xref: /openbmc/linux/arch/powerpc/platforms/cell/spufs/sched.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /* sched.c - SPU scheduler.
2  *
3  * Copyright (C) IBM 2005
4  * Author: Mark Nutter <mnutter@us.ibm.com>
5  *
6  * 2006-03-31	NUMA domains added.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #undef DEBUG
24 
25 #include <linux/module.h>
26 #include <linux/errno.h>
27 #include <linux/sched.h>
28 #include <linux/kernel.h>
29 #include <linux/mm.h>
30 #include <linux/completion.h>
31 #include <linux/vmalloc.h>
32 #include <linux/smp.h>
33 #include <linux/stddef.h>
34 #include <linux/unistd.h>
35 #include <linux/numa.h>
36 #include <linux/mutex.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/proc_fs.h>
41 #include <linux/seq_file.h>
42 #include <linux/marker.h>
43 
44 #include <asm/io.h>
45 #include <asm/mmu_context.h>
46 #include <asm/spu.h>
47 #include <asm/spu_csa.h>
48 #include <asm/spu_priv1.h>
49 #include "spufs.h"
50 
51 struct spu_prio_array {
52 	DECLARE_BITMAP(bitmap, MAX_PRIO);
53 	struct list_head runq[MAX_PRIO];
54 	spinlock_t runq_lock;
55 	int nr_waiting;
56 };
57 
58 static unsigned long spu_avenrun[3];
59 static struct spu_prio_array *spu_prio;
60 static struct task_struct *spusched_task;
61 static struct timer_list spusched_timer;
62 static struct timer_list spuloadavg_timer;
63 
64 /*
65  * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
66  */
67 #define NORMAL_PRIO		120
68 
69 /*
70  * Frequency of the spu scheduler tick.  By default we do one SPU scheduler
71  * tick for every 10 CPU scheduler ticks.
72  */
73 #define SPUSCHED_TICK		(10)
74 
75 /*
76  * These are the 'tuning knobs' of the scheduler:
77  *
78  * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
79  * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
80  */
81 #define MIN_SPU_TIMESLICE	max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
82 #define DEF_SPU_TIMESLICE	(100 * HZ / (1000 * SPUSCHED_TICK))
83 
84 #define MAX_USER_PRIO		(MAX_PRIO - MAX_RT_PRIO)
85 #define SCALE_PRIO(x, prio) \
86 	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
87 
88 /*
89  * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
90  * [800ms ... 100ms ... 5ms]
91  *
92  * The higher a thread's priority, the bigger timeslices
93  * it gets during one round of execution. But even the lowest
94  * priority thread gets MIN_TIMESLICE worth of execution time.
95  */
96 void spu_set_timeslice(struct spu_context *ctx)
97 {
98 	if (ctx->prio < NORMAL_PRIO)
99 		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
100 	else
101 		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
102 }
103 
104 /*
105  * Update scheduling information from the owning thread.
106  */
107 void __spu_update_sched_info(struct spu_context *ctx)
108 {
109 	/*
110 	 * assert that the context is not on the runqueue, so it is safe
111 	 * to change its scheduling parameters.
112 	 */
113 	BUG_ON(!list_empty(&ctx->rq));
114 
115 	/*
116 	 * 32-Bit assignments are atomic on powerpc, and we don't care about
117 	 * memory ordering here because retrieving the controlling thread is
118 	 * per definition racy.
119 	 */
120 	ctx->tid = current->pid;
121 
122 	/*
123 	 * We do our own priority calculations, so we normally want
124 	 * ->static_prio to start with. Unfortunately this field
125 	 * contains junk for threads with a realtime scheduling
126 	 * policy so we have to look at ->prio in this case.
127 	 */
128 	if (rt_prio(current->prio))
129 		ctx->prio = current->prio;
130 	else
131 		ctx->prio = current->static_prio;
132 	ctx->policy = current->policy;
133 
134 	/*
135 	 * TO DO: the context may be loaded, so we may need to activate
136 	 * it again on a different node. But it shouldn't hurt anything
137 	 * to update its parameters, because we know that the scheduler
138 	 * is not actively looking at this field, since it is not on the
139 	 * runqueue. The context will be rescheduled on the proper node
140 	 * if it is timesliced or preempted.
141 	 */
142 	ctx->cpus_allowed = current->cpus_allowed;
143 
144 	/* Save the current cpu id for spu interrupt routing. */
145 	ctx->last_ran = raw_smp_processor_id();
146 }
147 
148 void spu_update_sched_info(struct spu_context *ctx)
149 {
150 	int node;
151 
152 	if (ctx->state == SPU_STATE_RUNNABLE) {
153 		node = ctx->spu->node;
154 
155 		/*
156 		 * Take list_mutex to sync with find_victim().
