1 /* sched.c - SPU scheduler. 2 * 3 * Copyright (C) IBM 2005 4 * Author: Mark Nutter <mnutter@us.ibm.com> 5 * 6 * 2006-03-31 NUMA domains added. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2, or (at your option) 11 * any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #undef DEBUG 24 25 #include <linux/module.h> 26 #include <linux/errno.h> 27 #include <linux/sched.h> 28 #include <linux/kernel.h> 29 #include <linux/mm.h> 30 #include <linux/completion.h> 31 #include <linux/vmalloc.h> 32 #include <linux/smp.h> 33 #include <linux/stddef.h> 34 #include <linux/unistd.h> 35 #include <linux/numa.h> 36 #include <linux/mutex.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/pid_namespace.h> 40 #include <linux/proc_fs.h> 41 #include <linux/seq_file.h> 42 #include <linux/marker.h> 43 44 #include <asm/io.h> 45 #include <asm/mmu_context.h> 46 #include <asm/spu.h> 47 #include <asm/spu_csa.h> 48 #include <asm/spu_priv1.h> 49 #include "spufs.h" 50 51 struct spu_prio_array { 52 DECLARE_BITMAP(bitmap, MAX_PRIO); 53 struct list_head runq[MAX_PRIO]; 54 spinlock_t runq_lock; 55 int nr_waiting; 56 }; 57 58 static unsigned long spu_avenrun[3]; 59 static struct spu_prio_array *spu_prio; 60 static struct task_struct *spusched_task; 61 static struct timer_list spusched_timer; 62 static struct timer_list spuloadavg_timer; 63 64 /* 65 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0). 66 */ 67 #define NORMAL_PRIO 120 68 69 /* 70 * Frequency of the spu scheduler tick. By default we do one SPU scheduler 71 * tick for every 10 CPU scheduler ticks. 72 */ 73 #define SPUSCHED_TICK (10) 74 75 /* 76 * These are the 'tuning knobs' of the scheduler: 77 * 78 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is 79 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs. 80 */ 81 #define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1) 82 #define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK)) 83 84 #define MAX_USER_PRIO (MAX_PRIO - MAX_RT_PRIO) 85 #define SCALE_PRIO(x, prio) \ 86 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE) 87 88 /* 89 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values: 90 * [800ms ... 100ms ... 5ms] 91 * 92 * The higher a thread's priority, the bigger timeslices 93 * it gets during one round of execution. But even the lowest 94 * priority thread gets MIN_TIMESLICE worth of execution time. 95 */ 96 void spu_set_timeslice(struct spu_context *ctx) 97 { 98 if (ctx->prio < NORMAL_PRIO) 99 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio); 100 else 101 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio); 102 } 103 104 /* 105 * Update scheduling information from the owning thread. 106 */ 107 void __spu_update_sched_info(struct spu_context *ctx) 108 { 109 /* 110 * assert that the context is not on the runqueue, so it is safe 111 * to change its scheduling parameters. 112 */ 113 BUG_ON(!list_empty(&ctx->rq)); 114 115 /* 116 * 32-Bit assignments are atomic on powerpc, and we don't care about 117 * memory ordering here because retrieving the controlling thread is 118 * per definition racy. 119 */ 120 ctx->tid = current->pid; 121 122 /* 123 * We do our own priority calculations, so we normally want 124 * ->static_prio to start with. Unfortunately this field 125 * contains junk for threads with a realtime scheduling 126 * policy so we have to look at ->prio in this case. 127 */ 128 if (rt_prio(current->prio)) 129 ctx->prio = current->prio; 130 else 131 ctx->prio = current->static_prio; 132 ctx->policy = current->policy; 133 134 /* 135 * TO DO: the context may be loaded, so we may need to activate 136 * it again on a different node. But it shouldn't hurt anything 137 * to update its parameters, because we know that the scheduler 138 * is not actively looking at this field, since it is not on the 139 * runqueue. The context will be rescheduled on the proper node 140 * if it is timesliced or preempted. 