     Write INT_MASK_class0 with value of 0.
117 	 *     Save INT_Mask_class1 in CSA.
118 	 *     Write INT_MASK_class1 with value of 0.
119 	 *     Save INT_Mask_class2 in CSA.
120 	 *     Write INT_MASK_class2 with value of 0.
121 	 *     Synchronize all three interrupts to be sure
122 	 *     we no longer execute a handler on another CPU.
123 	 */
124 	spin_lock_irq(&spu->register_lock);
125 	if (csa) {
126 		csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
127 		csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
128 		csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
129 	}
130 	spu_int_mask_set(spu, 0, 0ul);
131 	spu_int_mask_set(spu, 1, 0ul);
132 	spu_int_mask_set(spu, 2, 0ul);
133 	eieio();
134 	spin_unlock_irq(&spu->register_lock);
135 	synchronize_irq(spu->irqs[0]);
136 	synchronize_irq(spu->irqs[1]);
137 	synchronize_irq(spu->irqs[2]);
138 }
139 
140 static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
141 {
142 	/* Save, Step 4:
143 	 * Restore, Step 25.
144 	 *    Set a software watchdog timer, which specifies the
145 	 *    maximum allowable time for a context save sequence.
146 	 *
147 	 *    For present, this implementation will not set a global
148 	 *    watchdog timer, as virtualization & variable system load
149 	 *    may cause unpredictable execution times.
150 	 */
151 }
152 
153 static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
154 {
155 	/* Save, Step 5:
156 	 * Restore, Step 3:
157 	 *     Inhibit user-space access (if provided) to this
158 	 *     SPU by unmapping the virtual pages assigned to
159 	 *     the SPU memory-mapped I/O (MMIO) for problem
160 	 *     state. TBD.
161 	 */
162 }
163 
164 static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
165 {
166 	/* Save, Step 7:
167 	 * Restore, Step 5:
168 	 *     Set a software context switch pending flag.
169 	 */
170 	set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
171 	mb();
172 }
173 
174 static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
175 {
176 	struct spu_priv2 __iomem *priv2 = spu->priv2;
177 
178 	/* Save, Step 8:
179 	 *     Suspend DMA and save MFC_CNTL.
180 	 */
181 	switch (in_be64(&priv2->mfc_control_RW) &
182 	       MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
183 	case MFC_CNTL_SUSPEND_IN_PROGRESS:
184 		POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
185 				  MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
186 				 MFC_CNTL_SUSPEND_COMPLETE);
187 		/* fall through */
188 	case MFC_CNTL_SUSPEND_COMPLETE:
189 		if (csa) {
190 			csa->priv2.mfc_control_RW =
191 				MFC_CNTL_SUSPEND_MASK |
192 				MFC_CNTL_SUSPEND_DMA_QUEUE;
193 		}
194 		break;
195 	case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
196 		out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
197 		POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
198 				  MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
199 				 MFC_CNTL_SUSPEND_COMPLETE);
200 		if (csa) {
201 			csa->priv2.mfc_control_RW = 0;
202 		}
203 		break;
204 	}
205 }
206 
207 static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
208 {
209 	struct spu_problem __iomem *prob = spu->problem;
210 
211 	/* Save, Step 9:
212 	 *     Save SPU_Runcntl in the CSA.  This value contains
213 	 *     the "Application Desired State".
214 	 */
215 	csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
216 }
217 
218 static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
219 {
220 	/* Save, Step 10:
221 	 *     Save MFC_SR1 in the CSA.
222 	 */
223 	csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
224 }
225 
226 static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
227 {
228 	struct spu_problem __iomem *prob = spu->problem;
229 
230 	/* Save, Step 11:
231 	 *     Read SPU_Status[R], and save to CSA.
232 	 */
233 	if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
234 		csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
235 	} else {
236 		u32 stopped;
237 
238 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
239 		eieio();
240 		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
241 				SPU_STATUS_RUNNING);
242 		stopped =
243 		    SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
244 		    SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
245 		if ((in_be32(&prob->spu_status_R) & stopped) == 0)
246 			csa->prob.spu_status_R = SPU_STATUS_RUNNING;
247 		else
248 			csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
249 	}
250 }
251 
252 static inline void save_mfc_decr(struct spu_state *csa, struct spu *spu)
253 {
254 	struct spu_priv2 __iomem *priv2 = spu->priv2;
255 
256 	/* Save, Step 12:
257 	 *     Read MFC_CNTL[Ds].  Update saved copy of
258 	 *     CSA.MFC_CNTL[Ds].
259 	 */
260 	csa->priv2.mfc_control_RW |=
261 		in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DECREMENTER_RUNNING;
262 }
263 
264 static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
265 {
266 	struct spu_priv2 __iomem *priv2 = spu->priv2;
267 
268 	/* Save, Step 13:
269 	 *     Write MFC_CNTL[Dh] set to a '1' to halt
270 	 *     the decrementer.
271 	 */
272 	out_be64(&priv2->mfc_control_RW,
273 		 MFC_CNTL_DECREMENTER_HALTED | MFC_CNTL_SUSPEND_MASK);
274 	eieio();
275 }
276 
277 static inline void save_timebase(struct spu_state *csa, struct spu *spu)
278 {
279 	/* Save, Step 14:
280 	 *    Read PPE Timebase High and Timebase low registers
281 	 *    and save in CSA.  TBD.
282 	 */
283 	csa->suspend_time = get_cycles();
284 }
285 
286 static inline void remove_other_spu_access(struct spu_state *csa,
287 					   struct spu *spu)
288 {
289 	/* Save, Step 15:
290 	 *     Remove other SPU access to this SPU by unmapping
291 	 *     this SPU's pages from their address space.  TBD.
292 	 */
293 }
294 
295 static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
296 {
297 	struct spu_problem __iomem *prob = spu->problem;
298 
299 	/* Save, Step 16:
300 	 * Restore, Step 11.
301 	 *     Write SPU_MSSync register. Poll SPU_MSSync[P]
302 	 *     for a value of 0.
303 	 */
304 	out_be64(&prob->spc_mssync_RW, 1UL);
305 	POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
306 }
307 
308 static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
309 {
310 	/* Save, Step 17:
311 	 * Restore, Step 12.
312 	 * Restore, Step 48.
313 	 *     Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
314 	 *     Then issue a PPE sync instruction.
315 	 */
316 	spu_tlb_invalidate(spu);
317 	mb();
318 }
319 
320 static inline void handle_pending_interrupts(struct spu_state *csa,
321 					     struct spu *spu)
322 {
323 	/* Save, Step 18:
324 	 *     Handle any pending interrupts from this SPU
325 	 *     here.  This is OS or hypervisor specific.  One
326 	 *     option is to re-enable interrupts to handle any
327 	 *     pending interrupts, with the interrupt handlers
328 	 *     recognizing the software Context Switch Pending
329 	 *     flag, to ensure the SPU execution or MFC command
330 	 *     queue is not restarted.  TBD.
331 	 */
332 }
333 
334 static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
335 {
336 	struct spu_priv2 __iomem *priv2 = spu->priv2;
337 	int i;
338 
339 	/* Save, Step 19:
340 	 *     If MFC_Cntl[Se]=0 then save
341 	 *     MFC command queues.
342 	 */
343 	if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
344 		for (i = 0; i < 8; i++) {
345 			csa->priv2.puq[i].mfc_cq_data0_RW =
346 			    in_be64(&priv2->puq[i].mfc_cq_data0_RW);
347 			csa->priv2.puq[i].mfc_cq_data1_RW =
348 			    in_be64(&priv2->puq[i].mfc_cq_data1_RW);
349 			csa->priv2.puq[i].mfc_cq_data2_RW =
350 			    in_be64(&priv2->puq[i].mfc_cq_data2_RW);
351 			csa->priv2.puq[i].mfc_cq_data3_RW =
352 			    in_be64(&priv2->puq[i].mfc_cq_data3_RW);
353 		}
354 		for (i = 0; i < 16; i++) {
355 			csa->priv2.spuq[i].mfc_cq_data0_RW =
356 			    in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
357 			csa->priv2.spuq[i].mfc_cq_data1_RW =
358 			    in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
359 			csa->priv2.spuq[i].mfc_cq_data2_RW =
360 			    in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
361 			csa->priv2.spuq[i].mfc_cq_data3_RW =
362 			    in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
363 		}
364 	}
365 }
366 
367 static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
368 {
369 	struct spu_problem __iomem *prob = spu->problem;
370 
371 	/* Save, Step 20:
372 	 *     Save the PPU_QueryMask register
373 	 *     in the CSA.
374 	 */
375 	csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
376 }
377 
378 static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
379 {
380 	struct spu_problem __iomem *prob = spu->problem;
381 
382 	/* Save, Step 21:
383 	 *     Save the PPU_QueryType register
384 	 *     in the CSA.
385 	 */
386 	csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
387 }
388 
389 static inline void save_ppu_tagstatus(struct spu_state *csa, struct spu *spu)
390 {
391 	struct spu_problem __iomem *prob = spu->problem;
392 
393 	/* Save the Prxy_TagStatus register in the CSA.
