1 /*
2  * spu_switch.c
3  *
4  * (C) Copyright IBM Corp. 2005
5  *
6  * Author: Mark Nutter <mnutter@us.ibm.com>
7  *
8  * Host-side part of SPU context switch sequence outlined in
9  * Synergistic Processor Element, Book IV.
10  *
11  * A fully premptive switch of an SPE is very expensive in terms
12  * of time and system resources.  SPE Book IV indicates that SPE
13  * allocation should follow a "serially reusable device" model,
14  * in which the SPE is assigned a task until it completes.  When
15  * this is not possible, this sequence may be used to premptively
16  * save, and then later (optionally) restore the context of a
17  * program executing on an SPE.
18  *
19  *
20  * This program is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2, or (at your option)
23  * any later version.
24  *
25  * This program is distributed in the hope that it will be useful,
26  * but WITHOUT ANY WARRANTY; without even the implied warranty of
27  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28  * GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with this program; if not, write to the Free Software
32  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/errno.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/vmalloc.h>
41 #include <linux/smp.h>
42 #include <linux/stddef.h>
43 #include <linux/unistd.h>
44 
45 #include <asm/io.h>
46 #include <asm/spu.h>
47 #include <asm/spu_priv1.h>
48 #include <asm/spu_csa.h>
49 #include <asm/mmu_context.h>
50 
51 #include "spufs.h"
52 
53 #include "spu_save_dump.h"
54 #include "spu_restore_dump.h"
55 
56 #if 0
57 #define POLL_WHILE_TRUE(_c) {				\
58     do {						\
59     } while (_c);					\
60   }
61 #else
62 #define RELAX_SPIN_COUNT				1000
63 #define POLL_WHILE_TRUE(_c) {				\
64     do {						\
65 	int _i;						\
66 	for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
67 	    cpu_relax();				\
68 	}						\
69 	if (unlikely(_c)) yield();			\
70 	else break;					\
71     } while (_c);					\
72   }
73 #endif				/* debug */
74 
75 #define POLL_WHILE_FALSE(_c)	POLL_WHILE_TRUE(!(_c))
76 
77 static inline void acquire_spu_lock(struct spu *spu)
78 {
79 	/* Save, Step 1:
80 	 * Restore, Step 1:
81 	 *    Acquire SPU-specific mutual exclusion lock.
82 	 *    TBD.
83 	 */
84 }
85 
86 static inline void release_spu_lock(struct spu *spu)
87 {
88 	/* Restore, Step 76:
89 	 *    Release SPU-specific mutual exclusion lock.
90 	 *    TBD.
91 	 */
92 }
93 
94 static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
95 {
96 	struct spu_problem __iomem *prob = spu->problem;
97 	u32 isolate_state;
98 
99 	/* Save, Step 2:
100 	 * Save, Step 6:
101 	 *     If SPU_Status[E,L,IS] any field is '1', this
102 	 *     SPU is in isolate state and cannot be context
103 	 *     saved at this time.
104 	 */
105 	isolate_state = SPU_STATUS_ISOLATED_STATE |
106 	    SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS;
107 	return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
108 }
109 
110 static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
111 {
112 	/* Save, Step 3:
113 	 * Restore, Step 2:
114 	 *     Save INT_Mask_class0 in CSA.
115 	 *     Write INT_MASK_class0 with value of 0.
116 	 *     Save INT_Mask_class1 in CSA.
117 	 *     Write INT_MASK_class1 with value of 0.
118 	 *     Save INT_Mask_class2 in CSA.
119 	 *     Write INT_MASK_class2 with value of 0.
120 	 */
121 	spin_lock_irq(&spu->register_lock);
122 	if (csa) {
123 		csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
124 		csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
125 		csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
126 	}
127 	spu_int_mask_set(spu, 0, 0ul);
128 	spu_int_mask_set(spu, 1, 0ul);
129 	spu_int_mask_set(spu, 2, 0ul);
130 	eieio();
131 	spin_unlock_irq(&spu->register_lock);
132 }
133 
134 static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
135 {
136 	/* Save, Step 4:
137 	 * Restore, Step 25.
138 	 *    Set a software watchdog timer, which specifies the
139 	 *    maximum allowable time for a context save sequence.
140 	 *
141 	 *    For present, this implementation will not set a global
142 	 *    watchdog timer, as virtualization & variable system load
143 	 *    may cause unpredictable execution times.
144 	 */
145 }
146 
147 static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
148 {
149 	/* Save, Step 5:
150 	 * Restore, Step 3:
151 	 *     Inhibit user-space access (if provided) to this
152 	 *     SPU by unmapping the virtual pages assigned to
153 	 *     the SPU memory-mapped I/O (MMIO) for problem
154 	 *     state. TBD.
155 	 */
156 }
157 
158 static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
159 {
160 	/* Save, Step 7:
161 	 * Restore, Step 5:
162 	 *     Set a software context switch pending flag.
163 	 */
164 	set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
165 	mb();
166 }
167 
168 static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
169 {
170 	struct spu_priv2 __iomem *priv2 = spu->priv2;
171 
172 	/* Save, Step 8:
173 	 *     Suspend DMA and save MFC_CNTL.
174 	 */
175 	switch (in_be64(&priv2->mfc_control_RW) &
176 	       MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
177 	case MFC_CNTL_SUSPEND_IN_PROGRESS:
178 		POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
179 				  MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
180 				 MFC_CNTL_SUSPEND_COMPLETE);
181 		/* fall through */
182 	case MFC_CNTL_SUSPEND_COMPLETE:
183 		if (csa) {
184 			csa->priv2.mfc_control_RW =
185 				MFC_CNTL_SUSPEND_MASK |
186 				MFC_CNTL_SUSPEND_DMA_QUEUE;
187 		}
188 		break;
189 	case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
190 		out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
191 		POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
192 				  MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
193 				 MFC_CNTL_SUSPEND_COMPLETE);
194 		if (csa) {
195 			csa->priv2.mfc_control_RW = 0;
196 		}
197 		break;
198 	}
199 }
200 
201 static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
202 {
203 	struct spu_problem __iomem *prob = spu->problem;
204 
205 	/* Save, Step 9:
206 	 *     Save SPU_Runcntl in the CSA.  This value contains
207 	 *     the "Application Desired State".
208 	 */
209 	csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
210 }
211 
212 static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
213 {
214 	/* Save, Step 10:
215 	 *     Save MFC_SR1 in the CSA.
216 	 */
217 	csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
218 }
219 
220 static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
221 {
222 	struct spu_problem __iomem *prob = spu->problem;
223 
224 	/* Save, Step 11:
225 	 *     Read SPU_Status[R], and save to CSA.
226 	 */
227 	if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
228 		csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
229 	} else {
230 		u32 stopped;
231 
232 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
233 		eieio();
234 		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
235 				SPU_STATUS_RUNNING);
236 		stopped =
237 		    SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
238 		    SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
239 		if ((in_be32(&prob->spu_status_R) & stopped) == 0)
240 			csa->prob.spu_status_R = SPU_STATUS_RUNNING;
241 		else
242 			csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
243 	}
244 }
245 
246 static inline void save_mfc_decr(struct spu_state *csa, struct spu *spu)
247 {
248 	struct spu_priv2 __iomem *priv2 = spu->priv2;
249 
250 	/* Save, Step 12:
251 	 *     Read MFC_CNTL[Ds].  Update saved copy of
252 	 *     CSA.MFC_CNTL[Ds].
253 	 */
254 	csa->priv2.mfc_control_RW |=
255 		in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DECREMENTER_RUNNING;
256 }
257 
258 static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
259 {
260 	struct spu_priv2 __iomem *priv2 = spu->priv2;
261 
262 	/* Save, Step 13:
263 	 *     Write MFC_CNTL[Dh] set to a '1' to halt
264 	 *     the decrementer.
265 	 */
266 	out_be64(&priv2->mfc_control_RW,
267 		 MFC_CNTL_DECREMENTER_HALTED | MFC_CNTL_SUSPEND_MASK);
268 	eieio();
269 }
270 
271 static inline void save_timebase(struct spu_state *csa, struct spu *spu)
272 {
273 	/* Save, Step 14:
274 	 *    Read PPE Timebase High and Timebase low registers
275 	 *    and save in CSA.  TBD.
276 	 */
277 	csa->suspend_time = get_cycles();
278 }
279 
280 static inline void remove_other_spu_access(struct spu_state *csa,
281 					   struct spu *spu)
282 {
283 	/* Save, Step 15:
284 	 *     Remove other SPU access to this SPU by unmapping
285 	 *     this SPU's pages from their address space.  TBD.
286 	 */
287 }
288 
289 static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
290 {
291 	struct spu_problem __iomem *prob = spu->problem;
292 
293 	/* Save, Step 16:
294 	 * Restore, Step 11.
295 	 *     Write SPU_MSSync register. Poll SPU_MSSync[P]
296 	 *     for a value of 0.
297 	 */
298 	out_be64(&prob->spc_mssync_RW, 1UL);
299 	POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
300 }
301 
302 static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
303 {
304 	/* Save, Step 17:
305 	 * Restore, Step 12.
306 	 * Restore, Step 48.
307 	 *     Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
308 	 *     Then issue a PPE sync instruction.
