1 /* sched.c - SPU scheduler. 2 * 3 * Copyright (C) IBM 2005 4 * Author: Mark Nutter <mnutter@us.ibm.com> 5 * 6 * 2006-03-31 NUMA domains added. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2, or (at your option) 11 * any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #undef DEBUG 24 25 #include <linux/errno.h> 26 #include <linux/sched/signal.h> 27 #include <linux/sched/loadavg.h> 28 #include <linux/sched/rt.h> 29 #include <linux/kernel.h> 30 #include <linux/mm.h> 31 #include <linux/slab.h> 32 #include <linux/completion.h> 33 #include <linux/vmalloc.h> 34 #include <linux/smp.h> 35 #include <linux/stddef.h> 36 #include <linux/unistd.h> 37 #include <linux/numa.h> 38 #include <linux/mutex.h> 39 #include <linux/notifier.h> 40 #include <linux/kthread.h> 41 #include <linux/pid_namespace.h> 42 #include <linux/proc_fs.h> 43 #include <linux/seq_file.h> 44 45 #include <asm/io.h> 46 #include <asm/mmu_context.h> 47 #include <asm/spu.h> 48 #include <asm/spu_csa.h> 49 #include <asm/spu_priv1.h> 50 #include "spufs.h" 51 #define CREATE_TRACE_POINTS 52 #include "sputrace.h" 53 54 struct spu_prio_array { 55 DECLARE_BITMAP(bitmap, MAX_PRIO); 56 struct list_head runq[MAX_PRIO]; 57 spinlock_t runq_lock; 58 int nr_waiting; 59 }; 60 61 static unsigned long spu_avenrun[3]; 62 static struct spu_prio_array *spu_prio; 63 static struct task_struct *spusched_task; 64 static struct timer_list spusched_timer; 65 static struct timer_list spuloadavg_timer; 66 67 /* 68 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0). 69 */ 70 #define NORMAL_PRIO 120 71 72 /* 73 * Frequency of the spu scheduler tick. By default we do one SPU scheduler 74 * tick for every 10 CPU scheduler ticks. 75 */ 76 #define SPUSCHED_TICK (10) 77 78 /* 79 * These are the 'tuning knobs' of the scheduler: 80 * 81 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is 82 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs. 83 */ 84 #define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1) 85 #define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK)) 86 87 #define SCALE_PRIO(x, prio) \ 88 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE) 89 90 /* 91 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values: 92 * [800ms ... 100ms ... 5ms] 93 * 94 * The higher a thread's priority, the bigger timeslices 95 * it gets during one round of execution. But even the lowest 96 * priority thread gets MIN_TIMESLICE worth of execution time. 97 */ 98 void spu_set_timeslice(struct spu_context *ctx) 99 { 100 if (ctx->prio < NORMAL_PRIO) 101 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio); 102 else 103 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio); 104 } 105 106 /* 107 * Update scheduling information from the owning thread. 108 */ 109 void __spu_update_sched_info(struct spu_context *ctx) 110 { 111 /* 112 * assert that the context is not on the runqueue, so it is safe 113 * to change its scheduling parameters. 114 */ 115 BUG_ON(!list_empty(&ctx->rq)); 116 117 /* 118 * 32-Bit assignments are atomic on powerpc, and we don't care about 119 * memory ordering here because retrieving the controlling thread is 120 * per definition racy. 121 */ 122 ctx->tid = current->pid; 123 124 /* 125 * We do our own priority calculations, so we normally want 126 * ->static_prio to start with. Unfortunately this field 127 * contains junk for threads with a realtime scheduling 128 * policy so we have to look at ->prio in this case. 129 */ 130 if (rt_prio(current->prio)) 131 ctx->prio = current->prio; 132 else 133 ctx->prio = current->static_prio; 134 ctx->policy = current->policy; 135 136 /* 137 * TO DO: the context may be loaded, so we may need to activate 138 * it again on a different node. But it shouldn't hurt anything 139 * to update its parameters, because we know that the scheduler 140 * is not actively looking at this field, since it is not on the 141 * runqueue. The context will be rescheduled on the proper node 142 * if it is timesliced or preempted. 