394 	 *
395 	 * It is unnecessary to restore dma_tagstatus_R, however,
396 	 * dma_tagstatus_R in the CSA is accessed via backing_ops, so
397 	 * we must save it.
398 	 */
399 	csa->prob.dma_tagstatus_R = in_be32(&prob->dma_tagstatus_R);
400 }
401 
402 static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
403 {
404 	struct spu_priv2 __iomem *priv2 = spu->priv2;
405 
406 	/* Save, Step 22:
407 	 *     Save the MFC_CSR_TSQ register
408 	 *     in the LSCSA.
409 	 */
410 	csa->priv2.spu_tag_status_query_RW =
411 	    in_be64(&priv2->spu_tag_status_query_RW);
412 }
413 
414 static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
415 {
416 	struct spu_priv2 __iomem *priv2 = spu->priv2;
417 
418 	/* Save, Step 23:
419 	 *     Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
420 	 *     registers in the CSA.
421 	 */
422 	csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
423 	csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
424 }
425 
426 static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
427 {
428 	struct spu_priv2 __iomem *priv2 = spu->priv2;
429 
430 	/* Save, Step 24:
431 	 *     Save the MFC_CSR_ATO register in
432 	 *     the CSA.
433 	 */
434 	csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
435 }
436 
437 static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
438 {
439 	/* Save, Step 25:
440 	 *     Save the MFC_TCLASS_ID register in
441 	 *     the CSA.
442 	 */
443 	csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
444 }
445 
446 static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
447 {
448 	/* Save, Step 26:
449 	 * Restore, Step 23.
450 	 *     Write the MFC_TCLASS_ID register with
451 	 *     the value 0x10000000.
452 	 */
453 	spu_mfc_tclass_id_set(spu, 0x10000000);
454 	eieio();
455 }
456 
457 static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
458 {
459 	struct spu_priv2 __iomem *priv2 = spu->priv2;
460 
461 	/* Save, Step 27:
462 	 * Restore, Step 14.
463 	 *     Write MFC_CNTL[Pc]=1 (purge queue).
464 	 */
465 	out_be64(&priv2->mfc_control_RW, MFC_CNTL_PURGE_DMA_REQUEST);
466 	eieio();
467 }
468 
469 static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
470 {
471 	struct spu_priv2 __iomem *priv2 = spu->priv2;
472 
473 	/* Save, Step 28:
474 	 *     Poll MFC_CNTL[Ps] until value '11' is read
475 	 *     (purge complete).
476 	 */
477 	POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
478 			 MFC_CNTL_PURGE_DMA_STATUS_MASK) ==
479 			 MFC_CNTL_PURGE_DMA_COMPLETE);
480 }
481 
482 static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
483 {
484 	/* Save, Step 30:
485 	 * Restore, Step 18:
486 	 *     Write MFC_SR1 with MFC_SR1[D=0,S=1] and
487 	 *     MFC_SR1[TL,R,Pr,T] set correctly for the
488 	 *     OS specific environment.
489 	 *
490 	 *     Implementation note: The SPU-side code
491 	 *     for save/restore is privileged, so the
492 	 *     MFC_SR1[Pr] bit is not set.
493 	 *
494 	 */
495 	spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
496 			      MFC_STATE1_RELOCATE_MASK |
497 			      MFC_STATE1_BUS_TLBIE_MASK));
498 }
499 
500 static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
501 {
502 	struct spu_problem __iomem *prob = spu->problem;
503 
504 	/* Save, Step 31:
505 	 *     Save SPU_NPC in the CSA.
506 	 */
507 	csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
508 }
509 
510 static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
511 {
512 	struct spu_priv2 __iomem *priv2 = spu->priv2;
513 
514 	/* Save, Step 32:
515 	 *     Save SPU_PrivCntl in the CSA.
516 	 */
517 	csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
518 }
519 
520 static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
521 {
522 	struct spu_priv2 __iomem *priv2 = spu->priv2;
523 
524 	/* Save, Step 33:
525 	 * Restore, Step 16:
526 	 *     Write SPU_PrivCntl[S,Le,A] fields reset to 0.
527 	 */
528 	out_be64(&priv2->spu_privcntl_RW, 0UL);
529 	eieio();
530 }
531 
532 static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
533 {
534 	struct spu_priv2 __iomem *priv2 = spu->priv2;
535 
536 	/* Save, Step 34:
537 	 *     Save SPU_LSLR in the CSA.
538 	 */
539 	csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
540 }
541 
542 static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
543 {
544 	struct spu_priv2 __iomem *priv2 = spu->priv2;
545 
546 	/* Save, Step 35:
547 	 * Restore, Step 17.
548 	 *     Reset SPU_LSLR.
549 	 */
550 	out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
551 	eieio();
552 }
553 
554 static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
555 {
556 	struct spu_priv2 __iomem *priv2 = spu->priv2;
557 
558 	/* Save, Step 36:
559 	 *     Save SPU_Cfg in the CSA.
560 	 */
561 	csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
562 }
563 
564 static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
565 {
566 	/* Save, Step 37:
567 	 *     Save PM_Trace_Tag_Wait_Mask in the CSA.
568 	 *     Not performed by this implementation.
569 	 */
570 }
571 
572 static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
573 {
574 	/* Save, Step 38:
575 	 *     Save RA_GROUP_ID register and the
576 	 *     RA_ENABLE reigster in the CSA.
577 	 */
578 	csa->priv1.resource_allocation_groupID_RW =
579 		spu_resource_allocation_groupID_get(spu);
580 	csa->priv1.resource_allocation_enable_RW =
581 		spu_resource_allocation_enable_get(spu);
582 }
583 
584 static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
585 {
586 	struct spu_problem __iomem *prob = spu->problem;
587 
588 	/* Save, Step 39:
589 	 *     Save MB_Stat register in the CSA.
590 	 */
591 	csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
592 }
593 
594 static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
595 {
596 	struct spu_problem __iomem *prob = spu->problem;
597 
598 	/* Save, Step 40:
599 	 *     Save the PPU_MB register in the CSA.
600 	 */
601 	csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
602 }
603 
604 static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
605 {
606 	struct spu_priv2 __iomem *priv2 = spu->priv2;
607 
608 	/* Save, Step 41:
609 	 *     Save the PPUINT_MB register in the CSA.
610 	 */
611 	csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
612 }
613 
614 static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
615 {
616 	struct spu_priv2 __iomem *priv2 = spu->priv2;
617 	u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
618 	int i;
619 
620 	/* Save, Step 42:
621 	 */
622 
623 	/* Save CH 1, without channel count */
624 	out_be64(&priv2->spu_chnlcntptr_RW, 1);
625 	csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
626 
627 	/* Save the following CH: [0,3,4,24,25,27] */
628 	for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
629 		idx = ch_indices[i];
630 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
631 		eieio();
632 		csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
633 		csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
634 		out_be64(&priv2->spu_chnldata_RW, 0UL);
635 		out_be64(&priv2->spu_chnlcnt_RW, 0UL);
636 		eieio();
637 	}
638 }
639 
640 static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
641 {
642 	struct spu_priv2 __iomem *priv2 = spu->priv2;
643 	int i;
644 
645 	/* Save, Step 43:
646 	 *     Save SPU Read Mailbox Channel.
647 	 */
648 	out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
649 	eieio();
650 	csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
651 	for (i = 0; i < 4; i++) {
652 		csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
653 	}
654 	out_be64(&priv2->spu_chnlcnt_RW, 0UL);
655 	eieio();
656 }
657 
658 static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
659 {
660 	struct spu_priv2 __iomem *priv2 = spu->priv2;
661 
662 	/* Save, Step 44:
663 	 *     Save MFC_CMD Channel.
664 	 */
665 	out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
666 	eieio();
667 	csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
668 	eieio();
669 }
670 
671 static inline void reset_ch(struct spu_state *csa, struct spu *spu)
672 {
673 	struct spu_priv2 __iomem *priv2 = spu->priv2;
674 	u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
675 	u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
676 	u64 idx;
677 	int i;
678 
679 	/* Save, Step 45:
680 	 *     Reset the following CH: [21, 23, 28, 30]
681 	 */
682 	for (i = 0; i < 4; i++) {
683 		idx = ch_indices[i];
684 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
685 		eieio();
686 		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
687 		eieio();
688 	}
689 }
690 
691 static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
692 {
693 	struct spu_priv2 __iomem *priv2 = spu->priv2;
694 
695 	/* Save, Step 46:
696 	 * Restore, Step 25.
697 	 *     Write MFC_CNTL[Sc]=0 (resume queue processing).
698 	 */
699 	out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
700 }
701 
702 static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu,
703 		unsigned int *code, int code_size)
704 {
705 	/* Save, Step 47:
706 	 * Restore, Step 30.
707 	 *     If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
708 	 *     register, then initialize SLB_VSID and SLB_ESID
709 	 *     to provide access to SPU context save code and
710 	 *     LSCSA.
