1 /* sched.c - SPU scheduler. 2 * 3 * Copyright (C) IBM 2005 4 * Author: Mark Nutter <mnutter@us.ibm.com> 5 * 6 * 2006-03-31 NUMA domains added. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2, or (at your option) 11 * any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #undef DEBUG 24 25 #include <linux/module.h> 26 #include <linux/errno.h> 27 #include <linux/sched.h> 28 #include <linux/kernel.h> 29 #include <linux/mm.h> 30 #include <linux/completion.h> 31 #include <linux/vmalloc.h> 32 #include <linux/smp.h> 33 #include <linux/stddef.h> 34 #include <linux/unistd.h> 35 #include <linux/numa.h> 36 #include <linux/mutex.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/pid_namespace.h> 40 #include <linux/proc_fs.h> 41 #include <linux/seq_file.h> 42 #include <linux/marker.h> 43 44 #include <asm/io.h> 45 #include <asm/mmu_context.h> 46 #include <asm/spu.h> 47 #include <asm/spu_csa.h> 48 #include <asm/spu_priv1.h> 49 #include "spufs.h" 50 51 struct spu_prio_array { 52 DECLARE_BITMAP(bitmap, MAX_PRIO); 53 struct list_head runq[MAX_PRIO]; 54 spinlock_t runq_lock; 55 int nr_waiting; 56 }; 57 58 static unsigned long spu_avenrun[3]; 59 static struct spu_prio_array *spu_prio; 60 static struct task_struct *spusched_task; 61 static struct timer_list spusched_timer; 62 static struct timer_list spuloadavg_timer; 63 64 /* 65 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0). 66 */ 67 #define NORMAL_PRIO 120 68 69 /* 70 * Frequency of the spu scheduler tick. By default we do one SPU scheduler 71 * tick for every 10 CPU scheduler ticks. 72 */ 73 #define SPUSCHED_TICK (10) 74 75 /* 76 * These are the 'tuning knobs' of the scheduler: 77 * 78 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is 79 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs. 80 */ 81 #define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1) 82 #define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK)) 83 84 #define MAX_USER_PRIO (MAX_PRIO - MAX_RT_PRIO) 85 #define SCALE_PRIO(x, prio) \ 86 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE) 87 88 /* 89 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values: 90 * [800ms ... 100ms ... 5ms] 91 * 92 * The higher a thread's priority, the bigger timeslices 93 * it gets during one round of execution. But even the lowest 94 * priority thread gets MIN_TIMESLICE worth of execution time. 95 */ 96 void spu_set_timeslice(struct spu_context *ctx) 97 { 98 if (ctx->prio < NORMAL_PRIO) 99 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio); 100 else 101 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio); 102 } 103 104 /* 105 * Update scheduling information from the owning thread. 106 */ 107 void __spu_update_sched_info(struct spu_context *ctx) 108 { 109 /* 110 * assert that the context is not on the runqueue, so it is safe 111 * to change its scheduling parameters. 112 */ 113 BUG_ON(!list_empty(&ctx->rq)); 114 115 /* 116 * 32-Bit assignments are atomic on powerpc, and we don't care about 117 * memory ordering here because retrieving the controlling thread is 118 * per definition racy. 119 */ 120 ctx->tid = current->pid; 121 122 /* 123 * We do our own priority calculations, so we normally want 124 * ->static_prio to start with. Unfortunately this field 125 * contains junk for threads with a realtime scheduling 126 * policy so we have to look at ->prio in this case. 127 */ 128 if (rt_prio(current->prio)) 129 ctx->prio = current->prio; 130 else 131 ctx->prio = current->static_prio; 132 ctx->policy = current->policy; 133 134 /* 135 * TO DO: the context may be loaded, so we may need to activate 136 * it again on a different node. But it shouldn't hurt anything 137 * to update its parameters, because we know that the scheduler 138 * is not actively looking at this field, since it is not on the 139 * runqueue. The context will be rescheduled on the proper node 140 * if it is timesliced or preempted. 