1 /* sched.c - SPU scheduler.
2  *
3  * Copyright (C) IBM 2005
4  * Author: Mark Nutter <mnutter@us.ibm.com>
5  *
6  * 2006-03-31	NUMA domains added.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #undef DEBUG
24 
25 #include <linux/module.h>
26 #include <linux/errno.h>
27 #include <linux/sched.h>
28 #include <linux/kernel.h>
29 #include <linux/mm.h>
30 #include <linux/completion.h>
31 #include <linux/vmalloc.h>
32 #include <linux/smp.h>
33 #include <linux/stddef.h>
34 #include <linux/unistd.h>
35 #include <linux/numa.h>
36 #include <linux/mutex.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/proc_fs.h>
41 #include <linux/seq_file.h>
42 #include <linux/marker.h>
43 
44 #include <asm/io.h>
45 #include <asm/mmu_context.h>
46 #include <asm/spu.h>
47 #include <asm/spu_csa.h>
48 #include <asm/spu_priv1.h>
49 #include "spufs.h"
50 
51 struct spu_prio_array {
52 	DECLARE_BITMAP(bitmap, MAX_PRIO);
53 	struct list_head runq[MAX_PRIO];
54 	spinlock_t runq_lock;
55 	int nr_waiting;
56 };
57 
58 static unsigned long spu_avenrun[3];
59 static struct spu_prio_array *spu_prio;
60 static struct task_struct *spusched_task;
61 static struct timer_list spusched_timer;
62 static struct timer_list spuloadavg_timer;
63 
64 /*
65  * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
66  */
67 #define NORMAL_PRIO		120
68 
69 /*
70  * Frequency of the spu scheduler tick.  By default we do one SPU scheduler
71  * tick for every 10 CPU scheduler ticks.
72  */
73 #define SPUSCHED_TICK		(10)
74 
75 /*
76  * These are the 'tuning knobs' of the scheduler:
77  *
78  * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
79  * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
80  */
81 #define MIN_SPU_TIMESLICE	max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
82 #define DEF_SPU_TIMESLICE	(100 * HZ / (1000 * SPUSCHED_TICK))
83 
84 #define MAX_USER_PRIO		(MAX_PRIO - MAX_RT_PRIO)
85 #define SCALE_PRIO(x, prio) \
86 	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
87 
88 /*
89  * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
90  * [800ms ... 100ms ... 5ms]
91  *
92  * The higher a thread's priority, the bigger timeslices
93  * it gets during one round of execution. But even the lowest
94  * priority thread gets MIN_TIMESLICE worth of execution time.
95  */
96 void spu_set_timeslice(struct spu_context *ctx)
97 {
98 	if (ctx->prio < NORMAL_PRIO)
99 		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
100 	else
101 		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
102 }
103 
104 /*
105  * Update scheduling information from the owning thread.
106  */
107 void __spu_update_sched_info(struct spu_context *ctx)
108 {
109 	/*
110 	 * assert that the context is not on the runqueue, so it is safe
111 	 * to change its scheduling parameters.
112 	 */
113 	BUG_ON(!list_empty(&ctx->rq));
114 
115 	/*
116 	 * 32-Bit assignments are atomic on powerpc, and we don't care about
117 	 * memory ordering here because retrieving the controlling thread is
118 	 * per definition racy.
119 	 */
120 	ctx->tid = current->pid;
121 
122 	/*
123 	 * We do our own priority calculations, so we normally want
124 	 * ->static_prio to start with. Unfortunately this field
125 	 * contains junk for threads with a realtime scheduling
126 	 * policy so we have to look at ->prio in this case.
127 	 */
128 	if (rt_prio(current->prio))
129 		ctx->prio = current->prio;
130 	else
131 		ctx->prio = current->static_prio;
132 	ctx->policy = current->policy;
133 
134 	/*
135 	 * TO DO: the context may be loaded, so we may need to activate
136 	 * it again on a different node. But it shouldn't hurt anything
137 	 * to update its parameters, because we know that the scheduler
138 	 * is not actively looking at this field, since it is not on the
139 	 * runqueue. The context will be rescheduled on the proper node
140 	 * if it is timesliced or preempted.
141 	 */
142 	ctx->cpus_allowed = current->cpus_allowed;
143 }
144 
145 void spu_update_sched_info(struct spu_context *ctx)
146 {
147 	int node;
148 
149 	if (ctx->state == SPU_STATE_RUNNABLE) {
150 		node = ctx->spu->node;
151 
152 		/*
153 		 * Take list_mutex to sync with find_victim().