711 	 *
712 	 *     This implementation places both the context
713 	 *     switch code and LSCSA in kernel address space.
714 	 *
715 	 *     Further this implementation assumes that the
716 	 *     MFC_SR1[R]=1 (in other words, assume that
717 	 *     translation is desired by OS environment).
718 	 */
719 	spu_invalidate_slbs(spu);
720 	spu_setup_kernel_slbs(spu, csa->lscsa, code, code_size);
721 }
722 
723 static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
724 {
725 	/* Save, Step 48:
726 	 * Restore, Step 23.
727 	 *     Change the software context switch pending flag
728 	 *     to context switch active.
729 	 *
730 	 *     This implementation does not uses a switch active flag.
731 	 */
732 	clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
733 	mb();
734 }
735 
736 static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
737 {
738 	unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
739 	    CLASS1_ENABLE_STORAGE_FAULT_INTR;
740 
741 	/* Save, Step 49:
742 	 * Restore, Step 22:
743 	 *     Reset and then enable interrupts, as
744 	 *     needed by OS.
745 	 *
746 	 *     This implementation enables only class1
747 	 *     (translation) interrupts.
748 	 */
749 	spin_lock_irq(&spu->register_lock);
750 	spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
751 	spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
752 	spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
753 	spu_int_mask_set(spu, 0, 0ul);
754 	spu_int_mask_set(spu, 1, class1_mask);
755 	spu_int_mask_set(spu, 2, 0ul);
756 	spin_unlock_irq(&spu->register_lock);
757 }
758 
759 static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
760 			       unsigned int ls_offset, unsigned int size,
761 			       unsigned int tag, unsigned int rclass,
762 			       unsigned int cmd)
763 {
764 	struct spu_problem __iomem *prob = spu->problem;
765 	union mfc_tag_size_class_cmd command;
766 	unsigned int transfer_size;
767 	volatile unsigned int status = 0x0;
768 
769 	while (size > 0) {
770 		transfer_size =
771 		    (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
772 		command.u.mfc_size = transfer_size;
773 		command.u.mfc_tag = tag;
774 		command.u.mfc_rclassid = rclass;
775 		command.u.mfc_cmd = cmd;
776 		do {
777 			out_be32(&prob->mfc_lsa_W, ls_offset);
778 			out_be64(&prob->mfc_ea_W, ea);
779 			out_be64(&prob->mfc_union_W.all64, command.all64);
780 			status =
781 			    in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
782 			if (unlikely(status & 0x2)) {
783 				cpu_relax();
784 			}
785 		} while (status & 0x3);
786 		size -= transfer_size;
787 		ea += transfer_size;
788 		ls_offset += transfer_size;
789 	}
790 	return 0;
791 }
792 
793 static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
794 {
795 	unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
796 	unsigned int ls_offset = 0x0;
797 	unsigned int size = 16384;
798 	unsigned int tag = 0;
799 	unsigned int rclass = 0;
800 	unsigned int cmd = MFC_PUT_CMD;
801 
802 	/* Save, Step 50:
803 	 *     Issue a DMA command to copy the first 16K bytes
804 	 *     of local storage to the CSA.
805 	 */
806 	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
807 }
808 
809 static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
810 {
811 	struct spu_problem __iomem *prob = spu->problem;
812 
813 	/* Save, Step 51:
814 	 * Restore, Step 31.
815 	 *     Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
816 	 *     point address of context save code in local
817 	 *     storage.
818 	 *
819 	 *     This implementation uses SPU-side save/restore
820 	 *     programs with entry points at LSA of 0.
821 	 */
822 	out_be32(&prob->spu_npc_RW, 0);
823 	eieio();
824 }
825 
826 static inline void set_signot1(struct spu_state *csa, struct spu *spu)
827 {
828 	struct spu_problem __iomem *prob = spu->problem;
829 	union {
830 		u64 ull;
831 		u32 ui[2];
832 	} addr64;
833 
834 	/* Save, Step 52:
835 	 * Restore, Step 32:
836 	 *    Write SPU_Sig_Notify_1 register with upper 32-bits
837 	 *    of the CSA.LSCSA effective address.
838 	 */
839 	addr64.ull = (u64) csa->lscsa;
840 	out_be32(&prob->signal_notify1, addr64.ui[0]);
841 	eieio();
842 }
843 
844 static inline void set_signot2(struct spu_state *csa, struct spu *spu)
845 {
846 	struct spu_problem __iomem *prob = spu->problem;
847 	union {
848 		u64 ull;
849 		u32 ui[2];
850 	} addr64;
851 
852 	/* Save, Step 53:
853 	 * Restore, Step 33:
854 	 *    Write SPU_Sig_Notify_2 register with lower 32-bits
855 	 *    of the CSA.LSCSA effective address.
856 	 */
857 	addr64.ull = (u64) csa->lscsa;
858 	out_be32(&prob->signal_notify2, addr64.ui[1]);
859 	eieio();
860 }
861 
862 static inline void send_save_code(struct spu_state *csa, struct spu *spu)
863 {
864 	unsigned long addr = (unsigned long)&spu_save_code[0];
865 	unsigned int ls_offset = 0x0;
866 	unsigned int size = sizeof(spu_save_code);
867 	unsigned int tag = 0;
868 	unsigned int rclass = 0;
869 	unsigned int cmd = MFC_GETFS_CMD;
870 
871 	/* Save, Step 54:
872 	 *     Issue a DMA command to copy context save code
873 	 *     to local storage and start SPU.
874 	 */
875 	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
876 }
877 
878 static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
879 {
880 	struct spu_problem __iomem *prob = spu->problem;
881 
882 	/* Save, Step 55:
883 	 * Restore, Step 38.
884 	 *     Write PPU_QueryMask=1 (enable Tag Group 0)
885 	 *     and issue eieio instruction.
886 	 */
887 	out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
888 	eieio();
889 }
890 
891 static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
892 {
893 	struct spu_problem __iomem *prob = spu->problem;
894 	u32 mask = MFC_TAGID_TO_TAGMASK(0);
895 	unsigned long flags;
896 
897 	/* Save, Step 56:
898 	 * Restore, Step 39.
899 	 * Restore, Step 39.
900 	 * Restore, Step 46.
901 	 *     Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
902 	 *     or write PPU_QueryType[TS]=01 and wait for Tag Group
903 	 *     Complete Interrupt.  Write INT_Stat_Class0 or
904 	 *     INT_Stat_Class2 with value of 'handled'.
905 	 */
906 	POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
907 
908 	local_irq_save(flags);
909 	spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
910 	spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
911 	local_irq_restore(flags);
912 }
913 
914 static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
915 {
916 	struct spu_problem __iomem *prob = spu->problem;
917 	unsigned long flags;
918 
919 	/* Save, Step 57:
920 	 * Restore, Step 40.
921 	 *     Poll until SPU_Status[R]=0 or wait for SPU Class 0
922 	 *     or SPU Class 2 interrupt.  Write INT_Stat_class0
923 	 *     or INT_Stat_class2 with value of handled.
924 	 */
925 	POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
926 
927 	local_irq_save(flags);
928 	spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
929 	spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
930 	local_irq_restore(flags);
931 }
932 
933 static inline int check_save_status(struct spu_state *csa, struct spu *spu)
934 {
935 	struct spu_problem __iomem *prob = spu->problem;
936 	u32 complete;
937 
938 	/* Save, Step 54:
939 	 *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
940 	 *     context save succeeded, otherwise context save
941 	 *     failed.
942 	 */
943 	complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
944 		    SPU_STATUS_STOPPED_BY_STOP);
945 	return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
946 }
947 
948 static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
949 {
950 	/* Restore, Step 4:
951 	 *    If required, notify the "using application" that
952 	 *    the SPU task has been terminated.  TBD.
953 	 */
954 }
955 
956 static inline void suspend_mfc_and_halt_decr(struct spu_state *csa,
957 		struct spu *spu)
958 {
959 	struct spu_priv2 __iomem *priv2 = spu->priv2;
960 
961 	/* Restore, Step 7:
962 	 *     Write MFC_Cntl[Dh,Sc,Sm]='1','1','0' to suspend
963 	 *     the queue and halt the decrementer.
964 	 */
965 	out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
966 		 MFC_CNTL_DECREMENTER_HALTED);
967 	eieio();
968 }
969 
970 static inline void wait_suspend_mfc_complete(struct spu_state *csa,
971 					     struct spu *spu)
972 {
973 	struct spu_priv2 __iomem *priv2 = spu->priv2;
974 
975 	/* Restore, Step 8:
976 	 * Restore, Step 47.
977 	 *     Poll MFC_CNTL[Ss] until 11 is returned.
978 	 */
979 	POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
980 			 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
981 			 MFC_CNTL_SUSPEND_COMPLETE);
982 }
983 
984 static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
985 {
986 	struct spu_problem __iomem *prob = spu->problem;
987 
988 	/* Restore, Step 9:
989 	 *    If SPU_Status[R]=1, stop SPU execution
990 	 *    and wait for stop to complete.