157 		 */
158 		mutex_lock(&cbe_spu_info[node].list_mutex);
159 		__spu_update_sched_info(ctx);
160 		mutex_unlock(&cbe_spu_info[node].list_mutex);
161 	} else {
162 		__spu_update_sched_info(ctx);
163 	}
164 }
165 
166 static int __node_allowed(struct spu_context *ctx, int node)
167 {
168 	if (nr_cpus_node(node)) {
169 		const struct cpumask *mask = cpumask_of_node(node);
170 
171 		if (cpumask_intersects(mask, &ctx->cpus_allowed))
172 			return 1;
173 	}
174 
175 	return 0;
176 }
177 
178 static int node_allowed(struct spu_context *ctx, int node)
179 {
180 	int rval;
181 
182 	spin_lock(&spu_prio->runq_lock);
183 	rval = __node_allowed(ctx, node);
184 	spin_unlock(&spu_prio->runq_lock);
185 
186 	return rval;
187 }
188 
189 void do_notify_spus_active(void)
190 {
191 	int node;
192 
193 	/*
194 	 * Wake up the active spu_contexts.
195 	 *
196 	 * When the awakened processes see their "notify_active" flag is set,
197 	 * they will call spu_switch_notify().
198 	 */
199 	for_each_online_node(node) {
200 		struct spu *spu;
201 
202 		mutex_lock(&cbe_spu_info[node].list_mutex);
203 		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
204 			if (spu->alloc_state != SPU_FREE) {
205 				struct spu_context *ctx = spu->ctx;
206 				set_bit(SPU_SCHED_NOTIFY_ACTIVE,
207 					&ctx->sched_flags);
208 				mb();
209 				wake_up_all(&ctx->stop_wq);
210 			}
211 		}
212 		mutex_unlock(&cbe_spu_info[node].list_mutex);
213 	}
214 }
215 
216 /**
217  * spu_bind_context - bind spu context to physical spu
218  * @spu:	physical spu to bind to
219  * @ctx:	context to bind
220  */
221 static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
222 {
223 	spu_context_trace(spu_bind_context__enter, ctx, spu);
224 
225 	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
226 
227 	if (ctx->flags & SPU_CREATE_NOSCHED)
228 		atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
229 
230 	ctx->stats.slb_flt_base = spu->stats.slb_flt;
231 	ctx->stats.class2_intr_base = spu->stats.class2_intr;
232 
233 	spu_associate_mm(spu, ctx->owner);
234 
235 	spin_lock_irq(&spu->register_lock);
236 	spu->ctx = ctx;
237 	spu->flags = 0;
238 	ctx->spu = spu;
239 	ctx->ops = &spu_hw_ops;
240 	spu->pid = current->pid;
241 	spu->tgid = current->tgid;
242 	spu->ibox_callback = spufs_ibox_callback;
243 	spu->wbox_callback = spufs_wbox_callback;
244 	spu->stop_callback = spufs_stop_callback;
245 	spu->mfc_callback = spufs_mfc_callback;
246 	spin_unlock_irq(&spu->register_lock);
247 
248 	spu_unmap_mappings(ctx);
249 
250 	spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0);
251 	spu_restore(&ctx->csa, spu);
252 	spu->timestamp = jiffies;
253 	spu_switch_notify(spu, ctx);
254 	ctx->state = SPU_STATE_RUNNABLE;
255 
256 	spuctx_switch_state(ctx, SPU_UTIL_USER);
257 }
258 
259 /*
260  * Must be used with the list_mutex held.
261  */
262 static inline int sched_spu(struct spu *spu)
263 {
264 	BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));
265 
266 	return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
267 }
268 
269 static void aff_merge_remaining_ctxs(struct spu_gang *gang)
270 {
271 	struct spu_context *ctx;
272 
273 	list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
274 		if (list_empty(&ctx->aff_list))
275 			list_add(&ctx->aff_list, &gang->aff_list_head);
276 	}
277 	gang->aff_flags |= AFF_MERGED;
278 }
279 
280 static void aff_set_offsets(struct spu_gang *gang)
281 {
282 	struct spu_context *ctx;
283 	int offset;
284 
285 	offset = -1;
286 	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
287 								aff_list) {
288 		if (&ctx->aff_list == &gang->aff_list_head)
289 			break;
290 		ctx->aff_offset = offset--;
291 	}
292 
293 	offset = 0;
294 	list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
295 		if (&ctx->aff_list == &gang->aff_list_head)
296 			break;
297 		ctx->aff_offset = offset++;
298 	}
299 
300 	gang->aff_flags |= AFF_OFFSETS_SET;
301 }
302 
303 static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
304 		 int group_size, int lowest_offset)
305 {
306 	struct spu *spu;
307 	int node, n;
308 
309 	/*
310 	 * TODO: A better algorithm could be used to find a good spu to be
311 	 *       used as reference location for the ctxs chain.
312 	 */
313 	node = cpu_to_node(raw_smp_processor_id());
314 	for (n = 0; n < MAX_NUMNODES; n++, node++) {
315 		/*
316 		 * "available_spus" counts how many spus are not potentially
317 		 * going to be used by other affinity gangs whose reference
318 		 * context is already in place. Although this code seeks to
319 		 * avoid having affinity gangs with a summed amount of
320 		 * contexts bigger than the amount of spus in the node,
321 		 * this may happen sporadically. In this case, available_spus
322 		 * becomes negative, which is harmless.