143 */ 144 cpumask_copy(&ctx->cpus_allowed, ¤t->cpus_allowed); 145 146 /* Save the current cpu id for spu interrupt routing. */ 147 ctx->last_ran = raw_smp_processor_id(); 148 } 149 150 void spu_update_sched_info(struct spu_context *ctx) 151 { 152 int node; 153 154 if (ctx->state == SPU_STATE_RUNNABLE) { 155 node = ctx->spu->node; 156 157 /* 158 * Take list_mutex to sync with find_victim(). 159 */ 160 mutex_lock(&cbe_spu_info[node].list_mutex); 161 __spu_update_sched_info(ctx); 162 mutex_unlock(&cbe_spu_info[node].list_mutex); 163 } else { 164 __spu_update_sched_info(ctx); 165 } 166 } 167 168 static int __node_allowed(struct spu_context *ctx, int node) 169 { 170 if (nr_cpus_node(node)) { 171 const struct cpumask *mask = cpumask_of_node(node); 172 173 if (cpumask_intersects(mask, &ctx->cpus_allowed)) 174 return 1; 175 } 176 177 return 0; 178 } 179 180 static int node_allowed(struct spu_context *ctx, int node) 181 { 182 int rval; 183 184 spin_lock(&spu_prio->runq_lock); 185 rval = __node_allowed(ctx, node); 186 spin_unlock(&spu_prio->runq_lock); 187 188 return rval; 189 } 190 191 void do_notify_spus_active(void) 192 { 193 int node; 194 195 /* 196 * Wake up the active spu_contexts. 197 * 198 * When the awakened processes see their "notify_active" flag is set, 199 * they will call spu_switch_notify(). 200 */ 201 for_each_online_node(node) { 202 struct spu *spu; 203 204 mutex_lock(&cbe_spu_info[node].list_mutex); 205 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 206 if (spu->alloc_state != SPU_FREE) { 207 struct spu_context *ctx = spu->ctx; 208 set_bit(SPU_SCHED_NOTIFY_ACTIVE, 209 &ctx->sched_flags); 210 mb(); 211 wake_up_all(&ctx->stop_wq); 212 } 213 } 214 mutex_unlock(&cbe_spu_info[node].list_mutex); 215 } 216 } 217 218 /** 219 * spu_bind_context - bind spu context to physical spu 220 * @spu: physical spu to bind to 221 * @ctx: context to bind 222 */ 223 static void spu_bind_context(struct spu *spu, struct spu_context *ctx) 224 { 225 spu_context_trace(spu_bind_context__enter, ctx, spu); 226 227 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); 228 229 if (ctx->flags & SPU_CREATE_NOSCHED) 230 atomic_inc(&cbe_spu_info[spu->node].reserved_spus); 231 232 ctx->stats.slb_flt_base = spu->stats.slb_flt; 233 ctx->stats.class2_intr_base = spu->stats.class2_intr; 234 235 spu_associate_mm(spu, ctx->owner); 236 237 spin_lock_irq(&spu->register_lock); 238 spu->ctx = ctx; 239 spu->flags = 0; 240 ctx->spu = spu; 241 ctx->ops = &spu_hw_ops; 242 spu->pid = current->pid; 243 spu->tgid = current->tgid; 244 spu->ibox_callback = spufs_ibox_callback; 245 spu->wbox_callback = spufs_wbox_callback; 246 spu->stop_callback = spufs_stop_callback; 247 spu->mfc_callback = spufs_mfc_callback; 248 spin_unlock_irq(&spu->register_lock); 249 250 spu_unmap_mappings(ctx); 251 252 spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0); 253 spu_restore(&ctx->csa, spu); 254 spu->timestamp = jiffies; 255 spu_switch_notify(spu, ctx); 256 ctx->state = SPU_STATE_RUNNABLE; 257 258 spuctx_switch_state(ctx, SPU_UTIL_USER); 259 } 260 261 /* 262 * Must be used with the list_mutex held. 263 */ 264 static inline int sched_spu(struct spu *spu) 265 { 266 BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex)); 267 268 return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED)); 269 } 270 271 static void aff_merge_remaining_ctxs(struct spu_gang *gang) 272 { 273 struct spu_context *ctx; 274 275 list_for_each_entry(ctx, &gang->aff_list_head, aff_list) { 276 if (list_empty(&ctx->aff_list)) 277 list_add(&ctx->aff_list, &gang->aff_list_head); 278 } 279 gang->aff_flags |= AFF_MERGED; 280 } 281 282 static void aff_set_offsets(struct spu_gang *gang) 283 { 284 struct spu_context *ctx; 285 int offset; 286 287 offset = -1; 288 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list, 289 aff_list) { 290 if (&ctx->aff_list == &gang->aff_list_head) 291 break; 292 ctx->aff_offset = offset--; 293 } 294 295 offset = 0; 296 list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) { 297 if (&ctx->aff_list == &gang->aff_list_head) 298 break; 299 ctx->aff_offset = offset++; 300 } 301 302 gang->aff_flags |= AFF_OFFSETS_SET; 303 } 304 305 static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff, 306 int group_size, int lowest_offset) 307 { 308 struct spu *spu; 309 int node, n; 310 311 /* 312 * TODO: A better algorithm could be used to find a good spu to be 313 * used as reference location for the ctxs chain. 