1 /*
2  * spu_switch.c
3  *
4  * (C) Copyright IBM Corp. 2005
5  *
6  * Author: Mark Nutter <mnutter@us.ibm.com>
7  *
8  * Host-side part of SPU context switch sequence outlined in
9  * Synergistic Processor Element, Book IV.
10  *
11  * A fully premptive switch of an SPE is very expensive in terms
12  * of time and system resources.  SPE Book IV indicates that SPE
13  * allocation should follow a "serially reusable device" model,
14  * in which the SPE is assigned a task until it completes.  When
15  * this is not possible, this sequence may be used to premptively
16  * save, and then later (optionally) restore the context of a
17  * program executing on an SPE.
18  *
19  *
20  * This program is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2, or (at your option)
23  * any later version.
24  *
25  * This program is distributed in the hope that it will be useful,
26  * but WITHOUT ANY WARRANTY; without even the implied warranty of
27  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28  * GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with this program; if not, write to the Free Software
32  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/errno.h>
37 #include <linux/hardirq.h>
38 #include <linux/sched.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/smp.h>
43 #include <linux/stddef.h>
44 #include <linux/unistd.h>
45 
46 #include <asm/io.h>
47 #include <asm/spu.h>
48 #include <asm/spu_priv1.h>
49 #include <asm/spu_csa.h>
50 #include <asm/mmu_context.h>
51 
52 #include "spufs.h"
53 
54 #include "spu_save_dump.h"
55 #include "spu_restore_dump.h"
56 
57 #if 0
58 #define POLL_WHILE_TRUE(_c) {				\
59     do {						\
60     } while (_c);					\
61   }
62 #else
63 #define RELAX_SPIN_COUNT				1000
64 #define POLL_WHILE_TRUE(_c) {				\
65     do {						\
66 	int _i;						\
67 	for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
68 	    cpu_relax();				\
69 	}						\
70 	if (unlikely(_c)) yield();			\
71 	else break;					\
72     } while (_c);					\
73   }
74 #endif				/* debug */
75 
76 #define POLL_WHILE_FALSE(_c)	POLL_WHILE_TRUE(!(_c))
77 
78 static inline void acquire_spu_lock(struct spu *spu)
79 {
80 	/* Save, Step 1:
81 	 * Restore, Step 1:
82 	 *    Acquire SPU-specific mutual exclusion lock.
83 	 *    TBD.
84 	 */
85 }
86 
87 static inline void release_spu_lock(struct spu *spu)
88 {
89 	/* Restore, Step 76:
90 	 *    Release SPU-specific mutual exclusion lock.
91 	 *    TBD.
92 	 */
93 }
94 
95 static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
96 {
97 	struct spu_problem __iomem *prob = spu->problem;
98 	u32 isolate_state;
99 
100 	/* Save, Step 2:
101 	 * Save, Step 6:
102 	 *     If SPU_Status[E,L,IS] any field is '1', this
103 	 *     SPU is in isolate state and cannot be context
104 	 *     saved at this time.
105 	 */
106 	isolate_state = SPU_STATUS_ISOLATED_STATE |
107 	    SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS;
108 	return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
109 }
110 
111 static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
112 {
113 	/* Save, Step 3:
114 	 * Restore, Step 2:
115 	 *     Save INT_Mask_class0 in CSA.
116 	 *     Write INT_MASK_class0 with value of 0.
117 	 *     Save INT_Mask_class1 in CSA.
118 	 *     Write INT_MASK_class1 with value of 0.
119 	 *     Save INT_Mask_class2 in CSA.
120 	 *     Write INT_MASK_class2 with value of 0.
121 	 *     Synchronize all three interrupts to be sure
122 	 *     we no longer execute a handler on another CPU.
123 	 */
124 	spin_lock_irq(&spu->register_lock);
125 	if (csa) {
126 		csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
127 		csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
128 		csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
129 	}
130 	spu_int_mask_set(spu, 0, 0ul);
131 	spu_int_mask_set(spu, 1, 0ul);
132 	spu_int_mask_set(spu, 2, 0ul);
133 	eieio();
134 	spin_unlock_irq(&spu->register_lock);
135 
136 	/*
137 	 * This flag needs to be set before calling synchronize_irq so
138 	 * that the update will be visible to the relevant handlers
139 	 * via a simple load.
140 	 */
141 	set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
142 	clear_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags);
143 	synchronize_irq(spu->irqs[0]);
144 	synchronize_irq(spu->irqs[1]);
145 	synchronize_irq(spu->irqs[2]);
146 }
147 
148 static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
149 {
150 	/* Save, Step 4:
151 	 * Restore, Step 25.
152 	 *    Set a software watchdog timer, which specifies the
153 	 *    maximum allowable time for a context save sequence.
154 	 *
155 	 *    For present, this implementation will not set a global
156 	 *    watchdog timer, as virtualization & variable system load
157 	 *    may cause unpredictable execution times.
158 	 */
159 }
160 
161 static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
162 {
163 	/* Save, Step 5:
164 	 * Restore, Step 3:
165 	 *     Inhibit user-space access (if provided) to this
166 	 *     SPU by unmapping the virtual pages assigned to
167 	 *     the SPU memory-mapped I/O (MMIO) for problem
168 	 *     state. TBD.
169 	 */
170 }
171 
172 static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
173 {
174 	/* Save, Step 7:
175 	 * Restore, Step 5:
176 	 *     Set a software context switch pending flag.
177 	 *     Done above in Step 3 - disable_interrupts().
178 	 */
179 }
180 
181 static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
182 {
183 	struct spu_priv2 __iomem *priv2 = spu->priv2;
184 
185 	/* Save, Step 8:
186 	 *     Suspend DMA and save MFC_CNTL.
187 	 */
188 	switch (in_be64(&priv2->mfc_control_RW) &
189 	       MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
190 	case MFC_CNTL_SUSPEND_IN_PROGRESS:
191 		POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
192 				  MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
193 				 MFC_CNTL_SUSPEND_COMPLETE);
194 		/* fall through */
195 	case MFC_CNTL_SUSPEND_COMPLETE:
196 		if (csa)
197 			csa->priv2.mfc_control_RW =
198 				in_be64(&priv2->mfc_control_RW) |
199 				MFC_CNTL_SUSPEND_DMA_QUEUE;
200 		break;
201 	case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
202 		out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
203 		POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
204 				  MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
205 				 MFC_CNTL_SUSPEND_COMPLETE);
206 		if (csa)
207 			csa->priv2.mfc_control_RW =
208 				in_be64(&priv2->mfc_control_RW) &
209 				~MFC_CNTL_SUSPEND_DMA_QUEUE &
210 				~MFC_CNTL_SUSPEND_MASK;
211 		break;
212 	}
213 }
214 
215 static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
216 {
217 	struct spu_problem __iomem *prob = spu->problem;
218 
219 	/* Save, Step 9:
220 	 *     Save SPU_Runcntl in the CSA.  This value contains
221 	 *     the "Application Desired State".
222 	 */
223 	csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
224 }
225 
226 static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
227 {
228 	/* Save, Step 10:
229 	 *     Save MFC_SR1 in the CSA.
230 	 */
231 	csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
232 }
233 
234 static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
235 {
236 	struct spu_problem __iomem *prob = spu->problem;
237 
238 	/* Save, Step 11:
239 	 *     Read SPU_Status[R], and save to CSA.
240 	 */
241 	if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
242 		csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
243 	} else {
244 		u32 stopped;
245 
246 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
247 		eieio();
248 		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
249 				SPU_STATUS_RUNNING);
250 		stopped =
251 		    SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
252 		    SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
253 		if ((in_be32(&prob->spu_status_R) & stopped) == 0)
254 			csa->prob.spu_status_R = SPU_STATUS_RUNNING;
255 		else
256 			csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
257 	}
258 }
259 
260 static inline void save_mfc_stopped_status(struct spu_state *csa,
261 		struct spu *spu)
262 {
263 	struct spu_priv2 __iomem *priv2 = spu->priv2;
264 	const u64 mask = MFC_CNTL_DECREMENTER_RUNNING |
265 			MFC_CNTL_DMA_QUEUES_EMPTY;
266 
267 	/* Save, Step 12:
268 	 *     Read MFC_CNTL[Ds].  Update saved copy of
269 	 *     CSA.MFC_CNTL[Ds].
270 	 *
271 	 * update: do the same with MFC_CNTL[Q].
272 	 */
273 	csa->priv2.mfc_control_RW &= ~mask;
274 	csa->priv2.mfc_control_RW |= in_be64(&priv2->mfc_control_RW) & mask;
275 }
276 
277 static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
278 {
279 	struct spu_priv2 __iomem *priv2 = spu->priv2;
280 
281 	/* Save, Step 13:
282 	 *     Write MFC_CNTL[Dh] set to a '1' to halt
283 	 *     the decrementer.
284 	 */
285 	out_be64(&priv2->mfc_control_RW,
286 		 MFC_CNTL_DECREMENTER_HALTED | MFC_CNTL_SUSPEND_MASK);
287 	eieio();
288 }
289 
290 static inline void save_timebase(struct spu_state *csa, struct spu *spu)
291 {
292 	/* Save, Step 14:
293 	 *    Read PPE Timebase High and Timebase low registers
294 	 *    and save in CSA.  TBD.
295 	 */
296 	csa->suspend_time = get_cycles();
297 }
298 
299 static inline void remove_other_spu_access(struct spu_state *csa,
300 					   struct spu *spu)
301 {
302 	/* Save, Step 15:
303 	 *     Remove other SPU access to this SPU by unmapping
304 	 *     this SPU's pages from their address space.  TBD.