141 */ 142 ctx->cpus_allowed = current->cpus_allowed; 143 144 /* Save the current cpu id for spu interrupt routing. */ 145 ctx->last_ran = raw_smp_processor_id(); 146 } 147 148 void spu_update_sched_info(struct spu_context *ctx) 149 { 150 int node; 151 152 if (ctx->state == SPU_STATE_RUNNABLE) { 153 node = ctx->spu->node; 154 155 /* 156 * Take list_mutex to sync with find_victim(). 157 */ 158 mutex_lock(&cbe_spu_info[node].list_mutex); 159 __spu_update_sched_info(ctx); 160 mutex_unlock(&cbe_spu_info[node].list_mutex); 161 } else { 162 __spu_update_sched_info(ctx); 163 } 164 } 165 166 static int __node_allowed(struct spu_context *ctx, int node) 167 { 168 if (nr_cpus_node(node)) { 169 cpumask_t mask = node_to_cpumask(node); 170 171 if (cpus_intersects(mask, ctx->cpus_allowed)) 172 return 1; 173 } 174 175 return 0; 176 } 177 178 static int node_allowed(struct spu_context *ctx, int node) 179 { 180 int rval; 181 182 spin_lock(&spu_prio->runq_lock); 183 rval = __node_allowed(ctx, node); 184 spin_unlock(&spu_prio->runq_lock); 185 186 return rval; 187 } 188 189 void do_notify_spus_active(void) 190 { 191 int node; 192 193 /* 194 * Wake up the active spu_contexts. 195 * 196 * When the awakened processes see their "notify_active" flag is set, 197 * they will call spu_switch_notify(). 198 */ 199 for_each_online_node(node) { 200 struct spu *spu; 201 202 mutex_lock(&cbe_spu_info[node].list_mutex); 203 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 204 if (spu->alloc_state != SPU_FREE) { 205 struct spu_context *ctx = spu->ctx; 206 set_bit(SPU_SCHED_NOTIFY_ACTIVE, 207 &ctx->sched_flags); 208 mb(); 209 wake_up_all(&ctx->stop_wq); 210 } 211 } 212 mutex_unlock(&cbe_spu_info[node].list_mutex); 213 } 214 } 215 216 /** 217 * spu_bind_context - bind spu context to physical spu 218 * @spu: physical spu to bind to 219 * @ctx: context to bind 220 */ 221 static void spu_bind_context(struct spu *spu, struct spu_context *ctx) 222 { 223 spu_context_trace(spu_bind_context__enter, ctx, spu); 224 225 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); 226 227 if (ctx->flags & SPU_CREATE_NOSCHED) 228 atomic_inc(&cbe_spu_info[spu->node].reserved_spus); 229 230 ctx->stats.slb_flt_base = spu->stats.slb_flt; 231 ctx->stats.class2_intr_base = spu->stats.class2_intr; 232 233 spu_associate_mm(spu, ctx->owner); 234 235 spin_lock_irq(&spu->register_lock); 236 spu->ctx = ctx; 237 spu->flags = 0; 238 ctx->spu = spu; 239 ctx->ops = &spu_hw_ops; 240 spu->pid = current->pid; 241 spu->tgid = current->tgid; 242 spu->ibox_callback = spufs_ibox_callback; 243 spu->wbox_callback = spufs_wbox_callback; 244 spu->stop_callback = spufs_stop_callback; 245 spu->mfc_callback = spufs_mfc_callback; 246 spin_unlock_irq(&spu->register_lock); 247 248 spu_unmap_mappings(ctx); 249 250 spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0); 251 spu_restore(&ctx->csa, spu); 252 spu->timestamp = jiffies; 253 spu_switch_notify(spu, ctx); 254 ctx->state = SPU_STATE_RUNNABLE; 255 256 spuctx_switch_state(ctx, SPU_UTIL_USER); 257 } 258 259 /* 260 * Must be used with the list_mutex held. 261 */ 262 static inline int sched_spu(struct spu *spu) 263 { 264 BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex)); 265 266 return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED)); 267 } 268 269 static void aff_merge_remaining_ctxs(struct spu_gang *gang) 270 { 271 struct spu_context *ctx; 272 273 list_for_each_entry(ctx, &gang->aff_list_head, aff_list) { 274 if (list_empty(&ctx->aff_list)) 275 list_add(&ctx->aff_list, &gang->aff_list_head); 276 } 277 gang->aff_flags |= AFF_MERGED; 278 } 279 280 static void aff_set_offsets(struct spu_gang *gang) 281 { 282 struct spu_context *ctx; 283 int offset; 284 285 offset = -1; 286 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list, 287 aff_list) { 288 if (&ctx->aff_list == &gang->aff_list_head) 289 break; 290 ctx->aff_offset = offset--; 291 } 292 293 offset = 0; 294 list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) { 295 if (&ctx->aff_list == &gang->aff_list_head) 296 break; 297 ctx->aff_offset = offset++; 298 } 299 300 gang->aff_flags |= AFF_OFFSETS_SET; 301 } 302 303 static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff, 304 int group_size, int lowest_offset) 305 { 306 struct spu *spu; 307 int node, n; 308 309 /* 310 * TODO: A better algorithm could be used to find a good spu to be 311 * used as reference location for the ctxs chain. 