309 	 */
310 	spu_tlb_invalidate(spu);
311 	mb();
312 }
313 
314 static inline void handle_pending_interrupts(struct spu_state *csa,
315 					     struct spu *spu)
316 {
317 	/* Save, Step 18:
318 	 *     Handle any pending interrupts from this SPU
319 	 *     here.  This is OS or hypervisor specific.  One
320 	 *     option is to re-enable interrupts to handle any
321 	 *     pending interrupts, with the interrupt handlers
322 	 *     recognizing the software Context Switch Pending
323 	 *     flag, to ensure the SPU execution or MFC command
324 	 *     queue is not restarted.  TBD.
325 	 */
326 }
327 
328 static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
329 {
330 	struct spu_priv2 __iomem *priv2 = spu->priv2;
331 	int i;
332 
333 	/* Save, Step 19:
334 	 *     If MFC_Cntl[Se]=0 then save
335 	 *     MFC command queues.
336 	 */
337 	if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
338 		for (i = 0; i < 8; i++) {
339 			csa->priv2.puq[i].mfc_cq_data0_RW =
340 			    in_be64(&priv2->puq[i].mfc_cq_data0_RW);
341 			csa->priv2.puq[i].mfc_cq_data1_RW =
342 			    in_be64(&priv2->puq[i].mfc_cq_data1_RW);
343 			csa->priv2.puq[i].mfc_cq_data2_RW =
344 			    in_be64(&priv2->puq[i].mfc_cq_data2_RW);
345 			csa->priv2.puq[i].mfc_cq_data3_RW =
346 			    in_be64(&priv2->puq[i].mfc_cq_data3_RW);
347 		}
348 		for (i = 0; i < 16; i++) {
349 			csa->priv2.spuq[i].mfc_cq_data0_RW =
350 			    in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
351 			csa->priv2.spuq[i].mfc_cq_data1_RW =
352 			    in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
353 			csa->priv2.spuq[i].mfc_cq_data2_RW =
354 			    in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
355 			csa->priv2.spuq[i].mfc_cq_data3_RW =
356 			    in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
357 		}
358 	}
359 }
360 
361 static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
362 {
363 	struct spu_problem __iomem *prob = spu->problem;
364 
365 	/* Save, Step 20:
366 	 *     Save the PPU_QueryMask register
367 	 *     in the CSA.
368 	 */
369 	csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
370 }
371 
372 static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
373 {
374 	struct spu_problem __iomem *prob = spu->problem;
375 
376 	/* Save, Step 21:
377 	 *     Save the PPU_QueryType register
378 	 *     in the CSA.
379 	 */
380 	csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
381 }
382 
383 static inline void save_ppu_tagstatus(struct spu_state *csa, struct spu *spu)
384 {
385 	struct spu_problem __iomem *prob = spu->problem;
386 
387 	/* Save the Prxy_TagStatus register in the CSA.
388 	 *
389 	 * It is unnecessary to restore dma_tagstatus_R, however,
390 	 * dma_tagstatus_R in the CSA is accessed via backing_ops, so
391 	 * we must save it.
392 	 */
393 	csa->prob.dma_tagstatus_R = in_be32(&prob->dma_tagstatus_R);
394 }
395 
396 static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
397 {
398 	struct spu_priv2 __iomem *priv2 = spu->priv2;
399 
400 	/* Save, Step 22:
401 	 *     Save the MFC_CSR_TSQ register
402 	 *     in the LSCSA.
403 	 */
404 	csa->priv2.spu_tag_status_query_RW =
405 	    in_be64(&priv2->spu_tag_status_query_RW);
406 }
407 
408 static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
409 {
410 	struct spu_priv2 __iomem *priv2 = spu->priv2;
411 
412 	/* Save, Step 23:
413 	 *     Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
414 	 *     registers in the CSA.
415 	 */
416 	csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
417 	csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
418 }
419 
420 static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
421 {
422 	struct spu_priv2 __iomem *priv2 = spu->priv2;
423 
424 	/* Save, Step 24:
425 	 *     Save the MFC_CSR_ATO register in
426 	 *     the CSA.
427 	 */
428 	csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
429 }
430 
431 static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
432 {
433 	/* Save, Step 25:
434 	 *     Save the MFC_TCLASS_ID register in
435 	 *     the CSA.
436 	 */
437 	csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
438 }
439 
440 static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
441 {
442 	/* Save, Step 26:
443 	 * Restore, Step 23.
444 	 *     Write the MFC_TCLASS_ID register with
445 	 *     the value 0x10000000.
446 	 */
447 	spu_mfc_tclass_id_set(spu, 0x10000000);
448 	eieio();
449 }
450 
451 static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
452 {
453 	struct spu_priv2 __iomem *priv2 = spu->priv2;
454 
455 	/* Save, Step 27:
456 	 * Restore, Step 14.
457 	 *     Write MFC_CNTL[Pc]=1 (purge queue).
458 	 */
459 	out_be64(&priv2->mfc_control_RW, MFC_CNTL_PURGE_DMA_REQUEST);
460 	eieio();
461 }
462 
463 static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
464 {
465 	struct spu_priv2 __iomem *priv2 = spu->priv2;
466 
467 	/* Save, Step 28:
468 	 *     Poll MFC_CNTL[Ps] until value '11' is read
469 	 *     (purge complete).
470 	 */
471 	POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
472 			 MFC_CNTL_PURGE_DMA_STATUS_MASK) ==
473 			 MFC_CNTL_PURGE_DMA_COMPLETE);
474 }
475 
476 static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
477 {
478 	/* Save, Step 30:
479 	 * Restore, Step 18:
480 	 *     Write MFC_SR1 with MFC_SR1[D=0,S=1] and
481 	 *     MFC_SR1[TL,R,Pr,T] set correctly for the
482 	 *     OS specific environment.
483 	 *
484 	 *     Implementation note: The SPU-side code
485 	 *     for save/restore is privileged, so the
486 	 *     MFC_SR1[Pr] bit is not set.
487 	 *
488 	 */
489 	spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
490 			      MFC_STATE1_RELOCATE_MASK |
491 			      MFC_STATE1_BUS_TLBIE_MASK));
492 }
493 
494 static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
495 {
496 	struct spu_problem __iomem *prob = spu->problem;
497 
498 	/* Save, Step 31:
499 	 *     Save SPU_NPC in the CSA.
500 	 */
501 	csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
502 }
503 
504 static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
505 {
506 	struct spu_priv2 __iomem *priv2 = spu->priv2;
507 
508 	/* Save, Step 32:
509 	 *     Save SPU_PrivCntl in the CSA.
510 	 */
511 	csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
512 }
513 
514 static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
515 {
516 	struct spu_priv2 __iomem *priv2 = spu->priv2;
517 
518 	/* Save, Step 33:
519 	 * Restore, Step 16:
520 	 *     Write SPU_PrivCntl[S,Le,A] fields reset to 0.
521 	 */
522 	out_be64(&priv2->spu_privcntl_RW, 0UL);
523 	eieio();
524 }
525 
526 static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
527 {
528 	struct spu_priv2 __iomem *priv2 = spu->priv2;
529 
530 	/* Save, Step 34:
531 	 *     Save SPU_LSLR in the CSA.
532 	 */
533 	csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
534 }
535 
536 static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
537 {
538 	struct spu_priv2 __iomem *priv2 = spu->priv2;
539 
540 	/* Save, Step 35:
541 	 * Restore, Step 17.
542 	 *     Reset SPU_LSLR.
543 	 */
544 	out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
545 	eieio();
546 }
547 
548 static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
549 {
550 	struct spu_priv2 __iomem *priv2 = spu->priv2;
551 
552 	/* Save, Step 36:
553 	 *     Save SPU_Cfg in the CSA.
554 	 */
555 	csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
556 }
557 
558 static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
559 {
560 	/* Save, Step 37:
561 	 *     Save PM_Trace_Tag_Wait_Mask in the CSA.
562 	 *     Not performed by this implementation.
563 	 */
564 }
565 
566 static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
567 {
568 	/* Save, Step 38:
569 	 *     Save RA_GROUP_ID register and the
570 	 *     RA_ENABLE reigster in the CSA.
571 	 */
572 	csa->priv1.resource_allocation_groupID_RW =
573 		spu_resource_allocation_groupID_get(spu);
574 	csa->priv1.resource_allocation_enable_RW =
575 		spu_resource_allocation_enable_get(spu);
576 }
577 
578 static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
579 {
580 	struct spu_problem __iomem *prob = spu->problem;
581 
582 	/* Save, Step 39:
583 	 *     Save MB_Stat register in the CSA.
584 	 */
585 	csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
586 }
587 
588 static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
589 {
590 	struct spu_problem __iomem *prob = spu->problem;
591 
592 	/* Save, Step 40:
593 	 *     Save the PPU_MB register in the CSA.
594 	 */
595 	csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
596 }
597 
598 static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
599 {
600 	struct spu_priv2 __iomem *priv2 = spu->priv2;
601 
602 	/* Save, Step 41:
603 	 *     Save the PPUINT_MB register in the CSA.
