1 /* sched.c - SPU scheduler.
2  *
3  * Copyright (C) IBM 2005
4  * Author: Mark Nutter <mnutter@us.ibm.com>
5  *
6  * 2006-03-31	NUMA domains added.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #undef DEBUG
24 
25 #include <linux/module.h>
26 #include <linux/errno.h>
27 #include <linux/sched.h>
28 #include <linux/kernel.h>
29 #include <linux/mm.h>
30 #include <linux/completion.h>
31 #include <linux/vmalloc.h>
32 #include <linux/smp.h>
33 #include <linux/stddef.h>
34 #include <linux/unistd.h>
35 #include <linux/numa.h>
36 #include <linux/mutex.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/proc_fs.h>
41 #include <linux/seq_file.h>
42 #include <linux/marker.h>
43 
44 #include <asm/io.h>
45 #include <asm/mmu_context.h>
46 #include <asm/spu.h>
47 #include <asm/spu_csa.h>
48 #include <asm/spu_priv1.h>
49 #include "spufs.h"
50 
51 struct spu_prio_array {
52 	DECLARE_BITMAP(bitmap, MAX_PRIO);
53 	struct list_head runq[MAX_PRIO];
54 	spinlock_t runq_lock;
55 	int nr_waiting;
56 };
57 
58 static unsigned long spu_avenrun[3];
59 static struct spu_prio_array *spu_prio;
60 static struct task_struct *spusched_task;
61 static struct timer_list spusched_timer;
62 static struct timer_list spuloadavg_timer;
63 
64 /*
65  * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
66  */
67 #define NORMAL_PRIO		120
68 
69 /*
70  * Frequency of the spu scheduler tick.  By default we do one SPU scheduler
71  * tick for every 10 CPU scheduler ticks.
72  */
73 #define SPUSCHED_TICK		(10)
74 
75 /*
76  * These are the 'tuning knobs' of the scheduler:
77  *
78  * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
79  * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
80  */
81 #define MIN_SPU_TIMESLICE	max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
82 #define DEF_SPU_TIMESLICE	(100 * HZ / (1000 * SPUSCHED_TICK))
83 
84 #define MAX_USER_PRIO		(MAX_PRIO - MAX_RT_PRIO)
85 #define SCALE_PRIO(x, prio) \
86 	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
87 
88 /*
89  * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
90  * [800ms ... 100ms ... 5ms]
91  *
92  * The higher a thread's priority, the bigger timeslices
93  * it gets during one round of execution. But even the lowest
94  * priority thread gets MIN_TIMESLICE worth of execution time.
95  */
96 void spu_set_timeslice(struct spu_context *ctx)
97 {
98 	if (ctx->prio < NORMAL_PRIO)
99 		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
100 	else
101 		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
102 }
103 
104 /*
105  * Update scheduling information from the owning thread.
106  */
107 void __spu_update_sched_info(struct spu_context *ctx)
108 {
109 	/*
110 	 * assert that the context is not on the runqueue, so it is safe
111 	 * to change its scheduling parameters.
112 	 */
113 	BUG_ON(!list_empty(&ctx->rq));
114 
115 	/*
116 	 * 32-Bit assignments are atomic on powerpc, and we don't care about
117 	 * memory ordering here because retrieving the controlling thread is
118 	 * per definition racy.
119 	 */
120 	ctx->tid = current->pid;
121 
122 	/*
123 	 * We do our own priority calculations, so we normally want
124 	 * ->static_prio to start with. Unfortunately this field
125 	 * contains junk for threads with a realtime scheduling
126 	 * policy so we have to look at ->prio in this case.
127 	 */
128 	if (rt_prio(current->prio))
129 		ctx->prio = current->prio;
130 	else
131 		ctx->prio = current->static_prio;
132 	ctx->policy = current->policy;
133 
134 	/*
135 	 * TO DO: the context may be loaded, so we may need to activate
136 	 * it again on a different node. But it shouldn't hurt anything
137 	 * to update its parameters, because we know that the scheduler
138 	 * is not actively looking at this field, since it is not on the
139 	 * runqueue. The context will be rescheduled on the proper node
140 	 * if it is timesliced or preempted.