141 */ 142 ctx->cpus_allowed = current->cpus_allowed; 143 144 /* Save the current cpu id for spu interrupt routing. */ 145 ctx->last_ran = raw_smp_processor_id(); 146 } 147 148 void spu_update_sched_info(struct spu_context *ctx) 149 { 150 int node; 151 152 if (ctx->state == SPU_STATE_RUNNABLE) { 153 node = ctx->spu->node; 154 155 /* 156 * Take list_mutex to sync with find_victim(). 157 */ 158 mutex_lock(&cbe_spu_info[node].list_mutex); 159 __spu_update_sched_info(ctx); 160 mutex_unlock(&cbe_spu_info[node].list_mutex); 161 } else { 162 __spu_update_sched_info(ctx); 163 } 164 } 165 166 static int __node_allowed(struct spu_context *ctx, int node) 167 { 168 if (nr_cpus_node(node)) { 169 cpumask_t mask = node_to_cpumask(node); 170 171 if (cpus_intersects(mask, ctx->cpus_allowed)) 172 return 1; 173 } 174 175 return 0; 176 } 177 178 static int node_allowed(struct spu_context *ctx, int node) 179 { 180 int rval; 181 182 spin_lock(&spu_prio->runq_lock); 183 rval = __node_allowed(ctx, node); 184 spin_unlock(&spu_prio->runq_lock); 185 186 return rval; 187 } 188 189 void do_notify_spus_active(void) 190 { 191 int node; 192 193 /* 194 * Wake up the active spu_contexts. 195 * 196 * When the awakened processes see their "notify_active" flag is set, 197 * they will call spu_switch_notify(). 198 */ 199 for_each_online_node(node) { 200 struct spu *spu; 201 202 mutex_lock(&cbe_spu_info[node].list_mutex); 203 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 204 if (spu->alloc_state != SPU_FREE) { 205 struct spu_context *ctx = spu->ctx; 206 set_bit(SPU_SCHED_NOTIFY_ACTIVE, 207 &ctx->sched_flags); 208 mb(); 209 wake_up_all(&ctx->stop_wq); 210 } 211 } 212 mutex_unlock(&cbe_spu_info[node].list_mutex); 213 } 214 } 215 216 /** 217 * spu_bind_context - bind spu context to physical spu 218 * @spu: physical spu to bind to 219 * @ctx: context to bind 220 */ 221 static void spu_bind_context(struct spu *spu, struct spu_context *ctx) 222 { 223 spu_context_trace(spu_bind_context__enter, ctx, spu); 224 225 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); 226 227 if (ctx->flags & SPU_CREATE_NOSCHED) 228 atomic_inc(&cbe_spu_info[spu->node].reserved_spus); 229 230 ctx->stats.slb_flt_base = spu->stats.slb_flt; 231 ctx->stats.class2_intr_base = spu->stats.class2_intr; 232 233 spu->ctx = ctx; 234 spu->flags = 0; 235 ctx->spu = spu; 236 ctx->ops = &spu_hw_ops; 237 spu->pid = current->pid; 238 spu->tgid = current->tgid; 239 spu_associate_mm(spu, ctx->owner); 240 spu->ibox_callback = spufs_ibox_callback; 241 spu->wbox_callback = spufs_wbox_callback; 242 spu->stop_callback = spufs_stop_callback; 243 spu->mfc_callback = spufs_mfc_callback; 244 mb(); 245 spu_unmap_mappings(ctx); 246 spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0); 247 spu_restore(&ctx->csa, spu); 248 spu->timestamp = jiffies; 249 spu_switch_notify(spu, ctx); 250 ctx->state = SPU_STATE_RUNNABLE; 251 252 spuctx_switch_state(ctx, SPU_UTIL_USER); 253 } 254 255 /* 256 * Must be used with the list_mutex held. 257 */ 258 static inline int sched_spu(struct spu *spu) 259 { 260 BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex)); 261 262 return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED)); 263 } 264 265 static void aff_merge_remaining_ctxs(struct spu_gang *gang) 266 { 267 struct spu_context *ctx; 268 269 list_for_each_entry(ctx, &gang->aff_list_head, aff_list) { 270 if (list_empty(&ctx->aff_list)) 271 list_add(&ctx->aff_list, &gang->aff_list_head); 272 } 273 gang->aff_flags |= AFF_MERGED; 274 } 275 276 static void aff_set_offsets(struct spu_gang *gang) 277 { 278 struct spu_context *ctx; 279 int offset; 280 281 offset = -1; 282 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list, 