991 	 *
992 	 *    Returns       1 if SPU_Status[R]=1 on entry.
993 	 *                  0 otherwise
994 	 */
995 	if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
996 		if (in_be32(&prob->spu_status_R) &
997 		    SPU_STATUS_ISOLATED_EXIT_STATUS) {
998 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
999 					SPU_STATUS_RUNNING);
1000 		}
1001 		if ((in_be32(&prob->spu_status_R) &
1002 		     SPU_STATUS_ISOLATED_LOAD_STATUS)
1003 		    || (in_be32(&prob->spu_status_R) &
1004 			SPU_STATUS_ISOLATED_STATE)) {
1005 			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1006 			eieio();
1007 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1008 					SPU_STATUS_RUNNING);
1009 			out_be32(&prob->spu_runcntl_RW, 0x2);
1010 			eieio();
1011 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1012 					SPU_STATUS_RUNNING);
1013 		}
1014 		if (in_be32(&prob->spu_status_R) &
1015 		    SPU_STATUS_WAITING_FOR_CHANNEL) {
1016 			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1017 			eieio();
1018 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1019 					SPU_STATUS_RUNNING);
1020 		}
1021 		return 1;
1022 	}
1023 	return 0;
1024 }
1025 
1026 static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
1027 {
1028 	struct spu_problem __iomem *prob = spu->problem;
1029 
1030 	/* Restore, Step 10:
1031 	 *    If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
1032 	 *    release SPU from isolate state.
1033 	 */
1034 	if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
1035 		if (in_be32(&prob->spu_status_R) &
1036 		    SPU_STATUS_ISOLATED_EXIT_STATUS) {
1037 			spu_mfc_sr1_set(spu,
1038 					MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1039 			eieio();
1040 			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1041 			eieio();
1042 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1043 					SPU_STATUS_RUNNING);
1044 		}
1045 		if ((in_be32(&prob->spu_status_R) &
1046 		     SPU_STATUS_ISOLATED_LOAD_STATUS)
1047 		    || (in_be32(&prob->spu_status_R) &
1048 			SPU_STATUS_ISOLATED_STATE)) {
1049 			spu_mfc_sr1_set(spu,
1050 					MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1051 			eieio();
1052 			out_be32(&prob->spu_runcntl_RW, 0x2);
1053 			eieio();
1054 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1055 					SPU_STATUS_RUNNING);
1056 		}
1057 	}
1058 }
1059 
1060 static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
1061 {
1062 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1063 	u64 ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1064 	u64 idx;
1065 	int i;
1066 
1067 	/* Restore, Step 20:
1068 	 */
1069 
1070 	/* Reset CH 1 */
1071 	out_be64(&priv2->spu_chnlcntptr_RW, 1);
1072 	out_be64(&priv2->spu_chnldata_RW, 0UL);
1073 
1074 	/* Reset the following CH: [0,3,4,24,25,27] */
1075 	for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1076 		idx = ch_indices[i];
1077 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1078 		eieio();
1079 		out_be64(&priv2->spu_chnldata_RW, 0UL);
1080 		out_be64(&priv2->spu_chnlcnt_RW, 0UL);
1081 		eieio();
1082 	}
1083 }
1084 
1085 static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
1086 {
1087 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1088 	u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
1089 	u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
1090 	u64 idx;
1091 	int i;
1092 
1093 	/* Restore, Step 21:
1094 	 *     Reset the following CH: [21, 23, 28, 29, 30]
1095 	 */
1096 	for (i = 0; i < 5; i++) {
1097 		idx = ch_indices[i];
1098 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1099 		eieio();
1100 		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1101 		eieio();
1102 	}
1103 }
1104 
1105 static inline void setup_spu_status_part1(struct spu_state *csa,
1106 					  struct spu *spu)
1107 {
1108 	u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
1109 	u32 status_I = SPU_STATUS_INVALID_INSTR;
1110 	u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
1111 	u32 status_S = SPU_STATUS_SINGLE_STEP;
1112 	u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
1113 	u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
1114 	u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
1115 	u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
1116 	u32 status_code;
1117 
1118 	/* Restore, Step 27:
1119 	 *     If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
1120 	 *     instruction sequence to the end of the SPU based restore
1121 	 *     code (after the "context restored" stop and signal) to
1122 	 *     restore the correct SPU status.
1123 	 *
1124 	 *     NOTE: Rather than modifying the SPU executable, we
1125 	 *     instead add a new 'stopped_status' field to the
1126 	 *     LSCSA.  The SPU-side restore reads this field and
1127 	 *     takes the appropriate action when exiting.
1128 	 */
1129 
1130 	status_code =
1131 	    (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
1132 	if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
1133 
1134 		/* SPU_Status[P,I]=1 - Illegal Instruction followed
1135 		 * by Stop and Signal instruction, followed by 'br -4'.
1136 		 *
1137 		 */
1138 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
1139 		csa->lscsa->stopped_status.slot[1] = status_code;
1140 
1141 	} else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
1142 
1143 		/* SPU_Status[P,H]=1 - Halt Conditional, followed
1144 		 * by Stop and Signal instruction, followed by
1145 		 * 'br -4'.
1146 		 */
1147 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
1148 		csa->lscsa->stopped_status.slot[1] = status_code;
1149 
1150 	} else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
1151 
1152 		/* SPU_Status[S,P]=1 - Stop and Signal instruction
1153 		 * followed by 'br -4'.
1154 		 */
1155 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
1156 		csa->lscsa->stopped_status.slot[1] = status_code;
1157 
1158 	} else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
1159 
1160 		/* SPU_Status[S,I]=1 - Illegal instruction followed
1161 		 * by 'br -4'.
1162 		 */
1163 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
1164 		csa->lscsa->stopped_status.slot[1] = status_code;
1165 
1166 	} else if ((csa->prob.spu_status_R & status_P) == status_P) {
1167 
1168 		/* SPU_Status[P]=1 - Stop and Signal instruction
1169 		 * followed by 'br -4'.
1170 		 */
1171 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
1172 		csa->lscsa->stopped_status.slot[1] = status_code;
1173 
1174 	} else if ((csa->prob.spu_status_R & status_H) == status_H) {
1175 
1176 		/* SPU_Status[H]=1 - Halt Conditional, followed
1177 		 * by 'br -4'.
1178 		 */
1179 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
1180 
1181 	} else if ((csa->prob.spu_status_R & status_S) == status_S) {
1182 
1183 		/* SPU_Status[S]=1 - Two nop instructions.
1184 		 */
1185 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
1186 
1187 	} else if ((csa->prob.spu_status_R & status_I) == status_I) {
1188 
1189 		/* SPU_Status[I]=1 - Illegal instruction followed
1190 		 * by 'br -4'.
1191 		 */
1192 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
1193 
1194 	}
1195 }
1196 
1197 static inline void setup_spu_status_part2(struct spu_state *csa,
1198 					  struct spu *spu)
1199 {
1200 	u32 mask;
1201 
1202 	/* Restore, Step 28:
1203 	 *     If the CSA.SPU_Status[I,S,H,P,R]=0 then
1204 	 *     add a 'br *' instruction to the end of
1205 	 *     the SPU based restore code.
1206 	 *
1207 	 *     NOTE: Rather than modifying the SPU executable, we
1208 	 *     instead add a new 'stopped_status' field to the
1209 	 *     LSCSA.  The SPU-side restore reads this field and
1210 	 *     takes the appropriate action when exiting.
1211 	 */
1212 	mask = SPU_STATUS_INVALID_INSTR |
1213 	    SPU_STATUS_SINGLE_STEP |
1214 	    SPU_STATUS_STOPPED_BY_HALT |
1215 	    SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1216 	if (!(csa->prob.spu_status_R & mask)) {
1217 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
1218 	}
1219 }
1220 
1221 static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
1222 {
1223 	/* Restore, Step 29:
1224 	 *     Restore RA_GROUP_ID register and the
1225 	 *     RA_ENABLE reigster from the CSA.
1226 	 */
1227 	spu_resource_allocation_groupID_set(spu,
1228 			csa->priv1.resource_allocation_groupID_RW);
1229 	spu_resource_allocation_enable_set(spu,
1230 			csa->priv1.resource_allocation_enable_RW);
1231 }
1232 
1233 static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
1234 {
1235 	unsigned long addr = (unsigned long)&spu_restore_code[0];
1236 	unsigned int ls_offset = 0x0;
1237 	unsigned int size = sizeof(spu_restore_code);
1238 	unsigned int tag = 0;
1239 	unsigned int rclass = 0;
1240 	unsigned int cmd = MFC_GETFS_CMD;
1241 
1242 	/* Restore, Step 37:
1243 	 *     Issue MFC DMA command to copy context
1244 	 *     restore code to local storage.