314 */ 315 node = cpu_to_node(raw_smp_processor_id()); 316 for (n = 0; n < MAX_NUMNODES; n++, node++) { 317 /* 318 * "available_spus" counts how many spus are not potentially 319 * going to be used by other affinity gangs whose reference 320 * context is already in place. Although this code seeks to 321 * avoid having affinity gangs with a summed amount of 322 * contexts bigger than the amount of spus in the node, 323 * this may happen sporadically. In this case, available_spus 324 * becomes negative, which is harmless. 325 */ 326 int available_spus; 327 328 node = (node < MAX_NUMNODES) ? node : 0; 329 if (!node_allowed(ctx, node)) 330 continue; 331 332 available_spus = 0; 333 mutex_lock(&cbe_spu_info[node].list_mutex); 334 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 335 if (spu->ctx && spu->ctx->gang && !spu->ctx->aff_offset 336 && spu->ctx->gang->aff_ref_spu) 337 available_spus -= spu->ctx->gang->contexts; 338 available_spus++; 339 } 340 if (available_spus < ctx->gang->contexts) { 341 mutex_unlock(&cbe_spu_info[node].list_mutex); 342 continue; 343 } 344 345 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 346 if ((!mem_aff || spu->has_mem_affinity) && 347 sched_spu(spu)) { 348 mutex_unlock(&cbe_spu_info[node].list_mutex); 349 return spu; 350 } 351 } 352 mutex_unlock(&cbe_spu_info[node].list_mutex); 353 } 354 return NULL; 355 } 356 357 static void aff_set_ref_point_location(struct spu_gang *gang) 358 { 359 int mem_aff, gs, lowest_offset; 360 struct spu_context *ctx; 361 struct spu *tmp; 362 363 mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM; 364 lowest_offset = 0; 365 gs = 0; 366 367 list_for_each_entry(tmp, &gang->aff_list_head, aff_list) 368 gs++; 369 370 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list, 371 aff_list) { 372 if (&ctx->aff_list == &gang->aff_list_head) 373 break; 374 lowest_offset = ctx->aff_offset; 375 } 376 377 gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs, 378 lowest_offset); 379 } 380 381 static struct spu *ctx_location(struct spu *ref, int offset, int node) 382 { 383 struct spu *spu; 384 385 spu = NULL; 386 if (offset >= 0) { 387 list_for_each_entry(spu, ref->aff_list.prev, aff_list) { 388 BUG_ON(spu->node != node); 389 if (offset == 0) 390 break; 391 if (sched_spu(spu)) 392 offset--; 393 } 394 } else { 395 list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) { 396 BUG_ON(spu->node != node); 397 if (offset == 0) 398 break; 399 if (sched_spu(spu)) 400 offset++; 401 } 402 } 403 404 return spu; 405 } 406 407 /* 408 * affinity_check is called each time a context is going to be scheduled. 409 * It returns the spu ptr on which the context must run. 410 */ 411 static int has_affinity(struct spu_context *ctx) 412 { 413 struct spu_gang *gang = ctx->gang; 414 415 if (list_empty(&ctx->aff_list)) 416 return 0; 417 418 if (atomic_read(&ctx->gang->aff_sched_count) == 0) 419 ctx->gang->aff_ref_spu = NULL; 420 421 if (!gang->aff_ref_spu) { 422 if (!(gang->aff_flags & AFF_MERGED)) 423 aff_merge_remaining_ctxs(gang); 424 if (!(gang->aff_flags & AFF_OFFSETS_SET)) 425 aff_set_offsets(gang); 426 aff_set_ref_point_location(gang); 427 } 428 429 return gang->aff_ref_spu != NULL; 430 } 431 432 /** 433 * spu_unbind_context - unbind spu context from physical spu 434 * @spu: physical spu to unbind from 435 * @ctx: context to unbind 436 */ 437 static void spu_unbind_context(struct spu *spu, struct spu_context *ctx) 438 { 439 u32 status; 440 441 spu_context_trace(spu_unbind_context__enter, ctx, spu); 442 443 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); 444 445 if (spu->ctx->flags & SPU_CREATE_NOSCHED) 446 atomic_dec(&cbe_spu_info[spu->node].reserved_spus); 447 448 if (ctx->gang) 449 /* 450 * If ctx->gang->aff_sched_count is positive, SPU affinity is 451 * being considered in this gang. Using atomic_dec_if_positive 