604 	 */
605 	csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
606 }
607 
608 static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
609 {
610 	struct spu_priv2 __iomem *priv2 = spu->priv2;
611 	u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
612 	int i;
613 
614 	/* Save, Step 42:
615 	 */
616 
617 	/* Save CH 1, without channel count */
618 	out_be64(&priv2->spu_chnlcntptr_RW, 1);
619 	csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
620 
621 	/* Save the following CH: [0,3,4,24,25,27] */
622 	for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
623 		idx = ch_indices[i];
624 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
625 		eieio();
626 		csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
627 		csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
628 		out_be64(&priv2->spu_chnldata_RW, 0UL);
629 		out_be64(&priv2->spu_chnlcnt_RW, 0UL);
630 		eieio();
631 	}
632 }
633 
634 static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
635 {
636 	struct spu_priv2 __iomem *priv2 = spu->priv2;
637 	int i;
638 
639 	/* Save, Step 43:
640 	 *     Save SPU Read Mailbox Channel.
641 	 */
642 	out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
643 	eieio();
644 	csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
645 	for (i = 0; i < 4; i++) {
646 		csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
647 	}
648 	out_be64(&priv2->spu_chnlcnt_RW, 0UL);
649 	eieio();
650 }
651 
652 static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
653 {
654 	struct spu_priv2 __iomem *priv2 = spu->priv2;
655 
656 	/* Save, Step 44:
657 	 *     Save MFC_CMD Channel.
658 	 */
659 	out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
660 	eieio();
661 	csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
662 	eieio();
663 }
664 
665 static inline void reset_ch(struct spu_state *csa, struct spu *spu)
666 {
667 	struct spu_priv2 __iomem *priv2 = spu->priv2;
668 	u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
669 	u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
670 	u64 idx;
671 	int i;
672 
673 	/* Save, Step 45:
674 	 *     Reset the following CH: [21, 23, 28, 30]
675 	 */
676 	for (i = 0; i < 4; i++) {
677 		idx = ch_indices[i];
678 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
679 		eieio();
680 		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
681 		eieio();
682 	}
683 }
684 
685 static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
686 {
687 	struct spu_priv2 __iomem *priv2 = spu->priv2;
688 
689 	/* Save, Step 46:
690 	 * Restore, Step 25.
691 	 *     Write MFC_CNTL[Sc]=0 (resume queue processing).
692 	 */
693 	out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
694 }
695 
696 static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu,
697 		unsigned int *code, int code_size)
698 {
699 	/* Save, Step 47:
700 	 * Restore, Step 30.
701 	 *     If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
702 	 *     register, then initialize SLB_VSID and SLB_ESID
703 	 *     to provide access to SPU context save code and
704 	 *     LSCSA.
705 	 *
706 	 *     This implementation places both the context
707 	 *     switch code and LSCSA in kernel address space.
708 	 *
709 	 *     Further this implementation assumes that the
710 	 *     MFC_SR1[R]=1 (in other words, assume that
711 	 *     translation is desired by OS environment).
712 	 */
713 	spu_invalidate_slbs(spu);
714 	spu_setup_kernel_slbs(spu, csa->lscsa, code, code_size);
715 }
716 
717 static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
718 {
719 	/* Save, Step 48:
720 	 * Restore, Step 23.
721 	 *     Change the software context switch pending flag
722 	 *     to context switch active.
723 	 */
724 	set_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
725 	clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
726 	mb();
727 }
728 
729 static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
730 {
731 	unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
732 	    CLASS1_ENABLE_STORAGE_FAULT_INTR;
733 
734 	/* Save, Step 49:
735 	 * Restore, Step 22:
736 	 *     Reset and then enable interrupts, as
737 	 *     needed by OS.
738 	 *
739 	 *     This implementation enables only class1
740 	 *     (translation) interrupts.
741 	 */
742 	spin_lock_irq(&spu->register_lock);
743 	spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
744 	spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
745 	spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
746 	spu_int_mask_set(spu, 0, 0ul);
747 	spu_int_mask_set(spu, 1, class1_mask);
748 	spu_int_mask_set(spu, 2, 0ul);
749 	spin_unlock_irq(&spu->register_lock);
750 }
751 
752 static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
753 			       unsigned int ls_offset, unsigned int size,
754 			       unsigned int tag, unsigned int rclass,
755 			       unsigned int cmd)
756 {
757 	struct spu_problem __iomem *prob = spu->problem;
758 	union mfc_tag_size_class_cmd command;
759 	unsigned int transfer_size;
760 	volatile unsigned int status = 0x0;
761 
762 	while (size > 0) {
763 		transfer_size =
764 		    (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
765 		command.u.mfc_size = transfer_size;
766 		command.u.mfc_tag = tag;
767 		command.u.mfc_rclassid = rclass;
768 		command.u.mfc_cmd = cmd;
769 		do {
770 			out_be32(&prob->mfc_lsa_W, ls_offset);
771 			out_be64(&prob->mfc_ea_W, ea);
772 			out_be64(&prob->mfc_union_W.all64, command.all64);
773 			status =
774 			    in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
775 			if (unlikely(status & 0x2)) {
776 				cpu_relax();
777 			}
778 		} while (status & 0x3);
779 		size -= transfer_size;
780 		ea += transfer_size;
781 		ls_offset += transfer_size;
782 	}
783 	return 0;
784 }
785 
786 static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
787 {
788 	unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
789 	unsigned int ls_offset = 0x0;
790 	unsigned int size = 16384;
791 	unsigned int tag = 0;
792 	unsigned int rclass = 0;
793 	unsigned int cmd = MFC_PUT_CMD;
794 
795 	/* Save, Step 50:
796 	 *     Issue a DMA command to copy the first 16K bytes
797 	 *     of local storage to the CSA.
798 	 */
799 	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
800 }
801 
802 static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
803 {
804 	struct spu_problem __iomem *prob = spu->problem;
805 
806 	/* Save, Step 51:
807 	 * Restore, Step 31.
808 	 *     Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
809 	 *     point address of context save code in local
810 	 *     storage.
811 	 *
812 	 *     This implementation uses SPU-side save/restore
813 	 *     programs with entry points at LSA of 0.
814 	 */
815 	out_be32(&prob->spu_npc_RW, 0);
816 	eieio();
817 }
818 
819 static inline void set_signot1(struct spu_state *csa, struct spu *spu)
820 {
821 	struct spu_problem __iomem *prob = spu->problem;
822 	union {
823 		u64 ull;
824 		u32 ui[2];
825 	} addr64;
826 
827 	/* Save, Step 52:
828 	 * Restore, Step 32:
829 	 *    Write SPU_Sig_Notify_1 register with upper 32-bits
830 	 *    of the CSA.LSCSA effective address.
831 	 */
832 	addr64.ull = (u64) csa->lscsa;
833 	out_be32(&prob->signal_notify1, addr64.ui[0]);
834 	eieio();
835 }
836 
837 static inline void set_signot2(struct spu_state *csa, struct spu *spu)
838 {
839 	struct spu_problem __iomem *prob = spu->problem;
840 	union {
841 		u64 ull;
842 		u32 ui[2];
843 	} addr64;
844 
845 	/* Save, Step 53:
846 	 * Restore, Step 33:
847 	 *    Write SPU_Sig_Notify_2 register with lower 32-bits
848 	 *    of the CSA.LSCSA effective address.
849 	 */
850 	addr64.ull = (u64) csa->lscsa;
851 	out_be32(&prob->signal_notify2, addr64.ui[1]);
852 	eieio();
853 }
854 
855 static inline void send_save_code(struct spu_state *csa, struct spu *spu)
856 {
857 	unsigned long addr = (unsigned long)&spu_save_code[0];
858 	unsigned int ls_offset = 0x0;
859 	unsigned int size = sizeof(spu_save_code);
860 	unsigned int tag = 0;
861 	unsigned int rclass = 0;
862 	unsigned int cmd = MFC_GETFS_CMD;
863 
864 	/* Save, Step 54:
865 	 *     Issue a DMA command to copy context save code
866 	 *     to local storage and start SPU.
867 	 */
868 	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
869 }
870 
871 static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
872 {
873 	struct spu_problem __iomem *prob = spu->problem;
874 
875 	/* Save, Step 55:
876 	 * Restore, Step 38.
877 	 *     Write PPU_QueryMask=1 (enable Tag Group 0)
878 	 *     and issue eieio instruction.
879 	 */
880 	out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
881 	eieio();
882 }
883 
884 static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
885 {
886 	struct spu_problem __iomem *prob = spu->problem;
887 	u32 mask = MFC_TAGID_TO_TAGMASK(0);
888 	unsigned long flags;
889 
890 	/* Save, Step 56:
891 	 * Restore, Step 39.
892 	 * Restore, Step 39.
893 	 * Restore, Step 46.
894 	 *     Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
895 	 *     or write PPU_QueryType[TS]=01 and wait for Tag Group
896 	 *     Complete Interrupt.  Write INT_Stat_Class0 or
897 	 *     INT_Stat_Class2 with value of 'handled'.
898 	 */
899 	POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
900 
901 	local_irq_save(flags);
902 	spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
903 	spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
904 	local_irq_restore(flags);
905 }
906 
907 static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
908 {
909 	struct spu_problem __iomem *prob = spu->problem;
910 	unsigned long flags;
911 
912 	/* Save, Step 57:
913 	 * Restore, Step 40.
914 	 *     Poll until SPU_Status[R]=0 or wait for SPU Class 0
915 	 *     or SPU Class 2 interrupt.  Write INT_Stat_class0
916 	 *     or INT_Stat_class2 with value of handled.