1245 	 */
1246 	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1247 }
1248 
1249 static inline void setup_decr(struct spu_state *csa, struct spu *spu)
1250 {
1251 	/* Restore, Step 34:
1252 	 *     If CSA.MFC_CNTL[Ds]=1 (decrementer was
1253 	 *     running) then adjust decrementer, set
1254 	 *     decrementer running status in LSCSA,
1255 	 *     and set decrementer "wrapped" status
1256 	 *     in LSCSA.
1257 	 */
1258 	if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
1259 		cycles_t resume_time = get_cycles();
1260 		cycles_t delta_time = resume_time - csa->suspend_time;
1261 
1262 		csa->lscsa->decr_status.slot[0] = SPU_DECR_STATUS_RUNNING;
1263 		if (csa->lscsa->decr.slot[0] < delta_time) {
1264 			csa->lscsa->decr_status.slot[0] |=
1265 				 SPU_DECR_STATUS_WRAPPED;
1266 		}
1267 
1268 		csa->lscsa->decr.slot[0] -= delta_time;
1269 	} else {
1270 		csa->lscsa->decr_status.slot[0] = 0;
1271 	}
1272 }
1273 
1274 static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
1275 {
1276 	/* Restore, Step 35:
1277 	 *     Copy the CSA.PU_MB data into the LSCSA.
1278 	 */
1279 	csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
1280 }
1281 
1282 static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
1283 {
1284 	/* Restore, Step 36:
1285 	 *     Copy the CSA.PUINT_MB data into the LSCSA.
1286 	 */
1287 	csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
1288 }
1289 
1290 static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
1291 {
1292 	struct spu_problem __iomem *prob = spu->problem;
1293 	u32 complete;
1294 
1295 	/* Restore, Step 40:
1296 	 *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
1297 	 *     context restore succeeded, otherwise context restore
1298 	 *     failed.
1299 	 */
1300 	complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
1301 		    SPU_STATUS_STOPPED_BY_STOP);
1302 	return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1303 }
1304 
1305 static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
1306 {
1307 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1308 
1309 	/* Restore, Step 41:
1310 	 *     Restore SPU_PrivCntl from the CSA.
1311 	 */
1312 	out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
1313 	eieio();
1314 }
1315 
1316 static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
1317 {
1318 	struct spu_problem __iomem *prob = spu->problem;
1319 	u32 mask;
1320 
1321 	/* Restore, Step 42:
1322 	 *     If any CSA.SPU_Status[I,S,H,P]=1, then
1323 	 *     restore the error or single step state.
1324 	 */
1325 	mask = SPU_STATUS_INVALID_INSTR |
1326 	    SPU_STATUS_SINGLE_STEP |
1327 	    SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
1328 	if (csa->prob.spu_status_R & mask) {
1329 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1330 		eieio();
1331 		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1332 				SPU_STATUS_RUNNING);
1333 	}
1334 }
1335 
1336 static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
1337 {
1338 	struct spu_problem __iomem *prob = spu->problem;
1339 	u32 mask;
1340 
1341 	/* Restore, Step 43:
1342 	 *     If all CSA.SPU_Status[I,S,H,P,R]=0 then write
1343 	 *     SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
1344 	 *     then write '00' to SPU_RunCntl[R0R1] and wait
1345 	 *     for SPU_Status[R]=0.
1346 	 */
1347 	mask = SPU_STATUS_INVALID_INSTR |
1348 	    SPU_STATUS_SINGLE_STEP |
1349 	    SPU_STATUS_STOPPED_BY_HALT |
1350 	    SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1351 	if (!(csa->prob.spu_status_R & mask)) {
1352 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1353 		eieio();
1354 		POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
1355 				 SPU_STATUS_RUNNING);
1356 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1357 		eieio();
1358 		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1359 				SPU_STATUS_RUNNING);
1360 	}
1361 }
1362 
1363 static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
1364 {
1365 	unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
1366 	unsigned int ls_offset = 0x0;
1367 	unsigned int size = 16384;
1368 	unsigned int tag = 0;
1369 	unsigned int rclass = 0;
1370 	unsigned int cmd = MFC_GET_CMD;
1371 
1372 	/* Restore, Step 44:
1373 	 *     Issue a DMA command to restore the first
1374 	 *     16kb of local storage from CSA.
1375 	 */
1376 	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1377 }
1378 
1379 static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
1380 {
1381 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1382 
1383 	/* Restore, Step 47.
1384 	 *     Write MFC_Cntl[Sc,Sm]='1','0' to suspend
1385 	 *     the queue.
1386 	 */
1387 	out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
1388 	eieio();
1389 }
1390 
1391 static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
1392 {
1393 	/* Restore, Step 49:
1394 	 *     Write INT_MASK_class0 with value of 0.
1395 	 *     Write INT_MASK_class1 with value of 0.
1396 	 *     Write INT_MASK_class2 with value of 0.
1397 	 *     Write INT_STAT_class0 with value of -1.
1398 	 *     Write INT_STAT_class1 with value of -1.
1399 	 *     Write INT_STAT_class2 with value of -1.
1400 	 */
1401 	spin_lock_irq(&spu->register_lock);
1402 	spu_int_mask_set(spu, 0, 0ul);
1403 	spu_int_mask_set(spu, 1, 0ul);
1404 	spu_int_mask_set(spu, 2, 0ul);
1405 	spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
1406 	spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
1407 	spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
1408 	spin_unlock_irq(&spu->register_lock);
1409 }
1410 
1411 static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
1412 {
1413 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1414 	int i;
1415 
1416 	/* Restore, Step 50:
1417 	 *     If MFC_Cntl[Se]!=0 then restore
1418 	 *     MFC command queues.
1419 	 */
1420 	if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
1421 		for (i = 0; i < 8; i++) {
1422 			out_be64(&priv2->puq[i].mfc_cq_data0_RW,
1423 				 csa->priv2.puq[i].mfc_cq_data0_RW);
1424 			out_be64(&priv2->puq[i].mfc_cq_data1_RW,
1425 				 csa->priv2.puq[i].mfc_cq_data1_RW);
1426 			out_be64(&priv2->puq[i].mfc_cq_data2_RW,
1427 				 csa->priv2.puq[i].mfc_cq_data2_RW);
1428 			out_be64(&priv2->puq[i].mfc_cq_data3_RW,
1429 				 csa->priv2.puq[i].mfc_cq_data3_RW);
1430 		}
1431 		for (i = 0; i < 16; i++) {
1432 			out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
1433 				 csa->priv2.spuq[i].mfc_cq_data0_RW);
1434 			out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
1435 				 csa->priv2.spuq[i].mfc_cq_data1_RW);
1436 			out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
1437 				 csa->priv2.spuq[i].mfc_cq_data2_RW);
1438 			out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
1439 				 csa->priv2.spuq[i].mfc_cq_data3_RW);
1440 		}
1441 	}
1442 	eieio();
1443 }
1444 
1445 static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
1446 {
1447 	struct spu_problem __iomem *prob = spu->problem;
1448 
1449 	/* Restore, Step 51:
1450 	 *     Restore the PPU_QueryMask register from CSA.
1451 	 */
1452 	out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
1453 	eieio();
1454 }
1455 
1456 static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
1457 {
1458 	struct spu_problem __iomem *prob = spu->problem;
1459 
1460 	/* Restore, Step 52:
1461 	 *     Restore the PPU_QueryType register from CSA.
1462 	 */
1463 	out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
1464 	eieio();
1465 }
1466 
1467 static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
1468 {
1469 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1470 
1471 	/* Restore, Step 53:
1472 	 *     Restore the MFC_CSR_TSQ register from CSA.
1473 	 */
1474 	out_be64(&priv2->spu_tag_status_query_RW,
1475 		 csa->priv2.spu_tag_status_query_RW);
1476 	eieio();
1477 }
1478 
1479 static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
1480 {
1481 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1482 
1483 	/* Restore, Step 54:
1484 	 *     Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
1485 	 *     registers from CSA.
1486 	 */
1487 	out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
1488 	out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
1489 	eieio();
1490 }
1491 
1492 static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
1493 {
1494 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1495 
1496 	/* Restore, Step 55:
1497 	 *     Restore the MFC_CSR_ATO register from CSA.
1498 	 */
1499 	out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
1500 }
1501 
1502 static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
1503 {
1504 	/* Restore, Step 56:
1505 	 *     Restore the MFC_TCLASS_ID register from CSA.
1506 	 */
1507 	spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
1508 	eieio();
1509 }
1510 
1511 static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
1512 {
1513 	u64 ch0_cnt, ch0_data;
1514 	u64 ch1_data;
1515 
1516 	/* Restore, Step 57:
1517 	 *    Set the Lock Line Reservation Lost Event by:
1518 	 *      1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
1519 	 *      2. If CSA.SPU_Channel_0_Count=0 and
1520 	 *         CSA.SPU_Wr_Event_Mask[Lr]=1 and
1521 	 *         CSA.SPU_Event_Status[Lr]=0 then set
1522 	 *         CSA.SPU_Event_Status_Count=1.
