1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* sched.c - SPU scheduler. 3 * 4 * Copyright (C) IBM 2005 5 * Author: Mark Nutter <mnutter@us.ibm.com> 6 * 7 * 2006-03-31 NUMA domains added. 8 */ 9 10 #undef DEBUG 11 12 #include <linux/errno.h> 13 #include <linux/sched/signal.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/rt.h> 16 #include <linux/kernel.h> 17 #include <linux/mm.h> 18 #include <linux/slab.h> 19 #include <linux/completion.h> 20 #include <linux/vmalloc.h> 21 #include <linux/smp.h> 22 #include <linux/stddef.h> 23 #include <linux/unistd.h> 24 #include <linux/numa.h> 25 #include <linux/mutex.h> 26 #include <linux/notifier.h> 27 #include <linux/kthread.h> 28 #include <linux/pid_namespace.h> 29 #include <linux/proc_fs.h> 30 #include <linux/seq_file.h> 31 32 #include <asm/io.h> 33 #include <asm/mmu_context.h> 34 #include <asm/spu.h> 35 #include <asm/spu_csa.h> 36 #include <asm/spu_priv1.h> 37 #include "spufs.h" 38 #define CREATE_TRACE_POINTS 39 #include "sputrace.h" 40 41 struct spu_prio_array { 42 DECLARE_BITMAP(bitmap, MAX_PRIO); 43 struct list_head runq[MAX_PRIO]; 44 spinlock_t runq_lock; 45 int nr_waiting; 46 }; 47 48 static unsigned long spu_avenrun[3]; 49 static struct spu_prio_array *spu_prio; 50 static struct task_struct *spusched_task; 51 static struct timer_list spusched_timer; 52 static struct timer_list spuloadavg_timer; 53 54 /* 55 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0). 56 */ 57 #define NORMAL_PRIO 120 58 59 /* 60 * Frequency of the spu scheduler tick. By default we do one SPU scheduler 61 * tick for every 10 CPU scheduler ticks. 62 */ 63 #define SPUSCHED_TICK (10) 64 65 /* 66 * These are the 'tuning knobs' of the scheduler: 67 * 68 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is 69 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs. 70 */ 71 #define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1) 72 #define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK)) 73 74 #define SCALE_PRIO(x, prio) \ 75 max(x * (MAX_PRIO - prio) / (NICE_WIDTH / 2), MIN_SPU_TIMESLICE) 76 77 /* 78 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values: 79 * [800ms ... 100ms ... 5ms] 80 * 81 * The higher a thread's priority, the bigger timeslices 82 * it gets during one round of execution. But even the lowest 83 * priority thread gets MIN_TIMESLICE worth of execution time. 84 */ 85 void spu_set_timeslice(struct spu_context *ctx) 86 { 87 if (ctx->prio < NORMAL_PRIO) 88 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio); 89 else 90 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio); 91 } 92 93 /* 94 * Update scheduling information from the owning thread. 95 */ 96 void __spu_update_sched_info(struct spu_context *ctx) 97 { 98 /* 99 * assert that the context is not on the runqueue, so it is safe 100 * to change its scheduling parameters. 101 */ 102 BUG_ON(!list_empty(&ctx->rq)); 103 104 /* 105 * 32-Bit assignments are atomic on powerpc, and we don't care about 106 * memory ordering here because retrieving the controlling thread is 107 * per definition racy. 108 */ 109 ctx->tid = current->pid; 110 111 /* 112 * We do our own priority calculations, so we normally want 113 * ->static_prio to start with. Unfortunately this field 114 * contains junk for threads with a realtime scheduling 115 * policy so we have to look at ->prio in this case. 116 */ 117 if (rt_prio(current->prio)) 118 ctx->prio = current->prio; 119 else 120 ctx->prio = current->static_prio; 121 ctx->policy = current->policy; 122 123 /* 124 * TO DO: the context may be loaded, so we may need to activate 125 * it again on a different node. But it shouldn't hurt anything 126 * to update its parameters, because we know that the scheduler 127 * is not actively looking at this field, since it is not on the 128 * runqueue. The context will be rescheduled on the proper node 129 * if it is timesliced or preempted. 