1 /* sched.c - SPU scheduler. 2 * 3 * Copyright (C) IBM 2005 4 * Author: Mark Nutter <mnutter@us.ibm.com> 5 * 6 * 2006-03-31 NUMA domains added. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2, or (at your option) 11 * any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #undef DEBUG 24 25 #include <linux/module.h> 26 #include <linux/errno.h> 27 #include <linux/sched.h> 28 #include <linux/kernel.h> 29 #include <linux/mm.h> 30 #include <linux/completion.h> 31 #include <linux/vmalloc.h> 32 #include <linux/smp.h> 33 #include <linux/stddef.h> 34 #include <linux/unistd.h> 35 #include <linux/numa.h> 36 #include <linux/mutex.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/pid_namespace.h> 40 #include <linux/proc_fs.h> 41 #include <linux/seq_file.h> 42 #include <linux/marker.h> 43 44 #include <asm/io.h> 45 #include <asm/mmu_context.h> 46 #include <asm/spu.h> 47 #include <asm/spu_csa.h> 48 #include <asm/spu_priv1.h> 49 #include "spufs.h" 50 51 struct spu_prio_array { 52 DECLARE_BITMAP(bitmap, MAX_PRIO); 53 struct list_head runq[MAX_PRIO]; 54 spinlock_t runq_lock; 55 int nr_waiting; 56 }; 57 58 static unsigned long spu_avenrun[3]; 59 static struct spu_prio_array *spu_prio; 60 static struct task_struct *spusched_task; 61 static struct timer_list spusched_timer; 62 static struct timer_list spuloadavg_timer; 63 64 /* 65 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0). 66 */ 67 #define NORMAL_PRIO 120 68 69 /* 70 * Frequency of the spu scheduler tick. By default we do one SPU scheduler 71 * tick for every 10 CPU scheduler ticks. 72 */ 73 #define SPUSCHED_TICK (10) 74 75 /* 76 * These are the 'tuning knobs' of the scheduler: 77 * 78 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is 79 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs. 80 */ 81 #define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1) 82 #define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK)) 83 84 #define MAX_USER_PRIO (MAX_PRIO - MAX_RT_PRIO) 85 #define SCALE_PRIO(x, prio) \ 86 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE) 87 88 /* 89 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values: 90 * [800ms ... 100ms ... 5ms] 91 * 92 * The higher a thread's priority, the bigger timeslices 93 * it gets during one round of execution. But even the lowest 94 * priority thread gets MIN_TIMESLICE worth of execution time. 95 */ 96 void spu_set_timeslice(struct spu_context *ctx) 97 { 98 if (ctx->prio < NORMAL_PRIO) 99 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio); 100 else 101 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio); 102 } 103 104 /* 105 * Update scheduling information from the owning thread. 106 */ 107 void __spu_update_sched_info(struct spu_context *ctx) 108 { 109 /* 110 * assert that the context is not on the runqueue, so it is safe 111 * to change its scheduling parameters. 112 */ 113 BUG_ON(!list_empty(&ctx->rq)); 114 115 /* 116 * 32-Bit assignments are atomic on powerpc, and we don't care about 117 * memory ordering here because retrieving the controlling thread is 118 * per definition racy. 119 */ 120 ctx->tid = current->pid; 121 122 /* 123 * We do our own priority calculations, so we normally want 124 * ->static_prio to start with. Unfortunately this field 125 * contains junk for threads with a realtime scheduling 126 * policy so we have to look at ->prio in this case. 127 */ 128 if (rt_prio(current->prio)) 129 ctx->prio = current->prio; 130 else 131 ctx->prio = current->static_prio; 132 ctx->policy = current->policy; 133 134 /* 135 * TO DO: the context may be loaded, so we may need to activate 136 * it again on a different node. But it shouldn't hurt anything 137 * to update its parameters, because we know that the scheduler 138 * is not actively looking at this field, since it is not on the 139 * runqueue. The context will be rescheduled on the proper node 140 * if it is timesliced or preempted. 