154 		 */
155 		mutex_lock(&cbe_spu_info[node].list_mutex);
156 		__spu_update_sched_info(ctx);
157 		mutex_unlock(&cbe_spu_info[node].list_mutex);
158 	} else {
159 		__spu_update_sched_info(ctx);
160 	}
161 }
162 
163 static int __node_allowed(struct spu_context *ctx, int node)
164 {
165 	if (nr_cpus_node(node)) {
166 		cpumask_t mask = node_to_cpumask(node);
167 
168 		if (cpus_intersects(mask, ctx->cpus_allowed))
169 			return 1;
170 	}
171 
172 	return 0;
173 }
174 
175 static int node_allowed(struct spu_context *ctx, int node)
176 {
177 	int rval;
178 
179 	spin_lock(&spu_prio->runq_lock);
180 	rval = __node_allowed(ctx, node);
181 	spin_unlock(&spu_prio->runq_lock);
182 
183 	return rval;
184 }
185 
186 void do_notify_spus_active(void)
187 {
188 	int node;
189 
190 	/*
191 	 * Wake up the active spu_contexts.
192 	 *
193 	 * When the awakened processes see their "notify_active" flag is set,
194 	 * they will call spu_switch_notify().
195 	 */
196 	for_each_online_node(node) {
197 		struct spu *spu;
198 
199 		mutex_lock(&cbe_spu_info[node].list_mutex);
200 		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
201 			if (spu->alloc_state != SPU_FREE) {
202 				struct spu_context *ctx = spu->ctx;
203 				set_bit(SPU_SCHED_NOTIFY_ACTIVE,
204 					&ctx->sched_flags);
205 				mb();
206 				wake_up_all(&ctx->stop_wq);
207 			}
208 		}
209 		mutex_unlock(&cbe_spu_info[node].list_mutex);
210 	}
211 }
212 
213 /**
214  * spu_bind_context - bind spu context to physical spu
215  * @spu:	physical spu to bind to
216  * @ctx:	context to bind
217  */
218 static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
219 {
220 	spu_context_trace(spu_bind_context__enter, ctx, spu);
221 
222 	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
223 
224 	if (ctx->flags & SPU_CREATE_NOSCHED)
225 		atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
226 
227 	ctx->stats.slb_flt_base = spu->stats.slb_flt;
228 	ctx->stats.class2_intr_base = spu->stats.class2_intr;
229 
230 	spu->ctx = ctx;
231 	spu->flags = 0;
232 	ctx->spu = spu;
233 	ctx->ops = &spu_hw_ops;
234 	spu->pid = current->pid;
235 	spu->tgid = current->tgid;
236 	spu_associate_mm(spu, ctx->owner);
237 	spu->ibox_callback = spufs_ibox_callback;
238 	spu->wbox_callback = spufs_wbox_callback;
239 	spu->stop_callback = spufs_stop_callback;
240 	spu->mfc_callback = spufs_mfc_callback;
241 	mb();
242 	spu_unmap_mappings(ctx);
243 	spu_restore(&ctx->csa, spu);
244 	spu->timestamp = jiffies;
245 	spu_cpu_affinity_set(spu, raw_smp_processor_id());
246 	spu_switch_notify(spu, ctx);
247 	ctx->state = SPU_STATE_RUNNABLE;
248 
249 	spuctx_switch_state(ctx, SPU_UTIL_USER);
250 }
251 
252 /*
253  * Must be used with the list_mutex held.
254  */
255 static inline int sched_spu(struct spu *spu)
256 {
257 	BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));
258 
259 	return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
260 }
261 
262 static void aff_merge_remaining_ctxs(struct spu_gang *gang)
263 {
264 	struct spu_context *ctx;
265 
266 	list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
267 		if (list_empty(&ctx->aff_list))
268 			list_add(&ctx->aff_list, &gang->aff_list_head);
269 	}
270 	gang->aff_flags |= AFF_MERGED;
271 }
272 
273 static void aff_set_offsets(struct spu_gang *gang)
274 {
275 	struct spu_context *ctx;
276 	int offset;
277 
278 	offset = -1;
279 	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
280 								aff_list) {
281 		if (&ctx->aff_list == &gang->aff_list_head)
282 			break;
283 		ctx->aff_offset = offset--;
284 	}
285 
286 	offset = 0;
287 	list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
288 		if (&ctx->aff_list == &gang->aff_list_head)
289 			break;
290 		ctx->aff_offset = offset++;
291 	}
292 
293 	gang->aff_flags |= AFF_OFFSETS_SET;
294 }
295 
296 static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
297 		 int group_size, int lowest_offset)
298 {
299 	struct spu *spu;
300 	int node, n;
301 
302 	/*
303 	 * TODO: A better algorithm could be used to find a good spu to be
304 	 *       used as reference location for the ctxs chain.