1523 	 */
1524 	ch0_cnt = csa->spu_chnlcnt_RW[0];
1525 	ch0_data = csa->spu_chnldata_RW[0];
1526 	ch1_data = csa->spu_chnldata_RW[1];
1527 	csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
1528 	if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
1529 	    (ch1_data & MFC_LLR_LOST_EVENT)) {
1530 		csa->spu_chnlcnt_RW[0] = 1;
1531 	}
1532 }
1533 
1534 static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
1535 {
1536 	/* Restore, Step 58:
1537 	 *     If the status of the CSA software decrementer
1538 	 *     "wrapped" flag is set, OR in a '1' to
1539 	 *     CSA.SPU_Event_Status[Tm].
1540 	 */
1541 	if (!(csa->lscsa->decr_status.slot[0] & SPU_DECR_STATUS_WRAPPED))
1542 		return;
1543 
1544 	if ((csa->spu_chnlcnt_RW[0] == 0) &&
1545 	    (csa->spu_chnldata_RW[1] & 0x20) &&
1546 	    !(csa->spu_chnldata_RW[0] & 0x20))
1547 		csa->spu_chnlcnt_RW[0] = 1;
1548 
1549 	csa->spu_chnldata_RW[0] |= 0x20;
1550 }
1551 
1552 static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
1553 {
1554 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1555 	u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1556 	int i;
1557 
1558 	/* Restore, Step 59:
1559 	 *	Restore the following CH: [0,3,4,24,25,27]
1560 	 */
1561 	for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1562 		idx = ch_indices[i];
1563 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1564 		eieio();
1565 		out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
1566 		out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
1567 		eieio();
1568 	}
1569 }
1570 
1571 static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
1572 {
1573 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1574 	u64 ch_indices[3] = { 9UL, 21UL, 23UL };
1575 	u64 ch_counts[3] = { 1UL, 16UL, 1UL };
1576 	u64 idx;
1577 	int i;
1578 
1579 	/* Restore, Step 60:
1580 	 *     Restore the following CH: [9,21,23].
1581 	 */
1582 	ch_counts[0] = 1UL;
1583 	ch_counts[1] = csa->spu_chnlcnt_RW[21];
1584 	ch_counts[2] = 1UL;
1585 	for (i = 0; i < 3; i++) {
1586 		idx = ch_indices[i];
1587 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1588 		eieio();
1589 		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1590 		eieio();
1591 	}
1592 }
1593 
1594 static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
1595 {
1596 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1597 
1598 	/* Restore, Step 61:
1599 	 *     Restore the SPU_LSLR register from CSA.
1600 	 */
1601 	out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
1602 	eieio();
1603 }
1604 
1605 static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
1606 {
1607 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1608 
1609 	/* Restore, Step 62:
1610 	 *     Restore the SPU_Cfg register from CSA.
1611 	 */
1612 	out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
1613 	eieio();
1614 }
1615 
1616 static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
1617 {
1618 	/* Restore, Step 63:
1619 	 *     Restore PM_Trace_Tag_Wait_Mask from CSA.
1620 	 *     Not performed by this implementation.
1621 	 */
1622 }
1623 
1624 static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
1625 {
1626 	struct spu_problem __iomem *prob = spu->problem;
1627 
1628 	/* Restore, Step 64:
1629 	 *     Restore SPU_NPC from CSA.
1630 	 */
1631 	out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
1632 	eieio();
1633 }
1634 
1635 static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
1636 {
1637 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1638 	int i;
1639 
1640 	/* Restore, Step 65:
1641 	 *     Restore MFC_RdSPU_MB from CSA.
1642 	 */
1643 	out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
1644 	eieio();
1645 	out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
1646 	for (i = 0; i < 4; i++) {
1647 		out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
1648 	}
1649 	eieio();
1650 }
1651 
1652 static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
1653 {
1654 	struct spu_problem __iomem *prob = spu->problem;
1655 	u32 dummy = 0;
1656 
1657 	/* Restore, Step 66:
1658 	 *     If CSA.MB_Stat[P]=0 (mailbox empty) then
1659 	 *     read from the PPU_MB register.
1660 	 */
1661 	if ((csa->prob.mb_stat_R & 0xFF) == 0) {
1662 		dummy = in_be32(&prob->pu_mb_R);
1663 		eieio();
1664 	}
1665 }
1666 
1667 static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
1668 {
1669 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1670 	u64 dummy = 0UL;
1671 
1672 	/* Restore, Step 66:
1673 	 *     If CSA.MB_Stat[I]=0 (mailbox empty) then
1674 	 *     read from the PPUINT_MB register.
1675 	 */
1676 	if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
1677 		dummy = in_be64(&priv2->puint_mb_R);
1678 		eieio();
1679 		spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
1680 		eieio();
1681 	}
1682 }
1683 
1684 static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
1685 {
1686 	/* Restore, Step 69:
1687 	 *     Restore the MFC_SR1 register from CSA.
1688 	 */
1689 	spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
1690 	eieio();
1691 }
1692 
1693 static inline void restore_other_spu_access(struct spu_state *csa,
1694 					    struct spu *spu)
1695 {
1696 	/* Restore, Step 70:
1697 	 *     Restore other SPU mappings to this SPU. TBD.
1698 	 */
1699 }
1700 
1701 static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
1702 {
1703 	struct spu_problem __iomem *prob = spu->problem;
1704 
1705 	/* Restore, Step 71:
1706 	 *     If CSA.SPU_Status[R]=1 then write
1707 	 *     SPU_RunCntl[R0R1]='01'.
1708 	 */
1709 	if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
1710 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1711 		eieio();
1712 	}
1713 }
1714 
1715 static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
1716 {
1717 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1718 
1719 	/* Restore, Step 72:
1720 	 *    Restore the MFC_CNTL register for the CSA.
1721 	 */
1722 	out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
1723 	eieio();
1724 	/*
1725 	 * FIXME: this is to restart a DMA that we were processing
1726 	 *        before the save. better remember the fault information
1727 	 *        in the csa instead.
1728 	 */
1729 	if ((csa->priv2.mfc_control_RW & MFC_CNTL_SUSPEND_DMA_QUEUE_MASK)) {
1730 		out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
1731 		eieio();
1732 	}
1733 }
1734 
1735 static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
1736 {
1737 	/* Restore, Step 73:
1738 	 *     Enable user-space access (if provided) to this
1739 	 *     SPU by mapping the virtual pages assigned to
1740 	 *     the SPU memory-mapped I/O (MMIO) for problem
1741 	 *     state. TBD.
1742 	 */
1743 }
1744 
1745 static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
1746 {
1747 	/* Restore, Step 74:
1748 	 *     Reset the "context switch active" flag.
1749 	 *     Not performed by this implementation.
1750 	 */
1751 }
1752 
1753 static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
1754 {
1755 	/* Restore, Step 75:
1756 	 *     Re-enable SPU interrupts.
1757 	 */
1758 	spin_lock_irq(&spu->register_lock);
1759 	spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
1760 	spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
1761 	spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
1762 	spin_unlock_irq(&spu->register_lock);
1763 }
1764 
1765 static int quiece_spu(struct spu_state *prev, struct spu *spu)
1766 {
1767 	/*
1768 	 * Combined steps 2-18 of SPU context save sequence, which
1769 	 * quiesce the SPU state (disable SPU execution, MFC command
1770 	 * queues, decrementer, SPU interrupts, etc.).
1771 	 *
1772 	 * Returns      0 on success.
1773 	 *              2 if failed step 2.
1774 	 *              6 if failed step 6.
1775 	 */
1776 
1777 	if (check_spu_isolate(prev, spu)) {	/* Step 2. */
1778 		return 2;
1779 	}
1780 	disable_interrupts(prev, spu);	        /* Step 3. */
1781 	set_watchdog_timer(prev, spu);	        /* Step 4. */
1782 	inhibit_user_access(prev, spu);	        /* Step 5. */
1783 	if (check_spu_isolate(prev, spu)) {	/* Step 6. */
1784 		return 6;
1785 	}
1786 	set_switch_pending(prev, spu);	        /* Step 7. */
1787 	save_mfc_cntl(prev, spu);		/* Step 8. */
1788 	save_spu_runcntl(prev, spu);	        /* Step 9. */
1789 	save_mfc_sr1(prev, spu);	        /* Step 10. */
1790 	save_spu_status(prev, spu);	        /* Step 11. */
1791 	save_mfc_decr(prev, spu);	        /* Step 12. */
1792 	halt_mfc_decr(prev, spu);	        /* Step 13. */
1793 	save_timebase(prev, spu);		/* Step 14. */
1794 	remove_other_spu_access(prev, spu);	/* Step 15. */
1795 	do_mfc_mssync(prev, spu);	        /* Step 16. */
1796 	issue_mfc_tlbie(prev, spu);	        /* Step 17. */
1797 	handle_pending_interrupts(prev, spu);	/* Step 18. */
1798 
1799 	return 0;
1800 }
1801 
1802 static void save_csa(struct spu_state *prev, struct spu *spu)
1803 {
1804 	/*
1805 	 * Combine steps 19-44 of SPU context save sequence, which
1806 	 * save regions of the privileged & problem state areas.