312 */ 313 node = cpu_to_node(raw_smp_processor_id()); 314 for (n = 0; n < MAX_NUMNODES; n++, node++) { 315 int available_spus; 316 317 node = (node < MAX_NUMNODES) ? node : 0; 318 if (!node_allowed(ctx, node)) 319 continue; 320 321 available_spus = 0; 322 mutex_lock(&cbe_spu_info[node].list_mutex); 323 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 324 if (spu->ctx && spu->ctx->gang 325 && spu->ctx->aff_offset == 0) 326 available_spus -= 327 (spu->ctx->gang->contexts - 1); 328 else 329 available_spus++; 330 } 331 if (available_spus < ctx->gang->contexts) { 332 mutex_unlock(&cbe_spu_info[node].list_mutex); 333 continue; 334 } 335 336 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 337 if ((!mem_aff || spu->has_mem_affinity) && 338 sched_spu(spu)) { 339 mutex_unlock(&cbe_spu_info[node].list_mutex); 340 return spu; 341 } 342 } 343 mutex_unlock(&cbe_spu_info[node].list_mutex); 344 } 345 return NULL; 346 } 347 348 static void aff_set_ref_point_location(struct spu_gang *gang) 349 { 350 int mem_aff, gs, lowest_offset; 351 struct spu_context *ctx; 352 struct spu *tmp; 353 354 mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM; 355 lowest_offset = 0; 356 gs = 0; 357 358 list_for_each_entry(tmp, &gang->aff_list_head, aff_list) 359 gs++; 360 361 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list, 362 aff_list) { 363 if (&ctx->aff_list == &gang->aff_list_head) 364 break; 365 lowest_offset = ctx->aff_offset; 366 } 367 368 gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs, 369 lowest_offset); 370 } 371 372 static struct spu *ctx_location(struct spu *ref, int offset, int node) 373 { 374 struct spu *spu; 375 376 spu = NULL; 377 if (offset >= 0) { 378 list_for_each_entry(spu, ref->aff_list.prev, aff_list) { 379 BUG_ON(spu->node != node); 380 if (offset == 0) 381 break; 382 if (sched_spu(spu)) 383 offset--; 384 } 385 } else { 386 list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) { 387 BUG_ON(spu->node != node); 388 if (offset == 0) 389 break; 390 if (sched_spu(spu)) 391 offset++; 392 } 393 } 394 395 return spu; 396 } 397 398 /* 399 * affinity_check is called each time a context is going to be scheduled. 400 * It returns the spu ptr on which the context must run. 401 */ 402 static int has_affinity(struct spu_context *ctx) 403 { 404 struct spu_gang *gang = ctx->gang; 405 406 if (list_empty(&ctx->aff_list)) 407 return 0; 408 409 if (atomic_read(&ctx->gang->aff_sched_count) == 0) 410 ctx->gang->aff_ref_spu = NULL; 411 412 if (!gang->aff_ref_spu) { 413 if (!(gang->aff_flags & AFF_MERGED)) 414 aff_merge_remaining_ctxs(gang); 415 if (!(gang->aff_flags & AFF_OFFSETS_SET)) 416 aff_set_offsets(gang); 417 aff_set_ref_point_location(gang); 418 } 419 420 return gang->aff_ref_spu != NULL; 421 } 422 423 /** 424 * spu_unbind_context - unbind spu context from physical spu 425 * @spu: physical spu to unbind from 426 * @ctx: context to unbind 427 */ 428 static void spu_unbind_context(struct spu *spu, struct spu_context *ctx) 429 { 430 u32 status; 431 432 spu_context_trace(spu_unbind_context__enter, ctx, spu); 433 434 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); 435 436 if (spu->ctx->flags & SPU_CREATE_NOSCHED) 437 atomic_dec(&cbe_spu_info[spu->node].reserved_spus); 438 439 if (ctx->gang) 440 atomic_dec_if_positive(&ctx->gang->aff_sched_count); 441 