305 	 */
306 	node = cpu_to_node(raw_smp_processor_id());
307 	for (n = 0; n < MAX_NUMNODES; n++, node++) {
308 		node = (node < MAX_NUMNODES) ? node : 0;
309 		if (!node_allowed(ctx, node))
310 			continue;
311 		mutex_lock(&cbe_spu_info[node].list_mutex);
312 		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
313 			if ((!mem_aff || spu->has_mem_affinity) &&
314 							sched_spu(spu)) {
315 				mutex_unlock(&cbe_spu_info[node].list_mutex);
316 				return spu;
317 			}
318 		}
319 		mutex_unlock(&cbe_spu_info[node].list_mutex);
320 	}
321 	return NULL;
322 }
323 
324 static void aff_set_ref_point_location(struct spu_gang *gang)
325 {
326 	int mem_aff, gs, lowest_offset;
327 	struct spu_context *ctx;
328 	struct spu *tmp;
329 
330 	mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
331 	lowest_offset = 0;
332 	gs = 0;
333 
334 	list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
335 		gs++;
336 
337 	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
338 								aff_list) {
339 		if (&ctx->aff_list == &gang->aff_list_head)
340 			break;
341 		lowest_offset = ctx->aff_offset;
342 	}
343 
344 	gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
345 							lowest_offset);
346 }
347 
348 static struct spu *ctx_location(struct spu *ref, int offset, int node)
349 {
350 	struct spu *spu;
351 
352 	spu = NULL;
353 	if (offset >= 0) {
354 		list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
355 			BUG_ON(spu->node != node);
356 			if (offset == 0)
357 				break;
358 			if (sched_spu(spu))
359 				offset--;
360 		}
361 	} else {
362 		list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
363 			BUG_ON(spu->node != node);
364 			if (offset == 0)
365 				break;
366 			if (sched_spu(spu))
367 				offset++;
368 		}
369 	}
370 
371 	return spu;
372 }
373 
374 /*
375  * affinity_check is called each time a context is going to be scheduled.
376  * It returns the spu ptr on which the context must run.
377  */
378 static int has_affinity(struct spu_context *ctx)
379 {
380 	struct spu_gang *gang = ctx->gang;
381 
382 	if (list_empty(&ctx->aff_list))
383 		return 0;
384 
385 	if (!gang->aff_ref_spu) {
386 		if (!(gang->aff_flags & AFF_MERGED))
387 			aff_merge_remaining_ctxs(gang);
388 		if (!(gang->aff_flags & AFF_OFFSETS_SET))
389 			aff_set_offsets(gang);
390 		aff_set_ref_point_location(gang);
391 	}
392 
393 	return gang->aff_ref_spu != NULL;
394 }
395 
396 /**
397  * spu_unbind_context - unbind spu context from physical spu
398  * @spu:	physical spu to unbind from
399  * @ctx:	context to unbind
400  */
401 static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
402 {
403 	spu_context_trace(spu_unbind_context__enter, ctx, spu);
404 
405 	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
406 
407  	if (spu->ctx->flags & SPU_CREATE_NOSCHED)
408 		atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
409 
410 	if (ctx->gang){
411 		mutex_lock(&ctx->gang->aff_mutex);
412 		if (has_affinity(ctx)) {
413 			if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
414 				ctx->gang->aff_ref_spu = NULL;
415 		}
416 		mutex_unlock(&ctx->gang->aff_mutex);
417 	}
418 
419 	spu_switch_notify(spu, NULL);
420 	spu_unmap_mappings(ctx);
421 	spu_save(&ctx->csa, spu);
422 	spu->timestamp = jiffies;
423 	ctx->state = SPU_STATE_SAVED;
424 	spu->ibox_callback = NULL;
425 	spu->wbox_callback = NULL;
426 	spu->stop_callback = NULL;
427 	spu->mfc_callback = NULL;
428 	spu_associate_mm(spu, NULL);
429 	spu->pid = 0;
430 	spu->tgid = 0;
431 	ctx->ops = &spu_backing_ops;
432 	spu->flags = 0;
433 	spu->ctx = NULL;
434 
435 	ctx->stats.slb_flt +=
436 		(spu->stats.slb_flt - ctx->stats.slb_flt_base);
437 	ctx->stats.class2_intr +=
438 		(spu->stats.class2_intr - ctx->stats.class2_intr_base);
439 
440 	/* This maps the underlying spu state to idle */
441 	spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
442 	ctx->spu = NULL;
443 }
444 
445 /**
446  * spu_add_to_rq - add a context to the runqueue
447  * @ctx:       context to add
448  */
449 static void __spu_add_to_rq(struct spu_context *ctx)
450 {
451 	/*
452 	 * Unfortunately this code path can be called from multiple threads
453 	 * on behalf of a single context due to the way the problem state
454 	 * mmap support works.