323 		 */
324 		int available_spus;
325 
326 		node = (node < MAX_NUMNODES) ? node : 0;
327 		if (!node_allowed(ctx, node))
328 			continue;
329 
330 		available_spus = 0;
331 		mutex_lock(&cbe_spu_info[node].list_mutex);
332 		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
333 			if (spu->ctx && spu->ctx->gang && !spu->ctx->aff_offset
334 					&& spu->ctx->gang->aff_ref_spu)
335 				available_spus -= spu->ctx->gang->contexts;
336 			available_spus++;
337 		}
338 		if (available_spus < ctx->gang->contexts) {
339 			mutex_unlock(&cbe_spu_info[node].list_mutex);
340 			continue;
341 		}
342 
343 		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
344 			if ((!mem_aff || spu->has_mem_affinity) &&
345 							sched_spu(spu)) {
346 				mutex_unlock(&cbe_spu_info[node].list_mutex);
347 				return spu;
348 			}
349 		}
350 		mutex_unlock(&cbe_spu_info[node].list_mutex);
351 	}
352 	return NULL;
353 }
354 
355 static void aff_set_ref_point_location(struct spu_gang *gang)
356 {
357 	int mem_aff, gs, lowest_offset;
358 	struct spu_context *ctx;
359 	struct spu *tmp;
360 
361 	mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
362 	lowest_offset = 0;
363 	gs = 0;
364 
365 	list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
366 		gs++;
367 
368 	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
369 								aff_list) {
370 		if (&ctx->aff_list == &gang->aff_list_head)
371 			break;
372 		lowest_offset = ctx->aff_offset;
373 	}
374 
375 	gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
376 							lowest_offset);
377 }
378 
379 static struct spu *ctx_location(struct spu *ref, int offset, int node)
380 {
381 	struct spu *spu;
382 
383 	spu = NULL;
384 	if (offset >= 0) {
385 		list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
386 			BUG_ON(spu->node != node);
387 			if (offset == 0)
388 				break;
389 			if (sched_spu(spu))
390 				offset--;
391 		}
392 	} else {
393 		list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
394 			BUG_ON(spu->node != node);
395 			if (offset == 0)
396 				break;
397 			if (sched_spu(spu))
398 				offset++;
399 		}
400 	}
401 
402 	return spu;
403 }
404 
405 /*
406  * affinity_check is called each time a context is going to be scheduled.
407  * It returns the spu ptr on which the context must run.
408  */
409 static int has_affinity(struct spu_context *ctx)
410 {
411 	struct spu_gang *gang = ctx->gang;
412 
413 	if (list_empty(&ctx->aff_list))
414 		return 0;
415 
416 	if (atomic_read(&ctx->gang->aff_sched_count) == 0)
417 		ctx->gang->aff_ref_spu = NULL;
418 
419 	if (!gang->aff_ref_spu) {
420 		if (!(gang->aff_flags & AFF_MERGED))
421 			aff_merge_remaining_ctxs(gang);
422 		if (!(gang->aff_flags & AFF_OFFSETS_SET))
423 			aff_set_offsets(gang);
424 		aff_set_ref_point_location(gang);
425 	}
426 
427 	return gang->aff_ref_spu != NULL;
428 }
429 
430 /**
431  * spu_unbind_context - unbind spu context from physical spu
432  * @spu:	physical spu to unbind from
433  * @ctx:	context to unbind
434  */
435 static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
436 {
437 	u32 status;
438 
439 	spu_context_trace(spu_unbind_context__enter, ctx, spu);
440 
441 	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
442 
443  	if (spu->ctx->flags & SPU_CREATE_NOSCHED)
444 		atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
445 
446 	if (ctx->gang)
447 		/*
448 		 * If ctx->gang->aff_sched_count is positive, SPU affinity is
449 		 * being considered in this gang. Using atomic_dec_if_positive
450 		 * allow us to skip an explicit check for affinity in this gang
451 		 */
452 		atomic_dec_if_positive(&ctx->gang->aff_sched_count);
453 
454 	spu_switch_notify(spu, NULL);
455 	spu_unmap_mappings(ctx);
456 	spu_save(&ctx->csa, spu);
457 	spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0);
458 
459 	spin_lock_irq(&spu->register_lock);
460 	spu->timestamp = jiffies;
461 	ctx->state = SPU_STATE_SAVED;
462 	spu->ibox_callback = NULL;
463 	spu->wbox_callback = NULL;
464 	spu->stop_callback = NULL;
465 	spu->mfc_callback = NULL;
466 	spu->pid = 0;
467 	spu->tgid = 0;
468 	ctx->ops = &spu_backing_ops;
469 	spu->flags = 0;
470 	spu->ctx = NULL;
471 	spin_unlock_irq(&spu->register_lock);
472 
473 	spu_associate_mm(spu, NULL);
474 
475 	ctx->stats.slb_flt +=
476 		(spu->stats.slb_flt - ctx->stats.slb_flt_base);
477 	ctx->stats.class2_intr +=
478 		(spu->stats.class2_intr - ctx->stats.class2_intr_base);
479 
480 	/* This maps the underlying spu state to idle */
481 	spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
482 	ctx->spu = NULL;
483 
484 	if (spu_stopped(ctx, &status))
485 		wake_up_all(&ctx->stop_wq);
486 }
487 
488 /**
489  * spu_add_to_rq - add a context to the runqueue
490  * @ctx:       context to add
491  */
492 static void __spu_add_to_rq(struct spu_context *ctx)
493 {
494 	/*
495 	 * Unfortunately this code path can be called from multiple threads
496 	 * on behalf of a single context due to the way the problem state
497 	 * mmap support works.