130 */ 131 cpumask_copy(&ctx->cpus_allowed, current->cpus_ptr); 132 133 /* Save the current cpu id for spu interrupt routing. */ 134 ctx->last_ran = raw_smp_processor_id(); 135 } 136 137 void spu_update_sched_info(struct spu_context *ctx) 138 { 139 int node; 140 141 if (ctx->state == SPU_STATE_RUNNABLE) { 142 node = ctx->spu->node; 143 144 /* 145 * Take list_mutex to sync with find_victim(). 146 */ 147 mutex_lock(&cbe_spu_info[node].list_mutex); 148 __spu_update_sched_info(ctx); 149 mutex_unlock(&cbe_spu_info[node].list_mutex); 150 } else { 151 __spu_update_sched_info(ctx); 152 } 153 } 154 155 static int __node_allowed(struct spu_context *ctx, int node) 156 { 157 if (nr_cpus_node(node)) { 158 const struct cpumask *mask = cpumask_of_node(node); 159 160 if (cpumask_intersects(mask, &ctx->cpus_allowed)) 161 return 1; 162 } 163 164 return 0; 165 } 166 167 static int node_allowed(struct spu_context *ctx, int node) 168 { 169 int rval; 170 171 spin_lock(&spu_prio->runq_lock); 172 rval = __node_allowed(ctx, node); 173 spin_unlock(&spu_prio->runq_lock); 174 175 return rval; 176 } 177 178 void do_notify_spus_active(void) 179 { 180 int node; 181 182 /* 183 * Wake up the active spu_contexts. 184 */ 185 for_each_online_node(node) { 186 struct spu *spu; 187 188 mutex_lock(&cbe_spu_info[node].list_mutex); 189 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 190 if (spu->alloc_state != SPU_FREE) { 191 struct spu_context *ctx = spu->ctx; 192 set_bit(SPU_SCHED_NOTIFY_ACTIVE, 193 &ctx->sched_flags); 194 mb(); 195 wake_up_all(&ctx->stop_wq); 196 } 197 } 198 mutex_unlock(&cbe_spu_info[node].list_mutex); 199 } 200 } 201 202 /** 203 * spu_bind_context - bind spu context to physical spu 204 * @spu: physical spu to bind to 205 * @ctx: context to bind 206 */ 207 static void spu_bind_context(struct spu *spu, struct spu_context *ctx) 208 { 209 spu_context_trace(spu_bind_context__enter, ctx, spu); 210 211 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); 212 213 if (ctx->flags & SPU_CREATE_NOSCHED) 214 atomic_inc(&cbe_spu_info[spu->node].reserved_spus); 215 216 ctx->stats.slb_flt_base = spu->stats.slb_flt; 217 ctx->stats.class2_intr_base = spu->stats.class2_intr; 218 219 spu_associate_mm(spu, ctx->owner); 220 221 spin_lock_irq(&spu->register_lock); 222 spu->ctx = ctx; 223 spu->flags = 0; 224 ctx->spu = spu; 225 ctx->ops = &spu_hw_ops; 226 spu->pid = current->pid; 227 spu->tgid = current->tgid; 228 spu->ibox_callback = spufs_ibox_callback; 229 spu->wbox_callback = spufs_wbox_callback; 230 spu->stop_callback = spufs_stop_callback; 231 spu->mfc_callback = spufs_mfc_callback; 232 spin_unlock_irq(&spu->register_lock); 233 234 spu_unmap_mappings(ctx); 235 236 spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0); 237 spu_restore(&ctx->csa, spu); 238 spu->timestamp = jiffies; 239 ctx->state = SPU_STATE_RUNNABLE; 240 241 spuctx_switch_state(ctx, SPU_UTIL_USER); 242 } 243 244 /* 245 * Must be used with the list_mutex held. 246 */ 247 static inline int sched_spu(struct spu *spu) 248 { 249 BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex)); 250 251 return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED)); 252 } 253 254 static void aff_merge_remaining_ctxs(struct spu_gang *gang) 255 { 256 struct spu_context *ctx; 257 258 list_for_each_entry(ctx, &gang->aff_list_head, aff_list) { 259 if (list_empty(&ctx->aff_list)) 260 list_add(&ctx->aff_list, &gang->aff_list_head); 261 } 262 gang->aff_flags |= AFF_MERGED; 263 } 264 265 static void aff_set_offsets(struct spu_gang *gang) 266 { 267 struct spu_context *ctx; 268 int offset; 269 270 offset = -1; 271 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list, 272 aff_list) { 273 if (&ctx->aff_list == &gang->aff_list_head) 274 break; 275 ctx->aff_offset = offset--; 276 } 277 278 offset = 0; 279 list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) { 280 if (&ctx->aff_list == &gang->aff_list_head) 281 break; 282 ctx->aff_offset = offset++; 283 } 284 285 gang->aff_flags |= AFF_OFFSETS_SET; 286 } 287 288 static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff, 289 int group_size, int lowest_offset) 290 { 291 struct spu *spu; 292 int node, n; 293 294 /* 295 * TODO: A better algorithm could be used to find a good spu to be 296 * used as reference location for the ctxs chain. 