455 	 *
456 	 * Fortunately we need to wake up all these threads at the same time
457 	 * and can simply skip the runqueue addition for every but the first
458 	 * thread getting into this codepath.
459 	 *
460 	 * It's still quite hacky, and long-term we should proxy all other
461 	 * threads through the owner thread so that spu_run is in control
462 	 * of all the scheduling activity for a given context.
463 	 */
464 	if (list_empty(&ctx->rq)) {
465 		list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
466 		set_bit(ctx->prio, spu_prio->bitmap);
467 		if (!spu_prio->nr_waiting++)
468 			__mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
469 	}
470 }
471 
472 static void spu_add_to_rq(struct spu_context *ctx)
473 {
474 	spin_lock(&spu_prio->runq_lock);
475 	__spu_add_to_rq(ctx);
476 	spin_unlock(&spu_prio->runq_lock);
477 }
478 
479 static void __spu_del_from_rq(struct spu_context *ctx)
480 {
481 	int prio = ctx->prio;
482 
483 	if (!list_empty(&ctx->rq)) {
484 		if (!--spu_prio->nr_waiting)
485 			del_timer(&spusched_timer);
486 		list_del_init(&ctx->rq);
487 
488 		if (list_empty(&spu_prio->runq[prio]))
489 			clear_bit(prio, spu_prio->bitmap);
490 	}
491 }
492 
493 void spu_del_from_rq(struct spu_context *ctx)
494 {
495 	spin_lock(&spu_prio->runq_lock);
496 	__spu_del_from_rq(ctx);
497 	spin_unlock(&spu_prio->runq_lock);
498 }
499 
500 static void spu_prio_wait(struct spu_context *ctx)
501 {
502 	DEFINE_WAIT(wait);
503 
504 	/*
505 	 * The caller must explicitly wait for a context to be loaded
506 	 * if the nosched flag is set.  If NOSCHED is not set, the caller
507 	 * queues the context and waits for an spu event or error.
508 	 */
509 	BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));
510 
511 	spin_lock(&spu_prio->runq_lock);
512 	prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
513 	if (!signal_pending(current)) {
514 		__spu_add_to_rq(ctx);
515 		spin_unlock(&spu_prio->runq_lock);
516 		mutex_unlock(&ctx->state_mutex);
517 		schedule();
518 		mutex_lock(&ctx->state_mutex);
519 		spin_lock(&spu_prio->runq_lock);
520 		__spu_del_from_rq(ctx);
521 	}
522 	spin_unlock(&spu_prio->runq_lock);
523 	__set_current_state(TASK_RUNNING);
524 	remove_wait_queue(&ctx->stop_wq, &wait);
525 }
526 
527 static struct spu *spu_get_idle(struct spu_context *ctx)
528 {
529 	struct spu *spu, *aff_ref_spu;
530 	int node, n;
531 
532 	spu_context_nospu_trace(spu_get_idle__enter, ctx);
533 
534 	if (ctx->gang) {
535 		mutex_lock(&ctx->gang->aff_mutex);
536 		if (has_affinity(ctx)) {
537 			aff_ref_spu = ctx->gang->aff_ref_spu;
538 			atomic_inc(&ctx->gang->aff_sched_count);
539 			mutex_unlock(&ctx->gang->aff_mutex);
540 			node = aff_ref_spu->node;
541 
542 			mutex_lock(&cbe_spu_info[node].list_mutex);
543 			spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
544 			if (spu && spu->alloc_state == SPU_FREE)
545 				goto found;
546 			mutex_unlock(&cbe_spu_info[node].list_mutex);
547 
548 			mutex_lock(&ctx->gang->aff_mutex);
549 			if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
550 				ctx->gang->aff_ref_spu = NULL;
551 			mutex_unlock(&ctx->gang->aff_mutex);
552 			goto not_found;
553 		}
554 		mutex_unlock(&ctx->gang->aff_mutex);
555 	}
556 	node = cpu_to_node(raw_smp_processor_id());
557 	for (n = 0; n < MAX_NUMNODES; n++, node++) {
558 		node = (node < MAX_NUMNODES) ? node : 0;
559 		if (!node_allowed(ctx, node))
560 			continue;
561 
562 		mutex_lock(&cbe_spu_info[node].list_mutex);
563 		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
564 			if (spu->alloc_state == SPU_FREE)
565 				goto found;
566 		}
567 		mutex_unlock(&cbe_spu_info[node].list_mutex);
568 	}
569 
570  not_found:
571 	spu_context_nospu_trace(spu_get_idle__not_found, ctx);
572 	return NULL;
573 
574  found:
575 	spu->alloc_state = SPU_USED;
576 	mutex_unlock(&cbe_spu_info[node].list_mutex);
577 	spu_context_trace(spu_get_idle__found, ctx, spu);
578 	spu_init_channels(spu);
579 	return spu;
580 }
581 
582 /**
583  * find_victim - find a lower priority context to preempt
584  * @ctx:	canidate context for running
585  *
586  * Returns the freed physical spu to run the new context on.