452 * allow us to skip an explicit check for affinity in this gang 453 */ 454 atomic_dec_if_positive(&ctx->gang->aff_sched_count); 455 456 spu_switch_notify(spu, NULL); 457 spu_unmap_mappings(ctx); 458 spu_save(&ctx->csa, spu); 459 spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0); 460 461 spin_lock_irq(&spu->register_lock); 462 spu->timestamp = jiffies; 463 ctx->state = SPU_STATE_SAVED; 464 spu->ibox_callback = NULL; 465 spu->wbox_callback = NULL; 466 spu->stop_callback = NULL; 467 spu->mfc_callback = NULL; 468 spu->pid = 0; 469 spu->tgid = 0; 470 ctx->ops = &spu_backing_ops; 471 spu->flags = 0; 472 spu->ctx = NULL; 473 spin_unlock_irq(&spu->register_lock); 474 475 spu_associate_mm(spu, NULL); 476 477 ctx->stats.slb_flt += 478 (spu->stats.slb_flt - ctx->stats.slb_flt_base); 479 ctx->stats.class2_intr += 480 (spu->stats.class2_intr - ctx->stats.class2_intr_base); 481 482 /* This maps the underlying spu state to idle */ 483 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED); 484 ctx->spu = NULL; 485 486 if (spu_stopped(ctx, &status)) 487 wake_up_all(&ctx->stop_wq); 488 } 489 490 /** 491 * spu_add_to_rq - add a context to the runqueue 492 * @ctx: context to add 493 */ 494 static void __spu_add_to_rq(struct spu_context *ctx) 495 { 496 /* 497 * Unfortunately this code path can be called from multiple threads 498 * on behalf of a single context due to the way the problem state 499 * mmap support works. 500 * 501 * Fortunately we need to wake up all these threads at the same time 502 * and can simply skip the runqueue addition for every but the first 503 * thread getting into this codepath. 504 * 505 * It's still quite hacky, and long-term we should proxy all other 506 * threads through the owner thread so that spu_run is in control 507 * of all the scheduling activity for a given context. 508 */ 509 if (list_empty(&ctx->rq)) { 510 list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]); 511 set_bit(ctx->prio, spu_prio->bitmap); 512 if (!spu_prio->nr_waiting++) 513 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK); 514 } 515 } 516 517 static void spu_add_to_rq(struct spu_context *ctx) 518 { 519 spin_lock(&spu_prio->runq_lock); 520 __spu_add_to_rq(ctx); 521 spin_unlock(&spu_prio->runq_lock); 522 } 523 524 static void __spu_del_from_rq(struct spu_context *ctx) 525 { 526 int prio = ctx->prio; 527 528 if (!list_empty(&ctx->rq)) { 529 if (!--spu_prio->nr_waiting) 530 del_timer(&spusched_timer); 531 list_del_init(&ctx->rq); 532 533 if (list_empty(&spu_prio->runq[prio])) 534 clear_bit(prio, spu_prio->bitmap); 535 } 536 } 537 538 void spu_del_from_rq(struct spu_context *ctx) 539 { 540 spin_lock(&spu_prio->runq_lock); 541 __spu_del_from_rq(ctx); 542 spin_unlock(&spu_prio->runq_lock); 543 } 544 545 static void spu_prio_wait(struct spu_context *ctx) 546 { 547 DEFINE_WAIT(wait); 548 549 /* 550 * The caller must explicitly wait for a context to be loaded 551 * if the nosched flag is set. If NOSCHED is not set, the caller 552 * queues the context and waits for an spu event or error. 553 */ 554 BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED)); 555 556 spin_lock(&spu_prio->runq_lock); 557 prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE); 558 if (!signal_pending(current)) { 559 __spu_add_to_rq(ctx); 560 spin_unlock(&spu_prio->runq_lock); 561 mutex_unlock(&ctx->state_mutex); 562 schedule(); 563 mutex_lock(&ctx->state_mutex); 564 spin_lock(&spu_prio->runq_lock); 565 __spu_del_from_rq(ctx); 566 } 567 spin_unlock(&spu_prio->runq_lock); 568 __set_current_state(TASK_RUNNING); 569 remove_wait_queue(&ctx->stop_wq, &wait); 570 } 571 572 static struct spu *spu_get_idle(struct spu_context *ctx) 573 { 574 struct spu *spu, *aff_ref_spu; 575 int node, n; 576 577 spu_context_nospu_trace(spu_get_idle__enter, ctx); 578 579 if (ctx->gang) { 580 mutex_lock(&ctx->gang->aff_mutex); 581 if (has_affinity(ctx)) { 582 aff_ref_spu = ctx->gang->aff_ref_spu; 583 atomic_inc(&ctx->gang->aff_sched_count); 584 mutex_unlock(&ctx->gang->aff_mutex); 585 node = aff_ref_spu->node; 586 587 mutex_lock(&cbe_spu_info[node].list_mutex); 