141 */ 142 ctx->cpus_allowed = current->cpus_allowed; 143 } 144 145 void spu_update_sched_info(struct spu_context *ctx) 146 { 147 int node; 148 149 if (ctx->state == SPU_STATE_RUNNABLE) { 150 node = ctx->spu->node; 151 152 /* 153 * Take list_mutex to sync with find_victim(). 154 */ 155 mutex_lock(&cbe_spu_info[node].list_mutex); 156 __spu_update_sched_info(ctx); 157 mutex_unlock(&cbe_spu_info[node].list_mutex); 158 } else { 159 __spu_update_sched_info(ctx); 160 } 161 } 162 163 static int __node_allowed(struct spu_context *ctx, int node) 164 { 165 if (nr_cpus_node(node)) { 166 cpumask_t mask = node_to_cpumask(node); 167 168 if (cpus_intersects(mask, ctx->cpus_allowed)) 169 return 1; 170 } 171 172 return 0; 173 } 174 175 static int node_allowed(struct spu_context *ctx, int node) 176 { 177 int rval; 178 179 spin_lock(&spu_prio->runq_lock); 180 rval = __node_allowed(ctx, node); 181 spin_unlock(&spu_prio->runq_lock); 182 183 return rval; 184 } 185 186 void do_notify_spus_active(void) 187 { 188 int node; 189 190 /* 191 * Wake up the active spu_contexts. 192 * 193 * When the awakened processes see their "notify_active" flag is set, 194 * they will call spu_switch_notify(). 195 */ 196 for_each_online_node(node) { 197 struct spu *spu; 198 199 mutex_lock(&cbe_spu_info[node].list_mutex); 200 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 201 if (spu->alloc_state != SPU_FREE) { 202 struct spu_context *ctx = spu->ctx; 203 set_bit(SPU_SCHED_NOTIFY_ACTIVE, 204 &ctx->sched_flags); 205 mb(); 206 wake_up_all(&ctx->stop_wq); 207 } 208 } 209 mutex_unlock(&cbe_spu_info[node].list_mutex); 210 } 211 } 212 213 /** 214 * spu_bind_context - bind spu context to physical spu 215 * @spu: physical spu to bind to 216 * @ctx: context to bind 217 */ 218 static void spu_bind_context(struct spu *spu, struct spu_context *ctx) 219 { 220 spu_context_trace(spu_bind_context__enter, ctx, spu); 221 222 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); 223 224 if (ctx->flags & SPU_CREATE_NOSCHED) 225 atomic_inc(&cbe_spu_info[spu->node].reserved_spus); 226 227 ctx->stats.slb_flt_base = spu->stats.slb_flt; 228 ctx->stats.class2_intr_base = spu->stats.class2_intr; 229 230 spu->ctx = ctx; 231 spu->flags = 0; 232 ctx->spu = spu; 233 ctx->ops = &spu_hw_ops; 234 spu->pid = current->pid; 235 spu->tgid = current->tgid; 236 spu_associate_mm(spu, ctx->owner); 237 spu->ibox_callback = spufs_ibox_callback; 238 spu->wbox_callback = spufs_wbox_callback; 239 spu->stop_callback = spufs_stop_callback; 240 spu->mfc_callback = spufs_mfc_callback; 241 mb(); 242 spu_unmap_mappings(ctx); 243 spu_restore(&ctx->csa, spu); 244 spu->timestamp = jiffies; 245 spu_cpu_affinity_set(spu, raw_smp_processor_id()); 246 spu_switch_notify(spu, ctx); 247 ctx->state = SPU_STATE_RUNNABLE; 248 249 spuctx_switch_state(ctx, SPU_UTIL_USER); 250 } 251 252 /* 253 * Must be used with the list_mutex held. 254 */ 255 static inline int sched_spu(struct spu *spu) 256 { 257 BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex)); 258 259 return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED)); 260 } 261 262 static void aff_merge_remaining_ctxs(struct spu_gang *gang) 263 { 264 struct spu_context *ctx; 265 266 list_for_each_entry(ctx, &gang->aff_list_head, aff_list) { 267 if (list_empty(&ctx->aff_list)) 268 list_add(&ctx->aff_list, &gang->aff_list_head); 269 } 270 gang->aff_flags |= AFF_MERGED; 271 } 272 273 static void aff_set_offsets(struct spu_gang *gang) 274 { 275 struct spu_context *ctx; 276 int offset; 277 278 offset = -1; 279 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list, 280 aff_list) { 281 if (&ctx->aff_list == &gang->aff_list_head) 282 break; 283 ctx->aff_offset = offset--; 284 } 285 286 offset = 0; 287 list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) { 288 if (&ctx->aff_list == &gang->aff_list_head) 289 break; 290 ctx->aff_offset = offset++; 291 } 292 293 gang->aff_flags |= AFF_OFFSETS_SET; 294 } 295 296 static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff, 297 int group_size, int lowest_offset) 298 { 299 struct spu *spu; 300 int node, n; 301 302 /* 303 * TODO: A better algorithm could be used to find a good spu to be 304 * used as reference location for the ctxs chain. 305 */ 306 node = cpu_to_node(raw_smp_processor_id()); 307 for (n = 0; n < MAX_NUMNODES; n++, node++) { 308 node = (node < MAX_NUMNODES) ? node : 0; 309 if (!node_allowed(ctx, node)) 310 continue; 311 mutex_lock(&cbe_spu_info[node].list_mutex); 312 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 313 if ((!mem_aff || spu->has_mem_affinity) && 314 sched_spu(spu)) { 315 mutex_unlock(&cbe_spu_info[node].list_mutex); 316 return spu; 317 } 318 } 319 mutex_unlock(&cbe_spu_info[node].list_mutex); 320 } 321 return NULL; 322 } 323 324 static void aff_set_ref_point_location(struct spu_gang *gang) 325 { 326 int mem_aff, gs, lowest_offset; 327 struct spu_context *ctx; 328 struct spu *tmp; 329 330 mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM; 331 lowest_offset = 0; 332 gs = 0; 333 334 list_for_each_entry(tmp, &gang->aff_list_head, aff_list) 335 gs++; 336 337 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list, 338 aff_list) { 339 if (&ctx->aff_list == &gang->aff_list_head) 340 break; 341 lowest_offset = ctx->aff_offset; 342 } 343 344 gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs, 345 lowest_offset); 346 } 347 348 static struct spu *ctx_location(struct spu *ref, int offset, int node) 349 { 350 struct spu *spu; 351 352 spu = NULL; 353 if (offset >= 0) { 354 list_for_each_entry(spu, ref->aff_list.prev, aff_list) { 355 BUG_ON(spu->node != node); 356 if (offset == 0) 357 break; 358 if (sched_spu(spu)) 359 offset--; 360 } 361 } else { 362 list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) { 363 BUG_ON(spu->node != node); 364 if (offset == 0) 365 break; 366 if (sched_spu(spu)) 367 offset++; 368 } 369 } 370 371 return spu; 372 } 373 374 /* 375 * affinity_check is called each time a context is going to be scheduled. 376 * It returns the spu ptr on which the context must run. 377 */ 378 static int has_affinity(struct spu_context *ctx) 379 { 380 struct spu_gang *gang = ctx->gang; 381 382 if (list_empty(&ctx->aff_list)) 383 return 0; 384 385 if (!gang->aff_ref_spu) { 386 if (!(gang->aff_flags & AFF_MERGED)) 387 aff_merge_remaining_ctxs(gang); 388 if (!(gang->aff_flags & AFF_OFFSETS_SET)) 389 aff_set_offsets(gang); 390 aff_set_ref_point_location(gang); 391 } 392 393 return gang->aff_ref_spu != NULL; 394 } 395 396 /** 397 * spu_unbind_context - unbind spu context from physical spu 398 * @spu: physical spu to unbind from 399 * @ctx: context to unbind 400 */ 401 static void spu_unbind_context(struct spu *spu, struct spu_context *ctx) 402 { 403 spu_context_trace(spu_unbind_context__enter, ctx, spu); 404 405 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); 406 407 if (spu->ctx->flags & SPU_CREATE_NOSCHED) 408 atomic_dec(&cbe_spu_info[spu->node].reserved_spus); 409 410 if (ctx->gang){ 411 mutex_lock(&ctx->gang->aff_mutex); 412 if (has_affinity(ctx)) { 413 if (atomic_dec_and_test(&ctx->gang->aff_sched_count)) 414 ctx->gang->aff_ref_spu = NULL; 415 } 416 mutex_unlock(&ctx->gang->aff_mutex); 417 } 418 419 spu_switch_notify(spu, NULL); 420 spu_unmap_mappings(ctx); 421 spu_save(&ctx->csa, spu); 422 spu->timestamp = jiffies; 423 ctx->state = SPU_STATE_SAVED; 424 spu->ibox_callback = NULL; 425 