442 spu_switch_notify(spu, NULL); 443 spu_unmap_mappings(ctx); 444 spu_save(&ctx->csa, spu); 445 spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0); 446 447 spin_lock_irq(&spu->register_lock); 448 spu->timestamp = jiffies; 449 ctx->state = SPU_STATE_SAVED; 450 spu->ibox_callback = NULL; 451 spu->wbox_callback = NULL; 452 spu->stop_callback = NULL; 453 spu->mfc_callback = NULL; 454 spu->pid = 0; 455 spu->tgid = 0; 456 ctx->ops = &spu_backing_ops; 457 spu->flags = 0; 458 spu->ctx = NULL; 459 spin_unlock_irq(&spu->register_lock); 460 461 spu_associate_mm(spu, NULL); 462 463 ctx->stats.slb_flt += 464 (spu->stats.slb_flt - ctx->stats.slb_flt_base); 465 ctx->stats.class2_intr += 466 (spu->stats.class2_intr - ctx->stats.class2_intr_base); 467 468 /* This maps the underlying spu state to idle */ 469 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED); 470 ctx->spu = NULL; 471 472 if (spu_stopped(ctx, &status)) 473 wake_up_all(&ctx->stop_wq); 474 } 475 476 /** 477 * spu_add_to_rq - add a context to the runqueue 478 * @ctx: context to add 479 */ 480 static void __spu_add_to_rq(struct spu_context *ctx) 481 { 482 /* 483 * Unfortunately this code path can be called from multiple threads 484 * on behalf of a single context due to the way the problem state 485 * mmap support works. 486 * 487 * Fortunately we need to wake up all these threads at the same time 488 * and can simply skip the runqueue addition for every but the first 489 * thread getting into this codepath. 490 * 491 * It's still quite hacky, and long-term we should proxy all other 492 * threads through the owner thread so that spu_run is in control 493 * of all the scheduling activity for a given context. 494 */ 495 if (list_empty(&ctx->rq)) { 496 list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]); 497 set_bit(ctx->prio, spu_prio->bitmap); 498 if (!spu_prio->nr_waiting++) 499 __mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK); 500 } 501 } 502 503 static void spu_add_to_rq(struct spu_context *ctx) 504 { 505 spin_lock(&spu_prio->runq_lock); 506 __spu_add_to_rq(ctx); 507 spin_unlock(&spu_prio->runq_lock); 508 } 509 510 static void __spu_del_from_rq(struct spu_context *ctx) 511 { 512 int prio = ctx->prio; 513 514 if (!list_empty(&ctx->rq)) { 515 if (!--spu_prio->nr_waiting) 516 del_timer(&spusched_timer); 517 list_del_init(&ctx->rq); 518 519 if (list_empty(&spu_prio->runq[prio])) 520 clear_bit(prio, spu_prio->bitmap); 521 } 522 } 523 524 void spu_del_from_rq(struct spu_context *ctx) 525 { 526 spin_lock(&spu_prio->runq_lock); 527 __spu_del_from_rq(ctx); 528 spin_unlock(&spu_prio->runq_lock); 529 } 530 531 static void spu_prio_wait(struct spu_context *ctx) 532 { 533 DEFINE_WAIT(wait); 534 535 /* 536 * The caller must explicitly wait for a context to be loaded 537 * if the nosched flag is set. If NOSCHED is not set, the caller 538 * queues the context and waits for an spu event or error. 539 */ 540 BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED)); 541 542 spin_lock(&spu_prio->runq_lock); 543 prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE); 544 if (!signal_pending(current)) { 545 __spu_add_to_rq(ctx); 546 spin_unlock(&spu_prio->runq_lock); 547 mutex_unlock(&ctx->state_mutex); 548 schedule(); 549 mutex_lock(&ctx->state_mutex); 550 spin_lock(&spu_prio->runq_lock); 551 __spu_del_from_rq(ctx); 552 } 553 spin_unlock(&spu_prio->runq_lock); 554 __set_current_state(TASK_RUNNING); 555 remove_wait_queue(&ctx->stop_wq, &wait); 556 } 557 558 static struct spu *spu_get_idle(struct spu_context *ctx) 559 { 560 struct spu *spu, *aff_ref_spu; 561 int node, n; 562 563 spu_context_nospu_trace(spu_get_idle__enter, ctx); 564 565 if (ctx->gang) { 566 mutex_lock(&ctx->gang->aff_mutex); 567 if (has_affinity(ctx)) { 568 aff_ref_spu = ctx->gang->aff_ref_spu; 569 atomic_inc(&ctx->gang->aff_sched_count); 570 mutex_unlock(&ctx->gang->aff_mutex); 571 node = aff_ref_spu->node; 572 573 mutex_lock(&cbe_spu_info[node].list_mutex); 574 spu = ctx_location(aff_ref_spu, ctx->aff_offset, node); 575 if (spu && spu->alloc_state == SPU_FREE) 576 goto found; 577 mutex_unlock(&cbe_spu_info[node].list_mutex); 578 579 atomic_dec(&ctx->gang->aff_sched_count); 580 goto not_found; 581 } 582 mutex_unlock(&ctx->gang->aff_mutex); 583 } 584 node = cpu_to_node(raw_smp_processor_id()); 585 for (n = 0; n < MAX_NUMNODES; n++, node++) { 586 node = (node < MAX_NUMNODES) ? node : 0; 587 if (!node_allowed(ctx, node)) 588 continue; 589 590 mutex_lock(&cbe_spu_info[node].list_mutex); 591 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 592 if (spu->alloc_state == SPU_FREE) 593 goto found; 594 } 595 mutex_unlock(&cbe_spu_info[node].list_mutex); 596 } 597 598 not_found: 599 spu_context_nospu_trace(spu_get_idle__not_found, ctx); 600 return NULL; 601 602 found: 603 spu->alloc_state = SPU_USED; 604 mutex_unlock(&cbe_spu_info[node].list_mutex); 605 spu_context_trace(spu_get_idle__found, ctx, spu); 606 spu_init_channels(spu); 607 return spu; 608 } 609 610 /** 611 * find_victim - find a lower priority context to preempt 612 * @ctx: canidate context for running 613 * 614 * Returns the freed physical spu to run the new context on. 615 */ 616 static struct spu *find_victim(struct spu_context *ctx) 617 { 618 struct spu_context *victim = NULL; 619 struct spu *spu; 620 int node, n; 621 622 spu_context_nospu_trace(spu_find_victim__enter, ctx); 623 624 /* 625 * Look for a possible preemption candidate on the local node first. 626 * If there is no candidate look at the other nodes. This isn't 627 * exactly fair, but so far the whole spu scheduler tries to keep 628 * a strong node affinity. We might want to fine-tune this in 629 * the future. 630 */ 631 restart: 632 node = cpu_to_node(raw_smp_processor_id()); 633 for (n = 0; n < MAX_NUMNODES; n++, node++) { 634 node = (node < MAX_NUMNODES) ? node : 0; 635 if (!node_allowed(ctx, node)) 636 continue; 637 638 mutex_lock(&cbe_spu_info[node].list_mutex); 639 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 640 struct spu_context *tmp = spu->ctx; 641 642 if (tmp && tmp->prio > ctx->prio && 643 !(tmp->flags & SPU_CREATE_NOSCHED) && 644 (!victim || tmp->prio > victim->prio)) 645 victim = spu->ctx; 646 } 647 mutex_unlock(&cbe_spu_info[node].list_mutex); 648 649 if (victim) { 650 /* 651 * This nests ctx->state_mutex, but we always lock 652 * higher priority contexts before lower priority 653 * ones, so this is safe until we introduce 654 * priority inheritance schemes. 655 * 656 * XXX if the highest priority context is locked, 657 * this can loop a long time. Might be better to 658 * look at another context or give up after X retries. 659 */ 660 if (!mutex_trylock(&victim->state_mutex)) { 661 victim = NULL; 662 goto restart; 663 } 664 665 spu = victim->spu; 666 if (!spu || victim->prio <= ctx->prio) { 667 /* 668 * This race can happen because we've dropped 669 * the active list mutex. Not a problem, just 670 * restart the search. 671 */ 672 mutex_unlock(&victim->state_mutex); 673 victim = NULL; 674 goto restart; 675 } 676 677 spu_context_trace(__spu_deactivate__unload, ctx, spu); 678 679 mutex_lock(&cbe_spu_info[node].list_mutex); 680 cbe_spu_info[node].nr_active--; 681 spu_unbind_context(spu, victim); 682 mutex_unlock(&cbe_spu_info[node].list_mutex); 683 684 victim->stats.invol_ctx_switch++; 685 spu->stats.invol_ctx_switch++; 686 if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags)) 687 spu_add_to_rq(victim); 688 689 mutex_unlock(&victim->state_mutex); 690 691 return spu; 692 } 693 } 694 695 return NULL; 696 } 697 698 static void __spu_schedule(struct spu *spu, struct spu_context *ctx) 699 { 700 int node = spu->node; 701 int success = 0; 702 703 spu_set_timeslice(ctx); 704 705 mutex_lock(&cbe_spu_info[node].list_mutex); 706 if (spu->ctx == NULL) { 707 