283 aff_list) { 284 if (&ctx->aff_list == &gang->aff_list_head) 285 break; 286 ctx->aff_offset = offset--; 287 } 288 289 offset = 0; 290 list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) { 291 if (&ctx->aff_list == &gang->aff_list_head) 292 break; 293 ctx->aff_offset = offset++; 294 } 295 296 gang->aff_flags |= AFF_OFFSETS_SET; 297 } 298 299 static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff, 300 int group_size, int lowest_offset) 301 { 302 struct spu *spu; 303 int node, n; 304 305 /* 306 * TODO: A better algorithm could be used to find a good spu to be 307 * used as reference location for the ctxs chain. 308 */ 309 node = cpu_to_node(raw_smp_processor_id()); 310 for (n = 0; n < MAX_NUMNODES; n++, node++) { 311 node = (node < MAX_NUMNODES) ? node : 0; 312 if (!node_allowed(ctx, node)) 313 continue; 314 mutex_lock(&cbe_spu_info[node].list_mutex); 315 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 316 if ((!mem_aff || spu->has_mem_affinity) && 317 sched_spu(spu)) { 318 mutex_unlock(&cbe_spu_info[node].list_mutex); 319 return spu; 320 } 321 } 322 mutex_unlock(&cbe_spu_info[node].list_mutex); 323 } 324 return NULL; 325 } 326 327 static void aff_set_ref_point_location(struct spu_gang *gang) 328 { 329 int mem_aff, gs, lowest_offset; 330 struct spu_context *ctx; 331 struct spu *tmp; 332 333 mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM; 334 lowest_offset = 0; 335 gs = 0; 336 337 list_for_each_entry(tmp, &gang->aff_list_head, aff_list) 338 gs++; 339 340 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list, 341 aff_list) { 342 if (&ctx->aff_list == &gang->aff_list_head) 343 break; 344 lowest_offset = ctx->aff_offset; 345 } 346 347 gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs, 348 lowest_offset); 349 } 350 351 static struct spu *ctx_location(struct spu *ref, int offset, int node) 352 { 353 struct spu *spu; 354 355 spu = NULL; 356 if (offset >= 0) { 357 list_for_each_entry(spu, ref->aff_list.prev, aff_list) { 358 BUG_ON(spu->node != node); 359 if (offset == 0) 360 break; 361 if (sched_spu(spu)) 362 offset--; 363 } 364 } else { 365 list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) { 366 BUG_ON(spu->node != node); 367 if (offset == 0) 368 break; 369 if (sched_spu(spu)) 370 offset++; 371 } 372 } 373 374 return spu; 375 } 376 377 /* 378 * affinity_check is called each time a context is going to be scheduled. 379 * It returns the spu ptr on which the context must run. 380 */ 381 static int has_affinity(struct spu_context *ctx) 382 { 383 struct spu_gang *gang = ctx->gang; 384 385 if (list_empty(&ctx->aff_list)) 386 return 0; 387 388 if (!gang->aff_ref_spu) { 389 if (!(gang->aff_flags & AFF_MERGED)) 390 aff_merge_remaining_ctxs(gang); 391 if (!(gang->aff_flags & AFF_OFFSETS_SET)) 392 aff_set_offsets(gang); 393 aff_set_ref_point_location(gang); 394 } 395 396 return gang->aff_ref_spu != NULL; 397 } 398 399 /** 400 * spu_unbind_context - unbind spu context from physical spu 401 * @spu: physical spu to unbind from 402 * @ctx: context to unbind 403 */ 404 static void spu_unbind_context(struct spu *spu, struct spu_context *ctx) 405 { 406 spu_context_trace(spu_unbind_context__enter, ctx, spu); 407 408 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); 409 410 if (spu->ctx->flags & SPU_CREATE_NOSCHED) 411 atomic_dec(&cbe_spu_info[spu->node].reserved_spus); 412 413 if (ctx->gang){ 414 mutex_lock(&ctx->gang->aff_mutex); 415 if (has_affinity(ctx)) { 416 if (atomic_dec_and_test(&ctx->gang->aff_sched_count)) 417 ctx->gang->aff_ref_spu = NULL; 418 } 419 mutex_unlock(&ctx->gang->aff_mutex); 420 } 421 422 spu_switch_notify(spu, NULL); 423 spu_unmap_mappings(ctx); 424 spu_save(&ctx->csa, spu); 425 spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0); 426 