297 */ 298 node = cpu_to_node(raw_smp_processor_id()); 299 for (n = 0; n < MAX_NUMNODES; n++, node++) { 300 /* 301 * "available_spus" counts how many spus are not potentially 302 * going to be used by other affinity gangs whose reference 303 * context is already in place. Although this code seeks to 304 * avoid having affinity gangs with a summed amount of 305 * contexts bigger than the amount of spus in the node, 306 * this may happen sporadically. In this case, available_spus 307 * becomes negative, which is harmless. 308 */ 309 int available_spus; 310 311 node = (node < MAX_NUMNODES) ? node : 0; 312 if (!node_allowed(ctx, node)) 313 continue; 314 315 available_spus = 0; 316 mutex_lock(&cbe_spu_info[node].list_mutex); 317 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 318 if (spu->ctx && spu->ctx->gang && !spu->ctx->aff_offset 319 && spu->ctx->gang->aff_ref_spu) 320 available_spus -= spu->ctx->gang->contexts; 321 available_spus++; 322 } 323 if (available_spus < ctx->gang->contexts) { 324 mutex_unlock(&cbe_spu_info[node].list_mutex); 325 continue; 326 } 327 328 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 329 if ((!mem_aff || spu->has_mem_affinity) && 330 sched_spu(spu)) { 331 mutex_unlock(&cbe_spu_info[node].list_mutex); 332 return spu; 333 } 334 } 335 mutex_unlock(&cbe_spu_info[node].list_mutex); 336 } 337 return NULL; 338 } 339 340 static void aff_set_ref_point_location(struct spu_gang *gang) 341 { 342 int mem_aff, gs, lowest_offset; 343 struct spu_context *tmp, *ctx; 344 345 mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM; 346 lowest_offset = 0; 347 gs = 0; 348 349 list_for_each_entry(tmp, &gang->aff_list_head, aff_list) 350 gs++; 351 352 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list, 353 aff_list) { 354 if (&ctx->aff_list == &gang->aff_list_head) 355 break; 356 lowest_offset = ctx->aff_offset; 357 } 358 359 gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs, 360 lowest_offset); 361 } 362 363 static struct spu *ctx_location(struct spu *ref, int offset, int node) 364 { 365 struct spu *spu; 366 367 spu = NULL; 368 if (offset >= 0) { 369 list_for_each_entry(spu, ref->aff_list.prev, aff_list) { 370 BUG_ON(spu->node != node); 371 if (offset == 0) 372 break; 373 if (sched_spu(spu)) 374 offset--; 375 } 376 } else { 377 list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) { 378 BUG_ON(spu->node != node); 379 if (offset == 0) 380 break; 381 if (sched_spu(spu)) 382 offset++; 383 } 384 } 385 386 return spu; 387 } 388 389 /* 390 * affinity_check is called each time a context is going to be scheduled. 391 * It returns the spu ptr on which the context must run. 392 */ 393 static int has_affinity(struct spu_context *ctx) 394 { 395 struct spu_gang *gang = ctx->gang; 396 397 if (list_empty(&ctx->aff_list)) 398 return 0; 399 400 if (atomic_read(&ctx->gang->aff_sched_count) == 0) 401 ctx->gang->aff_ref_spu = NULL; 402 403 if (!gang->aff_ref_spu) { 404 if (!(gang->aff_flags & AFF_MERGED)) 405 aff_merge_remaining_ctxs(gang); 406 if (!(gang->aff_flags & AFF_OFFSETS_SET)) 407 aff_set_offsets(gang); 408 aff_set_ref_point_location(gang); 409 } 410 411 return gang->aff_ref_spu != NULL; 412 } 413 414 /** 415 * spu_unbind_context - unbind spu context from physical spu 416 * @spu: physical spu to unbind from 417 * @ctx: context to unbind 418 */ 419 static void spu_unbind_context(struct spu *spu, struct spu_context *ctx) 420 { 421 u32 status; 422 423 spu_context_trace(spu_unbind_context__enter, ctx, spu); 424 425 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); 426 427 if (spu->ctx->flags & SPU_CREATE_NOSCHED) 428 atomic_dec(&cbe_spu_info[spu->node].reserved_spus); 429 430 if (ctx->gang) 431 /* 432 * If ctx->gang->aff_sched_count is positive, SPU affinity is 433 * being considered in this gang. Using