spu_bind_context(spu, ctx); 708 cbe_spu_info[node].nr_active++; 709 spu->alloc_state = SPU_USED; 710 success = 1; 711 } 712 mutex_unlock(&cbe_spu_info[node].list_mutex); 713 714 if (success) 715 wake_up_all(&ctx->run_wq); 716 else 717 spu_add_to_rq(ctx); 718 } 719 720 static void spu_schedule(struct spu *spu, struct spu_context *ctx) 721 { 722 /* not a candidate for interruptible because it's called either 723 from the scheduler thread or from spu_deactivate */ 724 mutex_lock(&ctx->state_mutex); 725 __spu_schedule(spu, ctx); 726 spu_release(ctx); 727 } 728 729 static void spu_unschedule(struct spu *spu, struct spu_context *ctx) 730 { 731 int node = spu->node; 732 733 mutex_lock(&cbe_spu_info[node].list_mutex); 734 cbe_spu_info[node].nr_active--; 735 spu->alloc_state = SPU_FREE; 736 spu_unbind_context(spu, ctx); 737 ctx->stats.invol_ctx_switch++; 738 spu->stats.invol_ctx_switch++; 739 mutex_unlock(&cbe_spu_info[node].list_mutex); 740 } 741 742 /** 743 * spu_activate - find a free spu for a context and execute it 744 * @ctx: spu context to schedule 745 * @flags: flags (currently ignored) 746 * 747 * Tries to find a free spu to run @ctx. If no free spu is available 748 * add the context to the runqueue so it gets woken up once an spu 749 * is available. 750 */ 751 int spu_activate(struct spu_context *ctx, unsigned long flags) 752 { 753 struct spu *spu; 754 755 /* 756 * If there are multiple threads waiting for a single context 757 * only one actually binds the context while the others will 758 * only be able to acquire the state_mutex once the context 759 * already is in runnable state. 760 */ 761 if (ctx->spu) 762 return 0; 763 764 spu_activate_top: 765 if (signal_pending(current)) 766 return -ERESTARTSYS; 767 768 spu = spu_get_idle(ctx); 769 /* 770 * If this is a realtime thread we try to get it running by 771 * preempting a lower priority thread. 772 */ 773 if (!spu && rt_prio(ctx->prio)) 774 spu = find_victim(ctx); 775 if (spu) { 776 unsigned long runcntl; 777 778 runcntl = ctx->ops->runcntl_read(ctx); 779 __spu_schedule(spu, ctx); 780 if (runcntl & SPU_RUNCNTL_RUNNABLE) 781 spuctx_switch_state(ctx, SPU_UTIL_USER); 782 783 return 0; 784 } 785 786 if (ctx->flags & SPU_CREATE_NOSCHED) { 787 spu_prio_wait(ctx); 788 goto spu_activate_top; 789 } 790 791 spu_add_to_rq(ctx); 792 793 return 0; 794 } 795 796 /** 797 * grab_runnable_context - try to find a runnable context 798 * 799 * Remove the highest priority context on the runqueue and return it 800 * to the caller. Returns %NULL if no runnable context was found. 801 */ 802 static struct spu_context *grab_runnable_context(int prio, int node) 803 { 804 struct spu_context *ctx; 805 int best; 806 807 spin_lock(&spu_prio->runq_lock); 808 best = find_first_bit(spu_prio->bitmap, prio); 809 while (best < prio) { 810 struct list_head *rq = &spu_prio->runq[best]; 811 812 list_for_each_entry(ctx, rq, rq) { 813 /* XXX(hch): check for affinity here aswell */ 814 if (__node_allowed(ctx, node)) { 815 __spu_del_from_rq(ctx); 816 goto found; 817 } 818 } 819 best++; 820 } 821 ctx = NULL; 822 found: 823 spin_unlock(&spu_prio->runq_lock); 824 return ctx; 825 } 826 827 static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio) 828 { 829 struct spu *spu = ctx->spu; 830 struct spu_context *new = NULL; 831 832 if (spu) { 833 new = grab_runnable_context(max_prio, spu->node); 834 if (new || force) { 835 spu_unschedule(spu, ctx); 836 if (new) { 837 if (new->flags & SPU_CREATE_NOSCHED) 838 wake_up(&new->stop_wq); 839 else { 840 spu_release(ctx); 841 spu_schedule(spu, new); 842 /* this one can't easily be made 843 interruptible */ 844 mutex_lock(&ctx->state_mutex); 845 } 846 } 847 } 848 } 849 850 return new != NULL; 851 } 852 853 /** 854 * spu_deactivate - unbind a context from it's physical spu 855 * @ctx: spu context to unbind 856 * 857 * Unbind @ctx from the physical spu it is running on and schedule 858 * the highest priority context to run on the freed physical spu. 859 */ 860 void spu_deactivate(struct spu_context *ctx) 861 { 862 spu_context_nospu_trace(spu_deactivate__enter, ctx); 863 __spu_deactivate(ctx, 1, MAX_PRIO); 864 } 865 866 /** 867 * spu_yield - yield a physical spu if others are waiting 868 * @ctx: spu context to yield 869 * 870 * Check if there is a higher priority context waiting and if yes 871 * unbind @ctx from the physical spu and schedule the highest 872 * priority context to run on the freed physical spu instead. 