305 	 */
306 }
307 
308 static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
309 {
310 	struct spu_problem __iomem *prob = spu->problem;
311 
312 	/* Save, Step 16:
313 	 * Restore, Step 11.
314 	 *     Write SPU_MSSync register. Poll SPU_MSSync[P]
315 	 *     for a value of 0.
316 	 */
317 	out_be64(&prob->spc_mssync_RW, 1UL);
318 	POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
319 }
320 
321 static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
322 {
323 	/* Save, Step 17:
324 	 * Restore, Step 12.
325 	 * Restore, Step 48.
326 	 *     Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
327 	 *     Then issue a PPE sync instruction.
328 	 */
329 	spu_tlb_invalidate(spu);
330 	mb();
331 }
332 
333 static inline void handle_pending_interrupts(struct spu_state *csa,
334 					     struct spu *spu)
335 {
336 	/* Save, Step 18:
337 	 *     Handle any pending interrupts from this SPU
338 	 *     here.  This is OS or hypervisor specific.  One
339 	 *     option is to re-enable interrupts to handle any
340 	 *     pending interrupts, with the interrupt handlers
341 	 *     recognizing the software Context Switch Pending
342 	 *     flag, to ensure the SPU execution or MFC command
343 	 *     queue is not restarted.  TBD.
344 	 */
345 }
346 
347 static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
348 {
349 	struct spu_priv2 __iomem *priv2 = spu->priv2;
350 	int i;
351 
352 	/* Save, Step 19:
353 	 *     If MFC_Cntl[Se]=0 then save
354 	 *     MFC command queues.
355 	 */
356 	if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
357 		for (i = 0; i < 8; i++) {
358 			csa->priv2.puq[i].mfc_cq_data0_RW =
359 			    in_be64(&priv2->puq[i].mfc_cq_data0_RW);
360 			csa->priv2.puq[i].mfc_cq_data1_RW =
361 			    in_be64(&priv2->puq[i].mfc_cq_data1_RW);
362 			csa->priv2.puq[i].mfc_cq_data2_RW =
363 			    in_be64(&priv2->puq[i].mfc_cq_data2_RW);
364 			csa->priv2.puq[i].mfc_cq_data3_RW =
365 			    in_be64(&priv2->puq[i].mfc_cq_data3_RW);
366 		}
367 		for (i = 0; i < 16; i++) {
368 			csa->priv2.spuq[i].mfc_cq_data0_RW =
369 			    in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
370 			csa->priv2.spuq[i].mfc_cq_data1_RW =
371 			    in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
372 			csa->priv2.spuq[i].mfc_cq_data2_RW =
373 			    in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
374 			csa->priv2.spuq[i].mfc_cq_data3_RW =
375 			    in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
376 		}
377 	}
378 }
379 
380 static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
381 {
382 	struct spu_problem __iomem *prob = spu->problem;
383 
384 	/* Save, Step 20:
385 	 *     Save the PPU_QueryMask register
386 	 *     in the CSA.
387 	 */
388 	csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
389 }
390 
391 static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
392 {
393 	struct spu_problem __iomem *prob = spu->problem;
394 
395 	/* Save, Step 21:
396 	 *     Save the PPU_QueryType register
397 	 *     in the CSA.
398 	 */
399 	csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
400 }
401 
402 static inline void save_ppu_tagstatus(struct spu_state *csa, struct spu *spu)
403 {
404 	struct spu_problem __iomem *prob = spu->problem;
405 
406 	/* Save the Prxy_TagStatus register in the CSA.
407 	 *
408 	 * It is unnecessary to restore dma_tagstatus_R, however,
409 	 * dma_tagstatus_R in the CSA is accessed via backing_ops, so
410 	 * we must save it.
411 	 */
412 	csa->prob.dma_tagstatus_R = in_be32(&prob->dma_tagstatus_R);
413 }
414 
415 static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
416 {
417 	struct spu_priv2 __iomem *priv2 = spu->priv2;
418 
419 	/* Save, Step 22:
420 	 *     Save the MFC_CSR_TSQ register
421 	 *     in the LSCSA.
422 	 */
423 	csa->priv2.spu_tag_status_query_RW =
424 	    in_be64(&priv2->spu_tag_status_query_RW);
425 }
426 
427 static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
428 {
429 	struct spu_priv2 __iomem *priv2 = spu->priv2;
430 
431 	/* Save, Step 23:
432 	 *     Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
433 	 *     registers in the CSA.
434 	 */
435 	csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
436 	csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
437 }
438 
439 static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
440 {
441 	struct spu_priv2 __iomem *priv2 = spu->priv2;
442 
443 	/* Save, Step 24:
444 	 *     Save the MFC_CSR_ATO register in
445 	 *     the CSA.
446 	 */
447 	csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
448 }
449 
450 static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
451 {
452 	/* Save, Step 25:
453 	 *     Save the MFC_TCLASS_ID register in
454 	 *     the CSA.
455 	 */
456 	csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
457 }
458 
459 static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
460 {
461 	/* Save, Step 26:
462 	 * Restore, Step 23.
463 	 *     Write the MFC_TCLASS_ID register with
464 	 *     the value 0x10000000.
465 	 */
466 	spu_mfc_tclass_id_set(spu, 0x10000000);
467 	eieio();
468 }
469 
470 static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
471 {
472 	struct spu_priv2 __iomem *priv2 = spu->priv2;
473 
474 	/* Save, Step 27:
475 	 * Restore, Step 14.
476 	 *     Write MFC_CNTL[Pc]=1 (purge queue).
477 	 */
478 	out_be64(&priv2->mfc_control_RW,
479 			MFC_CNTL_PURGE_DMA_REQUEST |
480 			MFC_CNTL_SUSPEND_MASK);
481 	eieio();
482 }
483 
484 static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
485 {
486 	struct spu_priv2 __iomem *priv2 = spu->priv2;
487 
488 	/* Save, Step 28:
489 	 *     Poll MFC_CNTL[Ps] until value '11' is read
490 	 *     (purge complete).
491 	 */
492 	POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
493 			 MFC_CNTL_PURGE_DMA_STATUS_MASK) ==
494 			 MFC_CNTL_PURGE_DMA_COMPLETE);
495 }
496 
497 static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
498 {
499 	/* Save, Step 30:
500 	 * Restore, Step 18:
501 	 *     Write MFC_SR1 with MFC_SR1[D=0,S=1] and
502 	 *     MFC_SR1[TL,R,Pr,T] set correctly for the
503 	 *     OS specific environment.
504 	 *
505 	 *     Implementation note: The SPU-side code
506 	 *     for save/restore is privileged, so the
507 	 *     MFC_SR1[Pr] bit is not set.
508 	 *
509 	 */
510 	spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
511 			      MFC_STATE1_RELOCATE_MASK |
512 			      MFC_STATE1_BUS_TLBIE_MASK));
513 }
514 
515 static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
516 {
517 	struct spu_problem __iomem *prob = spu->problem;
518 
519 	/* Save, Step 31:
520 	 *     Save SPU_NPC in the CSA.
521 	 */
522 	csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
523 }
524 
525 static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
526 {
527 	struct spu_priv2 __iomem *priv2 = spu->priv2;
528 
529 	/* Save, Step 32:
530 	 *     Save SPU_PrivCntl in the CSA.
531 	 */
532 	csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
533 }
534 
535 static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
536 {
537 	struct spu_priv2 __iomem *priv2 = spu->priv2;
538 
539 	/* Save, Step 33:
540 	 * Restore, Step 16:
541 	 *     Write SPU_PrivCntl[S,Le,A] fields reset to 0.
542 	 */
543 	out_be64(&priv2->spu_privcntl_RW, 0UL);
544 	eieio();
545 }
546 
547 static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
548 {
549 	struct spu_priv2 __iomem *priv2 = spu->priv2;
550 
551 	/* Save, Step 34:
552 	 *     Save SPU_LSLR in the CSA.
553 	 */
554 	csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
555 }
556 
557 static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
558 {
559 	struct spu_priv2 __iomem *priv2 = spu->priv2;
560 
561 	/* Save, Step 35:
562 	 * Restore, Step 17.
563 	 *     Reset SPU_LSLR.
564 	 */
565 	out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
566 	eieio();
567 }
568 
569 static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
570 {
571 	struct spu_priv2 __iomem *priv2 = spu->priv2;
572 
573 	/* Save, Step 36:
574 	 *     Save SPU_Cfg in the CSA.
575 	 */
576 	csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
577 }
578 
579 static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
580 {
581 	/* Save, Step 37:
582 	 *     Save PM_Trace_Tag_Wait_Mask in the CSA.
583 	 *     Not performed by this implementation.
584 	 */
585 }
586 
587 static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
588 {
589 	/* Save, Step 38:
590 	 *     Save RA_GROUP_ID register and the
591 	 *     RA_ENABLE reigster in the CSA.
592 	 */
593 	csa->priv1.resource_allocation_groupID_RW =
594 		spu_resource_allocation_groupID_get(spu);
595 	csa->priv1.resource_allocation_enable_RW =
596 		spu_resource_allocation_enable_get(spu);
597 }
598 
599 static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
600 {
601 	struct spu_problem __iomem *prob = spu->problem;
602 
603 	/* Save, Step 39:
604 	 *     Save MB_Stat register in the CSA.
605 	 */
606 	csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
607 }
608 
609 static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
610 {
611 	struct spu_problem __iomem *prob = spu->problem;
612 
613 	/* Save, Step 40:
614 	 *     Save the PPU_MB register in the CSA.