spu->wbox_callback = NULL; 426 spu->stop_callback = NULL; 427 spu->mfc_callback = NULL; 428 spu_associate_mm(spu, NULL); 429 spu->pid = 0; 430 spu->tgid = 0; 431 ctx->ops = &spu_backing_ops; 432 spu->flags = 0; 433 spu->ctx = NULL; 434 435 ctx->stats.slb_flt += 436 (spu->stats.slb_flt - ctx->stats.slb_flt_base); 437 ctx->stats.class2_intr += 438 (spu->stats.class2_intr - ctx->stats.class2_intr_base); 439 440 /* This maps the underlying spu state to idle */ 441 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED); 442 ctx->spu = NULL; 443 } 444 445 /** 446 * spu_add_to_rq - add a context to the runqueue 447 * @ctx: context to add 448 */ 449 static void __spu_add_to_rq(struct spu_context *ctx) 450 { 451 /* 452 * Unfortunately this code path can be called from multiple threads 453 * on behalf of a single context due to the way the problem state 454 * mmap support works. 455 * 456 * Fortunately we need to wake up all these threads at the same time 457 * and can simply skip the runqueue addition for every but the first 458 * thread getting into this codepath. 459 * 460 * It's still quite hacky, and long-term we should proxy all other 461 * threads through the owner thread so that spu_run is in control 462 * of all the scheduling activity for a given context. 463 */ 464 if (list_empty(&ctx->rq)) { 465 list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]); 466 set_bit(ctx->prio, spu_prio->bitmap); 467 if (!spu_prio->nr_waiting++) 468 __mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK); 469 } 470 } 471 472 static void spu_add_to_rq(struct spu_context *ctx) 473 { 474 spin_lock(&spu_prio->runq_lock); 475 __spu_add_to_rq(ctx); 476 spin_unlock(&spu_prio->runq_lock); 477 } 478 479 static void __spu_del_from_rq(struct spu_context *ctx) 480 { 481 int prio = ctx->prio; 482 483 if (!list_empty(&ctx->rq)) { 484 if (!--spu_prio->nr_waiting) 485 del_timer(&spusched_timer); 486 list_del_init(&ctx->rq); 487 488 if (list_empty(&spu_prio->runq[prio])) 489 clear_bit(prio, spu_prio->bitmap); 490 } 491 } 492 493 void spu_del_from_rq(struct spu_context *ctx) 494 { 495 spin_lock(&spu_prio->runq_lock); 496 __spu_del_from_rq(ctx); 497 spin_unlock(&spu_prio->runq_lock); 498 } 499 500 static void spu_prio_wait(struct spu_context *ctx) 501 { 502 DEFINE_WAIT(wait); 503 504 /* 505 * The caller must explicitly wait for a context to be loaded 506 * if the nosched flag is set. If NOSCHED is not set, the caller 507 * queues the context and waits for an spu event or error. 508 */ 509 BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED)); 510 511 spin_lock(&spu_prio->runq_lock); 512 prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE); 513 if (!signal_pending(current)) { 514 __spu_add_to_rq(ctx); 515 spin_unlock(&spu_prio->runq_lock); 516 mutex_unlock(&ctx->state_mutex); 517 schedule(); 518 mutex_lock(&ctx->state_mutex); 519 spin_lock(&spu_prio->runq_lock); 520 __spu_del_from_rq(ctx); 521 } 522 spin_unlock(&spu_prio->runq_lock); 523 __set_current_state(TASK_RUNNING); 524 remove_wait_queue(&ctx->stop_wq, &wait); 525 } 526 527 static struct spu *spu_get_idle(struct spu_context *ctx) 528 { 529 struct spu *spu, *aff_ref_spu; 530 int node, n; 531 532 spu_context_nospu_trace(spu_get_idle__enter, ctx); 533 534 if (ctx->gang) { 535 mutex_lock(&ctx->gang->aff_mutex); 536 if (has_affinity(ctx)) { 537 aff_ref_spu = ctx->gang->aff_ref_spu; 538 atomic_inc(&ctx->gang->aff_sched_count); 539 mutex_unlock(&ctx->gang->aff_mutex); 540 node = aff_ref_spu->node; 541 542 mutex_lock(&cbe_spu_info[node].list_mutex); 543 spu = ctx_location(aff_ref_spu, ctx->aff_offset, node); 544 if (spu && spu->alloc_state == SPU_FREE) 545 goto found; 546 mutex_unlock(&cbe_spu_info[node].list_mutex); 547 548 mutex_lock(&ctx->gang->aff_mutex); 549 if (atomic_dec_and_test(&ctx->gang->aff_sched_count)) 550 ctx->gang->aff_ref_spu = NULL; 551 mutex_unlock(&ctx->gang->aff_mutex); 552 goto not_found; 553 } 554 mutex_unlock(&ctx->gang->aff_mutex); 555 } 556 node = cpu_to_node(raw_smp_processor_id()); 557 for (n = 0; n < MAX_NUMNODES; n++, node++) { 558 node = (node < MAX_NUMNODES) ? node : 0; 559 if (!node_allowed(ctx, node)) 560 continue; 561 562 mutex_lock(&cbe_spu_info[node].list_mutex); 563 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 564 if (spu->alloc_state == SPU_FREE) 565 goto found; 566 } 567 mutex_unlock(&cbe_spu_info[node].list_mutex); 568 } 569 570 not_found: 571 spu_context_nospu_trace(spu_get_idle__not_found, ctx); 572 return NULL; 573 574 found: 575 spu->alloc_state = SPU_USED; 576 mutex_unlock(&cbe_spu_info[node].list_mutex); 577 spu_context_trace(spu_get_idle__found, ctx, spu); 578 spu_init_channels(spu); 579 return spu; 580 } 581 582 /** 583 * find_victim - find a lower priority context to preempt 584 * @ctx: canidate context for running 585 * 586 * Returns the freed physical spu to run the new context on. 587 */ 588 static struct spu *find_victim(struct spu_context *ctx) 589 { 590 struct spu_context *victim = NULL; 591 struct spu *spu; 592 int node, n; 593 594 spu_context_nospu_trace(spu_find_vitim__enter, ctx); 595 596 /* 597 * Look for a possible preemption candidate on the local node first. 598 * If there is no candidate look at the other nodes. This isn't 599 * exactly fair, but so far the whole spu scheduler tries to keep 600 * a strong node affinity. We might want to fine-tune this in 601 * the future. 602 */ 603 restart: 604 node = cpu_to_node(raw_smp_processor_id()); 605 for (n = 0; n < MAX_NUMNODES; n++, node++) { 606 node = (node < MAX_NUMNODES) ? node : 0; 607 if (!node_allowed(ctx, node)) 608 continue; 609 610 mutex_lock(&cbe_spu_info[node].list_mutex); 611 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 612 struct spu_context *tmp = spu->ctx; 613 614 if (tmp && tmp->prio > ctx->prio && 615 !(tmp->flags & SPU_CREATE_NOSCHED) && 616 (!victim || tmp->prio > victim->prio)) 617 victim = spu->ctx; 618 } 619 mutex_unlock(&cbe_spu_info[node].list_mutex); 620 621 if (victim) { 622 /* 623 * This nests ctx->state_mutex, but we always lock 624 * higher priority contexts before lower priority 625 * ones, so this is safe until we introduce 626 * priority inheritance schemes. 627 * 628 * XXX if the highest priority context is locked, 629 * this can loop a long time. Might be better to 630 * look at another context or give up after X retries. 631 */ 632 if (!mutex_trylock(&victim->state_mutex)) { 633 victim = NULL; 634 goto restart; 635 } 636 637 spu = victim->spu; 638 if (!spu || victim->prio <= ctx->prio) { 639 /* 640 * This race can happen because we've dropped 641 * the active list mutex. Not a problem, just 642 * restart the search. 643 */ 644 mutex_unlock(&victim->state_mutex); 645 victim = NULL; 646 goto restart; 647 } 648 649 spu_context_trace(__spu_deactivate__unload, ctx, spu); 650 651 mutex_lock(&cbe_spu_info[node].list_mutex); 652 cbe_spu_info[node].nr_active--; 653 spu_unbind_context(spu, victim); 654 mutex_unlock(&cbe_spu_info[node].list_mutex); 655 656 victim->stats.invol_ctx_switch++; 657 spu->stats.invol_ctx_switch++; 658 spu_add_to_rq(victim); 659 660 mutex_unlock(&victim->state_mutex); 661 662 return spu; 663 } 664 } 665 666 return NULL; 667 } 668 669 static void __spu_schedule(struct spu *spu, struct spu_context *ctx) 670 { 671 int node = spu->node; 672 int success = 0; 673 674 spu_set_timeslice(ctx); 675 676 mutex_lock(&cbe_spu_info[node].list_mutex); 677 if (spu->ctx == NULL) { 678 spu_bind_context(spu, ctx); 679 cbe_spu_info[node].nr_active++; 680 spu->alloc_state = SPU_USED; 681 success = 1; 682 } 683 