587  */
588 static struct spu *find_victim(struct spu_context *ctx)
589 {
590 	struct spu_context *victim = NULL;
591 	struct spu *spu;
592 	int node, n;
593 
594 	spu_context_nospu_trace(spu_find_vitim__enter, ctx);
595 
596 	/*
597 	 * Look for a possible preemption candidate on the local node first.
598 	 * If there is no candidate look at the other nodes.  This isn't
599 	 * exactly fair, but so far the whole spu scheduler tries to keep
600 	 * a strong node affinity.  We might want to fine-tune this in
601 	 * the future.
602 	 */
603  restart:
604 	node = cpu_to_node(raw_smp_processor_id());
605 	for (n = 0; n < MAX_NUMNODES; n++, node++) {
606 		node = (node < MAX_NUMNODES) ? node : 0;
607 		if (!node_allowed(ctx, node))
608 			continue;
609 
610 		mutex_lock(&cbe_spu_info[node].list_mutex);
611 		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
612 			struct spu_context *tmp = spu->ctx;
613 
614 			if (tmp && tmp->prio > ctx->prio &&
615 			    !(tmp->flags & SPU_CREATE_NOSCHED) &&
616 			    (!victim || tmp->prio > victim->prio))
617 				victim = spu->ctx;
618 		}
619 		mutex_unlock(&cbe_spu_info[node].list_mutex);
620 
621 		if (victim) {
622 			/*
623 			 * This nests ctx->state_mutex, but we always lock
624 			 * higher priority contexts before lower priority
625 			 * ones, so this is safe until we introduce
626 			 * priority inheritance schemes.
627 			 *
628 			 * XXX if the highest priority context is locked,
629 			 * this can loop a long time.  Might be better to
630 			 * look at another context or give up after X retries.
631 			 */
632 			if (!mutex_trylock(&victim->state_mutex)) {
633 				victim = NULL;
634 				goto restart;
635 			}
636 
637 			spu = victim->spu;
638 			if (!spu || victim->prio <= ctx->prio) {
639 				/*
640 				 * This race can happen because we've dropped
641 				 * the active list mutex.  Not a problem, just
642 				 * restart the search.
643 				 */
644 				mutex_unlock(&victim->state_mutex);
645 				victim = NULL;
646 				goto restart;
647 			}
648 
649 			spu_context_trace(__spu_deactivate__unload, ctx, spu);
650 
651 			mutex_lock(&cbe_spu_info[node].list_mutex);
652 			cbe_spu_info[node].nr_active--;
653 			spu_unbind_context(spu, victim);
654 			mutex_unlock(&cbe_spu_info[node].list_mutex);
655 
656 			victim->stats.invol_ctx_switch++;
657 			spu->stats.invol_ctx_switch++;
658 			spu_add_to_rq(victim);
659 
660 			mutex_unlock(&victim->state_mutex);
661 
662 			return spu;
663 		}
664 	}
665 
666 	return NULL;
667 }
668 
669 static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
670 {
671 	int node = spu->node;
672 	int success = 0;
673 
674 	spu_set_timeslice(ctx);
675 
676 	mutex_lock(&cbe_spu_info[node].list_mutex);
677 	if (spu->ctx == NULL) {
678 		spu_bind_context(spu, ctx);
679 		cbe_spu_info[node].nr_active++;
680 		spu->alloc_state = SPU_USED;
681 		success = 1;
682 	}
683 	mutex_unlock(&cbe_spu_info[node].list_mutex);
684 
685 	if (success)
686 		wake_up_all(&ctx->run_wq);
687 	else
688 		spu_add_to_rq(ctx);
689 }
690 
691 static void spu_schedule(struct spu *spu, struct spu_context *ctx)
692 {
693 	/* not a candidate for interruptible because it's called either
694 	   from the scheduler thread or from spu_deactivate */
695 	mutex_lock(&ctx->state_mutex);
696 	__spu_schedule(spu, ctx);
697 	spu_release(ctx);
698 }
699 
700 static void spu_unschedule(struct spu *spu, struct spu_context *ctx)
701 {
702 	int node = spu->node;
703 
704 	mutex_lock(&cbe_spu_info[node].list_mutex);
705 	cbe_spu_info[node].nr_active--;
706 	spu->alloc_state = SPU_FREE;
707 	spu_unbind_context(spu, ctx);
708 	ctx->stats.invol_ctx_switch++;
709 	spu->stats.invol_ctx_switch++;
710 	mutex_unlock(&cbe_spu_info[node].list_mutex);
711 }
712 
713 /**
714  * spu_activate - find a free spu for a context and execute it
715  * @ctx:	spu context to schedule
716  * @flags:	flags (currently ignored)
717  *
718  * Tries to find a free spu to run @ctx.  If no free spu is available
719  * add the context to the runqueue so it gets woken up once an spu
720  * is available.