615 	 */
616 	csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
617 }
618 
619 static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
620 {
621 	struct spu_priv2 __iomem *priv2 = spu->priv2;
622 
623 	/* Save, Step 41:
624 	 *     Save the PPUINT_MB register in the CSA.
625 	 */
626 	csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
627 }
628 
629 static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
630 {
631 	struct spu_priv2 __iomem *priv2 = spu->priv2;
632 	u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
633 	int i;
634 
635 	/* Save, Step 42:
636 	 */
637 
638 	/* Save CH 1, without channel count */
639 	out_be64(&priv2->spu_chnlcntptr_RW, 1);
640 	csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
641 
642 	/* Save the following CH: [0,3,4,24,25,27] */
643 	for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
644 		idx = ch_indices[i];
645 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
646 		eieio();
647 		csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
648 		csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
649 		out_be64(&priv2->spu_chnldata_RW, 0UL);
650 		out_be64(&priv2->spu_chnlcnt_RW, 0UL);
651 		eieio();
652 	}
653 }
654 
655 static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
656 {
657 	struct spu_priv2 __iomem *priv2 = spu->priv2;
658 	int i;
659 
660 	/* Save, Step 43:
661 	 *     Save SPU Read Mailbox Channel.
662 	 */
663 	out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
664 	eieio();
665 	csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
666 	for (i = 0; i < 4; i++) {
667 		csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
668 	}
669 	out_be64(&priv2->spu_chnlcnt_RW, 0UL);
670 	eieio();
671 }
672 
673 static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
674 {
675 	struct spu_priv2 __iomem *priv2 = spu->priv2;
676 
677 	/* Save, Step 44:
678 	 *     Save MFC_CMD Channel.
679 	 */
680 	out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
681 	eieio();
682 	csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
683 	eieio();
684 }
685 
686 static inline void reset_ch(struct spu_state *csa, struct spu *spu)
687 {
688 	struct spu_priv2 __iomem *priv2 = spu->priv2;
689 	u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
690 	u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
691 	u64 idx;
692 	int i;
693 
694 	/* Save, Step 45:
695 	 *     Reset the following CH: [21, 23, 28, 30]
696 	 */
697 	for (i = 0; i < 4; i++) {
698 		idx = ch_indices[i];
699 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
700 		eieio();
701 		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
702 		eieio();
703 	}
704 }
705 
706 static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
707 {
708 	struct spu_priv2 __iomem *priv2 = spu->priv2;
709 
710 	/* Save, Step 46:
711 	 * Restore, Step 25.
712 	 *     Write MFC_CNTL[Sc]=0 (resume queue processing).
713 	 */
714 	out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
715 }
716 
717 static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu,
718 		unsigned int *code, int code_size)
719 {
720 	/* Save, Step 47:
721 	 * Restore, Step 30.
722 	 *     If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
723 	 *     register, then initialize SLB_VSID and SLB_ESID
724 	 *     to provide access to SPU context save code and
725 	 *     LSCSA.
726 	 *
727 	 *     This implementation places both the context
728 	 *     switch code and LSCSA in kernel address space.
729 	 *
730 	 *     Further this implementation assumes that the
731 	 *     MFC_SR1[R]=1 (in other words, assume that
732 	 *     translation is desired by OS environment).
733 	 */
734 	spu_invalidate_slbs(spu);
735 	spu_setup_kernel_slbs(spu, csa->lscsa, code, code_size);
736 }
737 
738 static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
739 {
740 	/* Save, Step 48:
741 	 * Restore, Step 23.
742 	 *     Change the software context switch pending flag
743 	 *     to context switch active.  This implementation does
744 	 *     not uses a switch active flag.
745 	 *
746 	 * Now that we have saved the mfc in the csa, we can add in the
747 	 * restart command if an exception occurred.
748 	 */
749 	if (test_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags))
750 		csa->priv2.mfc_control_RW |= MFC_CNTL_RESTART_DMA_COMMAND;
751 	clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
752 	mb();
753 }
754 
755 static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
756 {
757 	unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
758 	    CLASS1_ENABLE_STORAGE_FAULT_INTR;
759 
760 	/* Save, Step 49:
761 	 * Restore, Step 22:
762 	 *     Reset and then enable interrupts, as
763 	 *     needed by OS.
764 	 *
765 	 *     This implementation enables only class1
766 	 *     (translation) interrupts.
767 	 */
768 	spin_lock_irq(&spu->register_lock);
769 	spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
770 	spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
771 	spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
772 	spu_int_mask_set(spu, 0, 0ul);
773 	spu_int_mask_set(spu, 1, class1_mask);
774 	spu_int_mask_set(spu, 2, 0ul);
775 	spin_unlock_irq(&spu->register_lock);
776 }
777 
778 static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
779 			       unsigned int ls_offset, unsigned int size,
780 			       unsigned int tag, unsigned int rclass,
781 			       unsigned int cmd)
782 {
783 	struct spu_problem __iomem *prob = spu->problem;
784 	union mfc_tag_size_class_cmd command;
785 	unsigned int transfer_size;
786 	volatile unsigned int status = 0x0;
787 
788 	while (size > 0) {
789 		transfer_size =
790 		    (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
791 		command.u.mfc_size = transfer_size;
792 		command.u.mfc_tag = tag;
793 		command.u.mfc_rclassid = rclass;
794 		command.u.mfc_cmd = cmd;
795 		do {
796 			out_be32(&prob->mfc_lsa_W, ls_offset);
797 			out_be64(&prob->mfc_ea_W, ea);
798 			out_be64(&prob->mfc_union_W.all64, command.all64);
799 			status =
800 			    in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
801 			if (unlikely(status & 0x2)) {
802 				cpu_relax();
803 			}
804 		} while (status & 0x3);
805 		size -= transfer_size;
806 		ea += transfer_size;
807 		ls_offset += transfer_size;
808 	}
809 	return 0;
810 }
811 
812 static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
813 {
814 	unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
815 	unsigned int ls_offset = 0x0;
816 	unsigned int size = 16384;
817 	unsigned int tag = 0;
818 	unsigned int rclass = 0;
819 	unsigned int cmd = MFC_PUT_CMD;
820 
821 	/* Save, Step 50:
822 	 *     Issue a DMA command to copy the first 16K bytes
823 	 *     of local storage to the CSA.
824 	 */
825 	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
826 }
827 
828 static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
829 {
830 	struct spu_problem __iomem *prob = spu->problem;
831 
832 	/* Save, Step 51:
833 	 * Restore, Step 31.
834 	 *     Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
835 	 *     point address of context save code in local
836 	 *     storage.
837 	 *
838 	 *     This implementation uses SPU-side save/restore
839 	 *     programs with entry points at LSA of 0.
840 	 */
841 	out_be32(&prob->spu_npc_RW, 0);
842 	eieio();
843 }
844 
845 static inline void set_signot1(struct spu_state *csa, struct spu *spu)
846 {
847 	struct spu_problem __iomem *prob = spu->problem;
848 	union {
849 		u64 ull;
850 		u32 ui[2];
851 	} addr64;
852 
853 	/* Save, Step 52:
854 	 * Restore, Step 32:
855 	 *    Write SPU_Sig_Notify_1 register with upper 32-bits
856 	 *    of the CSA.LSCSA effective address.
857 	 */
858 	addr64.ull = (u64) csa->lscsa;
859 	out_be32(&prob->signal_notify1, addr64.ui[0]);
860 	eieio();
861 }
862 
863 static inline void set_signot2(struct spu_state *csa, struct spu *spu)
864 {
865 	struct spu_problem __iomem *prob = spu->problem;
866 	union {
867 		u64 ull;
868 		u32 ui[2];
869 	} addr64;
870 
871 	/* Save, Step 53:
872 	 * Restore, Step 33:
873 	 *    Write SPU_Sig_Notify_2 register with lower 32-bits
874 	 *    of the CSA.LSCSA effective address.
875 	 */
876 	addr64.ull = (u64) csa->lscsa;
877 	out_be32(&prob->signal_notify2, addr64.ui[1]);
878 	eieio();
879 }
880 
881 static inline void send_save_code(struct spu_state *csa, struct spu *spu)
882 {
883 	unsigned long addr = (unsigned long)&spu_save_code[0];
884 	unsigned int ls_offset = 0x0;
885 	unsigned int size = sizeof(spu_save_code);
886 	unsigned int tag = 0;
887 	unsigned int rclass = 0;
888 	unsigned int cmd = MFC_GETFS_CMD;
889 
890 	/* Save, Step 54:
891 	 *     Issue a DMA command to copy context save code
892 	 *     to local storage and start SPU.
893 	 */
894 	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
895 }
896 
897 static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
898 {
899 	struct spu_problem __iomem *prob = spu->problem;
900 
901 	/* Save, Step 55:
902 	 * Restore, Step 38.
903 	 *     Write PPU_QueryMask=1 (enable Tag Group 0)
904 	 *     and issue eieio instruction.
905 	 */
906 	out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
907 	eieio();
908 }
909 
910 static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
911 {
912 	struct spu_problem __iomem *prob = spu->problem;
913 	u32 mask = MFC_TAGID_TO_TAGMASK(0);
914 	unsigned long flags;
915 
916 	/* Save, Step 56:
917 	 * Restore, Step 39.
918 	 * Restore, Step 39.
919 	 * Restore, Step 46.
920 	 *     Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
921 	 *     or write PPU_QueryType[TS]=01 and wait for Tag Group
922 	 *     Complete Interrupt.  Write INT_Stat_Class0 or
923 	 *     INT_Stat_Class2 with value of 'handled'.