588 spu = ctx_location(aff_ref_spu, ctx->aff_offset, node); 589 if (spu && spu->alloc_state == SPU_FREE) 590 goto found; 591 mutex_unlock(&cbe_spu_info[node].list_mutex); 592 593 atomic_dec(&ctx->gang->aff_sched_count); 594 goto not_found; 595 } 596 mutex_unlock(&ctx->gang->aff_mutex); 597 } 598 node = cpu_to_node(raw_smp_processor_id()); 599 for (n = 0; n < MAX_NUMNODES; n++, node++) { 600 node = (node < MAX_NUMNODES) ? node : 0; 601 if (!node_allowed(ctx, node)) 602 continue; 603 604 mutex_lock(&cbe_spu_info[node].list_mutex); 605 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 606 if (spu->alloc_state == SPU_FREE) 607 goto found; 608 } 609 mutex_unlock(&cbe_spu_info[node].list_mutex); 610 } 611 612 not_found: 613 spu_context_nospu_trace(spu_get_idle__not_found, ctx); 614 return NULL; 615 616 found: 617 spu->alloc_state = SPU_USED; 618 mutex_unlock(&cbe_spu_info[node].list_mutex); 619 spu_context_trace(spu_get_idle__found, ctx, spu); 620 spu_init_channels(spu); 621 return spu; 622 } 623 624 /** 625 * find_victim - find a lower priority context to preempt 626 * @ctx: candidate context for running 627 * 628 * Returns the freed physical spu to run the new context on. 629 */ 630 static struct spu *find_victim(struct spu_context *ctx) 631 { 632 struct spu_context *victim = NULL; 633 struct spu *spu; 634 int node, n; 635 636 spu_context_nospu_trace(spu_find_victim__enter, ctx); 637 638 /* 639 * Look for a possible preemption candidate on the local node first. 640 * If there is no candidate look at the other nodes. This isn't 641 * exactly fair, but so far the whole spu scheduler tries to keep 642 * a strong node affinity. We might want to fine-tune this in 643 * the future. 644 */ 645 restart: 646 node = cpu_to_node(raw_smp_processor_id()); 647 for (n = 0; n < MAX_NUMNODES; n++, node++) { 648 node = (node < MAX_NUMNODES) ? node : 0; 649 if (!node_allowed(ctx, node)) 650 continue; 651 652 mutex_lock(&cbe_spu_info[node].list_mutex); 653 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 654 struct spu_context *tmp = spu->ctx; 655 656 if (tmp && tmp->prio > ctx->prio && 657 !(tmp->flags & SPU_CREATE_NOSCHED) && 658 (!victim || tmp->prio > victim->prio)) { 659 victim = spu->ctx; 660 } 661 } 662 if (victim) 663 get_spu_context(victim); 664 mutex_unlock(&cbe_spu_info[node].list_mutex); 665 666 if (victim) { 667 /* 668 * This nests ctx->state_mutex, but we always lock 669 * higher priority contexts before lower priority 670 * ones, so this is safe until we introduce 671 * priority inheritance schemes. 672 * 673 * XXX if the highest priority context is locked, 674 * this can loop a long time. Might be better to 675 * look at another context or give up after X retries. 676 */ 677 if (!mutex_trylock(&victim->state_mutex)) { 678 put_spu_context(victim); 679 victim = NULL; 680 goto restart; 681 } 682 683 spu = victim->spu; 684 if (!spu || victim->prio <= ctx->prio) { 685 /* 686 * This race can happen because we've dropped 687 * the active list mutex. Not a problem, just 688 * restart the search. 689 */ 690 mutex_unlock(&victim->state_mutex); 691 put_spu_context(victim); 692 victim = NULL; 693 goto restart; 694 } 695 696 spu_context_trace(__spu_deactivate__unload, ctx, spu); 697 698 mutex_lock(&cbe_spu_info[node].list_mutex); 699 cbe_spu_info[node].nr_active--; 700 spu_unbind_context(spu, victim); 701 mutex_unlock(&cbe_spu_info[node].list_mutex); 702 703 victim->stats.invol_ctx_switch++; 704 spu->stats.invol_ctx_switch++; 705 if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags)) 706 spu_add_to_rq(victim); 707 708 mutex_unlock(&victim->state_mutex); 709 put_spu_context(victim); 710 711 return spu; 712 } 713 } 714 715 return NULL; 716 } 717 718 static void __spu_schedule(struct spu *spu, struct spu_context *ctx) 719 { 720 int node = spu->node; 721 int success = 0; 722 723 spu_set_timeslice(ctx); 724 725 mutex_lock(&cbe_spu_info[node].list_mutex); 726 if (spu->ctx == NULL) { 727 spu_bind_context(spu, ctx); 728 cbe_spu_info[node].nr_active++; 729 spu->alloc_state = SPU_USED; 730 success = 1; 731 } 