spu->timestamp = jiffies; 427 ctx->state = SPU_STATE_SAVED; 428 spu->ibox_callback = NULL; 429 spu->wbox_callback = NULL; 430 spu->stop_callback = NULL; 431 spu->mfc_callback = NULL; 432 spu_associate_mm(spu, NULL); 433 spu->pid = 0; 434 spu->tgid = 0; 435 ctx->ops = &spu_backing_ops; 436 spu->flags = 0; 437 spu->ctx = NULL; 438 439 ctx->stats.slb_flt += 440 (spu->stats.slb_flt - ctx->stats.slb_flt_base); 441 ctx->stats.class2_intr += 442 (spu->stats.class2_intr - ctx->stats.class2_intr_base); 443 444 /* This maps the underlying spu state to idle */ 445 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED); 446 ctx->spu = NULL; 447 } 448 449 /** 450 * spu_add_to_rq - add a context to the runqueue 451 * @ctx: context to add 452 */ 453 static void __spu_add_to_rq(struct spu_context *ctx) 454 { 455 /* 456 * Unfortunately this code path can be called from multiple threads 457 * on behalf of a single context due to the way the problem state 458 * mmap support works. 459 * 460 * Fortunately we need to wake up all these threads at the same time 461 * and can simply skip the runqueue addition for every but the first 462 * thread getting into this codepath. 463 * 464 * It's still quite hacky, and long-term we should proxy all other 465 * threads through the owner thread so that spu_run is in control 466 * of all the scheduling activity for a given context. 467 */ 468 if (list_empty(&ctx->rq)) { 469 list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]); 470 set_bit(ctx->prio, spu_prio->bitmap); 471 if (!spu_prio->nr_waiting++) 472 __mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK); 473 } 474 } 475 476 static void spu_add_to_rq(struct spu_context *ctx) 477 { 478 spin_lock(&spu_prio->runq_lock); 479 __spu_add_to_rq(ctx); 480 spin_unlock(&spu_prio->runq_lock); 481 } 482 483 static void __spu_del_from_rq(struct spu_context *ctx) 484 { 485 int prio = ctx->prio; 486 487 if (!list_empty(&ctx->rq)) { 488 if (!--spu_prio->nr_waiting) 489 del_timer(&spusched_timer); 490 list_del_init(&ctx->rq); 491 492 if (list_empty(&spu_prio->runq[prio])) 493 clear_bit(prio, spu_prio->bitmap); 494 } 495 } 496 497 void spu_del_from_rq(struct spu_context *ctx) 498 { 499 spin_lock(&spu_prio->runq_lock); 500 __spu_del_from_rq(ctx); 501 spin_unlock(&spu_prio->runq_lock); 502 } 503 504 static void spu_prio_wait(struct spu_context *ctx) 505 { 506 DEFINE_WAIT(wait); 507 508 /* 509 * The caller must explicitly wait for a context to be loaded 510 * if the nosched flag is set. If NOSCHED is not set, the caller 511 * queues the context and waits for an spu event or error. 512 */ 513 BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED)); 514 515 spin_lock(&spu_prio->runq_lock); 516 prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE); 517 if (!signal_pending(current)) { 518 __spu_add_to_rq(ctx); 519 spin_unlock(&spu_prio->runq_lock); 520 mutex_unlock(&ctx->state_mutex); 521 schedule(); 522 mutex_lock(&ctx->state_mutex); 523 spin_lock(&spu_prio->runq_lock); 524 __spu_del_from_rq(ctx); 525 } 526 spin_unlock(&spu_prio->runq_lock); 527 __set_current_state(TASK_RUNNING); 528 remove_wait_queue(&ctx->stop_wq, &wait); 529 } 530 531 static struct spu *spu_get_idle(struct spu_context *ctx) 532 { 533 struct spu *spu, *aff_ref_spu; 534 int node, n; 535 536 spu_context_nospu_trace(spu_get_idle__enter, ctx); 537 538 if (ctx->gang) { 539 mutex_lock(&ctx->gang->aff_mutex); 540 if (has_affinity(ctx)) { 541 aff_ref_spu = ctx->gang->aff_ref_spu; 542 atomic_inc(&ctx->gang->aff_sched_count); 543 mutex_unlock(&ctx->gang->aff_mutex); 544 node = aff_ref_spu->node; 545 546 mutex_lock(&cbe_spu_info[node].list_mutex); 547 spu = ctx_location(aff_ref_spu, ctx->aff_offset, node); 548 if (spu && spu->alloc_state == SPU_FREE) 549 goto found; 550 mutex_unlock(&cbe_spu_info[node].list_mutex); 