924 	 */
925 	POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
926 
927 	local_irq_save(flags);
928 	spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
929 	spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
930 	local_irq_restore(flags);
931 }
932 
933 static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
934 {
935 	struct spu_problem __iomem *prob = spu->problem;
936 	unsigned long flags;
937 
938 	/* Save, Step 57:
939 	 * Restore, Step 40.
940 	 *     Poll until SPU_Status[R]=0 or wait for SPU Class 0
941 	 *     or SPU Class 2 interrupt.  Write INT_Stat_class0
942 	 *     or INT_Stat_class2 with value of handled.
943 	 */
944 	POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
945 
946 	local_irq_save(flags);
947 	spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
948 	spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
949 	local_irq_restore(flags);
950 }
951 
952 static inline int check_save_status(struct spu_state *csa, struct spu *spu)
953 {
954 	struct spu_problem __iomem *prob = spu->problem;
955 	u32 complete;
956 
957 	/* Save, Step 54:
958 	 *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
959 	 *     context save succeeded, otherwise context save
960 	 *     failed.
961 	 */
962 	complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
963 		    SPU_STATUS_STOPPED_BY_STOP);
964 	return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
965 }
966 
967 static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
968 {
969 	/* Restore, Step 4:
970 	 *    If required, notify the "using application" that
971 	 *    the SPU task has been terminated.  TBD.
972 	 */
973 }
974 
975 static inline void suspend_mfc_and_halt_decr(struct spu_state *csa,
976 		struct spu *spu)
977 {
978 	struct spu_priv2 __iomem *priv2 = spu->priv2;
979 
980 	/* Restore, Step 7:
981 	 *     Write MFC_Cntl[Dh,Sc,Sm]='1','1','0' to suspend
982 	 *     the queue and halt the decrementer.
983 	 */
984 	out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
985 		 MFC_CNTL_DECREMENTER_HALTED);
986 	eieio();
987 }
988 
989 static inline void wait_suspend_mfc_complete(struct spu_state *csa,
990 					     struct spu *spu)
991 {
992 	struct spu_priv2 __iomem *priv2 = spu->priv2;
993 
994 	/* Restore, Step 8:
995 	 * Restore, Step 47.
996 	 *     Poll MFC_CNTL[Ss] until 11 is returned.
997 	 */
998 	POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
999 			 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
1000 			 MFC_CNTL_SUSPEND_COMPLETE);
1001 }
1002 
1003 static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
1004 {
1005 	struct spu_problem __iomem *prob = spu->problem;
1006 
1007 	/* Restore, Step 9:
1008 	 *    If SPU_Status[R]=1, stop SPU execution
1009 	 *    and wait for stop to complete.
1010 	 *
1011 	 *    Returns       1 if SPU_Status[R]=1 on entry.
1012 	 *                  0 otherwise
1013 	 */
1014 	if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
1015 		if (in_be32(&prob->spu_status_R) &
1016 		    SPU_STATUS_ISOLATED_EXIT_STATUS) {
1017 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1018 					SPU_STATUS_RUNNING);
1019 		}
1020 		if ((in_be32(&prob->spu_status_R) &
1021 		     SPU_STATUS_ISOLATED_LOAD_STATUS)
1022 		    || (in_be32(&prob->spu_status_R) &
1023 			SPU_STATUS_ISOLATED_STATE)) {
1024 			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1025 			eieio();
1026 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1027 					SPU_STATUS_RUNNING);
1028 			out_be32(&prob->spu_runcntl_RW, 0x2);
1029 			eieio();
1030 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1031 					SPU_STATUS_RUNNING);
1032 		}
1033 		if (in_be32(&prob->spu_status_R) &
1034 		    SPU_STATUS_WAITING_FOR_CHANNEL) {
1035 			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1036 			eieio();
1037 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1038 					SPU_STATUS_RUNNING);
1039 		}
1040 		return 1;
1041 	}
1042 	return 0;
1043 }
1044 
1045 static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
1046 {
1047 	struct spu_problem __iomem *prob = spu->problem;
1048 
1049 	/* Restore, Step 10:
1050 	 *    If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
1051 	 *    release SPU from isolate state.
1052 	 */
1053 	if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
1054 		if (in_be32(&prob->spu_status_R) &
1055 		    SPU_STATUS_ISOLATED_EXIT_STATUS) {
1056 			spu_mfc_sr1_set(spu,
1057 					MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1058 			eieio();
1059 			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1060 			eieio();
1061 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1062 					SPU_STATUS_RUNNING);
1063 		}
1064 		if ((in_be32(&prob->spu_status_R) &
1065 		     SPU_STATUS_ISOLATED_LOAD_STATUS)
1066 		    || (in_be32(&prob->spu_status_R) &
1067 			SPU_STATUS_ISOLATED_STATE)) {
1068 			spu_mfc_sr1_set(spu,
1069 					MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1070 			eieio();
1071 			out_be32(&prob->spu_runcntl_RW, 0x2);
1072 			eieio();
1073 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1074 					SPU_STATUS_RUNNING);
1075 		}
1076 	}
1077 }
1078 
1079 static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
1080 {
1081 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1082 	u64 ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1083 	u64 idx;
1084 	int i;
1085 
1086 	/* Restore, Step 20:
1087 	 */
1088 
1089 	/* Reset CH 1 */
1090 	out_be64(&priv2->spu_chnlcntptr_RW, 1);
1091 	out_be64(&priv2->spu_chnldata_RW, 0UL);
1092 
1093 	/* Reset the following CH: [0,3,4,24,25,27] */
1094 	for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1095 		idx = ch_indices[i];
1096 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1097 		eieio();
1098 		out_be64(&priv2->spu_chnldata_RW, 0UL);
1099 		out_be64(&priv2->spu_chnlcnt_RW, 0UL);
1100 		eieio();
1101 	}
1102 }
1103 
1104 static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
1105 {
1106 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1107 	u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
1108 	u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
1109 	u64 idx;
1110 	int i;
1111 
1112 	/* Restore, Step 21:
1113 	 *     Reset the following CH: [21, 23, 28, 29, 30]
1114 	 */
1115 	for (i = 0; i < 5; i++) {
1116 		idx = ch_indices[i];
1117 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1118 		eieio();
1119 		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1120 		eieio();
1121 	}
1122 }
1123 
1124 static inline void setup_spu_status_part1(struct spu_state *csa,
1125 					  struct spu *spu)
1126 {
1127 	u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
1128 	u32 status_I = SPU_STATUS_INVALID_INSTR;
1129 	u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
1130 	u32 status_S = SPU_STATUS_SINGLE_STEP;
1131 	u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
1132 	u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
1133 	u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
1134 	u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
1135 	u32 status_code;
1136 
1137 	/* Restore, Step 27:
1138 	 *     If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
1139 	 *     instruction sequence to the end of the SPU based restore
1140 	 *     code (after the "context restored" stop and signal) to
1141 	 *     restore the correct SPU status.
1142 	 *
1143 	 *     NOTE: Rather than modifying the SPU executable, we
1144 	 *     instead add a new 'stopped_status' field to the
1145 	 *     LSCSA.  The SPU-side restore reads this field and
1146 	 *     takes the appropriate action when exiting.
1147 	 */
1148 
1149 	status_code =
1150 	    (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
1151 	if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
1152 
1153 		/* SPU_Status[P,I]=1 - Illegal Instruction followed
1154 		 * by Stop and Signal instruction, followed by 'br -4'.
1155 		 *
1156 		 */
1157 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
1158 		csa->lscsa->stopped_status.slot[1] = status_code;
1159 
1160 	} else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
1161 
1162 		/* SPU_Status[P,H]=1 - Halt Conditional, followed
1163 		 * by Stop and Signal instruction, followed by
1164 		 * 'br -4'.
1165 		 */
1166 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
1167 		csa->lscsa->stopped_status.slot[1] = status_code;
1168 
1169 	} else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
1170 
1171 		/* SPU_Status[S,P]=1 - Stop and Signal instruction
1172 		 * followed by 'br -4'.
1173 		 */
1174 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
1175 		csa->lscsa->stopped_status.slot[1] = status_code;
1176 
1177 	} else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
1178 
1179 		/* SPU_Status[S,I]=1 - Illegal instruction followed
1180 		 * by 'br -4'.
1181 		 */
1182 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
1183 		csa->lscsa->stopped_status.slot[1] = status_code;
1184 
1185 	} else if ((csa->prob.spu_status_R & status_P) == status_P) {
1186 
1187 		/* SPU_Status[P]=1 - Stop and Signal instruction
1188 		 * followed by 'br -4'.
1189 		 */
1190 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
1191 		csa->lscsa->stopped_status.slot[1] = status_code;
1192 
1193 	} else if ((csa->prob.spu_status_R & status_H) == status_H) {
1194 
1195 		/* SPU_Status[H]=1 - Halt Conditional, followed
1196 		 * by 'br -4'.
1197 		 */
1198 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
1199 
1200 	} else if ((csa->prob.spu_status_R & status_S) == status_S) {
1201 
1202 		/* SPU_Status[S]=1 - Two nop instructions.
1203 		 */
1204 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
1205 
1206 	} else if ((csa->prob.spu_status_R & status_I) == status_I) {
1207 
1208 		/* SPU_Status[I]=1 - Illegal instruction followed
1209 		 * by 'br -4'.
1210 		 */
1211 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
1212 
1213 	}
1214 }
1215 
1216 static inline void setup_spu_status_part2(struct spu_state *csa,
1217 					  struct spu *spu)
1218 {
1219 	u32 mask;
1220 
1221 	/* Restore, Step 28:
1222 	 *     If the CSA.SPU_Status[I,S,H,P,R]=0 then
1223 	 *     add a 'br *' instruction to the end of
1224 	 *     the SPU based restore code.