mutex_unlock(&cbe_spu_info[node].list_mutex); 684 685 if (success) 686 wake_up_all(&ctx->run_wq); 687 else 688 spu_add_to_rq(ctx); 689 } 690 691 static void spu_schedule(struct spu *spu, struct spu_context *ctx) 692 { 693 /* not a candidate for interruptible because it's called either 694 from the scheduler thread or from spu_deactivate */ 695 mutex_lock(&ctx->state_mutex); 696 __spu_schedule(spu, ctx); 697 spu_release(ctx); 698 } 699 700 static void spu_unschedule(struct spu *spu, struct spu_context *ctx) 701 { 702 int node = spu->node; 703 704 mutex_lock(&cbe_spu_info[node].list_mutex); 705 cbe_spu_info[node].nr_active--; 706 spu->alloc_state = SPU_FREE; 707 spu_unbind_context(spu, ctx); 708 ctx->stats.invol_ctx_switch++; 709 spu->stats.invol_ctx_switch++; 710 mutex_unlock(&cbe_spu_info[node].list_mutex); 711 } 712 713 /** 714 * spu_activate - find a free spu for a context and execute it 715 * @ctx: spu context to schedule 716 * @flags: flags (currently ignored) 717 * 718 * Tries to find a free spu to run @ctx. If no free spu is available 719 * add the context to the runqueue so it gets woken up once an spu 720 * is available. 721 */ 722 int spu_activate(struct spu_context *ctx, unsigned long flags) 723 { 724 struct spu *spu; 725 726 /* 727 * If there are multiple threads waiting for a single context 728 * only one actually binds the context while the others will 729 * only be able to acquire the state_mutex once the context 730 * already is in runnable state. 731 */ 732 if (ctx->spu) 733 return 0; 734 735 spu_activate_top: 736 if (signal_pending(current)) 737 return -ERESTARTSYS; 738 739 spu = spu_get_idle(ctx); 740 /* 741 * If this is a realtime thread we try to get it running by 742 * preempting a lower priority thread. 743 */ 744 if (!spu && rt_prio(ctx->prio)) 745 spu = find_victim(ctx); 746 if (spu) { 747 unsigned long runcntl; 748 749 runcntl = ctx->ops->runcntl_read(ctx); 750 __spu_schedule(spu, ctx); 751 if (runcntl & SPU_RUNCNTL_RUNNABLE) 752 spuctx_switch_state(ctx, SPU_UTIL_USER); 753 754 return 0; 755 } 756 757 if (ctx->flags & SPU_CREATE_NOSCHED) { 758 spu_prio_wait(ctx); 759 goto spu_activate_top; 760 } 761 762 spu_add_to_rq(ctx); 763 764 return 0; 765 } 766 767 /** 768 * grab_runnable_context - try to find a runnable context 769 * 770 * Remove the highest priority context on the runqueue and return it 771 * to the caller. Returns %NULL if no runnable context was found. 772 */ 773 static struct spu_context *grab_runnable_context(int prio, int node) 774 { 775 struct spu_context *ctx; 776 int best; 777 778 spin_lock(&spu_prio->runq_lock); 779 best = find_first_bit(spu_prio->bitmap, prio); 780 while (best < prio) { 781 struct list_head *rq = &spu_prio->runq[best]; 782 783 list_for_each_entry(ctx, rq, rq) { 784 /* XXX(hch): check for affinity here aswell */ 785 if (__node_allowed(ctx, node)) { 786 __spu_del_from_rq(ctx); 787 goto found; 788 } 789 } 790 best++; 791 } 792 ctx = NULL; 793 found: 794 spin_unlock(&spu_prio->runq_lock); 795 return ctx; 796 } 797 798 static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio) 799 { 800 struct spu *spu = ctx->spu; 801 struct spu_context *new = NULL; 802 803 if (spu) { 804 new = grab_runnable_context(max_prio, spu->node); 805 if (new || force) { 806 spu_unschedule(spu, ctx); 807 if (new) { 808 if (new->flags & SPU_CREATE_NOSCHED) 809 wake_up(&new->stop_wq); 810 else { 811 spu_release(ctx); 812 spu_schedule(spu, new); 813 /* this one can't easily be made 814 interruptible */ 815 mutex_lock(&ctx->state_mutex); 816 } 817 } 818 } 819 } 820 821 return new != NULL; 822 } 823 824 /** 825 * spu_deactivate - unbind a context from it's physical spu 826 * @ctx: spu context to unbind 827 * 828 * Unbind @ctx from the physical spu it is running on and schedule 829 * the highest priority context to run on the freed physical spu. 830 */ 831 void spu_deactivate(struct spu_context *ctx) 832 { 833 spu_context_nospu_trace(spu_deactivate__enter, ctx); 834 __spu_deactivate(ctx, 1, MAX_PRIO); 835 } 836 837 /** 838 * spu_yield - yield a physical spu if others are waiting 839 * @ctx: spu context to yield 840 * 841 * Check if there is a higher priority context waiting and if yes 842 * unbind @ctx from the physical spu and schedule the highest 843 * priority context to run on the freed physical spu instead. 