141 	 */
142 	ctx->cpus_allowed = current->cpus_allowed;
143 
144 	/* Save the current cpu id for spu interrupt routing. */
145 	ctx->last_ran = raw_smp_processor_id();
146 }
147 
148 void spu_update_sched_info(struct spu_context *ctx)
149 {
150 	int node;
151 
152 	if (ctx->state == SPU_STATE_RUNNABLE) {
153 		node = ctx->spu->node;
154 
155 		/*
156 		 * Take list_mutex to sync with find_victim().
157 		 */
158 		mutex_lock(&cbe_spu_info[node].list_mutex);
159 		__spu_update_sched_info(ctx);
160 		mutex_unlock(&cbe_spu_info[node].list_mutex);
161 	} else {
162 		__spu_update_sched_info(ctx);
163 	}
164 }
165 
166 static int __node_allowed(struct spu_context *ctx, int node)
167 {
168 	if (nr_cpus_node(node)) {
169 		cpumask_t mask = node_to_cpumask(node);
170 
171 		if (cpus_intersects(mask, ctx->cpus_allowed))
172 			return 1;
173 	}
174 
175 	return 0;
176 }
177 
178 static int node_allowed(struct spu_context *ctx, int node)
179 {
180 	int rval;
181 
182 	spin_lock(&spu_prio->runq_lock);
183 	rval = __node_allowed(ctx, node);
184 	spin_unlock(&spu_prio->runq_lock);
185 
186 	return rval;
187 }
188 
189 void do_notify_spus_active(void)
190 {
191 	int node;
192 
193 	/*
194 	 * Wake up the active spu_contexts.
195 	 *
196 	 * When the awakened processes see their "notify_active" flag is set,
197 	 * they will call spu_switch_notify().
198 	 */
199 	for_each_online_node(node) {
200 		struct spu *spu;
201 
202 		mutex_lock(&cbe_spu_info[node].list_mutex);
203 		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
204 			if (spu->alloc_state != SPU_FREE) {
205 				struct spu_context *ctx = spu->ctx;
206 				set_bit(SPU_SCHED_NOTIFY_ACTIVE,
207 					&ctx->sched_flags);
208 				mb();
209 				wake_up_all(&ctx->stop_wq);
210 			}
211 		}
212 		mutex_unlock(&cbe_spu_info[node].list_mutex);
213 	}
214 }
215 
216 /**
217  * spu_bind_context - bind spu context to physical spu
218  * @spu:	physical spu to bind to
219  * @ctx:	context to bind
220  */
221 static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
222 {
223 	spu_context_trace(spu_bind_context__enter, ctx, spu);
224 
225 	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
226 
227 	if (ctx->flags & SPU_CREATE_NOSCHED)
228 		atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
229 
230 	ctx->stats.slb_flt_base = spu->stats.slb_flt;
231 	ctx->stats.class2_intr_base = spu->stats.class2_intr;
232 
233 	spu->ctx = ctx;
234 	spu->flags = 0;
235 	ctx->spu = spu;
236 	ctx->ops = &spu_hw_ops;
237 	spu->pid = current->pid;
238 	spu->tgid = current->tgid;
239 	spu_associate_mm(spu, ctx->owner);
240 	spu->ibox_callback = spufs_ibox_callback;
241 	spu->wbox_callback = spufs_wbox_callback;
242 	spu->stop_callback = spufs_stop_callback;
243 	spu->mfc_callback = spufs_mfc_callback;
244 	mb();
245 	spu_unmap_mappings(ctx);
246 	spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0);
247 	spu_restore(&ctx->csa, spu);
248 	spu->timestamp = jiffies;
249 	spu_switch_notify(spu, ctx);
250 	ctx->state = SPU_STATE_RUNNABLE;
251 
252 	spuctx_switch_state(ctx, SPU_UTIL_USER);
253 }
254 
255 /*
256  * Must be used with the list_mutex held.