1225 	 *
1226 	 *     NOTE: Rather than modifying the SPU executable, we
1227 	 *     instead add a new 'stopped_status' field to the
1228 	 *     LSCSA.  The SPU-side restore reads this field and
1229 	 *     takes the appropriate action when exiting.
1230 	 */
1231 	mask = SPU_STATUS_INVALID_INSTR |
1232 	    SPU_STATUS_SINGLE_STEP |
1233 	    SPU_STATUS_STOPPED_BY_HALT |
1234 	    SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1235 	if (!(csa->prob.spu_status_R & mask)) {
1236 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
1237 	}
1238 }
1239 
1240 static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
1241 {
1242 	/* Restore, Step 29:
1243 	 *     Restore RA_GROUP_ID register and the
1244 	 *     RA_ENABLE reigster from the CSA.
1245 	 */
1246 	spu_resource_allocation_groupID_set(spu,
1247 			csa->priv1.resource_allocation_groupID_RW);
1248 	spu_resource_allocation_enable_set(spu,
1249 			csa->priv1.resource_allocation_enable_RW);
1250 }
1251 
1252 static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
1253 {
1254 	unsigned long addr = (unsigned long)&spu_restore_code[0];
1255 	unsigned int ls_offset = 0x0;
1256 	unsigned int size = sizeof(spu_restore_code);
1257 	unsigned int tag = 0;
1258 	unsigned int rclass = 0;
1259 	unsigned int cmd = MFC_GETFS_CMD;
1260 
1261 	/* Restore, Step 37:
1262 	 *     Issue MFC DMA command to copy context
1263 	 *     restore code to local storage.
1264 	 */
1265 	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1266 }
1267 
1268 static inline void setup_decr(struct spu_state *csa, struct spu *spu)
1269 {
1270 	/* Restore, Step 34:
1271 	 *     If CSA.MFC_CNTL[Ds]=1 (decrementer was
1272 	 *     running) then adjust decrementer, set
1273 	 *     decrementer running status in LSCSA,
1274 	 *     and set decrementer "wrapped" status
1275 	 *     in LSCSA.
1276 	 */
1277 	if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
1278 		cycles_t resume_time = get_cycles();
1279 		cycles_t delta_time = resume_time - csa->suspend_time;
1280 
1281 		csa->lscsa->decr_status.slot[0] = SPU_DECR_STATUS_RUNNING;
1282 		if (csa->lscsa->decr.slot[0] < delta_time) {
1283 			csa->lscsa->decr_status.slot[0] |=
1284 				 SPU_DECR_STATUS_WRAPPED;
1285 		}
1286 
1287 		csa->lscsa->decr.slot[0] -= delta_time;
1288 	} else {
1289 		csa->lscsa->decr_status.slot[0] = 0;
1290 	}
1291 }
1292 
1293 static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
1294 {
1295 	/* Restore, Step 35:
1296 	 *     Copy the CSA.PU_MB data into the LSCSA.
1297 	 */
1298 	csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
1299 }
1300 
1301 static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
1302 {
1303 	/* Restore, Step 36:
1304 	 *     Copy the CSA.PUINT_MB data into the LSCSA.
1305 	 */
1306 	csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
1307 }
1308 
1309 static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
1310 {
1311 	struct spu_problem __iomem *prob = spu->problem;
1312 	u32 complete;
1313 
1314 	/* Restore, Step 40:
1315 	 *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
1316 	 *     context restore succeeded, otherwise context restore
1317 	 *     failed.
1318 	 */
1319 	complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
1320 		    SPU_STATUS_STOPPED_BY_STOP);
1321 	return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1322 }
1323 
1324 static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
1325 {
1326 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1327 
1328 	/* Restore, Step 41:
1329 	 *     Restore SPU_PrivCntl from the CSA.
1330 	 */
1331 	out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
1332 	eieio();
1333 }
1334 
1335 static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
1336 {
1337 	struct spu_problem __iomem *prob = spu->problem;
1338 	u32 mask;
1339 
1340 	/* Restore, Step 42:
1341 	 *     If any CSA.SPU_Status[I,S,H,P]=1, then
1342 	 *     restore the error or single step state.
1343 	 */
1344 	mask = SPU_STATUS_INVALID_INSTR |
1345 	    SPU_STATUS_SINGLE_STEP |
1346 	    SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
1347 	if (csa->prob.spu_status_R & mask) {
1348 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1349 		eieio();
1350 		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1351 				SPU_STATUS_RUNNING);
1352 	}
1353 }
1354 
1355 static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
1356 {
1357 	struct spu_problem __iomem *prob = spu->problem;
1358 	u32 mask;
1359 
1360 	/* Restore, Step 43:
1361 	 *     If all CSA.SPU_Status[I,S,H,P,R]=0 then write
1362 	 *     SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
1363 	 *     then write '00' to SPU_RunCntl[R0R1] and wait
1364 	 *     for SPU_Status[R]=0.
1365 	 */
1366 	mask = SPU_STATUS_INVALID_INSTR |
1367 	    SPU_STATUS_SINGLE_STEP |
1368 	    SPU_STATUS_STOPPED_BY_HALT |
1369 	    SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1370 	if (!(csa->prob.spu_status_R & mask)) {
1371 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1372 		eieio();
1373 		POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
1374 				 SPU_STATUS_RUNNING);
1375 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1376 		eieio();
1377 		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1378 				SPU_STATUS_RUNNING);
1379 	}
1380 }
1381 
1382 static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
1383 {
1384 	unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
1385 	unsigned int ls_offset = 0x0;
1386 	unsigned int size = 16384;
1387 	unsigned int tag = 0;
1388 	unsigned int rclass = 0;
1389 	unsigned int cmd = MFC_GET_CMD;
1390 
1391 	/* Restore, Step 44:
1392 	 *     Issue a DMA command to restore the first
1393 	 *     16kb of local storage from CSA.
1394 	 */
1395 	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1396 }
1397 
1398 static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
1399 {
1400 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1401 
1402 	/* Restore, Step 47.
1403 	 *     Write MFC_Cntl[Sc,Sm]='1','0' to suspend
1404 	 *     the queue.
1405 	 */
1406 	out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
1407 	eieio();
1408 }
1409 
1410 static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
1411 {
1412 	/* Restore, Step 49:
1413 	 *     Write INT_MASK_class0 with value of 0.
1414 	 *     Write INT_MASK_class1 with value of 0.
1415 	 *     Write INT_MASK_class2 with value of 0.
1416 	 *     Write INT_STAT_class0 with value of -1.
1417 	 *     Write INT_STAT_class1 with value of -1.
1418 	 *     Write INT_STAT_class2 with value of -1.
1419 	 */
1420 	spin_lock_irq(&spu->register_lock);
1421 	spu_int_mask_set(spu, 0, 0ul);
1422 	spu_int_mask_set(spu, 1, 0ul);
1423 	spu_int_mask_set(spu, 2, 0ul);
1424 	spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
1425 	spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
1426 	spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
1427 	spin_unlock_irq(&spu->register_lock);
1428 }
1429 
1430 static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
1431 {
1432 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1433 	int i;
1434 
1435 	/* Restore, Step 50:
1436 	 *     If MFC_Cntl[Se]!=0 then restore
1437 	 *     MFC command queues.
1438 	 */
1439 	if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
1440 		for (i = 0; i < 8; i++) {
1441 			out_be64(&priv2->puq[i].mfc_cq_data0_RW,
1442 				 csa->priv2.puq[i].mfc_cq_data0_RW);
1443 			out_be64(&priv2->puq[i].mfc_cq_data1_RW,
1444 				 csa->priv2.puq[i].mfc_cq_data1_RW);
1445 			out_be64(&priv2->puq[i].mfc_cq_data2_RW,
1446 				 csa->priv2.puq[i].mfc_cq_data2_RW);
1447 			out_be64(&priv2->puq[i].mfc_cq_data3_RW,
1448 				 csa->priv2.puq[i].mfc_cq_data3_RW);
1449 		}
1450 		for (i = 0; i < 16; i++) {
1451 			out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
1452 				 csa->priv2.spuq[i].mfc_cq_data0_RW);
1453 			out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
1454 				 csa->priv2.spuq[i].mfc_cq_data1_RW);
1455 			out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
1456 				 csa->priv2.spuq[i].mfc_cq_data2_RW);
1457 			out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
1458 				 csa->priv2.spuq[i].mfc_cq_data3_RW);
1459 		}
1460 	}
1461 	eieio();
1462 }
1463 
1464 static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
1465 {
1466 	struct spu_problem __iomem *prob = spu->problem;
1467 
1468 	/* Restore, Step 51:
1469 	 *     Restore the PPU_QueryMask register from CSA.
1470 	 */
1471 	out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
1472 	eieio();
1473 }
1474 
1475 static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
1476 {
1477 	struct spu_problem __iomem *prob = spu->problem;
1478 
1479 	/* Restore, Step 52:
1480 	 *     Restore the PPU_QueryType register from CSA.
1481 	 */
1482 	out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
1483 	eieio();
1484 }
1485 
1486 static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
1487 {
1488 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1489 
1490 	/* Restore, Step 53:
1491 	 *     Restore the MFC_CSR_TSQ register from CSA.