721  */
722 int spu_activate(struct spu_context *ctx, unsigned long flags)
723 {
724 	struct spu *spu;
725 
726 	/*
727 	 * If there are multiple threads waiting for a single context
728 	 * only one actually binds the context while the others will
729 	 * only be able to acquire the state_mutex once the context
730 	 * already is in runnable state.
731 	 */
732 	if (ctx->spu)
733 		return 0;
734 
735 spu_activate_top:
736 	if (signal_pending(current))
737 		return -ERESTARTSYS;
738 
739 	spu = spu_get_idle(ctx);
740 	/*
741 	 * If this is a realtime thread we try to get it running by
742 	 * preempting a lower priority thread.
743 	 */
744 	if (!spu && rt_prio(ctx->prio))
745 		spu = find_victim(ctx);
746 	if (spu) {
747 		unsigned long runcntl;
748 
749 		runcntl = ctx->ops->runcntl_read(ctx);
750 		__spu_schedule(spu, ctx);
751 		if (runcntl & SPU_RUNCNTL_RUNNABLE)
752 			spuctx_switch_state(ctx, SPU_UTIL_USER);
753 
754 		return 0;
755 	}
756 
757 	if (ctx->flags & SPU_CREATE_NOSCHED) {
758 		spu_prio_wait(ctx);
759 		goto spu_activate_top;
760 	}
761 
762 	spu_add_to_rq(ctx);
763 
764 	return 0;
765 }
766 
767 /**
768  * grab_runnable_context - try to find a runnable context
769  *
770  * Remove the highest priority context on the runqueue and return it
771  * to the caller.  Returns %NULL if no runnable context was found.
772  */
773 static struct spu_context *grab_runnable_context(int prio, int node)
774 {
775 	struct spu_context *ctx;
776 	int best;
777 
778 	spin_lock(&spu_prio->runq_lock);
779 	best = find_first_bit(spu_prio->bitmap, prio);
780 	while (best < prio) {
781 		struct list_head *rq = &spu_prio->runq[best];
782 
783 		list_for_each_entry(ctx, rq, rq) {
784 			/* XXX(hch): check for affinity here aswell */
785 			if (__node_allowed(ctx, node)) {
786 				__spu_del_from_rq(ctx);
787 				goto found;
788 			}
789 		}
790 		best++;
791 	}
792 	ctx = NULL;
793  found:
794 	spin_unlock(&spu_prio->runq_lock);
795 	return ctx;
796 }
797 
798 static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
799 {
800 	struct spu *spu = ctx->spu;
801 	struct spu_context *new = NULL;
802 
803 	if (spu) {
804 		new = grab_runnable_context(max_prio, spu->node);
805 		if (new || force) {
806 			spu_unschedule(spu, ctx);
807 			if (new) {
808 				if (new->flags & SPU_CREATE_NOSCHED)
809 					wake_up(&new->stop_wq);
810 				else {
811 					spu_release(ctx);
812 					spu_schedule(spu, new);
813 					/* this one can't easily be made
814 					   interruptible */
815 					mutex_lock(&ctx->state_mutex);
816 				}
817 			}
818 		}
819 	}
820 
821 	return new != NULL;
822 }
823 
824 /**
825  * spu_deactivate - unbind a context from it's physical spu
826  * @ctx:	spu context to unbind
827  *
828  * Unbind @ctx from the physical spu it is running on and schedule
829  * the highest priority context to run on the freed physical spu.