atomic_dec_if_positive 434 * allow us to skip an explicit check for affinity in this gang 435 */ 436 atomic_dec_if_positive(&ctx->gang->aff_sched_count); 437 438 spu_unmap_mappings(ctx); 439 spu_save(&ctx->csa, spu); 440 spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0); 441 442 spin_lock_irq(&spu->register_lock); 443 spu->timestamp = jiffies; 444 ctx->state = SPU_STATE_SAVED; 445 spu->ibox_callback = NULL; 446 spu->wbox_callback = NULL; 447 spu->stop_callback = NULL; 448 spu->mfc_callback = NULL; 449 spu->pid = 0; 450 spu->tgid = 0; 451 ctx->ops = &spu_backing_ops; 452 spu->flags = 0; 453 spu->ctx = NULL; 454 spin_unlock_irq(&spu->register_lock); 455 456 spu_associate_mm(spu, NULL); 457 458 ctx->stats.slb_flt += 459 (spu->stats.slb_flt - ctx->stats.slb_flt_base); 460 ctx->stats.class2_intr += 461 (spu->stats.class2_intr - ctx->stats.class2_intr_base); 462 463 /* This maps the underlying spu state to idle */ 464 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED); 465 ctx->spu = NULL; 466 467 if (spu_stopped(ctx, &status)) 468 wake_up_all(&ctx->stop_wq); 469 } 470 471 /** 472 * spu_add_to_rq - add a context to the runqueue 473 * @ctx: context to add 474 */ 475 static void __spu_add_to_rq(struct spu_context *ctx) 476 { 477 /* 478 * Unfortunately this code path can be called from multiple threads 479 * on behalf of a single context due to the way the problem state 480 * mmap support works. 481 * 482 * Fortunately we need to wake up all these threads at the same time 483 * and can simply skip the runqueue addition for every but the first 484 * thread getting into this codepath. 485 * 486 * It's still quite hacky, and long-term we should proxy all other 487 * threads through the owner thread so that spu_run is in control 488 * of all the scheduling activity for a given context. 489 */ 490 if (list_empty(&ctx->rq)) { 491 list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]); 492 set_bit(ctx->prio, spu_prio->bitmap); 493 if (!spu_prio->nr_waiting++) 494 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK); 495 } 496 } 497 498 static void spu_add_to_rq(struct spu_context *ctx) 499 { 500 spin_lock(&spu_prio->runq_lock); 501 __spu_add_to_rq(ctx); 502 spin_unlock(&spu_prio->runq_lock); 503 } 504 505 static void __spu_del_from_rq(struct spu_context *ctx) 506 { 507 int prio = ctx->prio; 508 509 if (!list_empty(&ctx->rq)) { 510 if (!--spu_prio->nr_waiting) 511 del_timer(&spusched_timer); 512 list_del_init(&ctx->rq); 513 514 if (list_empty(&spu_prio->runq[prio])) 515 clear_bit(prio, spu_prio->bitmap); 516 } 517 } 518 519 void spu_del_from_rq(struct spu_context *ctx) 520 { 521 spin_lock(&spu_prio->runq_lock); 522 __spu_del_from_rq(ctx); 523 spin_unlock(&spu_prio->runq_lock); 524 } 525 526 static void spu_prio_wait(struct spu_context *ctx) 527 { 528 DEFINE_WAIT(wait); 529 530 /* 531 * The caller must explicitly wait for a context to be loaded 532 * if the nosched flag is set. If NOSCHED is not set, the caller 533 * queues the context and waits for an spu event or error. 534 */ 535 BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED)); 536 537 spin_lock(&spu_prio->runq_lock); 538 prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE); 539 if (!signal_pending(current)) { 540 __spu_add_to_rq(ctx); 541 spin_unlock(&spu_prio->runq_lock); 542 mutex_unlock(&ctx->state_mutex); 543 schedule(); 544 mutex_lock(&ctx->state_mutex); 545 spin_lock(&spu_prio->runq_lock); 546 __spu_del_from_rq(ctx); 547 } 548 spin_unlock(&spu_prio->runq_lock); 549 __set_current_state(TASK_RUNNING); 550 remove_wait_queue(&ctx->stop_wq, &wait); 551 } 552 553 static struct spu *spu_get_idle(struct spu_context *ctx) 554 { 555 struct spu *spu, *aff_ref_spu; 556 int node, n; 557 558 spu_context_nospu_trace(spu_get_idle__enter, ctx); 559 560 if (ctx->gang) { 561 mutex_lock(&ctx->gang->aff_mutex); 562 if (has_affinity(ctx)) { 563 aff_ref_spu = ctx->gang->aff_ref_spu; 564 atomic_inc(&ctx->gang->aff_sched_count); 565 mutex_unlock(&ctx->gang->aff_mutex); 566 node = aff_ref_spu->node; 567 568 mutex_lock(&cbe_spu_info[node].list_mutex); 569 spu = ctx_location(aff_ref_spu, ctx->aff_offset, node); 570 if (spu && spu->alloc_state == SPU_FREE) 571 goto found; 572 mutex_unlock(&cbe_spu_info[node].list_mutex); 573 574 atomic_dec(&ctx->gang->aff_sched_count); 575 goto not_found; 576 } 577 mutex_unlock(&ctx->gang->aff_mutex); 578 } 579 node = cpu_to_node(raw_smp_processor_id()); 580 for (n = 0; n < MAX_NUMNODES; n++, node++) { 581 node = (node < MAX_NUMNODES) ? node : 0; 582 if (!node_allowed(ctx, node)) 583 continue; 584 585 mutex_lock(&cbe_spu_info[node].list_mutex); 586 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 587 if (spu->alloc_state == SPU_FREE) 588 goto found; 589 } 590 mutex_unlock(&cbe_spu_info[node].list_mutex); 591 } 592 593 not_found: 594 spu_context_nospu_trace(spu_get_idle__not_found, ctx); 595 return NULL; 596 597 found: 598 spu->alloc_state = SPU_USED; 599 mutex_unlock(&cbe_spu_info[node].list_mutex); 600 spu_context_trace(spu_get_idle__found, ctx, spu); 601 spu_init_channels(spu); 602 return spu; 603 } 604 605 /** 606 * find_victim - find a lower priority context to preempt 607 * @ctx: candidate context for running 608 * 609 * Returns the freed physical spu to run the new context on. 610 */ 611 static struct spu *find_victim(struct spu_context *ctx) 612 { 613 struct spu_context *victim = NULL; 614 struct spu *spu; 615 int node, n; 616 617 spu_context_nospu_trace(spu_find_victim__enter, ctx); 618 619 /* 620 * Look for a possible preemption candidate on the local node first. 621 * If there is no candidate look at the other nodes. This isn't 622 * exactly fair, but so far the whole spu scheduler tries to keep 623 * a strong node affinity. We might want to fine-tune this in 624 * the future. 625 */ 626 restart: 627 node = cpu_to_node(raw_smp_processor_id()); 628 for (n = 0; n < MAX_NUMNODES; n++, node++) { 629 node = (node < MAX_NUMNODES) ? node : 0; 630 if (!node_allowed(ctx, node)) 631 continue; 632 633 mutex_lock(&cbe_spu_info[node].list_mutex); 634 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 635 struct spu_context *tmp = spu->ctx; 636 637 if (tmp && tmp->prio > ctx->prio && 638 !(tmp->flags & SPU_CREATE_NOSCHED) && 639 (!victim || tmp->prio > victim->prio)) { 640 victim = spu->ctx; 641 } 642 } 643 if (victim) 644 get_spu_context(victim); 645 mutex_unlock(&cbe_spu_info[node].list_mutex); 646 647 if (victim) { 648 /* 649 * This nests ctx->state_mutex, but we always lock 650 * higher priority contexts before lower priority 651 * ones, so this is safe until we introduce 652 * priority inheritance schemes. 653 * 654 * XXX if the highest priority context is locked, 655 * this can loop a long time. Might be better to 656 * look at another context or give up after X retries. 657 */ 658 if (!mutex_trylock(&victim->state_mutex)) { 659 put_spu_context(victim); 660 victim = NULL; 661 goto restart; 662 } 663 664 spu = victim->spu; 665 if (!spu || victim->prio <= ctx->prio) { 666 /* 667 * This race can happen because we've dropped 668 * the active list mutex. Not a problem, just 669 * restart the search. 670 */ 671 mutex_unlock(&victim->state_mutex); 672 put_spu_context(victim); 673 victim = NULL; 674 goto restart; 675 } 676 677 spu_context_trace(__spu_deactivate__unload, ctx, spu); 678 679 mutex_lock(&cbe_spu_info[node].list_mutex); 680 cbe_spu_info[node].nr_active--; 681 spu_unbind_context(spu, victim); 682 mutex_unlock(&cbe_spu_info[node].list_mutex); 683 684 victim->stats.invol_ctx_switch++; 685 spu->stats.invol_ctx_switch++; 686 if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags)) 687 spu_add_to_rq(victim); 688 689 mutex_unlock(&victim->state_mutex); 690 put_spu_context(victim); 691 692 return spu; 693 } 694 } 695 696 return NULL; 697 } 698 699 static void __spu_schedule(struct spu *spu, struct spu_context *ctx) 700 { 701 int node = spu->node; 702 int success = 0; 703 704 spu_set_timeslice(ctx); 705 706 mutex_lock(&cbe_spu_info[node].list_mutex); 707 if (spu->ctx == NULL) { 708 spu_bind_context(spu, ctx); 709 cbe_spu_info[node].nr_active++; 710 spu->alloc_state = SPU_USED; 711 success = 1; 712 } 713 mutex_unlock(&cbe_spu_info[node].list_mutex); 714 715 if (success) 716 wake_up_all(&ctx->run_wq); 717 else 718 spu_add_to_rq(ctx); 719 } 720 721 static void spu_schedule(struct spu *spu, struct spu_context *ctx) 722 { 723 /* not a candidate for interruptible because it's called either 724 from the scheduler thread or from spu_deactivate */ 725 mutex_lock(&ctx->state_mutex); 726 if (ctx->state == SPU_STATE_SAVED) 727 __spu_schedule(spu, ctx); 728 spu_release(ctx); 729 } 730 731 /** 732 * spu_unschedule - remove a context from a spu, and possibly release it. 733 * @spu: The SPU to unschedule from 734 * @ctx: The context currently scheduled on the SPU 735 * @free_spu Whether to free the SPU for other contexts 736 * 737 * Unbinds the context @ctx from the SPU @spu. If @free_spu is non-zero, the 738 * SPU is made available for other contexts (ie, may be returned by 739 * spu_get_idle). If this is zero, the caller is expected to schedule another 740 * context to this spu. 741 * 742 * Should be called with ctx->state_mutex held. 743 */ 744 static void spu_unschedule(struct spu *spu, struct spu_context *ctx, 745 int free_spu) 746 { 747 int node = spu->node; 748 749 mutex_lock(&cbe_spu_info[node].list_mutex); 750 cbe_spu_info[node].nr_active--; 751 if (free_spu) 752 spu->alloc_state = SPU_FREE; 753 spu_unbind_context(spu, ctx); 754 ctx->stats.invol_ctx_switch++; 755 spu->stats.invol_ctx_switch++; 756 mutex_unlock(&cbe_spu_info[node].list_mutex); 757 } 758 759 /** 760 * spu_activate - find a free spu for a context and execute it 761 * @ctx: spu context to schedule 762 * @flags: flags (currently ignored) 763 * 764 * Tries to find a free spu to run @ctx. If no free spu is available 765 * add the context to the runqueue so it gets woken up once an spu 766 * is available. 767 */ 768 int spu_activate(struct spu_context *ctx, unsigned long flags) 769 { 770 struct spu *spu; 771 772 /* 773 * If there are multiple threads waiting for a single context 774 * only one actually binds the context while the others will 775 * only be able to acquire the state_mutex once the context 776 * already is in runnable state. 777 */ 778 if (ctx->spu) 779 return 0; 780 781 spu_activate_top: 782 if (signal_pending(current)) 783 return -ERESTARTSYS; 784 785 spu = spu_get_idle(ctx); 786 /* 787 * If this is a realtime thread we try to get it running by 788 * preempting a lower priority thread. 789 */ 790 if (!spu && rt_prio(ctx->prio)) 791 spu = find_victim(ctx); 792 if (spu) { 793 unsigned long runcntl; 794 795 runcntl = ctx->ops->runcntl_read(ctx); 796 __spu_schedule(spu, ctx); 797 if (runcntl & SPU_RUNCNTL_RUNNABLE) 798 spuctx_switch_state(ctx, SPU_UTIL_USER); 799 800 return 0; 801 } 802 803 if (ctx->flags & SPU_CREATE_NOSCHED) { 804 spu_prio_wait(ctx); 805 goto spu_activate_top; 806 } 807 808 spu_add_to_rq(ctx); 809 810 return 0; 811 } 812 813 /** 814 * grab_runnable_context - try to find a runnable context 815 * 816 * Remove the highest priority context on the runqueue and return it 817 * to the caller. Returns %NULL if no runnable context was found. 818 */ 819 static struct spu_context *grab_runnable_context(int prio, int node) 820 { 821 struct spu_context *ctx; 822 int best; 823 824 spin_lock(&spu_prio->runq_lock); 825 best = find_first_bit(spu_prio->bitmap, prio); 826 while (best < prio) { 827 struct list_head *rq = &spu_prio->runq[best]; 828 829 list_for_each_entry(ctx, rq, rq) { 830 /* XXX(hch): check for affinity here as well */ 831 if (__node_allowed(ctx, node)) { 832 __spu_del_from_rq(ctx); 833 goto found; 834 } 835 } 836 best++; 837 } 838 ctx = NULL; 839 found: 840 spin_unlock(&spu_prio->runq_lock); 841 return ctx; 842 } 843 844 static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio) 845 { 846 struct spu *spu = ctx->spu; 847 struct spu_context *new = NULL; 848 849 if (spu) { 850 new = grab_runnable_context(max_prio, spu->node); 851 if (new || force) { 852 spu_unschedule(spu, ctx, new == NULL); 853 if (new) { 854 if (new->flags & SPU_CREATE_NOSCHED) 855 wake_up(&new->stop_wq); 856 else { 857 spu_release(ctx); 858 spu_schedule(spu, new); 859 /* this one can't easily be made 860 interruptible */ 861 mutex_lock(&ctx->state_mutex); 862 } 863 } 864 } 865 } 866 867 return new != NULL; 868 } 869 870 /** 871 * spu_deactivate - unbind a context from it's physical spu 872 * @ctx: spu context to unbind 873 * 874 * Unbind @ctx from the physical spu it is running on and schedule 875 * the highest priority context to run on the freed physical spu. 876 */ 877 void spu_deactivate(struct spu_context *ctx) 878 { 879 spu_context_nospu_trace(spu_deactivate__enter, ctx); 880 __spu_deactivate(ctx, 1, MAX_PRIO); 881 } 882 883 /** 884 * spu_yield - yield a physical spu if others are waiting 885 * @ctx: spu context to yield 886 * 887 * Check if there is a higher priority context waiting and if yes 888 * unbind @ctx from the physical spu and schedule the highest 889 * priority context to run on the freed physical spu instead. 890 */ 891 void spu_yield(struct spu_context *ctx) 892 { 893 spu_context_nospu_trace(spu_yield__enter, ctx); 894 if (!(ctx->flags & SPU_CREATE_NOSCHED)) { 895 mutex_lock(&ctx->state_mutex); 896 __spu_deactivate(ctx, 0, MAX_PRIO); 897 mutex_unlock(&ctx->state_mutex); 898 } 899 } 900 901 static noinline void spusched_tick(struct spu_context *ctx) 902 { 903 struct spu_context *new = NULL; 904 struct spu *spu = NULL; 905 906 if (spu_acquire(ctx)) 907 BUG(); /* a kernel thread never has signals pending */ 908 909 if (ctx->state != SPU_STATE_RUNNABLE) 910 goto out; 911 if (ctx->flags & SPU_CREATE_NOSCHED) 912 goto out; 913 if (ctx->policy == SCHED_FIFO) 914 goto out; 915 916 if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags)) 917 goto out; 918 919 spu = ctx->spu; 920 921 spu_context_trace(spusched_tick__preempt, ctx, spu); 922 923 new = grab_runnable_context(ctx->prio + 1, spu->node); 924 if (new) { 925 spu_unschedule(spu, ctx, 0); 926 if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags)) 927 spu_add_to_rq(ctx); 928 } else { 929 spu_context_nospu_trace(spusched_tick__newslice, ctx); 930 if (!ctx->time_slice) 931 ctx->time_slice++; 932 } 933 out: 934 spu_release(ctx); 935 936 if (new) 937 spu_schedule(spu, new); 938 } 939 940 /** 941 * count_active_contexts - count nr of active tasks 942 * 943 * Return the number of tasks currently running or waiting to run. 944 * 945 * Note that we don't take runq_lock / list_mutex here. Reading 946 * a single 32bit value is atomic on powerpc, and we don't care 947 * about memory ordering issues here. 948 */ 949 static unsigned long count_active_contexts(void) 950 { 951 int nr_active = 0, node; 952 953 for (node = 0; node < MAX_NUMNODES; node++) 954 nr_active += cbe_spu_info[node].nr_active; 955 nr_active += spu_prio->nr_waiting; 956 957 return nr_active; 958 } 959 960 /** 961 * spu_calc_load - update the avenrun load estimates. 962 * 963 * No locking against reading these values from userspace, as for 964 * the CPU loadavg code. 965 */ 966 static void spu_calc_load(void) 967 { 968 unsigned long active_tasks; /* fixed-point */ 969 970 active_tasks = count_active_contexts() * FIXED_1; 971 spu_avenrun[0] = calc_load(spu_avenrun[0], EXP_1, active_tasks); 972 spu_avenrun[1] = calc_load(spu_avenrun[1], EXP_5, active_tasks); 973 spu_avenrun[2] = calc_load(spu_avenrun[2], EXP_15, active_tasks); 974 } 975 976 static void spusched_wake(struct timer_list *unused) 977 { 978 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK); 979 wake_up_process(spusched_task); 980 } 981 982 static void spuloadavg_wake(struct timer_list *unused) 983 { 984 mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ); 985 spu_calc_load(); 986 } 987 988 static int spusched_thread(void *unused) 989 { 990 struct spu *spu; 991 int node; 992 993 while (!kthread_should_stop()) { 994 set_current_state(TASK_INTERRUPTIBLE); 