498 	 *
499 	 * Fortunately we need to wake up all these threads at the same time
500 	 * and can simply skip the runqueue addition for every but the first
501 	 * thread getting into this codepath.
502 	 *
503 	 * It's still quite hacky, and long-term we should proxy all other
504 	 * threads through the owner thread so that spu_run is in control
505 	 * of all the scheduling activity for a given context.
506 	 */
507 	if (list_empty(&ctx->rq)) {
508 		list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
509 		set_bit(ctx->prio, spu_prio->bitmap);
510 		if (!spu_prio->nr_waiting++)
511 			mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
512 	}
513 }
514 
515 static void spu_add_to_rq(struct spu_context *ctx)
516 {
517 	spin_lock(&spu_prio->runq_lock);
518 	__spu_add_to_rq(ctx);
519 	spin_unlock(&spu_prio->runq_lock);
520 }
521 
522 static void __spu_del_from_rq(struct spu_context *ctx)
523 {
524 	int prio = ctx->prio;
525 
526 	if (!list_empty(&ctx->rq)) {
527 		if (!--spu_prio->nr_waiting)
528 			del_timer(&spusched_timer);
529 		list_del_init(&ctx->rq);
530 
531 		if (list_empty(&spu_prio->runq[prio]))
532 			clear_bit(prio, spu_prio->bitmap);
533 	}
534 }
535 
536 void spu_del_from_rq(struct spu_context *ctx)
537 {
538 	spin_lock(&spu_prio->runq_lock);
539 	__spu_del_from_rq(ctx);
540 	spin_unlock(&spu_prio->runq_lock);
541 }
542 
543 static void spu_prio_wait(struct spu_context *ctx)
544 {
545 	DEFINE_WAIT(wait);
546 
547 	/*
548 	 * The caller must explicitly wait for a context to be loaded
549 	 * if the nosched flag is set.  If NOSCHED is not set, the caller
550 	 * queues the context and waits for an spu event or error.
551 	 */
552 	BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));
553 
554 	spin_lock(&spu_prio->runq_lock);
555 	prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
556 	if (!signal_pending(current)) {
557 		__spu_add_to_rq(ctx);
558 		spin_unlock(&spu_prio->runq_lock);
559 		mutex_unlock(&ctx->state_mutex);
560 		schedule();
561 		mutex_lock(&ctx->state_mutex);
562 		spin_lock(&spu_prio->runq_lock);
563 		__spu_del_from_rq(ctx);
564 	}
565 	spin_unlock(&spu_prio->runq_lock);
566 	__set_current_state(TASK_RUNNING);
567 	remove_wait_queue(&ctx->stop_wq, &wait);
568 }
569 
570 static struct spu *spu_get_idle(struct spu_context *ctx)
571 {
572 	struct spu *spu, *aff_ref_spu;
573 	int node, n;
574 
575 	spu_context_nospu_trace(spu_get_idle__enter, ctx);
576 
577 	if (ctx->gang) {
578 		mutex_lock(&ctx->gang->aff_mutex);
579 		if (has_affinity(ctx)) {
580 			aff_ref_spu = ctx->gang->aff_ref_spu;
581 			atomic_inc(&ctx->gang->aff_sched_count);
582 			mutex_unlock(&ctx->gang->aff_mutex);
583 			node = aff_ref_spu->node;
584 
585 			mutex_lock(&cbe_spu_info[node].list_mutex);
586 			spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
587 			if (spu && spu->alloc_state == SPU_FREE)
588 				goto found;
589 			mutex_unlock(&cbe_spu_info[node].list_mutex);
590 
591 			atomic_dec(&ctx->gang->aff_sched_count);
592 			goto not_found;
593 		}
594 		mutex_unlock(&ctx->gang->aff_mutex);
595 	}
596 	node = cpu_to_node(raw_smp_processor_id());
597 	for (n = 0; n < MAX_NUMNODES; n++, node++) {
598 		node = (node < MAX_NUMNODES) ? node : 0;
599 		if (!node_allowed(ctx, node))
600 			continue;
601 
602 		mutex_lock(&cbe_spu_info[node].list_mutex);
603 		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
604 			if (spu->alloc_state == SPU_FREE)
605 				goto found;
606 		}
607 		mutex_unlock(&cbe_spu_info[node].list_mutex);
608 	}
609 
610  not_found:
611 	spu_context_nospu_trace(spu_get_idle__not_found, ctx);
612 	return NULL;
613 
614  found:
615 	spu->alloc_state = SPU_USED;
616 	mutex_unlock(&cbe_spu_info[node].list_mutex);
617 	spu_context_trace(spu_get_idle__found, ctx, spu);
618 	spu_init_channels(spu);
619 	return spu;
620 }
621 
622 /**
623  * find_victim - find a lower priority context to preempt
624  * @ctx:	canidate context for running
625  *
626  * Returns the freed physical spu to run the new context on.