732 mutex_unlock(&cbe_spu_info[node].list_mutex); 733 734 if (success) 735 wake_up_all(&ctx->run_wq); 736 else 737 spu_add_to_rq(ctx); 738 } 739 740 static void spu_schedule(struct spu *spu, struct spu_context *ctx) 741 { 742 /* not a candidate for interruptible because it's called either 743 from the scheduler thread or from spu_deactivate */ 744 mutex_lock(&ctx->state_mutex); 745 if (ctx->state == SPU_STATE_SAVED) 746 __spu_schedule(spu, ctx); 747 spu_release(ctx); 748 } 749 750 /** 751 * spu_unschedule - remove a context from a spu, and possibly release it. 752 * @spu: The SPU to unschedule from 753 * @ctx: The context currently scheduled on the SPU 754 * @free_spu Whether to free the SPU for other contexts 755 * 756 * Unbinds the context @ctx from the SPU @spu. If @free_spu is non-zero, the 757 * SPU is made available for other contexts (ie, may be returned by 758 * spu_get_idle). If this is zero, the caller is expected to schedule another 759 * context to this spu. 760 * 761 * Should be called with ctx->state_mutex held. 762 */ 763 static void spu_unschedule(struct spu *spu, struct spu_context *ctx, 764 int free_spu) 765 { 766 int node = spu->node; 767 768 mutex_lock(&cbe_spu_info[node].list_mutex); 769 cbe_spu_info[node].nr_active--; 770 if (free_spu) 771 spu->alloc_state = SPU_FREE; 772 spu_unbind_context(spu, ctx); 773 ctx->stats.invol_ctx_switch++; 774 spu->stats.invol_ctx_switch++; 775 mutex_unlock(&cbe_spu_info[node].list_mutex); 776 } 777 778 /** 779 * spu_activate - find a free spu for a context and execute it 780 * @ctx: spu context to schedule 781 * @flags: flags (currently ignored) 782 * 783 * Tries to find a free spu to run @ctx. If no free spu is available 784 * add the context to the runqueue so it gets woken up once an spu 785 * is available. 786 */ 787 int spu_activate(struct spu_context *ctx, unsigned long flags) 788 { 789 struct spu *spu; 790 791 /* 792 * If there are multiple threads waiting for a single context 793 * only one actually binds the context while the others will 794 * only be able to acquire the state_mutex once the context 795 * already is in runnable state. 796 */ 797 if (ctx->spu) 798 return 0; 799 800 spu_activate_top: 801 if (signal_pending(current)) 802 return -ERESTARTSYS; 803 804 spu = spu_get_idle(ctx); 805 /* 806 * If this is a realtime thread we try to get it running by 807 * preempting a lower priority thread. 808 */ 809 if (!spu && rt_prio(ctx->prio)) 810 spu = find_victim(ctx); 811 if (spu) { 812 unsigned long runcntl; 813 814 runcntl = ctx->ops->runcntl_read(ctx); 815 __spu_schedule(spu, ctx); 816 if (runcntl & SPU_RUNCNTL_RUNNABLE) 817 spuctx_switch_state(ctx, SPU_UTIL_USER); 818 819 return 0; 820 } 821 822 if (ctx->flags & SPU_CREATE_NOSCHED) { 823 spu_prio_wait(ctx); 824 goto spu_activate_top; 825 } 826 827 spu_add_to_rq(ctx); 828 829 return 0; 830 } 831 832 /** 833 * grab_runnable_context - try to find a runnable context 834 * 835 * Remove the highest priority context on the runqueue and return it 836 * to the caller. Returns %NULL if no runnable context was found. 837 */ 838 static struct spu_context *grab_runnable_context(int prio, int node) 839 { 840 struct spu_context *ctx; 841 int best; 842 843 spin_lock(&spu_prio->runq_lock); 844 best = find_first_bit(spu_prio->bitmap, prio); 845 while (best < prio) { 846 struct list_head *rq = &spu_prio->runq[best]; 847 848 list_for_each_entry(ctx, rq, rq) { 849 /* XXX(hch): check for affinity here as well */ 850 if (__node_allowed(ctx, node)) { 851 __spu_del_from_rq(ctx); 852 goto found; 853 } 854 } 855 best++; 856 } 857 ctx = NULL; 858 found: 859 spin_unlock(&spu_prio->runq_lock); 860 return ctx; 861 } 862 863 static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio) 864 { 865 struct spu *spu = ctx->spu; 866 struct spu_context *new = NULL; 867 868 if (spu) { 869 new = grab_runnable_context(max_prio, spu->node); 870 if (new || force) { 871 spu_unschedule(spu, ctx, new == NULL); 872 if (new) { 873 if (new->flags & SPU_CREATE_NOSCHED) 874 wake_up(&new->stop_wq); 875 else { 876 spu_release(ctx); 877 spu_schedule(spu, new); 