917 	 */
918 	POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
919 
920 	local_irq_save(flags);
921 	spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
922 	spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
923 	local_irq_restore(flags);
924 }
925 
926 static inline int check_save_status(struct spu_state *csa, struct spu *spu)
927 {
928 	struct spu_problem __iomem *prob = spu->problem;
929 	u32 complete;
930 
931 	/* Save, Step 54:
932 	 *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
933 	 *     context save succeeded, otherwise context save
934 	 *     failed.
935 	 */
936 	complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
937 		    SPU_STATUS_STOPPED_BY_STOP);
938 	return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
939 }
940 
941 static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
942 {
943 	/* Restore, Step 4:
944 	 *    If required, notify the "using application" that
945 	 *    the SPU task has been terminated.  TBD.
946 	 */
947 }
948 
949 static inline void suspend_mfc_and_halt_decr(struct spu_state *csa,
950 		struct spu *spu)
951 {
952 	struct spu_priv2 __iomem *priv2 = spu->priv2;
953 
954 	/* Restore, Step 7:
955 	 *     Write MFC_Cntl[Dh,Sc,Sm]='1','1','0' to suspend
956 	 *     the queue and halt the decrementer.
957 	 */
958 	out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
959 		 MFC_CNTL_DECREMENTER_HALTED);
960 	eieio();
961 }
962 
963 static inline void wait_suspend_mfc_complete(struct spu_state *csa,
964 					     struct spu *spu)
965 {
966 	struct spu_priv2 __iomem *priv2 = spu->priv2;
967 
968 	/* Restore, Step 8:
969 	 * Restore, Step 47.
970 	 *     Poll MFC_CNTL[Ss] until 11 is returned.
971 	 */
972 	POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
973 			 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
974 			 MFC_CNTL_SUSPEND_COMPLETE);
975 }
976 
977 static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
978 {
979 	struct spu_problem __iomem *prob = spu->problem;
980 
981 	/* Restore, Step 9:
982 	 *    If SPU_Status[R]=1, stop SPU execution
983 	 *    and wait for stop to complete.
984 	 *
985 	 *    Returns       1 if SPU_Status[R]=1 on entry.
986 	 *                  0 otherwise
987 	 */
988 	if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
989 		if (in_be32(&prob->spu_status_R) &
990 		    SPU_STATUS_ISOLATED_EXIT_STATUS) {
991 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
992 					SPU_STATUS_RUNNING);
993 		}
994 		if ((in_be32(&prob->spu_status_R) &
995 		     SPU_STATUS_ISOLATED_LOAD_STATUS)
996 		    || (in_be32(&prob->spu_status_R) &
997 			SPU_STATUS_ISOLATED_STATE)) {
998 			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
999 			eieio();
1000 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1001 					SPU_STATUS_RUNNING);
1002 			out_be32(&prob->spu_runcntl_RW, 0x2);
1003 			eieio();
1004 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1005 					SPU_STATUS_RUNNING);
1006 		}
1007 		if (in_be32(&prob->spu_status_R) &
1008 		    SPU_STATUS_WAITING_FOR_CHANNEL) {
1009 			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1010 			eieio();
1011 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1012 					SPU_STATUS_RUNNING);
1013 		}
1014 		return 1;
1015 	}
1016 	return 0;
1017 }
1018 
1019 static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
1020 {
1021 	struct spu_problem __iomem *prob = spu->problem;
1022 
1023 	/* Restore, Step 10:
1024 	 *    If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
1025 	 *    release SPU from isolate state.
1026 	 */
1027 	if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
1028 		if (in_be32(&prob->spu_status_R) &
1029 		    SPU_STATUS_ISOLATED_EXIT_STATUS) {
1030 			spu_mfc_sr1_set(spu,
1031 					MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1032 			eieio();
1033 			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1034 			eieio();
1035 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1036 					SPU_STATUS_RUNNING);
1037 		}
1038 		if ((in_be32(&prob->spu_status_R) &
1039 		     SPU_STATUS_ISOLATED_LOAD_STATUS)
1040 		    || (in_be32(&prob->spu_status_R) &
1041 			SPU_STATUS_ISOLATED_STATE)) {
1042 			spu_mfc_sr1_set(spu,
1043 					MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1044 			eieio();
1045 			out_be32(&prob->spu_runcntl_RW, 0x2);
1046 			eieio();
1047 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1048 					SPU_STATUS_RUNNING);
1049 		}
1050 	}
1051 }
1052 
1053 static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
1054 {
1055 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1056 	u64 ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1057 	u64 idx;
1058 	int i;
1059 
1060 	/* Restore, Step 20:
1061 	 */
1062 
1063 	/* Reset CH 1 */
1064 	out_be64(&priv2->spu_chnlcntptr_RW, 1);
1065 	out_be64(&priv2->spu_chnldata_RW, 0UL);
1066 
1067 	/* Reset the following CH: [0,3,4,24,25,27] */
1068 	for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1069 		idx = ch_indices[i];
1070 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1071 		eieio();
1072 		out_be64(&priv2->spu_chnldata_RW, 0UL);
1073 		out_be64(&priv2->spu_chnlcnt_RW, 0UL);
1074 		eieio();
1075 	}
1076 }
1077 
1078 static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
1079 {
1080 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1081 	u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
1082 	u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
1083 	u64 idx;
1084 	int i;
1085 
1086 	/* Restore, Step 21:
1087 	 *     Reset the following CH: [21, 23, 28, 29, 30]
1088 	 */
1089 	for (i = 0; i < 5; i++) {
1090 		idx = ch_indices[i];
1091 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1092 		eieio();
1093 		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1094 		eieio();
1095 	}
1096 }
1097 
1098 static inline void setup_spu_status_part1(struct spu_state *csa,
1099 					  struct spu *spu)
1100 {
1101 	u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
1102 	u32 status_I = SPU_STATUS_INVALID_INSTR;
1103 	u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
1104 	u32 status_S = SPU_STATUS_SINGLE_STEP;
1105 	u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
1106 	u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
1107 	u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
1108 	u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
1109 	u32 status_code;
1110 
1111 	/* Restore, Step 27:
1112 	 *     If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
1113 	 *     instruction sequence to the end of the SPU based restore
1114 	 *     code (after the "context restored" stop and signal) to
1115 	 *     restore the correct SPU status.
1116 	 *
1117 	 *     NOTE: Rather than modifying the SPU executable, we
1118 	 *     instead add a new 'stopped_status' field to the
1119 	 *     LSCSA.  The SPU-side restore reads this field and
1120 	 *     takes the appropriate action when exiting.
1121 	 */
1122 
1123 	status_code =
1124 	    (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
1125 	if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
1126 
1127 		/* SPU_Status[P,I]=1 - Illegal Instruction followed
1128 		 * by Stop and Signal instruction, followed by 'br -4'.
1129 		 *
1130 		 */
1131 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
1132 		csa->lscsa->stopped_status.slot[1] = status_code;
1133 
1134 	} else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
1135 
1136 		/* SPU_Status[P,H]=1 - Halt Conditional, followed
1137 		 * by Stop and Signal instruction, followed by
1138 		 * 'br -4'.
1139 		 */
1140 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
1141 		csa->lscsa->stopped_status.slot[1] = status_code;
1142 
1143 	} else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
1144 
1145 		/* SPU_Status[S,P]=1 - Stop and Signal instruction
1146 		 * followed by 'br -4'.
1147 		 */
1148 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
1149 		csa->lscsa->stopped_status.slot[1] = status_code;
1150 
1151 	} else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
1152 
1153 		/* SPU_Status[S,I]=1 - Illegal instruction followed
1154 		 * by 'br -4'.
1155 		 */
1156 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
1157 		csa->lscsa->stopped_status.slot[1] = status_code;
1158 
1159 	} else if ((csa->prob.spu_status_R & status_P) == status_P) {
1160 
1161 		/* SPU_Status[P]=1 - Stop and Signal instruction
1162 		 * followed by 'br -4'.
1163 		 */
1164 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
1165 		csa->lscsa->stopped_status.slot[1] = status_code;
1166 
1167 	} else if ((csa->prob.spu_status_R & status_H) == status_H) {
1168 
1169 		/* SPU_Status[H]=1 - Halt Conditional, followed
1170 		 * by 'br -4'.
1171 		 */
1172 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
1173 
1174 	} else if ((csa->prob.spu_status_R & status_S) == status_S) {
1175 
1176 		/* SPU_Status[S]=1 - Two nop instructions.
1177 		 */
1178 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
1179 
1180 	} else if ((csa->prob.spu_status_R & status_I) == status_I) {
1181 
1182 		/* SPU_Status[I]=1 - Illegal instruction followed
1183 		 * by 'br -4'.
1184 		 */
1185 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
1186 
1187 	}
1188 }
1189 
1190 static inline void setup_spu_status_part2(struct spu_state *csa,
1191 					  struct spu *spu)
1192 {
1193 	u32 mask;
1194 
1195 	/* Restore, Step 28:
1196 	 *     If the CSA.SPU_Status[I,S,H,P,R]=0 then
1197 	 *     add a 'br *' instruction to the end of
1198 	 *     the SPU based restore code.
1199 	 *
1200 	 *     NOTE: Rather than modifying the SPU executable, we
1201 	 *     instead add a new 'stopped_status' field to the
1202 	 *     LSCSA.  The SPU-side restore reads this field and
1203 	 *     takes the appropriate action when exiting.