551 552 mutex_lock(&ctx->gang->aff_mutex); 553 if (atomic_dec_and_test(&ctx->gang->aff_sched_count)) 554 ctx->gang->aff_ref_spu = NULL; 555 mutex_unlock(&ctx->gang->aff_mutex); 556 goto not_found; 557 } 558 mutex_unlock(&ctx->gang->aff_mutex); 559 } 560 node = cpu_to_node(raw_smp_processor_id()); 561 for (n = 0; n < MAX_NUMNODES; n++, node++) { 562 node = (node < MAX_NUMNODES) ? node : 0; 563 if (!node_allowed(ctx, node)) 564 continue; 565 566 mutex_lock(&cbe_spu_info[node].list_mutex); 567 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 568 if (spu->alloc_state == SPU_FREE) 569 goto found; 570 } 571 mutex_unlock(&cbe_spu_info[node].list_mutex); 572 } 573 574 not_found: 575 spu_context_nospu_trace(spu_get_idle__not_found, ctx); 576 return NULL; 577 578 found: 579 spu->alloc_state = SPU_USED; 580 mutex_unlock(&cbe_spu_info[node].list_mutex); 581 spu_context_trace(spu_get_idle__found, ctx, spu); 582 spu_init_channels(spu); 583 return spu; 584 } 585 586 /** 587 * find_victim - find a lower priority context to preempt 588 * @ctx: canidate context for running 589 * 590 * Returns the freed physical spu to run the new context on. 591 */ 592 static struct spu *find_victim(struct spu_context *ctx) 593 { 594 struct spu_context *victim = NULL; 595 struct spu *spu; 596 int node, n; 597 598 spu_context_nospu_trace(spu_find_victim__enter, ctx); 599 600 /* 601 * Look for a possible preemption candidate on the local node first. 602 * If there is no candidate look at the other nodes. This isn't 603 * exactly fair, but so far the whole spu scheduler tries to keep 604 * a strong node affinity. We might want to fine-tune this in 605 * the future. 606 */ 607 restart: 608 node = cpu_to_node(raw_smp_processor_id()); 609 for (n = 0; n < MAX_NUMNODES; n++, node++) { 610 node = (node < MAX_NUMNODES) ? node : 0; 611 if (!node_allowed(ctx, node)) 612 continue; 613 614 mutex_lock(&cbe_spu_info[node].list_mutex); 615 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 616 struct spu_context *tmp = spu->ctx; 617 618 if (tmp && tmp->prio > ctx->prio && 619 !(tmp->flags & SPU_CREATE_NOSCHED) && 620 (!victim || tmp->prio > victim->prio)) 621 victim = spu->ctx; 622 } 623 mutex_unlock(&cbe_spu_info[node].list_mutex); 624 625 if (victim) { 626 /* 627 * This nests ctx->state_mutex, but we always lock 628 * higher priority contexts before lower priority 629 * ones, so this is safe until we introduce 630 * priority inheritance schemes. 631 * 632 * XXX if the highest priority context is locked, 633 * this can loop a long time. Might be better to 634 * look at another context or give up after X retries. 635 */ 636 if (!mutex_trylock(&victim->state_mutex)) { 637 victim = NULL; 638 goto restart; 639 } 640 641 spu = victim->spu; 642 if (!spu || victim->prio <= ctx->prio) { 643 /* 644 * This race can happen because we've dropped 645 * the active list mutex. Not a problem, just 646 * restart the search. 647 */ 648 mutex_unlock(&victim->state_mutex); 649 victim = NULL; 650 goto restart; 651 } 652 653 spu_context_trace(__spu_deactivate__unload, ctx, spu); 654 655 mutex_lock(&cbe_spu_info[node].list_mutex); 656 cbe_spu_info[node].nr_active--; 657 spu_unbind_context(spu, victim); 658 mutex_unlock(&cbe_spu_info[node].list_mutex); 659 660 victim->stats.invol_ctx_switch++; 661 spu->stats.invol_ctx_switch++; 662 if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags)) 663 spu_add_to_rq(victim); 664 665 mutex_unlock(&victim->state_mutex); 666 667 return spu; 668 } 669 } 670 671 return NULL; 672 } 673 674 static void __spu_schedule(struct spu *spu, struct spu_context *ctx) 675 { 676 int node = spu->node; 677 int success = 0; 678 679 spu_set_timeslice(ctx); 680 681 mutex_lock(&cbe_spu_info[node].list_mutex); 682 if (spu->ctx == NULL) { 683 spu_bind_context(spu, ctx); 