xref: /openbmc/linux/arch/powerpc/platforms/cell/spufs/spu_restore.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * spu_restore.c
3  *
4  * (C) Copyright IBM Corp. 2005
5  *
6  * SPU-side context restore sequence outlined in
7  * Synergistic Processor Element Book IV
8  *
9  * Author: Mark Nutter <mnutter@us.ibm.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  */
26 
27 
28 #ifndef LS_SIZE
29 #define LS_SIZE                 0x40000	/* 256K (in bytes) */
30 #endif
31 
32 typedef unsigned int u32;
33 typedef unsigned long long u64;
34 
35 #include <spu_intrinsics.h>
36 #include <asm/spu_csa.h>
37 #include "spu_utils.h"
38 
39 #define BR_INSTR		0x327fff80	/* br -4         */
40 #define NOP_INSTR		0x40200000	/* nop           */
41 #define HEQ_INSTR		0x7b000000	/* heq $0, $0    */
42 #define STOP_INSTR		0x00000000	/* stop 0x0      */
43 #define ILLEGAL_INSTR		0x00800000	/* illegal instr */
44 #define RESTORE_COMPLETE	0x00003ffc	/* stop 0x3ffc   */
45 
46 static inline void fetch_regs_from_mem(addr64 lscsa_ea)
47 {
48 	unsigned int ls = (unsigned int)&regs_spill[0];
49 	unsigned int size = sizeof(regs_spill);
50 	unsigned int tag_id = 0;
51 	unsigned int cmd = 0x40;	/* GET */
52 
53 	spu_writech(MFC_LSA, ls);
54 	spu_writech(MFC_EAH, lscsa_ea.ui[0]);
55 	spu_writech(MFC_EAL, lscsa_ea.ui[1]);
56 	spu_writech(MFC_Size, size);
57 	spu_writech(MFC_TagID, tag_id);
58 	spu_writech(MFC_Cmd, cmd);
59 }
60 
61 static inline void restore_upper_240kb(addr64 lscsa_ea)
62 {
63 	unsigned int ls = 16384;
64 	unsigned int list = (unsigned int)&dma_list[0];
65 	unsigned int size = sizeof(dma_list);
66 	unsigned int tag_id = 0;
67 	unsigned int cmd = 0x44;	/* GETL */
68 
69 	/* Restore, Step 4:
70 	 *    Enqueue the GETL command (tag 0) to the MFC SPU command
71 	 *    queue to transfer the upper 240 kb of LS from CSA.
72 	 */
73 	spu_writech(MFC_LSA, ls);
74 	spu_writech(MFC_EAH, lscsa_ea.ui[0]);
75 	spu_writech(MFC_EAL, list);
76 	spu_writech(MFC_Size, size);
77 	spu_writech(MFC_TagID, tag_id);
78 	spu_writech(MFC_Cmd, cmd);
79 }
80 
81 static inline void restore_decr(void)
82 {
83 	unsigned int offset;
84 	unsigned int decr_running;
85 	unsigned int decr;
86 
87 	/* Restore, Step 6(moved):
88 	 *    If the LSCSA "decrementer running" flag is set
89 	 *    then write the SPU_WrDec channel with the
90 	 *    decrementer value from LSCSA.
91 	 */
92 	offset = LSCSA_QW_OFFSET(decr_status);
93 	decr_running = regs_spill[offset].slot[0] & SPU_DECR_STATUS_RUNNING;
94 	if (decr_running) {
95 		offset = LSCSA_QW_OFFSET(decr);
96 		decr = regs_spill[offset].slot[0];
97 		spu_writech(SPU_WrDec, decr);
98 	}
99 }
100 
101 static inline void write_ppu_mb(void)
102 {
103 	unsigned int offset;
104 	unsigned int data;
105 
106 	/* Restore, Step 11:
107 	 *    Write the MFC_WrOut_MB channel with the PPU_MB
108 	 *    data from LSCSA.
109 	 */
110 	offset = LSCSA_QW_OFFSET(ppu_mb);
111 	data = regs_spill[offset].slot[0];
112 	spu_writech(SPU_WrOutMbox, data);
113 }
114 
115 static inline void write_ppuint_mb(void)
116 {
117 	unsigned int offset;
118 	unsigned int data;
119 
120 	/* Restore, Step 12:
121 	 *    Write the MFC_WrInt_MB channel with the PPUINT_MB
122 	 *    data from LSCSA.