1204 	 */
1205 	mask = SPU_STATUS_INVALID_INSTR |
1206 	    SPU_STATUS_SINGLE_STEP |
1207 	    SPU_STATUS_STOPPED_BY_HALT |
1208 	    SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1209 	if (!(csa->prob.spu_status_R & mask)) {
1210 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
1211 	}
1212 }
1213 
1214 static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
1215 {
1216 	/* Restore, Step 29:
1217 	 *     Restore RA_GROUP_ID register and the
1218 	 *     RA_ENABLE reigster from the CSA.
1219 	 */
1220 	spu_resource_allocation_groupID_set(spu,
1221 			csa->priv1.resource_allocation_groupID_RW);
1222 	spu_resource_allocation_enable_set(spu,
1223 			csa->priv1.resource_allocation_enable_RW);
1224 }
1225 
1226 static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
1227 {
1228 	unsigned long addr = (unsigned long)&spu_restore_code[0];
1229 	unsigned int ls_offset = 0x0;
1230 	unsigned int size = sizeof(spu_restore_code);
1231 	unsigned int tag = 0;
1232 	unsigned int rclass = 0;
1233 	unsigned int cmd = MFC_GETFS_CMD;
1234 
1235 	/* Restore, Step 37:
1236 	 *     Issue MFC DMA command to copy context
1237 	 *     restore code to local storage.
1238 	 */
1239 	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1240 }
1241 
1242 static inline void setup_decr(struct spu_state *csa, struct spu *spu)
1243 {
1244 	/* Restore, Step 34:
1245 	 *     If CSA.MFC_CNTL[Ds]=1 (decrementer was
1246 	 *     running) then adjust decrementer, set
1247 	 *     decrementer running status in LSCSA,
1248 	 *     and set decrementer "wrapped" status
1249 	 *     in LSCSA.
1250 	 */
1251 	if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
1252 		cycles_t resume_time = get_cycles();
1253 		cycles_t delta_time = resume_time - csa->suspend_time;
1254 
1255 		csa->lscsa->decr_status.slot[0] = SPU_DECR_STATUS_RUNNING;
1256 		if (csa->lscsa->decr.slot[0] < delta_time) {
1257 			csa->lscsa->decr_status.slot[0] |=
1258 				 SPU_DECR_STATUS_WRAPPED;
1259 		}
1260 
1261 		csa->lscsa->decr.slot[0] -= delta_time;
1262 	} else {
1263 		csa->lscsa->decr_status.slot[0] = 0;
1264 	}
1265 }
1266 
1267 static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
1268 {
1269 	/* Restore, Step 35:
1270 	 *     Copy the CSA.PU_MB data into the LSCSA.
1271 	 */
1272 	csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
1273 }
1274 
1275 static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
1276 {
1277 	/* Restore, Step 36:
1278 	 *     Copy the CSA.PUINT_MB data into the LSCSA.
1279 	 */
1280 	csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
1281 }
1282 
1283 static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
1284 {
1285 	struct spu_problem __iomem *prob = spu->problem;
1286 	u32 complete;
1287 
1288 	/* Restore, Step 40:
1289 	 *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
1290 	 *     context restore succeeded, otherwise context restore
1291 	 *     failed.
1292 	 */
1293 	complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
1294 		    SPU_STATUS_STOPPED_BY_STOP);
1295 	return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1296 }
1297 
1298 static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
1299 {
1300 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1301 
1302 	/* Restore, Step 41:
1303 	 *     Restore SPU_PrivCntl from the CSA.
1304 	 */
1305 	out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
1306 	eieio();
1307 }
1308 
1309 static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
1310 {
1311 	struct spu_problem __iomem *prob = spu->problem;
1312 	u32 mask;
1313 
1314 	/* Restore, Step 42:
1315 	 *     If any CSA.SPU_Status[I,S,H,P]=1, then
1316 	 *     restore the error or single step state.
1317 	 */
1318 	mask = SPU_STATUS_INVALID_INSTR |
1319 	    SPU_STATUS_SINGLE_STEP |
1320 	    SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
1321 	if (csa->prob.spu_status_R & mask) {
1322 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1323 		eieio();
1324 		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1325 				SPU_STATUS_RUNNING);
1326 	}
1327 }
1328 
1329 static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
1330 {
1331 	struct spu_problem __iomem *prob = spu->problem;
1332 	u32 mask;
1333 
1334 	/* Restore, Step 43:
1335 	 *     If all CSA.SPU_Status[I,S,H,P,R]=0 then write
1336 	 *     SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
1337 	 *     then write '00' to SPU_RunCntl[R0R1] and wait
1338 	 *     for SPU_Status[R]=0.
1339 	 */
1340 	mask = SPU_STATUS_INVALID_INSTR |
1341 	    SPU_STATUS_SINGLE_STEP |
1342 	    SPU_STATUS_STOPPED_BY_HALT |
1343 	    SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1344 	if (!(csa->prob.spu_status_R & mask)) {
1345 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1346 		eieio();
1347 		POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
1348 				 SPU_STATUS_RUNNING);
1349 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1350 		eieio();
1351 		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1352 				SPU_STATUS_RUNNING);
1353 	}
1354 }
1355 
1356 static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
1357 {
1358 	unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
1359 	unsigned int ls_offset = 0x0;
1360 	unsigned int size = 16384;
1361 	unsigned int tag = 0;
1362 	unsigned int rclass = 0;
1363 	unsigned int cmd = MFC_GET_CMD;
1364 
1365 	/* Restore, Step 44:
1366 	 *     Issue a DMA command to restore the first
1367 	 *     16kb of local storage from CSA.
1368 	 */
1369 	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1370 }
1371 
1372 static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
1373 {
1374 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1375 
1376 	/* Restore, Step 47.
1377 	 *     Write MFC_Cntl[Sc,Sm]='1','0' to suspend
1378 	 *     the queue.
1379 	 */
1380 	out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
1381 	eieio();
1382 }
1383 
1384 static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
1385 {
1386 	/* Restore, Step 49:
1387 	 *     Write INT_MASK_class0 with value of 0.
1388 	 *     Write INT_MASK_class1 with value of 0.
1389 	 *     Write INT_MASK_class2 with value of 0.
1390 	 *     Write INT_STAT_class0 with value of -1.
1391 	 *     Write INT_STAT_class1 with value of -1.
1392 	 *     Write INT_STAT_class2 with value of -1.
1393 	 */
1394 	spin_lock_irq(&spu->register_lock);
1395 	spu_int_mask_set(spu, 0, 0ul);
1396 	spu_int_mask_set(spu, 1, 0ul);
1397 	spu_int_mask_set(spu, 2, 0ul);
1398 	spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
1399 	spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
1400 	spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
1401 	spin_unlock_irq(&spu->register_lock);
1402 }
1403 
1404 static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
1405 {
1406 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1407 	int i;
1408 
1409 	/* Restore, Step 50:
1410 	 *     If MFC_Cntl[Se]!=0 then restore
1411 	 *     MFC command queues.
1412 	 */
1413 	if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
1414 		for (i = 0; i < 8; i++) {
1415 			out_be64(&priv2->puq[i].mfc_cq_data0_RW,
1416 				 csa->priv2.puq[i].mfc_cq_data0_RW);
1417 			out_be64(&priv2->puq[i].mfc_cq_data1_RW,
1418 				 csa->priv2.puq[i].mfc_cq_data1_RW);
1419 			out_be64(&priv2->puq[i].mfc_cq_data2_RW,
1420 				 csa->priv2.puq[i].mfc_cq_data2_RW);
1421 			out_be64(&priv2->puq[i].mfc_cq_data3_RW,
1422 				 csa->priv2.puq[i].mfc_cq_data3_RW);
1423 		}
1424 		for (i = 0; i < 16; i++) {
1425 			out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
1426 				 csa->priv2.spuq[i].mfc_cq_data0_RW);
1427 			out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
1428 				 csa->priv2.spuq[i].mfc_cq_data1_RW);
1429 			out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
1430 				 csa->priv2.spuq[i].mfc_cq_data2_RW);
1431 			out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
1432 				 csa->priv2.spuq[i].mfc_cq_data3_RW);
1433 		}
1434 	}
1435 	eieio();
1436 }
1437 
1438 static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
1439 {
1440 	struct spu_problem __iomem *prob = spu->problem;
1441 
1442 	/* Restore, Step 51:
1443 	 *     Restore the PPU_QueryMask register from CSA.
1444 	 */
1445 	out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
1446 	eieio();
1447 }
1448 
1449 static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
1450 {
1451 	struct spu_problem __iomem *prob = spu->problem;
1452 
1453 	/* Restore, Step 52:
1454 	 *     Restore the PPU_QueryType register from CSA.
1455 	 */
1456 	out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
1457 	eieio();
1458 }
1459 
1460 static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
1461 {
1462 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1463 
1464 	/* Restore, Step 53:
1465 	 *     Restore the MFC_CSR_TSQ register from CSA.
1466 	 */
1467 	out_be64(&priv2->spu_tag_status_query_RW,
1468 		 csa->priv2.spu_tag_status_query_RW);
1469 	eieio();
1470 }
1471 
1472 static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
1473 {
1474 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1475 
1476 	/* Restore, Step 54:
1477 	 *     Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
1478 	 *     registers from CSA.
1479 	 */
1480 	out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
1481 	out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
1482 	eieio();
1483 }
1484 
1485 static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
1486 {
1487 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1488 
1489 	/* Restore, Step 55:
1490 	 *     Restore the MFC_CSR_ATO register from CSA.