873 */ 874 void spu_yield(struct spu_context *ctx) 875 { 876 spu_context_nospu_trace(spu_yield__enter, ctx); 877 if (!(ctx->flags & SPU_CREATE_NOSCHED)) { 878 mutex_lock(&ctx->state_mutex); 879 __spu_deactivate(ctx, 0, MAX_PRIO); 880 mutex_unlock(&ctx->state_mutex); 881 } 882 } 883 884 static noinline void spusched_tick(struct spu_context *ctx) 885 { 886 struct spu_context *new = NULL; 887 struct spu *spu = NULL; 888 889 if (spu_acquire(ctx)) 890 BUG(); /* a kernel thread never has signals pending */ 891 892 if (ctx->state != SPU_STATE_RUNNABLE) 893 goto out; 894 if (ctx->flags & SPU_CREATE_NOSCHED) 895 goto out; 896 if (ctx->policy == SCHED_FIFO) 897 goto out; 898 899 if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags)) 900 goto out; 901 902 spu = ctx->spu; 903 904 spu_context_trace(spusched_tick__preempt, ctx, spu); 905 906 new = grab_runnable_context(ctx->prio + 1, spu->node); 907 if (new) { 908 spu_unschedule(spu, ctx); 909 if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags)) 910 spu_add_to_rq(ctx); 911 } else { 912 spu_context_nospu_trace(spusched_tick__newslice, ctx); 913 if (!ctx->time_slice) 914 ctx->time_slice++; 915 } 916 out: 917 spu_release(ctx); 918 919 if (new) 920 spu_schedule(spu, new); 921 } 922 923 /** 924 * count_active_contexts - count nr of active tasks 925 * 926 * Return the number of tasks currently running or waiting to run. 927 * 928 * Note that we don't take runq_lock / list_mutex here. Reading 929 * a single 32bit value is atomic on powerpc, and we don't care 930 * about memory ordering issues here. 931 */ 932 static unsigned long count_active_contexts(void) 933 { 934 int nr_active = 0, node; 935 936 for (node = 0; node < MAX_NUMNODES; node++) 937 nr_active += cbe_spu_info[node].nr_active; 938 nr_active += spu_prio->nr_waiting; 939 940 return nr_active; 941 } 942 943 /** 944 * spu_calc_load - update the avenrun load estimates. 945 * 946 * No locking against reading these values from userspace, as for 947 * the CPU loadavg code. 948 */ 949 static void spu_calc_load(void) 950 { 951 unsigned long active_tasks; /* fixed-point */ 952 953 active_tasks = count_active_contexts() * FIXED_1; 954 CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks); 955 CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks); 956 CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks); 957 } 958 959 static void spusched_wake(unsigned long data) 960 { 961 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK); 962 wake_up_process(spusched_task); 963 } 964 965 static void spuloadavg_wake(unsigned long data) 966 { 967 mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ); 968 spu_calc_load(); 969 } 970 971 static int spusched_thread(void *unused) 972 { 973 struct spu *spu; 974 int node; 975 976 while (!kthread_should_stop()) { 977 set_current_state(TASK_INTERRUPTIBLE); 978 schedule(); 979 for (node = 0; node < MAX_NUMNODES; node++) { 980 struct mutex *mtx = &cbe_spu_info[node].list_mutex; 981 982 mutex_lock(mtx); 983 list_for_each_entry(spu, &cbe_spu_info[node].spus, 984 cbe_list) { 985 struct spu_context *ctx = spu->ctx; 986 987 if (ctx) { 988 mutex_unlock(mtx); 989 spusched_tick(ctx); 990 mutex_lock(mtx); 991 } 992 } 993 mutex_unlock(mtx); 994 } 995 } 996 997 return 0; 998 } 999 1000 void spuctx_switch_state(struct spu_context *ctx, 1001 