830  */
831 void spu_deactivate(struct spu_context *ctx)
832 {
833 	spu_context_nospu_trace(spu_deactivate__enter, ctx);
834 	__spu_deactivate(ctx, 1, MAX_PRIO);
835 }
836 
837 /**
838  * spu_yield -	yield a physical spu if others are waiting
839  * @ctx:	spu context to yield
840  *
841  * Check if there is a higher priority context waiting and if yes
842  * unbind @ctx from the physical spu and schedule the highest
843  * priority context to run on the freed physical spu instead.
844  */
845 void spu_yield(struct spu_context *ctx)
846 {
847 	spu_context_nospu_trace(spu_yield__enter, ctx);
848 	if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
849 		mutex_lock(&ctx->state_mutex);
850 		__spu_deactivate(ctx, 0, MAX_PRIO);
851 		mutex_unlock(&ctx->state_mutex);
852 	}
853 }
854 
855 static noinline void spusched_tick(struct spu_context *ctx)
856 {
857 	struct spu_context *new = NULL;
858 	struct spu *spu = NULL;
859 
860 	if (spu_acquire(ctx))
861 		BUG();	/* a kernel thread never has signals pending */
862 
863 	if (ctx->state != SPU_STATE_RUNNABLE)
864 		goto out;
865 	if (ctx->flags & SPU_CREATE_NOSCHED)
866 		goto out;
867 	if (ctx->policy == SCHED_FIFO)
868 		goto out;
869 
870 	if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
871 		goto out;
872 
873 	spu = ctx->spu;
874 
875 	spu_context_trace(spusched_tick__preempt, ctx, spu);
876 
877 	new = grab_runnable_context(ctx->prio + 1, spu->node);
878 	if (new) {
879 		spu_unschedule(spu, ctx);
880 		if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
881 			spu_add_to_rq(ctx);
882 	} else {
883 		spu_context_nospu_trace(spusched_tick__newslice, ctx);
884 		ctx->time_slice++;
885 	}
886 out:
887 	spu_release(ctx);
888 
889 	if (new)
890 		spu_schedule(spu, new);
891 }
892 
893 /**
894  * count_active_contexts - count nr of active tasks
895  *
896  * Return the number of tasks currently running or waiting to run.
897  *
898  * Note that we don't take runq_lock / list_mutex here.  Reading
899  * a single 32bit value is atomic on powerpc, and we don't care
900  * about memory ordering issues here.
901  */
902 static unsigned long count_active_contexts(void)
903 {
904 	int nr_active = 0, node;
905 
906 	for (node = 0; node < MAX_NUMNODES; node++)
907 		nr_active += cbe_spu_info[node].nr_active;
908 	nr_active += spu_prio->nr_waiting;
909 
910 	return nr_active;
911 }
912 
913 /**
914  * spu_calc_load - update the avenrun load estimates.
915  *
916  * No locking against reading these values from userspace, as for
917  * the CPU loadavg code.
918  */
919 static void spu_calc_load(void)
920 {
921 	unsigned long active_tasks; /* fixed-point */
922 
923 	active_tasks = count_active_contexts() * FIXED_1;
924 	CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
925 	CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
926 	CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
927 }
928 
929 static void spusched_wake(unsigned long data)
930 {
931 	mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
932 	wake_up_process(spusched_task);
933 }
934 
935 static void spuloadavg_wake(unsigned long data)
936 {
937 	mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
938 	spu_calc_load();
939 }
940 
941 static int spusched_thread(void *unused)
942 {
943 	struct spu *spu;
944 	int node;
945 
946 	while (!kthread_should_stop()) {
947 		set_current_state(TASK_INTERRUPTIBLE);
948 		schedule();
949 		for (node = 0; node < MAX_NUMNODES; node++) {
950 			struct mutex *mtx = &cbe_spu_info[node].list_mutex;
951 
952 			mutex_lock(mtx);
953 			list_for_each_entry(spu, &cbe_spu_info[node].spus,
954 					cbe_list) {
955 				struct spu_context *ctx = spu->ctx;
956 
957 				if (ctx) {
958 					mutex_unlock(mtx);
959 					spusched_tick(ctx);
960 					mutex_lock(mtx);
961 				}
962 			}
963 			mutex_unlock(mtx);
964 		}
965 	}
966 
967 	return 0;
968 }
969 
970 void spuctx_switch_state(struct spu_context *ctx,
971 		enum spu_utilization_state new_state)
972 {
973 	unsigned long long curtime;
974 	signed long long delta;
975 	struct timespec ts;
976 	struct spu *spu;
977 	enum spu_utilization_state old_state;
978 
979 	ktime_get_ts(&ts);
980 	curtime = timespec_to_ns(&ts);
981 	delta = curtime - ctx->stats.tstamp;
982 
983 	WARN_ON(!mutex_is_locked(&ctx->state_mutex));
984 	WARN_ON(delta < 0);
985 
986 	spu = ctx->spu;
987 	old_state = ctx->stats.util_state;
988 	ctx->stats.util_state = new_state;
989 	ctx->stats.tstamp = curtime;
990 
991 	/*
992 	 * Update the physical SPU utilization statistics.