627  */
628 static struct spu *find_victim(struct spu_context *ctx)
629 {
630 	struct spu_context *victim = NULL;
631 	struct spu *spu;
632 	int node, n;
633 
634 	spu_context_nospu_trace(spu_find_victim__enter, ctx);
635 
636 	/*
637 	 * Look for a possible preemption candidate on the local node first.
638 	 * If there is no candidate look at the other nodes.  This isn't
639 	 * exactly fair, but so far the whole spu scheduler tries to keep
640 	 * a strong node affinity.  We might want to fine-tune this in
641 	 * the future.
642 	 */
643  restart:
644 	node = cpu_to_node(raw_smp_processor_id());
645 	for (n = 0; n < MAX_NUMNODES; n++, node++) {
646 		node = (node < MAX_NUMNODES) ? node : 0;
647 		if (!node_allowed(ctx, node))
648 			continue;
649 
650 		mutex_lock(&cbe_spu_info[node].list_mutex);
651 		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
652 			struct spu_context *tmp = spu->ctx;
653 
654 			if (tmp && tmp->prio > ctx->prio &&
655 			    !(tmp->flags & SPU_CREATE_NOSCHED) &&
656 			    (!victim || tmp->prio > victim->prio)) {
657 				victim = spu->ctx;
658 			}
659 		}
660 		if (victim)
661 			get_spu_context(victim);
662 		mutex_unlock(&cbe_spu_info[node].list_mutex);
663 
664 		if (victim) {
665 			/*
666 			 * This nests ctx->state_mutex, but we always lock
667 			 * higher priority contexts before lower priority
668 			 * ones, so this is safe until we introduce
669 			 * priority inheritance schemes.
670 			 *
671 			 * XXX if the highest priority context is locked,
672 			 * this can loop a long time.  Might be better to
673 			 * look at another context or give up after X retries.
674 			 */
675 			if (!mutex_trylock(&victim->state_mutex)) {
676 				put_spu_context(victim);
677 				victim = NULL;
678 				goto restart;
679 			}
680 
681 			spu = victim->spu;
682 			if (!spu || victim->prio <= ctx->prio) {
683 				/*
684 				 * This race can happen because we've dropped
685 				 * the active list mutex.  Not a problem, just
686 				 * restart the search.
687 				 */
688 				mutex_unlock(&victim->state_mutex);
689 				put_spu_context(victim);
690 				victim = NULL;
691 				goto restart;
692 			}
693 
694 			spu_context_trace(__spu_deactivate__unload, ctx, spu);
695 
696 			mutex_lock(&cbe_spu_info[node].list_mutex);
697 			cbe_spu_info[node].nr_active--;
698 			spu_unbind_context(spu, victim);
699 			mutex_unlock(&cbe_spu_info[node].list_mutex);
700 
701 			victim->stats.invol_ctx_switch++;
702 			spu->stats.invol_ctx_switch++;
703 			if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags))
704 				spu_add_to_rq(victim);
705 
706 			mutex_unlock(&victim->state_mutex);
707 			put_spu_context(victim);
708 
709 			return spu;
710 		}
711 	}
712 
713 	return NULL;
714 }
715 
716 static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
717 {
718 	int node = spu->node;
719 	int success = 0;
720 
721 	spu_set_timeslice(ctx);
722 
723 	mutex_lock(&cbe_spu_info[node].list_mutex);
724 	if (spu->ctx == NULL) {
725 		spu_bind_context(spu, ctx);
726 		cbe_spu_info[node].nr_active++;
727 		spu->alloc_state = SPU_USED;
728 		success = 1;
729 	}
730 	mutex_unlock(&cbe_spu_info[node].list_mutex);
731 
732 	if (success)
733 		wake_up_all(&ctx->run_wq);
734 	else
735 		spu_add_to_rq(ctx);
736 }
737 
738 static void spu_schedule(struct spu *spu, struct spu_context *ctx)
739 {
740 	/* not a candidate for interruptible because it's called either
741 	   from the scheduler thread or from spu_deactivate */
742 	mutex_lock(&ctx->state_mutex);
743 	if (ctx->state == SPU_STATE_SAVED)
744 		__spu_schedule(spu, ctx);
745 	spu_release(ctx);
746 }
747 
748 /**
749  * spu_unschedule - remove a context from a spu, and possibly release it.