1491 	 */
1492 	out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
1493 }
1494 
1495 static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
1496 {
1497 	/* Restore, Step 56:
1498 	 *     Restore the MFC_TCLASS_ID register from CSA.
1499 	 */
1500 	spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
1501 	eieio();
1502 }
1503 
1504 static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
1505 {
1506 	u64 ch0_cnt, ch0_data;
1507 	u64 ch1_data;
1508 
1509 	/* Restore, Step 57:
1510 	 *    Set the Lock Line Reservation Lost Event by:
1511 	 *      1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
1512 	 *      2. If CSA.SPU_Channel_0_Count=0 and
1513 	 *         CSA.SPU_Wr_Event_Mask[Lr]=1 and
1514 	 *         CSA.SPU_Event_Status[Lr]=0 then set
1515 	 *         CSA.SPU_Event_Status_Count=1.
1516 	 */
1517 	ch0_cnt = csa->spu_chnlcnt_RW[0];
1518 	ch0_data = csa->spu_chnldata_RW[0];
1519 	ch1_data = csa->spu_chnldata_RW[1];
1520 	csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
1521 	if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
1522 	    (ch1_data & MFC_LLR_LOST_EVENT)) {
1523 		csa->spu_chnlcnt_RW[0] = 1;
1524 	}
1525 }
1526 
1527 static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
1528 {
1529 	/* Restore, Step 58:
1530 	 *     If the status of the CSA software decrementer
1531 	 *     "wrapped" flag is set, OR in a '1' to
1532 	 *     CSA.SPU_Event_Status[Tm].
1533 	 */
1534 	if (!(csa->lscsa->decr_status.slot[0] & SPU_DECR_STATUS_WRAPPED))
1535 		return;
1536 
1537 	if ((csa->spu_chnlcnt_RW[0] == 0) &&
1538 	    (csa->spu_chnldata_RW[1] & 0x20) &&
1539 	    !(csa->spu_chnldata_RW[0] & 0x20))
1540 		csa->spu_chnlcnt_RW[0] = 1;
1541 
1542 	csa->spu_chnldata_RW[0] |= 0x20;
1543 }
1544 
1545 static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
1546 {
1547 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1548 	u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1549 	int i;
1550 
1551 	/* Restore, Step 59:
1552 	 *	Restore the following CH: [0,3,4,24,25,27]
1553 	 */
1554 	for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1555 		idx = ch_indices[i];
1556 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1557 		eieio();
1558 		out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
1559 		out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
1560 		eieio();
1561 	}
1562 }
1563 
1564 static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
1565 {
1566 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1567 	u64 ch_indices[3] = { 9UL, 21UL, 23UL };
1568 	u64 ch_counts[3] = { 1UL, 16UL, 1UL };
1569 	u64 idx;
1570 	int i;
1571 
1572 	/* Restore, Step 60:
1573 	 *     Restore the following CH: [9,21,23].
1574 	 */
1575 	ch_counts[0] = 1UL;
1576 	ch_counts[1] = csa->spu_chnlcnt_RW[21];
1577 	ch_counts[2] = 1UL;
1578 	for (i = 0; i < 3; i++) {
1579 		idx = ch_indices[i];
1580 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1581 		eieio();
1582 		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1583 		eieio();
1584 	}
1585 }
1586 
1587 static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
1588 {
1589 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1590 
1591 	/* Restore, Step 61:
1592 	 *     Restore the SPU_LSLR register from CSA.
1593 	 */
1594 	out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
1595 	eieio();
1596 }
1597 
1598 static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
1599 {
1600 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1601 
1602 	/* Restore, Step 62:
1603 	 *     Restore the SPU_Cfg register from CSA.
1604 	 */
1605 	out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
1606 	eieio();
1607 }
1608 
1609 static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
1610 {
1611 	/* Restore, Step 63:
1612 	 *     Restore PM_Trace_Tag_Wait_Mask from CSA.
1613 	 *     Not performed by this implementation.
1614 	 */
1615 }
1616 
1617 static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
1618 {
1619 	struct spu_problem __iomem *prob = spu->problem;
1620 
1621 	/* Restore, Step 64:
1622 	 *     Restore SPU_NPC from CSA.
1623 	 */
1624 	out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
1625 	eieio();
1626 }
1627 
1628 static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
1629 {
1630 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1631 	int i;
1632 
1633 	/* Restore, Step 65:
1634 	 *     Restore MFC_RdSPU_MB from CSA.
1635 	 */
1636 	out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
1637 	eieio();
1638 	out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
1639 	for (i = 0; i < 4; i++) {
1640 		out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
1641 	}
1642 	eieio();
1643 }
1644 
1645 static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
1646 {
1647 	struct spu_problem __iomem *prob = spu->problem;
1648 	u32 dummy = 0;
1649 
1650 	/* Restore, Step 66:
1651 	 *     If CSA.MB_Stat[P]=0 (mailbox empty) then
1652 	 *     read from the PPU_MB register.
1653 	 */
1654 	if ((csa->prob.mb_stat_R & 0xFF) == 0) {
1655 		dummy = in_be32(&prob->pu_mb_R);
1656 		eieio();
1657 	}
1658 }
1659 
1660 static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
1661 {
1662 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1663 	u64 dummy = 0UL;
1664 
1665 	/* Restore, Step 66:
1666 	 *     If CSA.MB_Stat[I]=0 (mailbox empty) then
1667 	 *     read from the PPUINT_MB register.
1668 	 */
1669 	if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
1670 		dummy = in_be64(&priv2->puint_mb_R);
1671 		eieio();
1672 		spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
1673 		eieio();
1674 	}
1675 }
1676 
1677 static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
1678 {
1679 	/* Restore, Step 69:
1680 	 *     Restore the MFC_SR1 register from CSA.
1681 	 */
1682 	spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
1683 	eieio();
1684 }
1685 
1686 static inline void restore_other_spu_access(struct spu_state *csa,
1687 					    struct spu *spu)
1688 {
1689 	/* Restore, Step 70:
1690 	 *     Restore other SPU mappings to this SPU. TBD.
1691 	 */
1692 }
1693 
1694 static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
1695 {
1696 	struct spu_problem __iomem *prob = spu->problem;
1697 
1698 	/* Restore, Step 71:
1699 	 *     If CSA.SPU_Status[R]=1 then write
1700 	 *     SPU_RunCntl[R0R1]='01'.
1701 	 */
1702 	if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
1703 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1704 		eieio();
1705 	}
1706 }
1707 
1708 static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
1709 {
1710 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1711 
1712 	/* Restore, Step 72:
1713 	 *    Restore the MFC_CNTL register for the CSA.
1714 	 */
1715 	out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
1716 	eieio();
1717 	/*
1718 	 * FIXME: this is to restart a DMA that we were processing
1719 	 *        before the save. better remember the fault information
1720 	 *        in the csa instead.
1721 	 */
1722 	if ((csa->priv2.mfc_control_RW & MFC_CNTL_SUSPEND_DMA_QUEUE_MASK)) {
1723 		out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
1724 		eieio();
1725 	}
1726 }
1727 
1728 static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
1729 {
1730 	/* Restore, Step 73:
1731 	 *     Enable user-space access (if provided) to this
1732 	 *     SPU by mapping the virtual pages assigned to
1733 	 *     the SPU memory-mapped I/O (MMIO) for problem
1734 	 *     state. TBD.
1735 	 */
1736 }
1737 
1738 static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
1739 {
1740 	/* Restore, Step 74:
1741 	 *     Reset the "context switch active" flag.
1742 	 */
1743 	clear_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
1744 	mb();
1745 }
1746 
1747 static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
1748 {
1749 	/* Restore, Step 75:
1750 	 *     Re-enable SPU interrupts.
1751 	 */
1752 	spin_lock_irq(&spu->register_lock);
1753 	spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
1754 	spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
1755 	spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
1756 	spin_unlock_irq(&spu->register_lock);
1757 }
1758 
1759 static int quiece_spu(struct spu_state *prev, struct spu *spu)
1760 {
1761 	/*
1762 	 * Combined steps 2-18 of SPU context save sequence, which
1763 	 * quiesce the SPU state (disable SPU execution, MFC command
1764 	 * queues, decrementer, SPU interrupts, etc.).
1765 	 *
1766 	 * Returns      0 on success.
1767 	 *              2 if failed step 2.
1768 	 *              6 if failed step 6.
1769 	 */
1770 
1771 	if (check_spu_isolate(prev, spu)) {	/* Step 2. */
1772 		return 2;
1773 	}
1774 	disable_interrupts(prev, spu);	        /* Step 3. */
1775 	set_watchdog_timer(prev, spu);	        /* Step 4. */
1776 	inhibit_user_access(prev, spu);	        /* Step 5. */
1777 	if (check_spu_isolate(prev, spu)) {	/* Step 6. */
1778 		return 6;
1779 	}
1780 	set_switch_pending(prev, spu);	        /* Step 7. */
1781 	save_mfc_cntl(prev, spu);		/* Step 8. */
1782 	save_spu_runcntl(prev, spu);	        /* Step 9. */
1783 	save_mfc_sr1(prev, spu);	        /* Step 10. */
1784 	save_spu_status(prev, spu);	        /* Step 11. */
1785 	save_mfc_decr(prev, spu);	        /* Step 12. */
1786 	halt_mfc_decr(prev, spu);	        /* Step 13. */
1787 	save_timebase(prev, spu);		/* Step 14. */
1788 	remove_other_spu_access(prev, spu);	/* Step 15. */
1789 	do_mfc_mssync(prev, spu);	        /* Step 16. */
1790 	issue_mfc_tlbie(prev, spu);	        /* Step 17. */
1791 	handle_pending_interrupts(prev, spu);	/* Step 18. */
1792 
1793 	return 0;
1794 }
1795 
1796 static void save_csa(struct spu_state *prev, struct spu *spu)
1797 {
1798 	/*
1799 	 * Combine steps 19-44 of SPU context save sequence, which
1800 	 * save regions of the privileged & problem state areas.