1807 	 */
1808 
1809 	save_mfc_queues(prev, spu);	/* Step 19. */
1810 	save_ppu_querymask(prev, spu);	/* Step 20. */
1811 	save_ppu_querytype(prev, spu);	/* Step 21. */
1812 	save_ppu_tagstatus(prev, spu);  /* NEW.     */
1813 	save_mfc_csr_tsq(prev, spu);	/* Step 22. */
1814 	save_mfc_csr_cmd(prev, spu);	/* Step 23. */
1815 	save_mfc_csr_ato(prev, spu);	/* Step 24. */
1816 	save_mfc_tclass_id(prev, spu);	/* Step 25. */
1817 	set_mfc_tclass_id(prev, spu);	/* Step 26. */
1818 	purge_mfc_queue(prev, spu);	/* Step 27. */
1819 	wait_purge_complete(prev, spu);	/* Step 28. */
1820 	setup_mfc_sr1(prev, spu);	/* Step 30. */
1821 	save_spu_npc(prev, spu);	/* Step 31. */
1822 	save_spu_privcntl(prev, spu);	/* Step 32. */
1823 	reset_spu_privcntl(prev, spu);	/* Step 33. */
1824 	save_spu_lslr(prev, spu);	/* Step 34. */
1825 	reset_spu_lslr(prev, spu);	/* Step 35. */
1826 	save_spu_cfg(prev, spu);	/* Step 36. */
1827 	save_pm_trace(prev, spu);	/* Step 37. */
1828 	save_mfc_rag(prev, spu);	/* Step 38. */
1829 	save_ppu_mb_stat(prev, spu);	/* Step 39. */
1830 	save_ppu_mb(prev, spu);	        /* Step 40. */
1831 	save_ppuint_mb(prev, spu);	/* Step 41. */
1832 	save_ch_part1(prev, spu);	/* Step 42. */
1833 	save_spu_mb(prev, spu);	        /* Step 43. */
1834 	save_mfc_cmd(prev, spu);	/* Step 44. */
1835 	reset_ch(prev, spu);	        /* Step 45. */
1836 }
1837 
1838 static void save_lscsa(struct spu_state *prev, struct spu *spu)
1839 {
1840 	/*
1841 	 * Perform steps 46-57 of SPU context save sequence,
1842 	 * which save regions of the local store and register
1843 	 * file.
1844 	 */
1845 
1846 	resume_mfc_queue(prev, spu);	/* Step 46. */
1847 	/* Step 47. */
1848 	setup_mfc_slbs(prev, spu, spu_save_code, sizeof(spu_save_code));
1849 	set_switch_active(prev, spu);	/* Step 48. */
1850 	enable_interrupts(prev, spu);	/* Step 49. */
1851 	save_ls_16kb(prev, spu);	/* Step 50. */
1852 	set_spu_npc(prev, spu);	        /* Step 51. */
1853 	set_signot1(prev, spu);		/* Step 52. */
1854 	set_signot2(prev, spu);		/* Step 53. */
1855 	send_save_code(prev, spu);	/* Step 54. */
1856 	set_ppu_querymask(prev, spu);	/* Step 55. */
1857 	wait_tag_complete(prev, spu);	/* Step 56. */
1858 	wait_spu_stopped(prev, spu);	/* Step 57. */
1859 }
1860 
1861 static void force_spu_isolate_exit(struct spu *spu)
1862 {
1863 	struct spu_problem __iomem *prob = spu->problem;
1864 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1865 
1866 	/* Stop SPE execution and wait for completion. */
1867 	out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1868 	iobarrier_rw();
1869 	POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
1870 
1871 	/* Restart SPE master runcntl. */
1872 	spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1873 	iobarrier_w();
1874 
1875 	/* Initiate isolate exit request and wait for completion. */
1876 	out_be64(&priv2->spu_privcntl_RW, 4LL);
1877 	iobarrier_w();
1878 	out_be32(&prob->spu_runcntl_RW, 2);
1879 	iobarrier_rw();
1880 	POLL_WHILE_FALSE((in_be32(&prob->spu_status_R)
1881 				& SPU_STATUS_STOPPED_BY_STOP));
1882 
1883 	/* Reset load request to normal. */
1884 	out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL);
1885 	iobarrier_w();
1886 }
1887 
1888 /**
1889  * stop_spu_isolate
1890  *	Check SPU run-control state and force isolated
1891  *	exit function as necessary.
1892  */
1893 static void stop_spu_isolate(struct spu *spu)
1894 {
1895 	struct spu_problem __iomem *prob = spu->problem;
1896 
1897 	if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) {
1898 		/* The SPU is in isolated state; the only way
1899 		 * to get it out is to perform an isolated
1900 		 * exit (clean) operation.
1901 		 */
1902 		force_spu_isolate_exit(spu);
1903 	}
1904 }
1905 
1906 static void harvest(struct spu_state *prev, struct spu *spu)
1907 {
1908 	/*
1909 	 * Perform steps 2-25 of SPU context restore sequence,
1910 	 * which resets an SPU either after a failed save, or
1911 	 * when using SPU for first time.
1912 	 */
1913 
1914 	disable_interrupts(prev, spu);	        /* Step 2.  */
1915 	inhibit_user_access(prev, spu);	        /* Step 3.  */
1916 	terminate_spu_app(prev, spu);	        /* Step 4.  */
1917 	set_switch_pending(prev, spu);	        /* Step 5.  */
1918 	stop_spu_isolate(spu);			/* NEW.     */
1919 	remove_other_spu_access(prev, spu);	/* Step 6.  */
1920 	suspend_mfc_and_halt_decr(prev, spu);	/* Step 7.  */
1921 	wait_suspend_mfc_complete(prev, spu);	/* Step 8.  */
1922 	if (!suspend_spe(prev, spu))	        /* Step 9.  */
1923 		clear_spu_status(prev, spu);	/* Step 10. */
1924 	do_mfc_mssync(prev, spu);	        /* Step 11. */
1925 	issue_mfc_tlbie(prev, spu);	        /* Step 12. */
1926 	handle_pending_interrupts(prev, spu);	/* Step 13. */
1927 	purge_mfc_queue(prev, spu);	        /* Step 14. */
1928 	wait_purge_complete(prev, spu);	        /* Step 15. */
1929 	reset_spu_privcntl(prev, spu);	        /* Step 16. */
1930 	reset_spu_lslr(prev, spu);              /* Step 17. */
1931 	setup_mfc_sr1(prev, spu);	        /* Step 18. */
1932 	spu_invalidate_slbs(spu);		/* Step 19. */
1933 	reset_ch_part1(prev, spu);	        /* Step 20. */
1934 	reset_ch_part2(prev, spu);	        /* Step 21. */
1935 	enable_interrupts(prev, spu);	        /* Step 22. */
1936 	set_switch_active(prev, spu);	        /* Step 23. */
1937 	set_mfc_tclass_id(prev, spu);	        /* Step 24. */
1938 	resume_mfc_queue(prev, spu);	        /* Step 25. */
1939 }
1940 
1941 static void restore_lscsa(struct spu_state *next, struct spu *spu)
1942 {
1943 	/*
1944 	 * Perform steps 26-40 of SPU context restore sequence,
1945 	 * which restores regions of the local store and register
1946 	 * file.
1947 	 */
1948 
1949 	set_watchdog_timer(next, spu);	        /* Step 26. */
1950 	setup_spu_status_part1(next, spu);	/* Step 27. */
1951 	setup_spu_status_part2(next, spu);	/* Step 28. */
1952 	restore_mfc_rag(next, spu);	        /* Step 29. */
1953 	/* Step 30. */
1954 	setup_mfc_slbs(next, spu, spu_restore_code, sizeof(spu_restore_code));
1955 	set_spu_npc(next, spu);	                /* Step 31. */
1956 	set_signot1(next, spu);	                /* Step 32. */
1957 	set_signot2(next, spu);	                /* Step 33. */
1958 	setup_decr(next, spu);	                /* Step 34. */
1959 	setup_ppu_mb(next, spu);	        /* Step 35. */
1960 	setup_ppuint_mb(next, spu);	        /* Step 36. */
1961 	send_restore_code(next, spu);	        /* Step 37. */
1962 	set_ppu_querymask(next, spu);	        /* Step 38. */
1963 	wait_tag_complete(next, spu);	        /* Step 39. */
1964 	wait_spu_stopped(next, spu);	        /* Step 40. */
1965 }
1966 
1967 static void restore_csa(struct spu_state *next, struct spu *spu)
1968 {
1969 	/*
1970 	 * Combine steps 41-76 of SPU context restore sequence, which
1971 	 * restore regions of the privileged & problem state areas.