750  * @spu:	The SPU to unschedule from
751  * @ctx:	The context currently scheduled on the SPU
752  * @free_spu	Whether to free the SPU for other contexts
753  *
754  * Unbinds the context @ctx from the SPU @spu. If @free_spu is non-zero, the
755  * SPU is made available for other contexts (ie, may be returned by
756  * spu_get_idle). If this is zero, the caller is expected to schedule another
757  * context to this spu.
758  *
759  * Should be called with ctx->state_mutex held.
760  */
761 static void spu_unschedule(struct spu *spu, struct spu_context *ctx,
762 		int free_spu)
763 {
764 	int node = spu->node;
765 
766 	mutex_lock(&cbe_spu_info[node].list_mutex);
767 	cbe_spu_info[node].nr_active--;
768 	if (free_spu)
769 		spu->alloc_state = SPU_FREE;
770 	spu_unbind_context(spu, ctx);
771 	ctx->stats.invol_ctx_switch++;
772 	spu->stats.invol_ctx_switch++;
773 	mutex_unlock(&cbe_spu_info[node].list_mutex);
774 }
775 
776 /**
777  * spu_activate - find a free spu for a context and execute it
778  * @ctx:	spu context to schedule
779  * @flags:	flags (currently ignored)
780  *
781  * Tries to find a free spu to run @ctx.  If no free spu is available
782  * add the context to the runqueue so it gets woken up once an spu
783  * is available.
784  */
785 int spu_activate(struct spu_context *ctx, unsigned long flags)
786 {
787 	struct spu *spu;
788 
789 	/*
790 	 * If there are multiple threads waiting for a single context
791 	 * only one actually binds the context while the others will
792 	 * only be able to acquire the state_mutex once the context
793 	 * already is in runnable state.
794 	 */
795 	if (ctx->spu)
796 		return 0;
797 
798 spu_activate_top:
799 	if (signal_pending(current))
800 		return -ERESTARTSYS;
801 
802 	spu = spu_get_idle(ctx);
803 	/*
804 	 * If this is a realtime thread we try to get it running by
805 	 * preempting a lower priority thread.
806 	 */
807 	if (!spu && rt_prio(ctx->prio))
808 		spu = find_victim(ctx);
809 	if (spu) {
810 		unsigned long runcntl;
811 
812 		runcntl = ctx->ops->runcntl_read(ctx);
813 		__spu_schedule(spu, ctx);
814 		if (runcntl & SPU_RUNCNTL_RUNNABLE)
815 			spuctx_switch_state(ctx, SPU_UTIL_USER);
816 
817 		return 0;
818 	}
819 
820 	if (ctx->flags & SPU_CREATE_NOSCHED) {
821 		spu_prio_wait(ctx);
822 		goto spu_activate_top;
823 	}
824 
825 	spu_add_to_rq(ctx);
826 
827 	return 0;
828 }
829 
830 /**
831  * grab_runnable_context - try to find a runnable context
832  *
833  * Remove the highest priority context on the runqueue and return it
834  * to the caller.  Returns %NULL if no runnable context was found.
835  */
836 static struct spu_context *grab_runnable_context(int prio, int node)
837 {
838 	struct spu_context *ctx;
839 	int best;
840 
841 	spin_lock(&spu_prio->runq_lock);
842 	best = find_first_bit(spu_prio->bitmap, prio);
843 	while (best < prio) {
844 		struct list_head *rq = &spu_prio->runq[best];
845 
846 		list_for_each_entry(ctx, rq, rq) {
847 			/* XXX(hch): check for affinity here aswell */
848 			if (__node_allowed(ctx, node)) {
849 				__spu_del_from_rq(ctx);
850 				goto found;
851 			}
852 		}
853 		best++;
854 	}
855 	ctx = NULL;
856  found:
857 	spin_unlock(&spu_prio->runq_lock);
858 	return ctx;
859 }
860 
861 static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
862 {
863 	struct spu *spu = ctx->spu;
864 	struct spu_context *new = NULL;
865 
866 	if (spu) {
867 		new = grab_runnable_context(max_prio, spu->node);
868 		if (new || force) {
869 			spu_unschedule(spu, ctx, new == NULL);
870 			if (new) {
871 				if (new->flags & SPU_CREATE_NOSCHED)
872 					wake_up(&new->stop_wq);
873 				else {
874 					spu_release(ctx);
875 					spu_schedule(spu, new);
876 					/* this one can't easily be made
877 					   interruptible */
878 					mutex_lock(&ctx->state_mutex);
879 				}
880 			}
881 		}
882 	}
883 
884 	return new != NULL;
885 }
886 
887 /**
888  * spu_deactivate - unbind a context from it's physical spu
889  * @ctx:	spu context to unbind
890  *
891  * Unbind @ctx from the physical spu it is running on and schedule
892  * the highest priority context to run on the freed physical spu.