1492 	 */
1493 	out_be64(&priv2->spu_tag_status_query_RW,
1494 		 csa->priv2.spu_tag_status_query_RW);
1495 	eieio();
1496 }
1497 
1498 static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
1499 {
1500 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1501 
1502 	/* Restore, Step 54:
1503 	 *     Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
1504 	 *     registers from CSA.
1505 	 */
1506 	out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
1507 	out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
1508 	eieio();
1509 }
1510 
1511 static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
1512 {
1513 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1514 
1515 	/* Restore, Step 55:
1516 	 *     Restore the MFC_CSR_ATO register from CSA.
1517 	 */
1518 	out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
1519 }
1520 
1521 static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
1522 {
1523 	/* Restore, Step 56:
1524 	 *     Restore the MFC_TCLASS_ID register from CSA.
1525 	 */
1526 	spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
1527 	eieio();
1528 }
1529 
1530 static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
1531 {
1532 	u64 ch0_cnt, ch0_data;
1533 	u64 ch1_data;
1534 
1535 	/* Restore, Step 57:
1536 	 *    Set the Lock Line Reservation Lost Event by:
1537 	 *      1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
1538 	 *      2. If CSA.SPU_Channel_0_Count=0 and
1539 	 *         CSA.SPU_Wr_Event_Mask[Lr]=1 and
1540 	 *         CSA.SPU_Event_Status[Lr]=0 then set
1541 	 *         CSA.SPU_Event_Status_Count=1.
1542 	 */
1543 	ch0_cnt = csa->spu_chnlcnt_RW[0];
1544 	ch0_data = csa->spu_chnldata_RW[0];
1545 	ch1_data = csa->spu_chnldata_RW[1];
1546 	csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
1547 	if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
1548 	    (ch1_data & MFC_LLR_LOST_EVENT)) {
1549 		csa->spu_chnlcnt_RW[0] = 1;
1550 	}
1551 }
1552 
1553 static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
1554 {
1555 	/* Restore, Step 58:
1556 	 *     If the status of the CSA software decrementer
1557 	 *     "wrapped" flag is set, OR in a '1' to
1558 	 *     CSA.SPU_Event_Status[Tm].
1559 	 */
1560 	if (!(csa->lscsa->decr_status.slot[0] & SPU_DECR_STATUS_WRAPPED))
1561 		return;
1562 
1563 	if ((csa->spu_chnlcnt_RW[0] == 0) &&
1564 	    (csa->spu_chnldata_RW[1] & 0x20) &&
1565 	    !(csa->spu_chnldata_RW[0] & 0x20))
1566 		csa->spu_chnlcnt_RW[0] = 1;
1567 
1568 	csa->spu_chnldata_RW[0] |= 0x20;
1569 }
1570 
1571 static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
1572 {
1573 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1574 	u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1575 	int i;
1576 
1577 	/* Restore, Step 59:
1578 	 *	Restore the following CH: [0,3,4,24,25,27]
1579 	 */
1580 	for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1581 		idx = ch_indices[i];
1582 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1583 		eieio();
1584 		out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
1585 		out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
1586 		eieio();
1587 	}
1588 }
1589 
1590 static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
1591 {
1592 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1593 	u64 ch_indices[3] = { 9UL, 21UL, 23UL };
1594 	u64 ch_counts[3] = { 1UL, 16UL, 1UL };
1595 	u64 idx;
1596 	int i;
1597 
1598 	/* Restore, Step 60:
1599 	 *     Restore the following CH: [9,21,23].
1600 	 */
1601 	ch_counts[0] = 1UL;
1602 	ch_counts[1] = csa->spu_chnlcnt_RW[21];
1603 	ch_counts[2] = 1UL;
1604 	for (i = 0; i < 3; i++) {
1605 		idx = ch_indices[i];
1606 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1607 		eieio();
1608 		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1609 		eieio();
1610 	}
1611 }
1612 
1613 static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
1614 {
1615 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1616 
1617 	/* Restore, Step 61:
1618 	 *     Restore the SPU_LSLR register from CSA.
1619 	 */
1620 	out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
1621 	eieio();
1622 }
1623 
1624 static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
1625 {
1626 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1627 
1628 	/* Restore, Step 62:
1629 	 *     Restore the SPU_Cfg register from CSA.
1630 	 */
1631 	out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
1632 	eieio();
1633 }
1634 
1635 static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
1636 {
1637 	/* Restore, Step 63:
1638 	 *     Restore PM_Trace_Tag_Wait_Mask from CSA.
1639 	 *     Not performed by this implementation.
1640 	 */
1641 }
1642 
1643 static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
1644 {
1645 	struct spu_problem __iomem *prob = spu->problem;
1646 
1647 	/* Restore, Step 64:
1648 	 *     Restore SPU_NPC from CSA.
1649 	 */
1650 	out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
1651 	eieio();
1652 }
1653 
1654 static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
1655 {
1656 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1657 	int i;
1658 
1659 	/* Restore, Step 65:
1660 	 *     Restore MFC_RdSPU_MB from CSA.
1661 	 */
1662 	out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
1663 	eieio();
1664 	out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
1665 	for (i = 0; i < 4; i++) {
1666 		out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
1667 	}
1668 	eieio();
1669 }
1670 
1671 static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
1672 {
1673 	struct spu_problem __iomem *prob = spu->problem;
1674 	u32 dummy = 0;
1675 
1676 	/* Restore, Step 66:
1677 	 *     If CSA.MB_Stat[P]=0 (mailbox empty) then
1678 	 *     read from the PPU_MB register.
1679 	 */
1680 	if ((csa->prob.mb_stat_R & 0xFF) == 0) {
1681 		dummy = in_be32(&prob->pu_mb_R);
1682 		eieio();
1683 	}
1684 }
1685 
1686 static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
1687 {
1688 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1689 	u64 dummy = 0UL;
1690 
1691 	/* Restore, Step 66:
1692 	 *     If CSA.MB_Stat[I]=0 (mailbox empty) then
1693 	 *     read from the PPUINT_MB register.
1694 	 */
1695 	if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
1696 		dummy = in_be64(&priv2->puint_mb_R);
1697 		eieio();
1698 		spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
1699 		eieio();
1700 	}
1701 }
1702 
1703 static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
1704 {
1705 	/* Restore, Step 69:
1706 	 *     Restore the MFC_SR1 register from CSA.
1707 	 */
1708 	spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
1709 	eieio();
1710 }
1711 
1712 static inline void set_int_route(struct spu_state *csa, struct spu *spu)
1713 {
1714 	struct spu_context *ctx = spu->ctx;
1715 
1716 	spu_cpu_affinity_set(spu, ctx->last_ran);
1717 }
1718 
1719 static inline void restore_other_spu_access(struct spu_state *csa,
1720 					    struct spu *spu)
1721 {
1722 	/* Restore, Step 70:
1723 	 *     Restore other SPU mappings to this SPU. TBD.
1724 	 */
1725 }
1726 
1727 static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
1728 {
1729 	struct spu_problem __iomem *prob = spu->problem;
1730 
1731 	/* Restore, Step 71:
1732 	 *     If CSA.SPU_Status[R]=1 then write
1733 	 *     SPU_RunCntl[R0R1]='01'.
1734 	 */
1735 	if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
1736 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1737 		eieio();
1738 	}
1739 }
1740 
1741 static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
1742 {
1743 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1744 
1745 	/* Restore, Step 72:
1746 	 *    Restore the MFC_CNTL register for the CSA.
1747 	 */
1748 	out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
1749 	eieio();
1750 
1751 	/*
1752 	 * The queue is put back into the same state that was evident prior to
1753 	 * the context switch. The suspend flag is added to the saved state in
1754 	 * the csa, if the operational state was suspending or suspended. In
1755 	 * this case, the code that suspended the mfc is responsible for
1756 	 * continuing it. Note that SPE faults do not change the operational
1757 	 * state of the spu.
1758 	 */
1759 }
1760 
1761 static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
1762 {
1763 	/* Restore, Step 73:
1764 	 *     Enable user-space access (if provided) to this
1765 	 *     SPU by mapping the virtual pages assigned to
1766 	 *     the SPU memory-mapped I/O (MMIO) for problem
1767 	 *     state. TBD.
1768 	 */
1769 }
1770 
1771 static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
1772 {
1773 	/* Restore, Step 74:
1774 	 *     Reset the "context switch active" flag.
1775 	 *     Not performed by this implementation.
1776 	 */
1777 }
1778 
1779 static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
1780 {
1781 	/* Restore, Step 75:
1782 	 *     Re-enable SPU interrupts.
1783 	 */
1784 	spin_lock_irq(&spu->register_lock);
1785 	spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
1786 	spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
1787 	spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
1788 	spin_unlock_irq(&spu->register_lock);
1789 }
1790 
1791 static int quiece_spu(struct spu_state *prev, struct spu *spu)
1792 {
1793 	/*
1794 	 * Combined steps 2-18 of SPU context save sequence, which
1795 	 * quiesce the SPU state (disable SPU execution, MFC command
1796 	 * queues, decrementer, SPU interrupts, etc.).
1797 	 *
1798 	 * Returns      0 on success.
1799 	 *              2 if failed step 2.
1800 	 *              6 if failed step 6.