684 cbe_spu_info[node].nr_active++; 685 spu->alloc_state = SPU_USED; 686 success = 1; 687 } 688 mutex_unlock(&cbe_spu_info[node].list_mutex); 689 690 if (success) 691 wake_up_all(&ctx->run_wq); 692 else 693 spu_add_to_rq(ctx); 694 } 695 696 static void spu_schedule(struct spu *spu, struct spu_context *ctx) 697 { 698 /* not a candidate for interruptible because it's called either 699 from the scheduler thread or from spu_deactivate */ 700 mutex_lock(&ctx->state_mutex); 701 __spu_schedule(spu, ctx); 702 spu_release(ctx); 703 } 704 705 static void spu_unschedule(struct spu *spu, struct spu_context *ctx) 706 { 707 int node = spu->node; 708 709 mutex_lock(&cbe_spu_info[node].list_mutex); 710 cbe_spu_info[node].nr_active--; 711 spu->alloc_state = SPU_FREE; 712 spu_unbind_context(spu, ctx); 713 ctx->stats.invol_ctx_switch++; 714 spu->stats.invol_ctx_switch++; 715 mutex_unlock(&cbe_spu_info[node].list_mutex); 716 } 717 718 /** 719 * spu_activate - find a free spu for a context and execute it 720 * @ctx: spu context to schedule 721 * @flags: flags (currently ignored) 722 * 723 * Tries to find a free spu to run @ctx. If no free spu is available 724 * add the context to the runqueue so it gets woken up once an spu 725 * is available. 726 */ 727 int spu_activate(struct spu_context *ctx, unsigned long flags) 728 { 729 struct spu *spu; 730 731 /* 732 * If there are multiple threads waiting for a single context 733 * only one actually binds the context while the others will 734 * only be able to acquire the state_mutex once the context 735 * already is in runnable state. 736 */ 737 if (ctx->spu) 738 return 0; 739 740 spu_activate_top: 741 if (signal_pending(current)) 742 return -ERESTARTSYS; 743 744 spu = spu_get_idle(ctx); 745 /* 746 * If this is a realtime thread we try to get it running by 747 * preempting a lower priority thread. 748 */ 749 if (!spu && rt_prio(ctx->prio)) 750 spu = find_victim(ctx); 751 if (spu) { 752 unsigned long runcntl; 753 754 runcntl = ctx->ops->runcntl_read(ctx); 755 __spu_schedule(spu, ctx); 756 if (runcntl & SPU_RUNCNTL_RUNNABLE) 757 spuctx_switch_state(ctx, SPU_UTIL_USER); 758 759 return 0; 760 } 761 762 if (ctx->flags & SPU_CREATE_NOSCHED) { 763 spu_prio_wait(ctx); 764 goto spu_activate_top; 765 } 766 767 spu_add_to_rq(ctx); 768 769 return 0; 770 } 771 772 /** 773 * grab_runnable_context - try to find a runnable context 774 * 775 * Remove the highest priority context on the runqueue and return it 776 * to the caller. Returns %NULL if no runnable context was found. 777 */ 778 static struct spu_context *grab_runnable_context(int prio, int node) 779 { 780 struct spu_context *ctx; 781 int best; 782 783 spin_lock(&spu_prio->runq_lock); 784 best = find_first_bit(spu_prio->bitmap, prio); 785 while (best < prio) { 786 struct list_head *rq = &spu_prio->runq[best]; 787 788 list_for_each_entry(ctx, rq, rq) { 789 /* XXX(hch): check for affinity here aswell */ 790 if (__node_allowed(ctx, node)) { 791 __spu_del_from_rq(ctx); 792 goto found; 793 } 794 } 795 best++; 796 } 797 ctx = NULL; 798 found: 799 spin_unlock(&spu_prio->runq_lock); 800 return ctx; 801 } 802 803 static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio) 804 { 805 struct spu *spu = ctx->spu; 806 struct spu_context *new = NULL; 807 808 if (spu) { 809 new = grab_runnable_context(max_prio, spu->node); 810 if (new || force) { 811 spu_unschedule(spu, ctx); 812 if (new) { 813 if (new->flags & SPU_CREATE_NOSCHED) 814 wake_up(&new->stop_wq); 815 else { 816 spu_release(ctx); 817 spu_schedule(spu, new); 818 /* this one can't easily be made 819 interruptible */ 820 mutex_lock(&ctx->state_mutex); 821 } 822 } 823 } 824 } 825 826 return new != NULL; 827 } 828 829 /** 830 * spu_deactivate - unbind a context from it's physical spu 831 * @ctx: spu context