1972 	 */
1973 
1974 	restore_spu_privcntl(next, spu);	/* Step 41. */
1975 	restore_status_part1(next, spu);	/* Step 42. */
1976 	restore_status_part2(next, spu);	/* Step 43. */
1977 	restore_ls_16kb(next, spu);	        /* Step 44. */
1978 	wait_tag_complete(next, spu);	        /* Step 45. */
1979 	suspend_mfc(next, spu);	                /* Step 46. */
1980 	wait_suspend_mfc_complete(next, spu);	/* Step 47. */
1981 	issue_mfc_tlbie(next, spu);	        /* Step 48. */
1982 	clear_interrupts(next, spu);	        /* Step 49. */
1983 	restore_mfc_queues(next, spu);	        /* Step 50. */
1984 	restore_ppu_querymask(next, spu);	/* Step 51. */
1985 	restore_ppu_querytype(next, spu);	/* Step 52. */
1986 	restore_mfc_csr_tsq(next, spu);	        /* Step 53. */
1987 	restore_mfc_csr_cmd(next, spu);	        /* Step 54. */
1988 	restore_mfc_csr_ato(next, spu);	        /* Step 55. */
1989 	restore_mfc_tclass_id(next, spu);	/* Step 56. */
1990 	set_llr_event(next, spu);	        /* Step 57. */
1991 	restore_decr_wrapped(next, spu);	/* Step 58. */
1992 	restore_ch_part1(next, spu);	        /* Step 59. */
1993 	restore_ch_part2(next, spu);	        /* Step 60. */
1994 	restore_spu_lslr(next, spu);	        /* Step 61. */
1995 	restore_spu_cfg(next, spu);	        /* Step 62. */
1996 	restore_pm_trace(next, spu);	        /* Step 63. */
1997 	restore_spu_npc(next, spu);	        /* Step 64. */
1998 	restore_spu_mb(next, spu);	        /* Step 65. */
1999 	check_ppu_mb_stat(next, spu);	        /* Step 66. */
2000 	check_ppuint_mb_stat(next, spu);	/* Step 67. */
2001 	spu_invalidate_slbs(spu);		/* Modified Step 68. */
2002 	restore_mfc_sr1(next, spu);	        /* Step 69. */
2003 	restore_other_spu_access(next, spu);	/* Step 70. */
2004 	restore_spu_runcntl(next, spu);	        /* Step 71. */
2005 	restore_mfc_cntl(next, spu);	        /* Step 72. */
2006 	enable_user_access(next, spu);	        /* Step 73. */
2007 	reset_switch_active(next, spu);	        /* Step 74. */
2008 	reenable_interrupts(next, spu);	        /* Step 75. */
2009 }
2010 
2011 static int __do_spu_save(struct spu_state *prev, struct spu *spu)
2012 {
2013 	int rc;
2014 
2015 	/*
2016 	 * SPU context save can be broken into three phases:
2017 	 *
2018 	 *     (a) quiesce [steps 2-16].
2019 	 *     (b) save of CSA, performed by PPE [steps 17-42]
2020 	 *     (c) save of LSCSA, mostly performed by SPU [steps 43-52].
2021 	 *
2022 	 * Returns      0 on success.
2023 	 *              2,6 if failed to quiece SPU
2024 	 *              53 if SPU-side of save failed.
2025 	 */
2026 
2027 	rc = quiece_spu(prev, spu);	        /* Steps 2-16. */
2028 	switch (rc) {
2029 	default:
2030 	case 2:
2031 	case 6:
2032 		harvest(prev, spu);
2033 		return rc;
2034 		break;
2035 	case 0:
2036 		break;
2037 	}
2038 	save_csa(prev, spu);	                /* Steps 17-43. */
2039 	save_lscsa(prev, spu);	                /* Steps 44-53. */
2040 	return check_save_status(prev, spu);	/* Step 54.     */
2041 }
2042 
2043 static int __do_spu_restore(struct spu_state *next, struct spu *spu)
2044 {
2045 	int rc;
2046 
2047 	/*
2048 	 * SPU context restore can be broken into three phases:
2049 	 *
2050 	 *    (a) harvest (or reset) SPU [steps 2-24].
2051 	 *    (b) restore LSCSA [steps 25-40], mostly performed by SPU.
2052 	 *    (c) restore CSA [steps 41-76], performed by PPE.
2053 	 *
2054 	 * The 'harvest' step is not performed here, but rather
2055 	 * as needed below.
2056 	 */
2057 
2058 	restore_lscsa(next, spu);	        /* Steps 24-39. */
2059 	rc = check_restore_status(next, spu);	/* Step 40.     */
2060 	switch (rc) {
2061 	default:
2062 		/* Failed. Return now. */
2063 		return rc;
2064 		break;
2065 	case 0:
2066 		/* Fall through to next step. */
2067 		break;
2068 	}
2069 	restore_csa(next, spu);
2070 
2071 	return 0;
2072 }
2073 
2074 /**
2075  * spu_save - SPU context save, with locking.
2076  * @prev: pointer to SPU context save area, to be saved.
2077  * @spu: pointer to SPU iomem structure.
2078  *
2079  * Acquire locks, perform the save operation then return.
2080  */
2081 int spu_save(struct spu_state *prev, struct spu *spu)
2082 {
2083 	int rc;
2084 
2085 	acquire_spu_lock(spu);	        /* Step 1.     */
2086 	rc = __do_spu_save(prev, spu);	/* Steps 2-53. */
2087 	release_spu_lock(spu);
2088 	if (rc != 0 && rc != 2 && rc != 6) {
2089 		panic("%s failed on SPU[%d], rc=%d.\n",
2090 		      __func__, spu->number, rc);
2091 	}
2092 	return 0;
2093 }
2094 EXPORT_SYMBOL_GPL(spu_save);
2095 
2096 /**
2097  * spu_restore - SPU context restore, with harvest and locking.
2098  * @new: pointer to SPU context save area, to be restored.
2099  * @spu: pointer to SPU iomem structure.
2100  *
2101  * Perform harvest + restore, as we may not be coming
2102  * from a previous successful save operation, and the
2103  * hardware state is unknown.
2104  */
2105 int spu_restore(struct spu_state *new, struct spu *spu)
2106 {
2107 	int rc;
2108 
2109 	acquire_spu_lock(spu);
2110 	harvest(NULL, spu);
2111 	spu->slb_replace = 0;
2112 	rc = __do_spu_restore(new, spu);
2113 	release_spu_lock(spu);
2114 	if (rc) {
2115 		panic("%s failed on SPU[%d] rc=%d.\n",
2116 		       __func__, spu->number, rc);
2117 	}
2118 	return rc;
2119 }
2120 EXPORT_SYMBOL_GPL(spu_restore);
2121 
2122 static void init_prob(struct spu_state *csa)
2123 {
2124 	csa->spu_chnlcnt_RW[9] = 1;
2125 	csa->spu_chnlcnt_RW[21] = 16;
2126 	csa->spu_chnlcnt_RW[23] = 1;
2127 	csa->spu_chnlcnt_RW[28] = 1;
2128 	csa->spu_chnlcnt_RW[30] = 1;
2129 	csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
2130 	csa->prob.mb_stat_R = 0x000400;
2131 }
2132 
2133 static void init_priv1(struct spu_state *csa)
2134 {
2135 	/* Enable decode, relocate, tlbie response, master runcntl. */
2136 	csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
2137 	    MFC_STATE1_MASTER_RUN_CONTROL_MASK |
2138 	    MFC_STATE1_PROBLEM_STATE_MASK |
2139 	    MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
2140 
2141 	/* Enable OS-specific set of interrupts. */
2142 	csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
2143 	    CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
2144 	    CLASS0_ENABLE_SPU_ERROR_INTR;
2145 	csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
2146 	    CLASS1_ENABLE_STORAGE_FAULT_INTR;
2147 	csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
2148 	    CLASS2_ENABLE_SPU_HALT_INTR |
2149 	    CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
2150 }
2151 
2152 static void init_priv2(struct spu_state *csa)
2153 {
2154 	csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
2155 	csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
2156 	    MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
2157 	    MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
2158 }
2159 
2160 /**
2161  * spu_alloc_csa - allocate and initialize an SPU context save area.
2162  *
2163  * Allocate and initialize the contents of an SPU context save area.
2164  * This includes enabling address translation, interrupt masks, etc.,
2165  * as appropriate for the given OS environment.
2166  *
2167  * Note that storage for the 'lscsa' is allocated separately,
2168  * as it is by far the largest of the context save regions,
2169  * and may need to be pinned or otherwise specially aligned.
2170  */
2171 int spu_init_csa(struct spu_state *csa)
2172 {
2173 	int rc;
2174 
2175 	if (!csa)
2176 		return -EINVAL;
2177 	memset(csa, 0, sizeof(struct spu_state));
2178 
2179 	rc = spu_alloc_lscsa(csa);
2180 	if (rc)
2181 		return rc;
2182 
2183 	spin_lock_init(&csa->register_lock);
2184 
2185 	init_prob(csa);
2186 	init_priv1(csa);
2187 	init_priv2(csa);
2188 
2189 	return 0;
2190 }
2191 
2192 void spu_fini_csa(struct spu_state *csa)
2193 {
2194 	spu_free_lscsa(csa);
2195 }
2196