844 */ 845 void spu_yield(struct spu_context *ctx) 846 { 847 spu_context_nospu_trace(spu_yield__enter, ctx); 848 if (!(ctx->flags & SPU_CREATE_NOSCHED)) { 849 mutex_lock(&ctx->state_mutex); 850 __spu_deactivate(ctx, 0, MAX_PRIO); 851 mutex_unlock(&ctx->state_mutex); 852 } 853 } 854 855 static noinline void spusched_tick(struct spu_context *ctx) 856 { 857 struct spu_context *new = NULL; 858 struct spu *spu = NULL; 859 860 if (spu_acquire(ctx)) 861 BUG(); /* a kernel thread never has signals pending */ 862 863 if (ctx->state != SPU_STATE_RUNNABLE) 864 goto out; 865 if (ctx->flags & SPU_CREATE_NOSCHED) 866 goto out; 867 if (ctx->policy == SCHED_FIFO) 868 goto out; 869 870 if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags)) 871 goto out; 872 873 spu = ctx->spu; 874 875 spu_context_trace(spusched_tick__preempt, ctx, spu); 876 877 new = grab_runnable_context(ctx->prio + 1, spu->node); 878 if (new) { 879 spu_unschedule(spu, ctx); 880 if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags)) 881 spu_add_to_rq(ctx); 882 } else { 883 spu_context_nospu_trace(spusched_tick__newslice, ctx); 884 ctx->time_slice++; 885 } 886 out: 887 spu_release(ctx); 888 889 if (new) 890 spu_schedule(spu, new); 891 } 892 893 /** 894 * count_active_contexts - count nr of active tasks 895 * 896 * Return the number of tasks currently running or waiting to run. 897 * 898 * Note that we don't take runq_lock / list_mutex here. Reading 899 * a single 32bit value is atomic on powerpc, and we don't care 900 * about memory ordering issues here. 901 */ 902 static unsigned long count_active_contexts(void) 903 { 904 int nr_active = 0, node; 905 906 for (node = 0; node < MAX_NUMNODES; node++) 907 nr_active += cbe_spu_info[node].nr_active; 908 nr_active += spu_prio->nr_waiting; 909 910 return nr_active; 911 } 912 913 /** 914 * spu_calc_load - update the avenrun load estimates. 915 * 916 * No locking against reading these values from userspace, as for 917 * the CPU loadavg code. 918 */ 919 static void spu_calc_load(void) 920 { 921 unsigned long active_tasks; /* fixed-point */ 922 923 active_tasks = count_active_contexts() * FIXED_1; 924 CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks); 925 CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks); 926 CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks); 927 } 928 929 static void spusched_wake(unsigned long data) 930 { 931 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK); 932 wake_up_process(spusched_task); 933 } 934 935 static void spuloadavg_wake(unsigned long data) 936 { 937 mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ); 938 spu_calc_load(); 939 } 940 941 static int spusched_thread(void *unused) 942 { 943 struct spu *spu; 944 int node; 945 946 while (!kthread_should_stop()) { 947 set_current_state(TASK_INTERRUPTIBLE); 948 schedule(); 949 for (node = 0; node < MAX_NUMNODES; node++) { 950 struct mutex *mtx = &cbe_spu_info[node].list_mutex; 951 952 mutex_lock(mtx); 953 list_for_each_entry(spu, &cbe_spu_info[node].spus, 954 cbe_list) { 955 struct spu_context *ctx = spu->ctx; 956 957 if (ctx) { 958 mutex_unlock(mtx); 959 spusched_tick(ctx); 960 mutex_lock(mtx); 961 } 962 } 963 mutex_unlock(mtx); 964 } 965 } 