123 	 */
124 	offset = LSCSA_QW_OFFSET(ppuint_mb);
125 	data = regs_spill[offset].slot[0];
126 	spu_writech(SPU_WrOutIntrMbox, data);
127 }
128 
129 static inline void restore_fpcr(void)
130 {
131 	unsigned int offset;
132 	vector unsigned int fpcr;
133 
134 	/* Restore, Step 13:
135 	 *    Restore the floating-point status and control
136 	 *    register from the LSCSA.
137 	 */
138 	offset = LSCSA_QW_OFFSET(fpcr);
139 	fpcr = regs_spill[offset].v;
140 	spu_mtfpscr(fpcr);
141 }
142 
143 static inline void restore_srr0(void)
144 {
145 	unsigned int offset;
146 	unsigned int srr0;
147 
148 	/* Restore, Step 14:
149 	 *    Restore the SPU SRR0 data from the LSCSA.
150 	 */
151 	offset = LSCSA_QW_OFFSET(srr0);
152 	srr0 = regs_spill[offset].slot[0];
153 	spu_writech(SPU_WrSRR0, srr0);
154 }
155 
156 static inline void restore_event_mask(void)
157 {
158 	unsigned int offset;
159 	unsigned int event_mask;
160 
161 	/* Restore, Step 15:
162 	 *    Restore the SPU_RdEventMsk data from the LSCSA.
163 	 */
164 	offset = LSCSA_QW_OFFSET(event_mask);
165 	event_mask = regs_spill[offset].slot[0];
166 	spu_writech(SPU_WrEventMask, event_mask);
167 }
168 
169 static inline void restore_tag_mask(void)
170 {
171 	unsigned int offset;
172 	unsigned int tag_mask;
173 
174 	/* Restore, Step 16:
175 	 *    Restore the SPU_RdTagMsk data from the LSCSA.
176 	 */
177 	offset = LSCSA_QW_OFFSET(tag_mask);
178 	tag_mask = regs_spill[offset].slot[0];
179 	spu_writech(MFC_WrTagMask, tag_mask);
180 }
181 
182 static inline void restore_complete(void)
183 {
184 	extern void exit_fini(void);
185 	unsigned int *exit_instrs = (unsigned int *)exit_fini;
186 	unsigned int offset;
187 	unsigned int stopped_status;
188 	unsigned int stopped_code;
189 
190 	/* Restore, Step 18:
191 	 *    Issue a stop-and-signal instruction with
192 	 *    "good context restore" signal value.
193 	 *
194 	 * Restore, Step 19:
195 	 *    There may be additional instructions placed
196 	 *    here by the PPE Sequence for SPU Context
197 	 *    Restore in order to restore the correct
198 	 *    "stopped state".
199 	 *
200 	 *    This step is handled here by analyzing the
201 	 *    LSCSA.stopped_status and then modifying the
202 	 *    exit() function to behave appropriately.
203 	 */
204 
205 	offset = LSCSA_QW_OFFSET(stopped_status);
206 	stopped_status = regs_spill[offset].slot[0];
207 	stopped_code = regs_spill[offset].slot[1];
208 
209 	switch (stopped_status) {
210 	case SPU_STOPPED_STATUS_P_I:
211 		/* SPU_Status[P,I]=1.  Add illegal instruction
212 		 * followed by stop-and-signal instruction after
213 		 * end of restore code.
214 		 */
215 		exit_instrs[0] = RESTORE_COMPLETE;
216 		exit_instrs[1] = ILLEGAL_INSTR;
217 		exit_instrs[2] = STOP_INSTR | stopped_code;
218 		break;
219 	case SPU_STOPPED_STATUS_P_H:
220 		/* SPU_Status[P,H]=1.  Add 'heq $0, $0' followed
221 		 * by stop-and-signal instruction after end of
222 		 * restore code.
223 		 */
224 		exit_instrs[0] = RESTORE_COMPLETE;
225 		exit_instrs[1] = HEQ_INSTR;
226 		exit_instrs[2] = STOP_INSTR | stopped_code;
227 		break;
228 	case SPU_STOPPED_STATUS_S_P:
229 		/* SPU_Status[S,P]=1.  Add nop instruction
230 		 * followed by 'br -4' after end of restore
231 		 * code.
232 		 */
233 		exit_instrs[0] = RESTORE_COMPLETE;
234 		exit_instrs[1] = STOP_INSTR | stopped_code;
235 		exit_instrs[2] = NOP_INSTR;
236 		exit_instrs[3] = BR_INSTR;
237 		break;
238 	case SPU_STOPPED_STATUS_S_I:
239 		/* SPU_Status[S,I]=1.  Add  illegal instruction
240 		 * followed by 'br -4' after end of restore code.