893  */
894 void spu_deactivate(struct spu_context *ctx)
895 {
896 	spu_context_nospu_trace(spu_deactivate__enter, ctx);
897 	__spu_deactivate(ctx, 1, MAX_PRIO);
898 }
899 
900 /**
901  * spu_yield -	yield a physical spu if others are waiting
902  * @ctx:	spu context to yield
903  *
904  * Check if there is a higher priority context waiting and if yes
905  * unbind @ctx from the physical spu and schedule the highest
906  * priority context to run on the freed physical spu instead.
907  */
908 void spu_yield(struct spu_context *ctx)
909 {
910 	spu_context_nospu_trace(spu_yield__enter, ctx);
911 	if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
912 		mutex_lock(&ctx->state_mutex);
913 		__spu_deactivate(ctx, 0, MAX_PRIO);
914 		mutex_unlock(&ctx->state_mutex);
915 	}
916 }
917 
918 static noinline void spusched_tick(struct spu_context *ctx)
919 {
920 	struct spu_context *new = NULL;
921 	struct spu *spu = NULL;
922 
923 	if (spu_acquire(ctx))
924 		BUG();	/* a kernel thread never has signals pending */
925 
926 	if (ctx->state != SPU_STATE_RUNNABLE)
927 		goto out;
928 	if (ctx->flags & SPU_CREATE_NOSCHED)
929 		goto out;
930 	if (ctx->policy == SCHED_FIFO)
931 		goto out;
932 
933 	if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
934 		goto out;
935 
936 	spu = ctx->spu;
937 
938 	spu_context_trace(spusched_tick__preempt, ctx, spu);
939 
940 	new = grab_runnable_context(ctx->prio + 1, spu->node);
941 	if (new) {
942 		spu_unschedule(spu, ctx, 0);
943 		if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
944 			spu_add_to_rq(ctx);
945 	} else {
946 		spu_context_nospu_trace(spusched_tick__newslice, ctx);
947 		if (!ctx->time_slice)
948 			ctx->time_slice++;
949 	}
950 out:
951 	spu_release(ctx);
952 
953 	if (new)
954 		spu_schedule(spu, new);
955 }
956 
957 /**
958  * count_active_contexts - count nr of active tasks
959  *
960  * Return the number of tasks currently running or waiting to run.
961  *
962  * Note that we don't take runq_lock / list_mutex here.  Reading
963  * a single 32bit value is atomic on powerpc, and we don't care
964  * about memory ordering issues here.
965  */
966 static unsigned long count_active_contexts(void)
967 {
968 	int nr_active = 0, node;
969 
970 	for (node = 0; node < MAX_NUMNODES; node++)
971 		nr_active += cbe_spu_info[node].nr_active;
972 	nr_active += spu_prio->nr_waiting;
973 
974 	return nr_active;
975 }
976 
977 /**
978  * spu_calc_load - update the avenrun load estimates.
979  *
980  * No locking against reading these values from userspace, as for
981  * the CPU loadavg code.
982  */
983 static void spu_calc_load(void)
984 {
985 	unsigned long active_tasks; /* fixed-point */
986 
987 	active_tasks = count_active_contexts() * FIXED_1;
988 	CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
989 	CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
990 	CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
991 }
992 
993 static void spusched_wake(unsigned long data)
994 {
995 	mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
996 	wake_up_process(spusched_task);
997 }
998 
999 static void spuloadavg_wake(unsigned long data)
1000 {
1001 	mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
1002 	spu_calc_load();
1003 }
1004 
1005 static int spusched_thread(void *unused)
1006 {
1007 	struct spu *spu;
1008 	int node;
1009 
1010 	while (!kthread_should_stop()) {
1011 		set_current_state(TASK_INTERRUPTIBLE);
1012 		schedule();
1013 		for (node = 0; node < MAX_NUMNODES; node++) {
1014 			struct mutex *mtx = &cbe_spu_info[node].list_mutex;
1015 
1016 			mutex_lock(mtx);
1017 			list_for_each_entry(spu, &cbe_spu_info[node].spus,
1018 					cbe_list) {
1019 				struct spu_context *ctx = spu->ctx;
1020 
1021 				if (ctx) {
1022 					get_spu_context(ctx);
1023 					mutex_unlock(mtx);
1024 					spusched_tick(ctx);
1025 					mutex_lock(mtx);
1026 					put_spu_context(ctx);
1027 				}
1028 			}
1029 			mutex_unlock(mtx);
1030 		}
1031 	}
1032 
1033 	return 0;
1034 }
1035 
1036 void spuctx_switch_state(struct spu_context *ctx,
1037 		enum spu_utilization_state new_state)
1038 {
1039 	unsigned long long curtime;
1040 	signed long long delta;
1041 	struct timespec ts;
1042 	struct spu *spu;
1043 	enum spu_utilization_state old_state;
1044 	int node;
1045 
1046 	ktime_get_ts(&ts);
1047 	curtime = timespec_to_ns(&ts);
1048 	delta = curtime - ctx->stats.tstamp;
1049 
1050 	WARN_ON(!mutex_is_locked(&ctx->state_mutex));
1051 	WARN_ON(delta < 0);
1052 
1053 	spu = ctx->spu;
1054 	old_state = ctx->stats.util_state;
1055 	ctx->stats.util_state = new_state;
1056 	ctx->stats.tstamp = curtime;
1057 
1058 	/*
1059 	 * Update the physical SPU utilization statistics.