993 	 */
994 	if (spu) {
995 		ctx->stats.times[old_state] += delta;
996 		spu->stats.times[old_state] += delta;
997 		spu->stats.util_state = new_state;
998 		spu->stats.tstamp = curtime;
999 	}
1000 }
1001 
1002 #define LOAD_INT(x) ((x) >> FSHIFT)
1003 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
1004 
1005 static int show_spu_loadavg(struct seq_file *s, void *private)
1006 {
1007 	int a, b, c;
1008 
1009 	a = spu_avenrun[0] + (FIXED_1/200);
1010 	b = spu_avenrun[1] + (FIXED_1/200);
1011 	c = spu_avenrun[2] + (FIXED_1/200);
1012 
1013 	/*
1014 	 * Note that last_pid doesn't really make much sense for the
1015 	 * SPU loadavg (it even seems very odd on the CPU side...),
1016 	 * but we include it here to have a 100% compatible interface.
1017 	 */
1018 	seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
1019 		LOAD_INT(a), LOAD_FRAC(a),
1020 		LOAD_INT(b), LOAD_FRAC(b),
1021 		LOAD_INT(c), LOAD_FRAC(c),
1022 		count_active_contexts(),
1023 		atomic_read(&nr_spu_contexts),
1024 		current->nsproxy->pid_ns->last_pid);
1025 	return 0;
1026 }
1027 
1028 static int spu_loadavg_open(struct inode *inode, struct file *file)
1029 {
1030 	return single_open(file, show_spu_loadavg, NULL);
1031 }
1032 
1033 static const struct file_operations spu_loadavg_fops = {
1034 	.open		= spu_loadavg_open,
1035 	.read		= seq_read,
1036 	.llseek		= seq_lseek,
1037 	.release	= single_release,
1038 };
1039 
1040 int __init spu_sched_init(void)
1041 {
1042 	struct proc_dir_entry *entry;
1043 	int err = -ENOMEM, i;
1044 
1045 	spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
1046 	if (!spu_prio)
1047 		goto out;
1048 
1049 	for (i = 0; i < MAX_PRIO; i++) {
1050 		INIT_LIST_HEAD(&spu_prio->runq[i]);
1051 		__clear_bit(i, spu_prio->bitmap);
1052 	}
1053 	spin_lock_init(&spu_prio->runq_lock);
1054 
1055 	setup_timer(&spusched_timer, spusched_wake, 0);
1056 	setup_timer(&spuloadavg_timer, spuloadavg_wake, 0);
1057 
1058 	spusched_task = kthread_run(spusched_thread, NULL, "spusched");
1059 	if (IS_ERR(spusched_task)) {
1060 		err = PTR_ERR(spusched_task);
1061 		goto out_free_spu_prio;
1062 	}
1063 
1064 	mod_timer(&spuloadavg_timer, 0);
1065 
1066 	entry = create_proc_entry("spu_loadavg", 0, NULL);
1067 	if (!entry)
1068 		goto out_stop_kthread;
1069 	entry->proc_fops = &spu_loadavg_fops;
1070 
1071 	pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
1072 			SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
1073 	return 0;
1074 
1075  out_stop_kthread:
1076 	kthread_stop(spusched_task);
1077  out_free_spu_prio:
1078 	kfree(spu_prio);
1079  out:
1080 	return err;
1081 }
1082 
1083 void spu_sched_exit(void)
1084 {
1085 	struct spu *spu;
1086 	int node;
1087 
1088 	remove_proc_entry("spu_loadavg", NULL);
1089 
1090 	del_timer_sync(&spusched_timer);
1091 	del_timer_sync(&spuloadavg_timer);
1092 	kthread_stop(spusched_task);
1093 
1094 	for (node = 0; node < MAX_NUMNODES; node++) {
1095 		mutex_lock(&cbe_spu_info[node].list_mutex);
1096 		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
1097 			if (spu->alloc_state != SPU_FREE)
1098 				spu->alloc_state = SPU_FREE;
1099 		mutex_unlock(&cbe_spu_info[node].list_mutex);
1100 	}
1101 	kfree(spu_prio);
1102 }
1103