1801 	 */
1802 
1803 	save_mfc_queues(prev, spu);	/* Step 19. */
1804 	save_ppu_querymask(prev, spu);	/* Step 20. */
1805 	save_ppu_querytype(prev, spu);	/* Step 21. */
1806 	save_ppu_tagstatus(prev, spu);  /* NEW.     */
1807 	save_mfc_csr_tsq(prev, spu);	/* Step 22. */
1808 	save_mfc_csr_cmd(prev, spu);	/* Step 23. */
1809 	save_mfc_csr_ato(prev, spu);	/* Step 24. */
1810 	save_mfc_tclass_id(prev, spu);	/* Step 25. */
1811 	set_mfc_tclass_id(prev, spu);	/* Step 26. */
1812 	purge_mfc_queue(prev, spu);	/* Step 27. */
1813 	wait_purge_complete(prev, spu);	/* Step 28. */
1814 	setup_mfc_sr1(prev, spu);	/* Step 30. */
1815 	save_spu_npc(prev, spu);	/* Step 31. */
1816 	save_spu_privcntl(prev, spu);	/* Step 32. */
1817 	reset_spu_privcntl(prev, spu);	/* Step 33. */
1818 	save_spu_lslr(prev, spu);	/* Step 34. */
1819 	reset_spu_lslr(prev, spu);	/* Step 35. */
1820 	save_spu_cfg(prev, spu);	/* Step 36. */
1821 	save_pm_trace(prev, spu);	/* Step 37. */
1822 	save_mfc_rag(prev, spu);	/* Step 38. */
1823 	save_ppu_mb_stat(prev, spu);	/* Step 39. */
1824 	save_ppu_mb(prev, spu);	        /* Step 40. */
1825 	save_ppuint_mb(prev, spu);	/* Step 41. */
1826 	save_ch_part1(prev, spu);	/* Step 42. */
1827 	save_spu_mb(prev, spu);	        /* Step 43. */
1828 	save_mfc_cmd(prev, spu);	/* Step 44. */
1829 	reset_ch(prev, spu);	        /* Step 45. */
1830 }
1831 
1832 static void save_lscsa(struct spu_state *prev, struct spu *spu)
1833 {
1834 	/*
1835 	 * Perform steps 46-57 of SPU context save sequence,
1836 	 * which save regions of the local store and register
1837 	 * file.
1838 	 */
1839 
1840 	resume_mfc_queue(prev, spu);	/* Step 46. */
1841 	/* Step 47. */
1842 	setup_mfc_slbs(prev, spu, spu_save_code, sizeof(spu_save_code));
1843 	set_switch_active(prev, spu);	/* Step 48. */
1844 	enable_interrupts(prev, spu);	/* Step 49. */
1845 	save_ls_16kb(prev, spu);	/* Step 50. */
1846 	set_spu_npc(prev, spu);	        /* Step 51. */
1847 	set_signot1(prev, spu);		/* Step 52. */
1848 	set_signot2(prev, spu);		/* Step 53. */
1849 	send_save_code(prev, spu);	/* Step 54. */
1850 	set_ppu_querymask(prev, spu);	/* Step 55. */
1851 	wait_tag_complete(prev, spu);	/* Step 56. */
1852 	wait_spu_stopped(prev, spu);	/* Step 57. */
1853 }
1854 
1855 static void force_spu_isolate_exit(struct spu *spu)
1856 {
1857 	struct spu_problem __iomem *prob = spu->problem;
1858 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1859 
1860 	/* Stop SPE execution and wait for completion. */
1861 	out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1862 	iobarrier_rw();
1863 	POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
1864 
1865 	/* Restart SPE master runcntl. */
1866 	spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1867 	iobarrier_w();
1868 
1869 	/* Initiate isolate exit request and wait for completion. */
1870 	out_be64(&priv2->spu_privcntl_RW, 4LL);
1871 	iobarrier_w();
1872 	out_be32(&prob->spu_runcntl_RW, 2);
1873 	iobarrier_rw();
1874 	POLL_WHILE_FALSE((in_be32(&prob->spu_status_R)
1875 				& SPU_STATUS_STOPPED_BY_STOP));
1876 
1877 	/* Reset load request to normal. */
1878 	out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL);
1879 	iobarrier_w();
1880 }
1881 
1882 /**
1883  * stop_spu_isolate
1884  *	Check SPU run-control state and force isolated
1885  *	exit function as necessary.
1886  */
1887 static void stop_spu_isolate(struct spu *spu)
1888 {
1889 	struct spu_problem __iomem *prob = spu->problem;
1890 
1891 	if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) {
1892 		/* The SPU is in isolated state; the only way
1893 		 * to get it out is to perform an isolated
1894 		 * exit (clean) operation.
1895 		 */
1896 		force_spu_isolate_exit(spu);
1897 	}
1898 }
1899 
1900 static void harvest(struct spu_state *prev, struct spu *spu)
1901 {
1902 	/*
1903 	 * Perform steps 2-25 of SPU context restore sequence,
1904 	 * which resets an SPU either after a failed save, or
1905 	 * when using SPU for first time.
1906 	 */
1907 
1908 	disable_interrupts(prev, spu);	        /* Step 2.  */
1909 	inhibit_user_access(prev, spu);	        /* Step 3.  */
1910 	terminate_spu_app(prev, spu);	        /* Step 4.  */
1911 	set_switch_pending(prev, spu);	        /* Step 5.  */
1912 	stop_spu_isolate(spu);			/* NEW.     */
1913 	remove_other_spu_access(prev, spu);	/* Step 6.  */
1914 	suspend_mfc_and_halt_decr(prev, spu);	/* Step 7.  */
1915 	wait_suspend_mfc_complete(prev, spu);	/* Step 8.  */
1916 	if (!suspend_spe(prev, spu))	        /* Step 9.  */
1917 		clear_spu_status(prev, spu);	/* Step 10. */
1918 	do_mfc_mssync(prev, spu);	        /* Step 11. */
1919 	issue_mfc_tlbie(prev, spu);	        /* Step 12. */
1920 	handle_pending_interrupts(prev, spu);	/* Step 13. */
1921 	purge_mfc_queue(prev, spu);	        /* Step 14. */
1922 	wait_purge_complete(prev, spu);	        /* Step 15. */
1923 	reset_spu_privcntl(prev, spu);	        /* Step 16. */
1924 	reset_spu_lslr(prev, spu);              /* Step 17. */
1925 	setup_mfc_sr1(prev, spu);	        /* Step 18. */
1926 	spu_invalidate_slbs(spu);		/* Step 19. */
1927 	reset_ch_part1(prev, spu);	        /* Step 20. */
1928 	reset_ch_part2(prev, spu);	        /* Step 21. */
1929 	enable_interrupts(prev, spu);	        /* Step 22. */
1930 	set_switch_active(prev, spu);	        /* Step 23. */
1931 	set_mfc_tclass_id(prev, spu);	        /* Step 24. */
1932 	resume_mfc_queue(prev, spu);	        /* Step 25. */
1933 }
1934 
1935 static void restore_lscsa(struct spu_state *next, struct spu *spu)
1936 {
1937 	/*
1938 	 * Perform steps 26-40 of SPU context restore sequence,
1939 	 * which restores regions of the local store and register
1940 	 * file.
1941 	 */
1942 
1943 	set_watchdog_timer(next, spu);	        /* Step 26. */
1944 	setup_spu_status_part1(next, spu);	/* Step 27. */
1945 	setup_spu_status_part2(next, spu);	/* Step 28. */
1946 	restore_mfc_rag(next, spu);	        /* Step 29. */
1947 	/* Step 30. */
1948 	setup_mfc_slbs(next, spu, spu_restore_code, sizeof(spu_restore_code));
1949 	set_spu_npc(next, spu);	                /* Step 31. */
1950 	set_signot1(next, spu);	                /* Step 32. */
1951 	set_signot2(next, spu);	                /* Step 33. */
1952 	setup_decr(next, spu);	                /* Step 34. */
1953 	setup_ppu_mb(next, spu);	        /* Step 35. */
1954 	setup_ppuint_mb(next, spu);	        /* Step 36. */
1955 	send_restore_code(next, spu);	        /* Step 37. */
1956 	set_ppu_querymask(next, spu);	        /* Step 38. */
1957 	wait_tag_complete(next, spu);	        /* Step 39. */
1958 	wait_spu_stopped(next, spu);	        /* Step 40. */
1959 }
1960 
1961 static void restore_csa(struct spu_state *next, struct spu *spu)
1962 {
1963 	/*
1964 	 * Combine steps 41-76 of SPU context restore sequence, which
1965 	 * restore regions of the privileged & problem state areas.