1060 	 */
1061 	if (spu) {
1062 		ctx->stats.times[old_state] += delta;
1063 		spu->stats.times[old_state] += delta;
1064 		spu->stats.util_state = new_state;
1065 		spu->stats.tstamp = curtime;
1066 		node = spu->node;
1067 		if (old_state == SPU_UTIL_USER)
1068 			atomic_dec(&cbe_spu_info[node].busy_spus);
1069 		if (new_state == SPU_UTIL_USER)
1070 			atomic_inc(&cbe_spu_info[node].busy_spus);
1071 	}
1072 }
1073 
1074 #define LOAD_INT(x) ((x) >> FSHIFT)
1075 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
1076 
1077 static int show_spu_loadavg(struct seq_file *s, void *private)
1078 {
1079 	int a, b, c;
1080 
1081 	a = spu_avenrun[0] + (FIXED_1/200);
1082 	b = spu_avenrun[1] + (FIXED_1/200);
1083 	c = spu_avenrun[2] + (FIXED_1/200);
1084 
1085 	/*
1086 	 * Note that last_pid doesn't really make much sense for the
1087 	 * SPU loadavg (it even seems very odd on the CPU side...),
1088 	 * but we include it here to have a 100% compatible interface.
1089 	 */
1090 	seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
1091 		LOAD_INT(a), LOAD_FRAC(a),
1092 		LOAD_INT(b), LOAD_FRAC(b),
1093 		LOAD_INT(c), LOAD_FRAC(c),
1094 		count_active_contexts(),
1095 		atomic_read(&nr_spu_contexts),
1096 		current->nsproxy->pid_ns->last_pid);
1097 	return 0;
1098 }
1099 
1100 static int spu_loadavg_open(struct inode *inode, struct file *file)
1101 {
1102 	return single_open(file, show_spu_loadavg, NULL);
1103 }
1104 
1105 static const struct file_operations spu_loadavg_fops = {
1106 	.open		= spu_loadavg_open,
1107 	.read		= seq_read,
1108 	.llseek		= seq_lseek,
1109 	.release	= single_release,
1110 };
1111 
1112 int __init spu_sched_init(void)
1113 {
1114 	struct proc_dir_entry *entry;
1115 	int err = -ENOMEM, i;
1116 
1117 	spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
1118 	if (!spu_prio)
1119 		goto out;
1120 
1121 	for (i = 0; i < MAX_PRIO; i++) {
1122 		INIT_LIST_HEAD(&spu_prio->runq[i]);
1123 		__clear_bit(i, spu_prio->bitmap);
1124 	}
1125 	spin_lock_init(&spu_prio->runq_lock);
1126 
1127 	setup_timer(&spusched_timer, spusched_wake, 0);
1128 	setup_timer(&spuloadavg_timer, spuloadavg_wake, 0);
1129 
1130 	spusched_task = kthread_run(spusched_thread, NULL, "spusched");
1131 	if (IS_ERR(spusched_task)) {
1132 		err = PTR_ERR(spusched_task);
1133 		goto out_free_spu_prio;
1134 	}
1135 
1136 	mod_timer(&spuloadavg_timer, 0);
1137 
1138 	entry = proc_create("spu_loadavg", 0, NULL, &spu_loadavg_fops);
1139 	if (!entry)
1140 		goto out_stop_kthread;
1141 
1142 	pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
1143 			SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
1144 	return 0;
1145 
1146  out_stop_kthread:
1147 	kthread_stop(spusched_task);
1148  out_free_spu_prio:
1149 	kfree(spu_prio);
1150  out:
1151 	return err;
1152 }
1153 
1154 void spu_sched_exit(void)
1155 {
1156 	struct spu *spu;
1157 	int node;
1158 
1159 	remove_proc_entry("spu_loadavg", NULL);
1160 
1161 	del_timer_sync(&spusched_timer);
1162 	del_timer_sync(&spuloadavg_timer);
1163 	kthread_stop(spusched_task);
1164 
1165 	for (node = 0; node < MAX_NUMNODES; node++) {
1166 		mutex_lock(&cbe_spu_info[node].list_mutex);
1167 		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
1168 			if (spu->alloc_state != SPU_FREE)
1169 				spu->alloc_state = SPU_FREE;
1170 		mutex_unlock(&cbe_spu_info[node].list_mutex);
1171 	}
1172 	kfree(spu_prio);
1173 }
1174