1801 	 */
1802 
1803 	if (check_spu_isolate(prev, spu)) {	/* Step 2. */
1804 		return 2;
1805 	}
1806 	disable_interrupts(prev, spu);	        /* Step 3. */
1807 	set_watchdog_timer(prev, spu);	        /* Step 4. */
1808 	inhibit_user_access(prev, spu);	        /* Step 5. */
1809 	if (check_spu_isolate(prev, spu)) {	/* Step 6. */
1810 		return 6;
1811 	}
1812 	set_switch_pending(prev, spu);	        /* Step 7. */
1813 	save_mfc_cntl(prev, spu);		/* Step 8. */
1814 	save_spu_runcntl(prev, spu);	        /* Step 9. */
1815 	save_mfc_sr1(prev, spu);	        /* Step 10. */
1816 	save_spu_status(prev, spu);	        /* Step 11. */
1817 	save_mfc_stopped_status(prev, spu);     /* Step 12. */
1818 	halt_mfc_decr(prev, spu);	        /* Step 13. */
1819 	save_timebase(prev, spu);		/* Step 14. */
1820 	remove_other_spu_access(prev, spu);	/* Step 15. */
1821 	do_mfc_mssync(prev, spu);	        /* Step 16. */
1822 	issue_mfc_tlbie(prev, spu);	        /* Step 17. */
1823 	handle_pending_interrupts(prev, spu);	/* Step 18. */
1824 
1825 	return 0;
1826 }
1827 
1828 static void save_csa(struct spu_state *prev, struct spu *spu)
1829 {
1830 	/*
1831 	 * Combine steps 19-44 of SPU context save sequence, which
1832 	 * save regions of the privileged & problem state areas.
1833 	 */
1834 
1835 	save_mfc_queues(prev, spu);	/* Step 19. */
1836 	save_ppu_querymask(prev, spu);	/* Step 20. */
1837 	save_ppu_querytype(prev, spu);	/* Step 21. */
1838 	save_ppu_tagstatus(prev, spu);  /* NEW.     */
1839 	save_mfc_csr_tsq(prev, spu);	/* Step 22. */
1840 	save_mfc_csr_cmd(prev, spu);	/* Step 23. */
1841 	save_mfc_csr_ato(prev, spu);	/* Step 24. */
1842 	save_mfc_tclass_id(prev, spu);	/* Step 25. */
1843 	set_mfc_tclass_id(prev, spu);	/* Step 26. */
1844 	save_mfc_cmd(prev, spu);	/* Step 26a - moved from 44. */
1845 	purge_mfc_queue(prev, spu);	/* Step 27. */
1846 	wait_purge_complete(prev, spu);	/* Step 28. */
1847 	setup_mfc_sr1(prev, spu);	/* Step 30. */
1848 	save_spu_npc(prev, spu);	/* Step 31. */
1849 	save_spu_privcntl(prev, spu);	/* Step 32. */
1850 	reset_spu_privcntl(prev, spu);	/* Step 33. */
1851 	save_spu_lslr(prev, spu);	/* Step 34. */
1852 	reset_spu_lslr(prev, spu);	/* Step 35. */
1853 	save_spu_cfg(prev, spu);	/* Step 36. */
1854 	save_pm_trace(prev, spu);	/* Step 37. */
1855 	save_mfc_rag(prev, spu);	/* Step 38. */
1856 	save_ppu_mb_stat(prev, spu);	/* Step 39. */
1857 	save_ppu_mb(prev, spu);	        /* Step 40. */
1858 	save_ppuint_mb(prev, spu);	/* Step 41. */
1859 	save_ch_part1(prev, spu);	/* Step 42. */
1860 	save_spu_mb(prev, spu);	        /* Step 43. */
1861 	reset_ch(prev, spu);	        /* Step 45. */
1862 }
1863 
1864 static void save_lscsa(struct spu_state *prev, struct spu *spu)
1865 {
1866 	/*
1867 	 * Perform steps 46-57 of SPU context save sequence,
1868 	 * which save regions of the local store and register
1869 	 * file.
1870 	 */
1871 
1872 	resume_mfc_queue(prev, spu);	/* Step 46. */
1873 	/* Step 47. */
1874 	setup_mfc_slbs(prev, spu, spu_save_code, sizeof(spu_save_code));
1875 	set_switch_active(prev, spu);	/* Step 48. */
1876 	enable_interrupts(prev, spu);	/* Step 49. */
1877 	save_ls_16kb(prev, spu);	/* Step 50. */
1878 	set_spu_npc(prev, spu);	        /* Step 51. */
1879 	set_signot1(prev, spu);		/* Step 52. */
1880 	set_signot2(prev, spu);		/* Step 53. */
1881 	send_save_code(prev, spu);	/* Step 54. */
1882 	set_ppu_querymask(prev, spu);	/* Step 55. */
1883 	wait_tag_complete(prev, spu);	/* Step 56. */
1884 	wait_spu_stopped(prev, spu);	/* Step 57. */
1885 }
1886 
1887 static void force_spu_isolate_exit(struct spu *spu)
1888 {
1889 	struct spu_problem __iomem *prob = spu->problem;
1890 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1891 
1892 	/* Stop SPE execution and wait for completion. */
1893 	out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1894 	iobarrier_rw();
1895 	POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
1896 
1897 	/* Restart SPE master runcntl. */
1898 	spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1899 	iobarrier_w();
1900 
1901 	/* Initiate isolate exit request and wait for completion. */
1902 	out_be64(&priv2->spu_privcntl_RW, 4LL);
1903 	iobarrier_w();
1904 	out_be32(&prob->spu_runcntl_RW, 2);
1905 	iobarrier_rw();
1906 	POLL_WHILE_FALSE((in_be32(&prob->spu_status_R)
1907 				& SPU_STATUS_STOPPED_BY_STOP));
1908 
1909 	/* Reset load request to normal. */
1910 	out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL);
1911 	iobarrier_w();
1912 }
1913 
1914 /**
1915  * stop_spu_isolate
1916  *	Check SPU run-control state and force isolated
1917  *	exit function as necessary.
1918  */
1919 static void stop_spu_isolate(struct spu *spu)
1920 {
1921 	struct spu_problem __iomem *prob = spu->problem;
1922 
1923 	if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) {
1924 		/* The SPU is in isolated state; the only way
1925 		 * to get it out is to perform an isolated
1926 		 * exit (clean) operation.
1927 		 */
1928 		force_spu_isolate_exit(spu);
1929 	}
1930 }
1931 
1932 static void harvest(struct spu_state *prev, struct spu *spu)
1933 {
1934 	/*
1935 	 * Perform steps 2-25 of SPU context restore sequence,
1936 	 * which resets an SPU either after a failed save, or
1937 	 * when using SPU for first time.
1938 	 */
1939 
1940 	disable_interrupts(prev, spu);	        /* Step 2.  */
1941 	inhibit_user_access(prev, spu);	        /* Step 3.  */
1942 	terminate_spu_app(prev, spu);	        /* Step 4.  */
1943 	set_switch_pending(prev, spu);	        /* Step 5.  */
1944 	stop_spu_isolate(spu);			/* NEW.     */
1945 	remove_other_spu_access(prev, spu);	/* Step 6.  */
1946 	suspend_mfc_and_halt_decr(prev, spu);	/* Step 7.  */
1947 	wait_suspend_mfc_complete(prev, spu);	/* Step 8.  */
1948 	if (!suspend_spe(prev, spu))	        /* Step 9.  */
1949 		clear_spu_status(prev, spu);	/* Step 10. */
1950 	do_mfc_mssync(prev, spu);	        /* Step 11. */
1951 	issue_mfc_tlbie(prev, spu);	        /* Step 12. */
1952 	handle_pending_interrupts(prev, spu);	/* Step 13. */
1953 	purge_mfc_queue(prev, spu);	        /* Step 14. */
1954 	wait_purge_complete(prev, spu);	        /* Step 15. */
1955 	reset_spu_privcntl(prev, spu);	        /* Step 16. */
1956 	reset_spu_lslr(prev, spu);              /* Step 17. */
1957 	setup_mfc_sr1(prev, spu);	        /* Step 18. */
1958 	spu_invalidate_slbs(spu);		/* Step 19. */
1959 	reset_ch_part1(prev, spu);	        /* Step 20. */
1960 	reset_ch_part2(prev, spu);	        /* Step 21. */
1961 	enable_interrupts(prev, spu);	        /* Step 22. */
1962 	set_switch_active(prev, spu);	        /* Step 23. */
1963 	set_mfc_tclass_id(prev, spu);	        /* Step 24. */
1964 	resume_mfc_queue(prev, spu);	        /* Step 25. */
1965 }
1966 
1967 static void restore_lscsa(struct spu_state *next, struct spu *spu)
1968 {
1969 	/*
1970 	 * Perform steps 26-40 of SPU context restore sequence,
1971 	 * which restores regions of the local store and register
1972 	 * file.
1973 	 */
1974 
1975 	set_watchdog_timer(next, spu);	        /* Step 26. */
1976 	setup_spu_status_part1(next, spu);	/* Step 27. */
1977 	setup_spu_status_part2(next, spu);	/* Step 28. */
1978 	restore_mfc_rag(next, spu);	        /* Step 29. */
1979 	/* Step 30. */
1980 	setup_mfc_slbs(next, spu, spu_restore_code, sizeof(spu_restore_code));
1981 	set_spu_npc(next, spu);	                /* Step 31. */
1982 	set_signot1(next, spu);	                /* Step 32. */
1983 	set_signot2(next, spu);	                /* Step 33. */
1984 	setup_decr(next, spu);	                /* Step 34. */
1985 	setup_ppu_mb(next, spu);	        /* Step 35. */
1986 	setup_ppuint_mb(next, spu);	        /* Step 36. */
1987 	send_restore_code(next, spu);	        /* Step 37. */
1988 	set_ppu_querymask(next, spu);	        /* Step 38. */
1989 	wait_tag_complete(next, spu);	        /* Step 39. */
1990 	wait_spu_stopped(next, spu);	        /* Step 40. */
1991 }
1992 
1993 static void restore_csa(struct spu_state *next, struct spu *spu)
1994 {
1995 	/*
1996 	 * Combine steps 41-76 of SPU context restore sequence, which
1997 	 * restore regions of the privileged & problem state areas.