1966 	 */
1967 
1968 	restore_spu_privcntl(next, spu);	/* Step 41. */
1969 	restore_status_part1(next, spu);	/* Step 42. */
1970 	restore_status_part2(next, spu);	/* Step 43. */
1971 	restore_ls_16kb(next, spu);	        /* Step 44. */
1972 	wait_tag_complete(next, spu);	        /* Step 45. */
1973 	suspend_mfc(next, spu);	                /* Step 46. */
1974 	wait_suspend_mfc_complete(next, spu);	/* Step 47. */
1975 	issue_mfc_tlbie(next, spu);	        /* Step 48. */
1976 	clear_interrupts(next, spu);	        /* Step 49. */
1977 	restore_mfc_queues(next, spu);	        /* Step 50. */
1978 	restore_ppu_querymask(next, spu);	/* Step 51. */
1979 	restore_ppu_querytype(next, spu);	/* Step 52. */
1980 	restore_mfc_csr_tsq(next, spu);	        /* Step 53. */
1981 	restore_mfc_csr_cmd(next, spu);	        /* Step 54. */
1982 	restore_mfc_csr_ato(next, spu);	        /* Step 55. */
1983 	restore_mfc_tclass_id(next, spu);	/* Step 56. */
1984 	set_llr_event(next, spu);	        /* Step 57. */
1985 	restore_decr_wrapped(next, spu);	/* Step 58. */
1986 	restore_ch_part1(next, spu);	        /* Step 59. */
1987 	restore_ch_part2(next, spu);	        /* Step 60. */
1988 	restore_spu_lslr(next, spu);	        /* Step 61. */
1989 	restore_spu_cfg(next, spu);	        /* Step 62. */
1990 	restore_pm_trace(next, spu);	        /* Step 63. */
1991 	restore_spu_npc(next, spu);	        /* Step 64. */
1992 	restore_spu_mb(next, spu);	        /* Step 65. */
1993 	check_ppu_mb_stat(next, spu);	        /* Step 66. */
1994 	check_ppuint_mb_stat(next, spu);	/* Step 67. */
1995 	spu_invalidate_slbs(spu);		/* Modified Step 68. */
1996 	restore_mfc_sr1(next, spu);	        /* Step 69. */
1997 	restore_other_spu_access(next, spu);	/* Step 70. */
1998 	restore_spu_runcntl(next, spu);	        /* Step 71. */
1999 	restore_mfc_cntl(next, spu);	        /* Step 72. */
2000 	enable_user_access(next, spu);	        /* Step 73. */
2001 	reset_switch_active(next, spu);	        /* Step 74. */
2002 	reenable_interrupts(next, spu);	        /* Step 75. */
2003 }
2004 
2005 static int __do_spu_save(struct spu_state *prev, struct spu *spu)
2006 {
2007 	int rc;
2008 
2009 	/*
2010 	 * SPU context save can be broken into three phases:
2011 	 *
2012 	 *     (a) quiesce [steps 2-16].
2013 	 *     (b) save of CSA, performed by PPE [steps 17-42]
2014 	 *     (c) save of LSCSA, mostly performed by SPU [steps 43-52].
2015 	 *
2016 	 * Returns      0 on success.
2017 	 *              2,6 if failed to quiece SPU
2018 	 *              53 if SPU-side of save failed.
2019 	 */
2020 
2021 	rc = quiece_spu(prev, spu);	        /* Steps 2-16. */
2022 	switch (rc) {
2023 	default:
2024 	case 2:
2025 	case 6:
2026 		harvest(prev, spu);
2027 		return rc;
2028 		break;
2029 	case 0:
2030 		break;
2031 	}
2032 	save_csa(prev, spu);	                /* Steps 17-43. */
2033 	save_lscsa(prev, spu);	                /* Steps 44-53. */
2034 	return check_save_status(prev, spu);	/* Step 54.     */
2035 }
2036 
2037 static int __do_spu_restore(struct spu_state *next, struct spu *spu)
2038 {
2039 	int rc;
2040 
2041 	/*
2042 	 * SPU context restore can be broken into three phases:
2043 	 *
2044 	 *    (a) harvest (or reset) SPU [steps 2-24].
2045 	 *    (b) restore LSCSA [steps 25-40], mostly performed by SPU.
2046 	 *    (c) restore CSA [steps 41-76], performed by PPE.
2047 	 *
2048 	 * The 'harvest' step is not performed here, but rather
2049 	 * as needed below.
2050 	 */
2051 
2052 	restore_lscsa(next, spu);	        /* Steps 24-39. */
2053 	rc = check_restore_status(next, spu);	/* Step 40.     */
2054 	switch (rc) {
2055 	default:
2056 		/* Failed. Return now. */
2057 		return rc;
2058 		break;
2059 	case 0:
2060 		/* Fall through to next step. */
2061 		break;
2062 	}
2063 	restore_csa(next, spu);
2064 
2065 	return 0;
2066 }
2067 
2068 /**
2069  * spu_save - SPU context save, with locking.
2070  * @prev: pointer to SPU context save area, to be saved.
2071  * @spu: pointer to SPU iomem structure.
2072  *
2073  * Acquire locks, perform the save operation then return.
2074  */
2075 int spu_save(struct spu_state *prev, struct spu *spu)
2076 {
2077 	int rc;
2078 
2079 	acquire_spu_lock(spu);	        /* Step 1.     */
2080 	rc = __do_spu_save(prev, spu);	/* Steps 2-53. */
2081 	release_spu_lock(spu);
2082 	if (rc != 0 && rc != 2 && rc != 6) {
2083 		panic("%s failed on SPU[%d], rc=%d.\n",
2084 		      __func__, spu->number, rc);
2085 	}
2086 	return 0;
2087 }
2088 EXPORT_SYMBOL_GPL(spu_save);
2089 
2090 /**
2091  * spu_restore - SPU context restore, with harvest and locking.
2092  * @new: pointer to SPU context save area, to be restored.
2093  * @spu: pointer to SPU iomem structure.
2094  *
2095  * Perform harvest + restore, as we may not be coming
2096  * from a previous successful save operation, and the
2097  * hardware state is unknown.
2098  */
2099 int spu_restore(struct spu_state *new, struct spu *spu)
2100 {
2101 	int rc;
2102 
2103 	acquire_spu_lock(spu);
2104 	harvest(NULL, spu);
2105 	spu->slb_replace = 0;
2106 	rc = __do_spu_restore(new, spu);
2107 	release_spu_lock(spu);
2108 	if (rc) {
2109 		panic("%s failed on SPU[%d] rc=%d.\n",
2110 		       __func__, spu->number, rc);
2111 	}
2112 	return rc;
2113 }
2114 EXPORT_SYMBOL_GPL(spu_restore);
2115 
2116 static void init_prob(struct spu_state *csa)
2117 {
2118 	csa->spu_chnlcnt_RW[9] = 1;
2119 	csa->spu_chnlcnt_RW[21] = 16;
2120 	csa->spu_chnlcnt_RW[23] = 1;
2121 	csa->spu_chnlcnt_RW[28] = 1;
2122 	csa->spu_chnlcnt_RW[30] = 1;
2123 	csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
2124 	csa->prob.mb_stat_R = 0x000400;
2125 }
2126 
2127 static void init_priv1(struct spu_state *csa)
2128 {
2129 	/* Enable decode, relocate, tlbie response, master runcntl. */
2130 	csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
2131 	    MFC_STATE1_MASTER_RUN_CONTROL_MASK |
2132 	    MFC_STATE1_PROBLEM_STATE_MASK |
2133 	    MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
2134 
2135 	/* Enable OS-specific set of interrupts. */
2136 	csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
2137 	    CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
2138 	    CLASS0_ENABLE_SPU_ERROR_INTR;
2139 	csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
2140 	    CLASS1_ENABLE_STORAGE_FAULT_INTR;
2141 	csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
2142 	    CLASS2_ENABLE_SPU_HALT_INTR |
2143 	    CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
2144 }
2145 
2146 static void init_priv2(struct spu_state *csa)
2147 {
2148 	csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
2149 	csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
2150 	    MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
2151 	    MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
2152 }
2153 
2154 /**
2155  * spu_alloc_csa - allocate and initialize an SPU context save area.
2156  *
2157  * Allocate and initialize the contents of an SPU context save area.
2158  * This includes enabling address translation, interrupt masks, etc.,
2159  * as appropriate for the given OS environment.
2160  *
2161  * Note that storage for the 'lscsa' is allocated separately,
2162  * as it is by far the largest of the context save regions,
2163  * and may need to be pinned or otherwise specially aligned.
2164  */
2165 int spu_init_csa(struct spu_state *csa)
2166 {
2167 	int rc;
2168 
2169 	if (!csa)
2170 		return -EINVAL;
2171 	memset(csa, 0, sizeof(struct spu_state));
2172 
2173 	rc = spu_alloc_lscsa(csa);
2174 	if (rc)
2175 		return rc;
2176 
2177 	spin_lock_init(&csa->register_lock);
2178 
2179 	init_prob(csa);
2180 	init_priv1(csa);
2181 	init_priv2(csa);
2182 
2183 	return 0;
2184 }
2185 
2186 void spu_fini_csa(struct spu_state *csa)
2187 {
2188 	spu_free_lscsa(csa);
2189 }
2190