995 schedule(); 996 for (node = 0; node < MAX_NUMNODES; node++) { 997 struct mutex *mtx = &cbe_spu_info[node].list_mutex; 998 999 mutex_lock(mtx); 1000 list_for_each_entry(spu, &cbe_spu_info[node].spus, 1001 cbe_list) { 1002 struct spu_context *ctx = spu->ctx; 1003 1004 if (ctx) { 1005 get_spu_context(ctx); 1006 mutex_unlock(mtx); 1007 spusched_tick(ctx); 1008 mutex_lock(mtx); 1009 put_spu_context(ctx); 1010 } 1011 } 1012 mutex_unlock(mtx); 1013 } 1014 } 1015 1016 return 0; 1017 } 1018 1019 void spuctx_switch_state(struct spu_context *ctx, 1020 enum spu_utilization_state new_state) 1021 { 1022 unsigned long long curtime; 1023 signed long long delta; 1024 struct spu *spu; 1025 enum spu_utilization_state old_state; 1026 int node; 1027 1028 curtime = ktime_get_ns(); 1029 delta = curtime - ctx->stats.tstamp; 1030 1031 WARN_ON(!mutex_is_locked(&ctx->state_mutex)); 1032 WARN_ON(delta < 0); 1033 1034 spu = ctx->spu; 1035 old_state = ctx->stats.util_state; 1036 ctx->stats.util_state = new_state; 1037 ctx->stats.tstamp = curtime; 1038 1039 /* 1040 * Update the physical SPU utilization statistics. 1041 */ 1042 if (spu) { 1043 ctx->stats.times[old_state] += delta; 1044 spu->stats.times[old_state] += delta; 1045 spu->stats.util_state = new_state; 1046 spu->stats.tstamp = curtime; 1047 node = spu->node; 1048 if (old_state == SPU_UTIL_USER) 1049 atomic_dec(&cbe_spu_info[node].busy_spus); 1050 if (new_state == SPU_UTIL_USER) 1051 atomic_inc(&cbe_spu_info[node].busy_spus); 1052 } 1053 } 1054 1055 #ifdef CONFIG_PROC_FS 1056 static int show_spu_loadavg(struct seq_file *s, void *private) 1057 { 1058 int a, b, c; 1059 1060 a = spu_avenrun[0] + (FIXED_1/200); 1061 b = spu_avenrun[1] + (FIXED_1/200); 1062 c = spu_avenrun[2] + (FIXED_1/200); 1063 1064 /* 1065 * Note that last_pid doesn't really make much sense for the 1066 * SPU loadavg (it even seems very odd on the CPU side...), 1067 * but we include it here to have a 100% compatible interface. 1068 */ 1069 seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n", 1070 LOAD_INT(a), LOAD_FRAC(a), 1071 LOAD_INT(b), LOAD_FRAC(b), 1072 LOAD_INT(c), LOAD_FRAC(c), 1073 count_active_contexts(), 1074 atomic_read(&nr_spu_contexts), 1075 idr_get_cursor(&task_active_pid_ns(current)->idr) - 1); 1076 return 0; 1077 } 1078 #endif 1079 1080 int __init spu_sched_init(void) 1081 { 1082 struct proc_dir_entry *entry; 1083 int err = -ENOMEM, i; 1084 1085 spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL); 1086 if (!spu_prio) 1087 goto out; 1088 1089 for (i = 0; i < MAX_PRIO; i++) { 1090 INIT_LIST_HEAD(&spu_prio->runq[i]); 1091 __clear_bit(i, spu_prio->bitmap); 1092 } 1093 spin_lock_init(&spu_prio->runq_lock); 1094 1095 timer_setup(&spusched_timer, spusched_wake, 0); 1096 timer_setup(&spuloadavg_timer, spuloadavg_wake, 0); 1097 1098 spusched_task = kthread_run(spusched_thread, NULL, "spusched"); 1099 if (IS_ERR(spusched_task)) { 1100 err = PTR_ERR(spusched_task); 1101 goto out_free_spu_prio; 1102 } 1103 1104 mod_timer(&spuloadavg_timer, 0); 1105 1106 entry = proc_create_single("spu_loadavg", 0, NULL, show_spu_loadavg); 1107 if (!entry) 1108 goto out_stop_kthread; 1109 1110 pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n", 1111 SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE); 1112 return 0; 1113 1114 out_stop_kthread: 1115 kthread_stop(spusched_task); 1116 out_free_spu_prio: 1117 kfree(spu_prio); 1118 out: 1119 return err; 1120 } 1121 1122 void spu_sched_exit(void) 1123 { 1124 struct spu *spu; 1125 int node; 1126 1127 remove_proc_entry("spu_loadavg", NULL); 1128 1129 del_timer_sync(&spusched_timer); 1130 del_timer_sync(&spuloadavg_timer); 1131 kthread_stop(spusched_task); 1132 1133 for (node = 0; node < MAX_NUMNODES; node++) { 1134 mutex_lock(&cbe_spu_info[node].list_mutex); 1135 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) 1136 if (spu->alloc_state != SPU_FREE) 1137 spu->alloc_state = SPU_FREE; 1138 mutex_unlock(&cbe_spu_info[node].list_mutex); 1139 } 1140 kfree(spu_prio); 1141 } 1142