1998 	 */
1999 
2000 	restore_spu_privcntl(next, spu);	/* Step 41. */
2001 	restore_status_part1(next, spu);	/* Step 42. */
2002 	restore_status_part2(next, spu);	/* Step 43. */
2003 	restore_ls_16kb(next, spu);	        /* Step 44. */
2004 	wait_tag_complete(next, spu);	        /* Step 45. */
2005 	suspend_mfc(next, spu);	                /* Step 46. */
2006 	wait_suspend_mfc_complete(next, spu);	/* Step 47. */
2007 	issue_mfc_tlbie(next, spu);	        /* Step 48. */
2008 	clear_interrupts(next, spu);	        /* Step 49. */
2009 	restore_mfc_queues(next, spu);	        /* Step 50. */
2010 	restore_ppu_querymask(next, spu);	/* Step 51. */
2011 	restore_ppu_querytype(next, spu);	/* Step 52. */
2012 	restore_mfc_csr_tsq(next, spu);	        /* Step 53. */
2013 	restore_mfc_csr_cmd(next, spu);	        /* Step 54. */
2014 	restore_mfc_csr_ato(next, spu);	        /* Step 55. */
2015 	restore_mfc_tclass_id(next, spu);	/* Step 56. */
2016 	set_llr_event(next, spu);	        /* Step 57. */
2017 	restore_decr_wrapped(next, spu);	/* Step 58. */
2018 	restore_ch_part1(next, spu);	        /* Step 59. */
2019 	restore_ch_part2(next, spu);	        /* Step 60. */
2020 	restore_spu_lslr(next, spu);	        /* Step 61. */
2021 	restore_spu_cfg(next, spu);	        /* Step 62. */
2022 	restore_pm_trace(next, spu);	        /* Step 63. */
2023 	restore_spu_npc(next, spu);	        /* Step 64. */
2024 	restore_spu_mb(next, spu);	        /* Step 65. */
2025 	check_ppu_mb_stat(next, spu);	        /* Step 66. */
2026 	check_ppuint_mb_stat(next, spu);	/* Step 67. */
2027 	spu_invalidate_slbs(spu);		/* Modified Step 68. */
2028 	restore_mfc_sr1(next, spu);	        /* Step 69. */
2029 	set_int_route(next, spu);		/* NEW      */
2030 	restore_other_spu_access(next, spu);	/* Step 70. */
2031 	restore_spu_runcntl(next, spu);	        /* Step 71. */
2032 	restore_mfc_cntl(next, spu);	        /* Step 72. */
2033 	enable_user_access(next, spu);	        /* Step 73. */
2034 	reset_switch_active(next, spu);	        /* Step 74. */
2035 	reenable_interrupts(next, spu);	        /* Step 75. */
2036 }
2037 
2038 static int __do_spu_save(struct spu_state *prev, struct spu *spu)
2039 {
2040 	int rc;
2041 
2042 	/*
2043 	 * SPU context save can be broken into three phases:
2044 	 *
2045 	 *     (a) quiesce [steps 2-16].
2046 	 *     (b) save of CSA, performed by PPE [steps 17-42]
2047 	 *     (c) save of LSCSA, mostly performed by SPU [steps 43-52].
2048 	 *
2049 	 * Returns      0 on success.
2050 	 *              2,6 if failed to quiece SPU
2051 	 *              53 if SPU-side of save failed.
2052 	 */
2053 
2054 	rc = quiece_spu(prev, spu);	        /* Steps 2-16. */
2055 	switch (rc) {
2056 	default:
2057 	case 2:
2058 	case 6:
2059 		harvest(prev, spu);
2060 		return rc;
2061 		break;
2062 	case 0:
2063 		break;
2064 	}
2065 	save_csa(prev, spu);	                /* Steps 17-43. */
2066 	save_lscsa(prev, spu);	                /* Steps 44-53. */
2067 	return check_save_status(prev, spu);	/* Step 54.     */
2068 }
2069 
2070 static int __do_spu_restore(struct spu_state *next, struct spu *spu)
2071 {
2072 	int rc;
2073 
2074 	/*
2075 	 * SPU context restore can be broken into three phases:
2076 	 *
2077 	 *    (a) harvest (or reset) SPU [steps 2-24].
2078 	 *    (b) restore LSCSA [steps 25-40], mostly performed by SPU.
2079 	 *    (c) restore CSA [steps 41-76], performed by PPE.
2080 	 *
2081 	 * The 'harvest' step is not performed here, but rather
2082 	 * as needed below.
2083 	 */
2084 
2085 	restore_lscsa(next, spu);	        /* Steps 24-39. */
2086 	rc = check_restore_status(next, spu);	/* Step 40.     */
2087 	switch (rc) {
2088 	default:
2089 		/* Failed. Return now. */
2090 		return rc;
2091 		break;
2092 	case 0:
2093 		/* Fall through to next step. */
2094 		break;
2095 	}
2096 	restore_csa(next, spu);
2097 
2098 	return 0;
2099 }
2100 
2101 /**
2102  * spu_save - SPU context save, with locking.
2103  * @prev: pointer to SPU context save area, to be saved.
2104  * @spu: pointer to SPU iomem structure.
2105  *
2106  * Acquire locks, perform the save operation then return.
2107  */
2108 int spu_save(struct spu_state *prev, struct spu *spu)
2109 {
2110 	int rc;
2111 
2112 	acquire_spu_lock(spu);	        /* Step 1.     */
2113 	rc = __do_spu_save(prev, spu);	/* Steps 2-53. */
2114 	release_spu_lock(spu);
2115 	if (rc != 0 && rc != 2 && rc != 6) {
2116 		panic("%s failed on SPU[%d], rc=%d.\n",
2117 		      __func__, spu->number, rc);
2118 	}
2119 	return 0;
2120 }
2121 EXPORT_SYMBOL_GPL(spu_save);
2122 
2123 /**
2124  * spu_restore - SPU context restore, with harvest and locking.
2125  * @new: pointer to SPU context save area, to be restored.
2126  * @spu: pointer to SPU iomem structure.
2127  *
2128  * Perform harvest + restore, as we may not be coming
2129  * from a previous successful save operation, and the
2130  * hardware state is unknown.
2131  */
2132 int spu_restore(struct spu_state *new, struct spu *spu)
2133 {
2134 	int rc;
2135 
2136 	acquire_spu_lock(spu);
2137 	harvest(NULL, spu);
2138 	spu->slb_replace = 0;
2139 	rc = __do_spu_restore(new, spu);
2140 	release_spu_lock(spu);
2141 	if (rc) {
2142 		panic("%s failed on SPU[%d] rc=%d.\n",
2143 		       __func__, spu->number, rc);
2144 	}
2145 	return rc;
2146 }
2147 EXPORT_SYMBOL_GPL(spu_restore);
2148 
2149 static void init_prob(struct spu_state *csa)
2150 {
2151 	csa->spu_chnlcnt_RW[9] = 1;
2152 	csa->spu_chnlcnt_RW[21] = 16;
2153 	csa->spu_chnlcnt_RW[23] = 1;
2154 	csa->spu_chnlcnt_RW[28] = 1;
2155 	csa->spu_chnlcnt_RW[30] = 1;
2156 	csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
2157 	csa->prob.mb_stat_R = 0x000400;
2158 }
2159 
2160 static void init_priv1(struct spu_state *csa)
2161 {
2162 	/* Enable decode, relocate, tlbie response, master runcntl. */
2163 	csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
2164 	    MFC_STATE1_MASTER_RUN_CONTROL_MASK |
2165 	    MFC_STATE1_PROBLEM_STATE_MASK |
2166 	    MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
2167 
2168 	/* Enable OS-specific set of interrupts. */
2169 	csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
2170 	    CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
2171 	    CLASS0_ENABLE_SPU_ERROR_INTR;
2172 	csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
2173 	    CLASS1_ENABLE_STORAGE_FAULT_INTR;
2174 	csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
2175 	    CLASS2_ENABLE_SPU_HALT_INTR |
2176 	    CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
2177 }
2178 
2179 static void init_priv2(struct spu_state *csa)
2180 {
2181 	csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
2182 	csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
2183 	    MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
2184 	    MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
2185 }
2186 
2187 /**
2188  * spu_alloc_csa - allocate and initialize an SPU context save area.
2189  *
2190  * Allocate and initialize the contents of an SPU context save area.
2191  * This includes enabling address translation, interrupt masks, etc.,
2192  * as appropriate for the given OS environment.
2193  *
2194  * Note that storage for the 'lscsa' is allocated separately,
2195  * as it is by far the largest of the context save regions,
2196  * and may need to be pinned or otherwise specially aligned.
2197  */
2198 int spu_init_csa(struct spu_state *csa)
2199 {
2200 	int rc;
2201 
2202 	if (!csa)
2203 		return -EINVAL;
2204 	memset(csa, 0, sizeof(struct spu_state));
2205 
2206 	rc = spu_alloc_lscsa(csa);
2207 	if (rc)
2208 		return rc;
2209 
2210 	spin_lock_init(&csa->register_lock);
2211 
2212 	init_prob(csa);
2213 	init_priv1(csa);
2214 	init_priv2(csa);
2215 
2216 	return 0;
2217 }
2218 
2219 void spu_fini_csa(struct spu_state *csa)
2220 {
2221 	spu_free_lscsa(csa);
2222 }
2223