to unbind 832 * 833 * Unbind @ctx from the physical spu it is running on and schedule 834 * the highest priority context to run on the freed physical spu. 835 */ 836 void spu_deactivate(struct spu_context *ctx) 837 { 838 spu_context_nospu_trace(spu_deactivate__enter, ctx); 839 __spu_deactivate(ctx, 1, MAX_PRIO); 840 } 841 842 /** 843 * spu_yield - yield a physical spu if others are waiting 844 * @ctx: spu context to yield 845 * 846 * Check if there is a higher priority context waiting and if yes 847 * unbind @ctx from the physical spu and schedule the highest 848 * priority context to run on the freed physical spu instead. 849 */ 850 void spu_yield(struct spu_context *ctx) 851 { 852 spu_context_nospu_trace(spu_yield__enter, ctx); 853 if (!(ctx->flags & SPU_CREATE_NOSCHED)) { 854 mutex_lock(&ctx->state_mutex); 855 __spu_deactivate(ctx, 0, MAX_PRIO); 856 mutex_unlock(&ctx->state_mutex); 857 } 858 } 859 860 static noinline void spusched_tick(struct spu_context *ctx) 861 { 862 struct spu_context *new = NULL; 863 struct spu *spu = NULL; 864 865 if (spu_acquire(ctx)) 866 BUG(); /* a kernel thread never has signals pending */ 867 868 if (ctx->state != SPU_STATE_RUNNABLE) 869 goto out; 870 if (ctx->flags & SPU_CREATE_NOSCHED) 871 goto out; 872 if (ctx->policy == SCHED_FIFO) 873 goto out; 874 875 if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags)) 876 goto out; 877 878 spu = ctx->spu; 879 880 spu_context_trace(spusched_tick__preempt, ctx, spu); 881 882 new = grab_runnable_context(ctx->prio + 1, spu->node); 883 if (new) { 884 spu_unschedule(spu, ctx); 885 if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags)) 886 spu_add_to_rq(ctx); 887 } else { 888 spu_context_nospu_trace(spusched_tick__newslice, ctx); 889 ctx->time_slice++; 890 } 891 out: 892 spu_release(ctx); 893 894 if (new) 895 spu_schedule(spu, new); 896 } 897 898 /** 899 * count_active_contexts - count nr of active tasks 900 * 901 * Return the number of tasks currently running or waiting to run. 902 * 903 * Note that we don't take runq_lock / list_mutex here. Reading 904 * a single 32bit value is atomic on powerpc, and we don't care 905 * about memory ordering issues here. 906 */ 907 static unsigned long count_active_contexts(void) 908 { 909 int nr_active = 0, node; 910 911 for (node = 0; node < MAX_NUMNODES; node++) 912 nr_active += cbe_spu_info[node].nr_active; 913 nr_active += spu_prio->nr_waiting; 914 915 return nr_active; 916 } 917 918 /** 919 * spu_calc_load - update the avenrun load estimates. 920 * 921 * No locking against reading these values from userspace, as for 922 * the CPU loadavg code. 923 */ 924 static void spu_calc_load(void) 925 { 926 unsigned long active_tasks; /* fixed-point */ 927 928 active_tasks = count_active_contexts() * FIXED_1; 929 CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks); 930 CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks); 931 CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks); 932 } 933 934 static void spusched_wake(unsigned long data) 935 { 936 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK); 937 wake_up_process(spusched_task); 938 } 939 940 static void spuloadavg_wake(unsigned long data) 941 { 942 mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ); 943 spu_calc_load(); 944 } 945 946 static int spusched_thread(void *unused) 947 { 948 struct spu *spu; 949 int node; 950 951 while (!kthread_should_stop()) { 952 set_current_state(TASK_INTERRUPTIBLE); 953 schedule(); 954 for (node = 0; node < MAX_NUMNODES; node++) { 955 struct mutex *mtx = &cbe_spu_info[node].list_mutex; 956 957 mutex_lock(mtx); 958 list_for_each_entry(spu, &cbe_spu_info[node].spus, 959 cbe_list) { 960 struct spu_context *ctx = spu->ctx; 961 962 if (ctx) { 963 mutex_unlock(mtx); 964 spusched_tick(ctx); 965 mutex_lock(mtx); 