241 		 */
242 		exit_instrs[0] = RESTORE_COMPLETE;
243 		exit_instrs[1] = ILLEGAL_INSTR;
244 		exit_instrs[2] = NOP_INSTR;
245 		exit_instrs[3] = BR_INSTR;
246 		break;
247 	case SPU_STOPPED_STATUS_I:
248 		/* SPU_Status[I]=1. Add illegal instruction followed
249 		 * by infinite loop after end of restore sequence.
250 		 */
251 		exit_instrs[0] = RESTORE_COMPLETE;
252 		exit_instrs[1] = ILLEGAL_INSTR;
253 		exit_instrs[2] = NOP_INSTR;
254 		exit_instrs[3] = BR_INSTR;
255 		break;
256 	case SPU_STOPPED_STATUS_S:
257 		/* SPU_Status[S]=1. Add two 'nop' instructions. */
258 		exit_instrs[0] = RESTORE_COMPLETE;
259 		exit_instrs[1] = NOP_INSTR;
260 		exit_instrs[2] = NOP_INSTR;
261 		exit_instrs[3] = BR_INSTR;
262 		break;
263 	case SPU_STOPPED_STATUS_H:
264 		/* SPU_Status[H]=1. Add 'heq $0, $0' instruction
265 		 * after end of restore code.
266 		 */
267 		exit_instrs[0] = RESTORE_COMPLETE;
268 		exit_instrs[1] = HEQ_INSTR;
269 		exit_instrs[2] = NOP_INSTR;
270 		exit_instrs[3] = BR_INSTR;
271 		break;
272 	case SPU_STOPPED_STATUS_P:
273 		/* SPU_Status[P]=1. Add stop-and-signal instruction
274 		 * after end of restore code.
275 		 */
276 		exit_instrs[0] = RESTORE_COMPLETE;
277 		exit_instrs[1] = STOP_INSTR | stopped_code;
278 		break;
279 	case SPU_STOPPED_STATUS_R:
280 		/* SPU_Status[I,S,H,P,R]=0. Add infinite loop. */
281 		exit_instrs[0] = RESTORE_COMPLETE;
282 		exit_instrs[1] = NOP_INSTR;
283 		exit_instrs[2] = NOP_INSTR;
284 		exit_instrs[3] = BR_INSTR;
285 		break;
286 	default:
287 		/* SPU_Status[R]=1. No additional instructions. */
288 		break;
289 	}
290 	spu_sync();
291 }
292 
293 /**
294  * main - entry point for SPU-side context restore.
295  *
296  * This code deviates from the documented sequence in the
297  * following aspects:
298  *
299  *	1. The EA for LSCSA is passed from PPE in the
300  *	   signal notification channels.
301  *	2. The register spill area is pulled by SPU
302  *	   into LS, rather than pushed by PPE.
303  *	3. All 128 registers are restored by exit().
304  *	4. The exit() function is modified at run
305  *	   time in order to properly restore the
306  *	   SPU_Status register.
307  */
308 int main()
309 {
310 	addr64 lscsa_ea;
311 
312 	lscsa_ea.ui[0] = spu_readch(SPU_RdSigNotify1);
313 	lscsa_ea.ui[1] = spu_readch(SPU_RdSigNotify2);
314 	fetch_regs_from_mem(lscsa_ea);
315 
316 	set_event_mask();		/* Step 1.  */
317 	set_tag_mask();			/* Step 2.  */
318 	build_dma_list(lscsa_ea);	/* Step 3.  */
319 	restore_upper_240kb(lscsa_ea);	/* Step 4.  */
320 					/* Step 5: done by 'exit'. */
321 	enqueue_putllc(lscsa_ea);	/* Step 7. */
322 	set_tag_update();		/* Step 8. */
323 	read_tag_status();		/* Step 9. */
324 	restore_decr();			/* moved Step 6. */
325 	read_llar_status();		/* Step 10. */
326 	write_ppu_mb();			/* Step 11. */
327 	write_ppuint_mb();		/* Step 12. */
328 	restore_fpcr();			/* Step 13. */
329 	restore_srr0();			/* Step 14. */
330 	restore_event_mask();		/* Step 15. */
331 	restore_tag_mask();		/* Step 16. */
332 					/* Step 17. done by 'exit'. */
333 	restore_complete();		/* Step 18. */
334 
335 	return 0;
336 }
337