878 /* this one can't easily be made 879 interruptible */ 880 mutex_lock(&ctx->state_mutex); 881 } 882 } 883 } 884 } 885 886 return new != NULL; 887 } 888 889 /** 890 * spu_deactivate - unbind a context from it's physical spu 891 * @ctx: spu context to unbind 892 * 893 * Unbind @ctx from the physical spu it is running on and schedule 894 * the highest priority context to run on the freed physical spu. 895 */ 896 void spu_deactivate(struct spu_context *ctx) 897 { 898 spu_context_nospu_trace(spu_deactivate__enter, ctx); 899 __spu_deactivate(ctx, 1, MAX_PRIO); 900 } 901 902 /** 903 * spu_yield - yield a physical spu if others are waiting 904 * @ctx: spu context to yield 905 * 906 * Check if there is a higher priority context waiting and if yes 907 * unbind @ctx from the physical spu and schedule the highest 908 * priority context to run on the freed physical spu instead. 909 */ 910 void spu_yield(struct spu_context *ctx) 911 { 912 spu_context_nospu_trace(spu_yield__enter, ctx); 913 if (!(ctx->flags & SPU_CREATE_NOSCHED)) { 914 mutex_lock(&ctx->state_mutex); 915 __spu_deactivate(ctx, 0, MAX_PRIO); 916 mutex_unlock(&ctx->state_mutex); 917 } 918 } 919 920 static noinline void spusched_tick(struct spu_context *ctx) 921 { 922 struct spu_context *new = NULL; 923 struct spu *spu = NULL; 924 925 if (spu_acquire(ctx)) 926 BUG(); /* a kernel thread never has signals pending */ 927 928 if (ctx->state != SPU_STATE_RUNNABLE) 929 goto out; 930 if (ctx->flags & SPU_CREATE_NOSCHED) 931 goto out; 932 if (ctx->policy == SCHED_FIFO) 933 goto out; 934 935 if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags)) 936 goto out; 937 938 spu = ctx->spu; 939 940 spu_context_trace(spusched_tick__preempt, ctx, spu); 941 942 new = grab_runnable_context(ctx->prio + 1, spu->node); 943 if (new) { 944 spu_unschedule(spu, ctx, 0); 945 if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags)) 946 spu_add_to_rq(ctx); 947 } else { 948 spu_context_nospu_trace(spusched_tick__newslice, ctx); 949 if (!ctx->time_slice) 950 ctx->time_slice++; 951 } 952 out: 953 spu_release(ctx); 954 955 if (new) 956 spu_schedule(spu, new); 957 } 958 959 /** 960 * count_active_contexts - count nr of active tasks 961 * 962 * Return the number of tasks currently running or waiting to run. 963 * 964 * Note that we don't take runq_lock / list_mutex here. Reading 965 * a single 32bit value is atomic on powerpc, and we don't care 966 * about memory ordering issues here. 967 */ 968 static unsigned long count_active_contexts(void) 969 { 970 int nr_active = 0, node; 971 972 for (node = 0; node < MAX_NUMNODES; node++) 973 nr_active += cbe_spu_info[node].nr_active; 974 nr_active += spu_prio->nr_waiting; 975 976 return nr_active; 977 } 978 979 /** 980 * spu_calc_load - update the avenrun load estimates. 981 * 982 * No locking against reading these values from userspace, as for 983 * the CPU loadavg code. 984 */ 985 static void spu_calc_load(void) 986 { 987 unsigned long active_tasks; /* fixed-point */ 988 989 active_tasks = count_active_contexts() * FIXED_1; 990 CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks); 991 CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks); 992 CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks); 993 } 994 995 static void spusched_wake(struct timer_list *unused) 996 { 997 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK); 998 wake_up_process(spusched_task); 999 } 1000 1001 static void spuloadavg_wake(struct timer_list *unused) 1002 { 1003 mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ); 1004 spu_calc_load(); 1005 } 1006 1007 static int spusched_thread(void *unused) 1008 { 1009 struct spu *spu; 1010 int node; 1011 1012 while (!kthread_should_stop()) { 1013 set_current_state(TASK_INTERRUPTIBLE); 1014 schedule(); 1015 for (node = 0; node < MAX_NUMNODES; node++) { 1016 struct mutex *mtx = &cbe_spu_info[node].list_mutex; 1017 1018 mutex_lock(mtx); 1019 list_for_each_entry(spu, &cbe_spu_info[node].spus, 1020 cbe_list) { 1021 struct spu_context *ctx = spu->ctx; 1022 1023 if (ctx) { 1024 get_spu_context(ctx); 1025 