enum spu_utilization_state new_state) 1002 { 1003 unsigned long long curtime; 1004 signed long long delta; 1005 struct timespec ts; 1006 struct spu *spu; 1007 enum spu_utilization_state old_state; 1008 int node; 1009 1010 ktime_get_ts(&ts); 1011 curtime = timespec_to_ns(&ts); 1012 delta = curtime - ctx->stats.tstamp; 1013 1014 WARN_ON(!mutex_is_locked(&ctx->state_mutex)); 1015 WARN_ON(delta < 0); 1016 1017 spu = ctx->spu; 1018 old_state = ctx->stats.util_state; 1019 ctx->stats.util_state = new_state; 1020 ctx->stats.tstamp = curtime; 1021 1022 /* 1023 * Update the physical SPU utilization statistics. 1024 */ 1025 if (spu) { 1026 ctx->stats.times[old_state] += delta; 1027 spu->stats.times[old_state] += delta; 1028 spu->stats.util_state = new_state; 1029 spu->stats.tstamp = curtime; 1030 node = spu->node; 1031 if (old_state == SPU_UTIL_USER) 1032 atomic_dec(&cbe_spu_info[node].busy_spus); 1033 if (new_state == SPU_UTIL_USER); 1034 atomic_inc(&cbe_spu_info[node].busy_spus); 1035 } 1036 } 1037 1038 #define LOAD_INT(x) ((x) >> FSHIFT) 1039 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100) 1040 1041 static int show_spu_loadavg(struct seq_file *s, void *private) 1042 { 1043 int a, b, c; 1044 1045 a = spu_avenrun[0] + (FIXED_1/200); 1046 b = spu_avenrun[1] + (FIXED_1/200); 1047 c = spu_avenrun[2] + (FIXED_1/200); 1048 1049 /* 1050 * Note that last_pid doesn't really make much sense for the 1051 * SPU loadavg (it even seems very odd on the CPU side...), 1052 * but we include it here to have a 100% compatible interface. 1053 */ 1054 seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n", 1055 LOAD_INT(a), LOAD_FRAC(a), 1056 LOAD_INT(b), LOAD_FRAC(b), 1057 LOAD_INT(c), LOAD_FRAC(c), 1058 count_active_contexts(), 1059 atomic_read(&nr_spu_contexts), 1060 current->nsproxy->pid_ns->last_pid); 1061 return 0; 1062 } 1063 1064 static int spu_loadavg_open(struct inode *inode, struct file *file) 1065 { 1066 return single_open(file, show_spu_loadavg, NULL); 1067 } 1068 1069 static const struct file_operations spu_loadavg_fops = { 1070 .open = spu_loadavg_open, 1071 .read = seq_read, 1072 .llseek = seq_lseek, 1073 .release = single_release, 1074 }; 1075 1076 int __init spu_sched_init(void) 1077 { 1078 struct proc_dir_entry *entry; 1079 int err = -ENOMEM, i; 1080 1081 spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL); 1082 if (!spu_prio) 1083 goto out; 1084 1085 for (i = 0; i < MAX_PRIO; i++) { 1086 INIT_LIST_HEAD(&spu_prio->runq[i]); 1087 __clear_bit(i, spu_prio->bitmap); 1088 } 1089 spin_lock_init(&spu_prio->runq_lock); 1090 1091 setup_timer(&spusched_timer, spusched_wake, 0); 1092 setup_timer(&spuloadavg_timer, spuloadavg_wake, 0); 1093 1094 spusched_task = kthread_run(spusched_thread, NULL, "spusched"); 1095 if (IS_ERR(spusched_task)) { 1096 err = PTR_ERR(spusched_task); 1097 goto out_free_spu_prio; 1098 } 1099 1100 mod_timer(&spuloadavg_timer, 0); 1101 1102 entry = proc_create("spu_loadavg", 0, NULL, &spu_loadavg_fops); 1103 if (!entry) 1104 goto out_stop_kthread; 1105 1106 pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n", 1107 SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE); 1108 return 0; 1109 1110 out_stop_kthread: 1111 kthread_stop(spusched_task); 1112 out_free_spu_prio: 1113 kfree(spu_prio); 1114 out: 1115 return err; 1116 } 1117 1118 void spu_sched_exit(void) 1119 { 1120 struct spu *spu; 1121 int node; 1122 1123 remove_proc_entry("spu_loadavg", NULL); 1124 1125 del_timer_sync(&spusched_timer); 1126 del_timer_sync(&spuloadavg_timer); 1127 kthread_stop(spusched_task); 1128 1129 for (node = 0; node < MAX_NUMNODES; node++) { 1130 mutex_lock(&cbe_spu_info[node].list_mutex); 1131 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) 1132 if (spu->alloc_state != SPU_FREE) 1133 spu->alloc_state = SPU_FREE; 1134 mutex_unlock(&cbe_spu_info[node].list_mutex); 1135 } 1136 kfree(spu_prio); 1137 } 1138