966 } 967 } 968 mutex_unlock(mtx); 969 } 970 } 971 972 return 0; 973 } 974 975 void spuctx_switch_state(struct spu_context *ctx, 976 enum spu_utilization_state new_state) 977 { 978 unsigned long long curtime; 979 signed long long delta; 980 struct timespec ts; 981 struct spu *spu; 982 enum spu_utilization_state old_state; 983 984 ktime_get_ts(&ts); 985 curtime = timespec_to_ns(&ts); 986 delta = curtime - ctx->stats.tstamp; 987 988 WARN_ON(!mutex_is_locked(&ctx->state_mutex)); 989 WARN_ON(delta < 0); 990 991 spu = ctx->spu; 992 old_state = ctx->stats.util_state; 993 ctx->stats.util_state = new_state; 994 ctx->stats.tstamp = curtime; 995 996 /* 997 * Update the physical SPU utilization statistics. 998 */ 999 if (spu) { 1000 ctx->stats.times[old_state] += delta; 1001 spu->stats.times[old_state] += delta; 1002 spu->stats.util_state = new_state; 1003 spu->stats.tstamp = curtime; 1004 } 1005 } 1006 1007 #define LOAD_INT(x) ((x) >> FSHIFT) 1008 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100) 1009 1010 static int show_spu_loadavg(struct seq_file *s, void *private) 1011 { 1012 int a, b, c; 1013 1014 a = spu_avenrun[0] + (FIXED_1/200); 1015 b = spu_avenrun[1] + (FIXED_1/200); 1016 c = spu_avenrun[2] + (FIXED_1/200); 1017 1018 /* 1019 * Note that last_pid doesn't really make much sense for the 1020 * SPU loadavg (it even seems very odd on the CPU side...), 1021 * but we include it here to have a 100% compatible interface. 1022 */ 1023 seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n", 1024 LOAD_INT(a), LOAD_FRAC(a), 1025 LOAD_INT(b), LOAD_FRAC(b), 1026 LOAD_INT(c), LOAD_FRAC(c), 1027 count_active_contexts(), 1028 atomic_read(&nr_spu_contexts), 1029 current->nsproxy->pid_ns->last_pid); 1030 return 0; 1031 } 1032 1033 static int spu_loadavg_open(struct inode *inode, struct file *file) 1034 { 1035 return single_open(file, show_spu_loadavg, NULL); 1036 } 1037 1038 static const struct file_operations spu_loadavg_fops = { 1039 .open = spu_loadavg_open, 1040 .read = seq_read, 1041 .llseek = seq_lseek, 1042 .release = single_release, 1043 }; 1044 1045 int __init spu_sched_init(void) 1046 { 1047 struct proc_dir_entry *entry; 1048 int err = -ENOMEM, i; 1049 1050 spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL); 1051 if (!spu_prio) 1052 goto out; 1053 1054 for (i = 0; i < MAX_PRIO; i++) { 1055 INIT_LIST_HEAD(&spu_prio->runq[i]); 1056 __clear_bit(i, spu_prio->bitmap); 1057 } 1058 spin_lock_init(&spu_prio->runq_lock); 1059 1060 setup_timer(&spusched_timer, spusched_wake, 0); 1061 setup_timer(&spuloadavg_timer, spuloadavg_wake, 0); 1062 1063 spusched_task = kthread_run(spusched_thread, NULL, "spusched"); 1064 if (IS_ERR(spusched_task)) { 1065 err = PTR_ERR(spusched_task); 1066 goto out_free_spu_prio; 1067 } 1068 1069 mod_timer(&spuloadavg_timer, 0); 1070 1071 entry = proc_create("spu_loadavg", 0, NULL, &spu_loadavg_fops); 1072 if (!entry) 1073 goto out_stop_kthread; 1074 1075 pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n", 1076 SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE); 1077 return 0; 1078 1079 out_stop_kthread: 1080 kthread_stop(spusched_task); 1081 out_free_spu_prio: 1082 kfree(spu_prio); 1083 out: 1084 return err; 1085 } 1086 1087 void spu_sched_exit(void) 1088 { 1089 struct spu *spu; 1090 int node; 1091 1092 remove_proc_entry("spu_loadavg", NULL); 1093 1094 del_timer_sync(&spusched_timer); 1095 del_timer_sync(&spuloadavg_timer); 1096 kthread_stop(spusched_task); 1097 1098 for (node = 0; node < MAX_NUMNODES; node++) { 1099 mutex_lock(&cbe_spu_info[node].list_mutex); 1100 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) 1101 if (spu->alloc_state != SPU_FREE) 1102 spu->alloc_state = SPU_FREE; 1103 mutex_unlock(&cbe_spu_info[node].list_mutex); 1104 } 1105 kfree(spu_prio); 1106 } 1107