mutex_unlock(mtx); 1026 spusched_tick(ctx); 1027 mutex_lock(mtx); 1028 put_spu_context(ctx); 1029 } 1030 } 1031 mutex_unlock(mtx); 1032 } 1033 } 1034 1035 return 0; 1036 } 1037 1038 void spuctx_switch_state(struct spu_context *ctx, 1039 enum spu_utilization_state new_state) 1040 { 1041 unsigned long long curtime; 1042 signed long long delta; 1043 struct spu *spu; 1044 enum spu_utilization_state old_state; 1045 int node; 1046 1047 curtime = ktime_get_ns(); 1048 delta = curtime - ctx->stats.tstamp; 1049 1050 WARN_ON(!mutex_is_locked(&ctx->state_mutex)); 1051 WARN_ON(delta < 0); 1052 1053 spu = ctx->spu; 1054 old_state = ctx->stats.util_state; 1055 ctx->stats.util_state = new_state; 1056 ctx->stats.tstamp = curtime; 1057 1058 /* 1059 * Update the physical SPU utilization statistics. 1060 */ 1061 if (spu) { 1062 ctx->stats.times[old_state] += delta; 1063 spu->stats.times[old_state] += delta; 1064 spu->stats.util_state = new_state; 1065 spu->stats.tstamp = curtime; 1066 node = spu->node; 1067 if (old_state == SPU_UTIL_USER) 1068 atomic_dec(&cbe_spu_info[node].busy_spus); 1069 if (new_state == SPU_UTIL_USER) 1070 atomic_inc(&cbe_spu_info[node].busy_spus); 1071 } 1072 } 1073 1074 #define LOAD_INT(x) ((x) >> FSHIFT) 1075 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100) 1076 1077 static int show_spu_loadavg(struct seq_file *s, void *private) 1078 { 1079 int a, b, c; 1080 1081 a = spu_avenrun[0] + (FIXED_1/200); 1082 b = spu_avenrun[1] + (FIXED_1/200); 1083 c = spu_avenrun[2] + (FIXED_1/200); 1084 1085 /* 1086 * Note that last_pid doesn't really make much sense for the 1087 * SPU loadavg (it even seems very odd on the CPU side...), 1088 * but we include it here to have a 100% compatible interface. 1089 */ 1090 seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n", 1091 LOAD_INT(a), LOAD_FRAC(a), 1092 LOAD_INT(b), LOAD_FRAC(b), 1093 LOAD_INT(c), LOAD_FRAC(c), 1094 count_active_contexts(), 1095 atomic_read(&nr_spu_contexts), 1096 idr_get_cursor(&task_active_pid_ns(current)->idr) - 1); 1097 return 0; 1098 } 1099 1100 static int spu_loadavg_open(struct inode *inode, struct file *file) 1101 { 1102 return single_open(file, show_spu_loadavg, NULL); 1103 } 1104 1105 static const struct file_operations spu_loadavg_fops = { 1106 .open = spu_loadavg_open, 1107 .read = seq_read, 1108 .llseek = seq_lseek, 1109 .release = single_release, 1110 }; 1111 1112 int __init spu_sched_init(void) 1113 { 1114 struct proc_dir_entry *entry; 1115 int err = -ENOMEM, i; 1116 1117 spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL); 1118 if (!spu_prio) 1119 goto out; 1120 1121 for (i = 0; i < MAX_PRIO; i++) { 1122 INIT_LIST_HEAD(&spu_prio->runq[i]); 1123 __clear_bit(i, spu_prio->bitmap); 1124 } 1125 spin_lock_init(&spu_prio->runq_lock); 1126 1127 timer_setup(&spusched_timer, spusched_wake, 0); 1128 timer_setup(&spuloadavg_timer, spuloadavg_wake, 0); 1129 1130 spusched_task = kthread_run(spusched_thread, NULL, "spusched"); 1131 if (IS_ERR(spusched_task)) { 1132 err = PTR_ERR(spusched_task); 1133 goto out_free_spu_prio; 1134 } 1135 1136 mod_timer(&spuloadavg_timer, 0); 1137 1138 entry = proc_create("spu_loadavg", 0, NULL, &spu_loadavg_fops); 1139 if (!entry) 1140 goto out_stop_kthread; 1141 1142 pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n", 1143 SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE); 1144 return 0; 1145 1146 out_stop_kthread: 1147 kthread_stop(spusched_task); 1148 out_free_spu_prio: 1149 kfree(spu_prio); 1150 out: 1151 return err; 1152 } 1153 1154 void spu_sched_exit(void) 1155 { 1156 struct spu *spu; 1157 int node; 1158 1159 remove_proc_entry("spu_loadavg", NULL); 1160 1161 del_timer_sync(&spusched_timer); 1162 del_timer_sync(&spuloadavg_timer); 1163 kthread_stop(spusched_task); 1164 1165 for (node = 0; node < MAX_NUMNODES; node++) { 1166 mutex_lock(&cbe_spu_info[node].list_mutex); 1167 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) 1168 if (spu->alloc_state != SPU_FREE) 1169 spu->alloc_state = SPU_FREE; 1170 mutex_unlock(&cbe_spu_info[node].list_mutex); 1171 } 1172 kfree(spu_prio); 1173 } 1174