966 967 return 0; 968 } 969 970 void spuctx_switch_state(struct spu_context *ctx, 971 enum spu_utilization_state new_state) 972 { 973 unsigned long long curtime; 974 signed long long delta; 975 struct timespec ts; 976 struct spu *spu; 977 enum spu_utilization_state old_state; 978 979 ktime_get_ts(&ts); 980 curtime = timespec_to_ns(&ts); 981 delta = curtime - ctx->stats.tstamp; 982 983 WARN_ON(!mutex_is_locked(&ctx->state_mutex)); 984 WARN_ON(delta < 0); 985 986 spu = ctx->spu; 987 old_state = ctx->stats.util_state; 988 ctx->stats.util_state = new_state; 989 ctx->stats.tstamp = curtime; 990 991 /* 992 * Update the physical SPU utilization statistics. 993 */ 994 if (spu) { 995 ctx->stats.times[old_state] += delta; 996 spu->stats.times[old_state] += delta; 997 spu->stats.util_state = new_state; 998 spu->stats.tstamp = curtime; 999 } 1000 } 1001 1002 #define LOAD_INT(x) ((x) >> FSHIFT) 1003 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100) 1004 1005 static int show_spu_loadavg(struct seq_file *s, void *private) 1006 { 1007 int a, b, c; 1008 1009 a = spu_avenrun[0] + (FIXED_1/200); 1010 b = spu_avenrun[1] + (FIXED_1/200); 1011 c = spu_avenrun[2] + (FIXED_1/200); 1012 1013 /* 1014 * Note that last_pid doesn't really make much sense for the 1015 * SPU loadavg (it even seems very odd on the CPU side...), 1016 * but we include it here to have a 100% compatible interface. 1017 */ 1018 seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n", 1019 LOAD_INT(a), LOAD_FRAC(a), 1020 LOAD_INT(b), LOAD_FRAC(b), 1021 LOAD_INT(c), LOAD_FRAC(c), 1022 count_active_contexts(), 1023 atomic_read(&nr_spu_contexts), 1024 current->nsproxy->pid_ns->last_pid); 1025 return 0; 1026 } 1027 1028 static int spu_loadavg_open(struct inode *inode, struct file *file) 1029 { 1030 return single_open(file, show_spu_loadavg, NULL); 1031 } 1032 1033 static const struct file_operations spu_loadavg_fops = { 1034 .open = spu_loadavg_open, 1035 .read = seq_read, 1036 .llseek = seq_lseek, 1037 .release = single_release, 1038 }; 1039 1040 int __init spu_sched_init(void) 1041 { 1042 struct proc_dir_entry *entry; 1043 int err = -ENOMEM, i; 1044 1045 spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL); 1046 if (!spu_prio) 1047 goto out; 1048 1049 for (i = 0; i < MAX_PRIO; i++) { 1050 INIT_LIST_HEAD(&spu_prio->runq[i]); 1051 __clear_bit(i, spu_prio->bitmap); 1052 } 1053 spin_lock_init(&spu_prio->runq_lock); 1054 1055 setup_timer(&spusched_timer, spusched_wake, 0); 1056 setup_timer(&spuloadavg_timer, spuloadavg_wake, 0); 1057 1058 spusched_task = kthread_run(spusched_thread, NULL, "spusched"); 1059 if (IS_ERR(spusched_task)) { 1060 err = PTR_ERR(spusched_task); 1061 goto out_free_spu_prio; 1062 } 1063 1064 mod_timer(&spuloadavg_timer, 0); 1065 1066 entry = create_proc_entry("spu_loadavg", 0, NULL); 1067 if (!entry) 1068 goto out_stop_kthread; 1069 entry->proc_fops = &spu_loadavg_fops; 1070 1071 pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n", 1072 SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE); 1073 return 0; 1074 1075 out_stop_kthread: 1076 kthread_stop(spusched_task); 1077 out_free_spu_prio: 1078 kfree(spu_prio); 1079 out: 1080 return err; 1081 } 1082 1083 void spu_sched_exit(void) 1084 { 1085 struct spu *spu; 1086 int node; 1087 1088 remove_proc_entry("spu_loadavg", NULL); 1089 1090 del_timer_sync(&spusched_timer); 1091 del_timer_sync(&spuloadavg_timer); 1092 kthread_stop(spusched_task); 1093 1094 for (node = 0; node < MAX_NUMNODES; node++) { 1095 mutex_lock(&cbe_spu_info[node].list_mutex); 1096 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) 1097 if (spu->alloc_state != SPU_FREE) 1098 spu->alloc_state = SPU_FREE; 1099 mutex_unlock(&cbe_spu_info[node].list_mutex); 1100 } 1101 kfree(spu_prio); 1102 } 1103