257  */
258 static inline int sched_spu(struct spu *spu)
259 {
260 	BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));
261 
262 	return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
263 }
264 
265 static void aff_merge_remaining_ctxs(struct spu_gang *gang)
266 {
267 	struct spu_context *ctx;
268 
269 	list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
270 		if (list_empty(&ctx->aff_list))
271 			list_add(&ctx->aff_list, &gang->aff_list_head);
272 	}
273 	gang->aff_flags |= AFF_MERGED;
274 }
275 
276 static void aff_set_offsets(struct spu_gang *gang)
277 {
278 	struct spu_context *ctx;
279 	int offset;
280 
281 	offset = -1;
282 	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
283 								aff_list) {
284 		if (&ctx->aff_list == &gang->aff_list_head)
285 			break;
286 		ctx->aff_offset = offset--;
287 	}
288 
289 	offset = 0;
290 	list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
291 		if (&ctx->aff_list == &gang->aff_list_head)
292 			break;
293 		ctx->aff_offset = offset++;
294 	}
295 
296 	gang->aff_flags |= AFF_OFFSETS_SET;
297 }
298 
299 static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
300 		 int group_size, int lowest_offset)
301 {
302 	struct spu *spu;
303 	int node, n;
304 
305 	/*
306 	 * TODO: A better algorithm could be used to find a good spu to be
307 	 *       used as reference location for the ctxs chain.
308 	 */
309 	node = cpu_to_node(raw_smp_processor_id());
310 	for (n = 0; n < MAX_NUMNODES; n++, node++) {
311 		node = (node < MAX_NUMNODES) ? node : 0;
312 		if (!node_allowed(ctx, node))
313 			continue;
314 		mutex_lock(&cbe_spu_info[node].list_mutex);
315 		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
316 			if ((!mem_aff || spu->has_mem_affinity) &&
317 							sched_spu(spu)) {
318 				mutex_unlock(&cbe_spu_info[node].list_mutex);
319 				return spu;
320 			}
321 		}
322 		mutex_unlock(&cbe_spu_info[node].list_mutex);
323 	}
324 	return NULL;
325 }
326 
327 static void aff_set_ref_point_location(struct spu_gang *gang)
328 {
329 	int mem_aff, gs, lowest_offset;
330 	struct spu_context *ctx;
331 	struct spu *tmp;
332 
333 	mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
334 	lowest_offset = 0;
335 	gs = 0;
336 
337 	list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
338 		gs++;
339 
340 	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
341 								aff_list) {
342 		if (&ctx->aff_list == &gang->aff_list_head)
343 			break;
344 		lowest_offset = ctx->aff_offset;
345 	}
346 
347 	gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
348 							lowest_offset);
349 }
350 
351 static struct spu *ctx_location(struct spu *ref, int offset, int node)
352 {
353 	struct spu *spu;
354 
355 	spu = NULL;
356 	if (offset >= 0) {
357 		list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
358 			BUG_ON(spu->node != node);
359 			if (offset == 0)
360 				break;
361 			if (sched_spu(spu))
362 				offset--;
363 		}
364 	} else {
365 		list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
366 			BUG_ON(spu->node != node);
367 			if (offset == 0)
368 				break;
369 			if (sched_spu(spu))
370 				offset++;
371 		}
372 	}
373 
374 	return spu;
375 }
376 
377 /*
378  * affinity_check is called each time a context is going to be scheduled.
379  * It returns the spu ptr on which the context must run.
380  */
381 static int has_affinity(struct spu_context *ctx)
382 {
383 	struct spu_gang *gang = ctx->gang;
384 
385 	if (list_empty(&ctx->aff_list))
386 		return 0;
387 
388 	if (!gang->aff_ref_spu) {
389 		if (!(gang->aff_flags & AFF_MERGED))
390 			aff_merge_remaining_ctxs(gang);
391 		if (!(gang->aff_flags & AFF_OFFSETS_SET))
392 			aff_set_offsets(gang);
393 		aff_set_ref_point_location(gang);
394 	}
395 
396 	return gang->aff_ref_spu != NULL;
397 }
398 
399 /**
400  * spu_unbind_context - unbind spu context from physical spu
401  * @spu:	physical spu to unbind from
402  * @ctx:	context to unbind
403  */
404 static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
405 {
406 	spu_context_trace(spu_unbind_context__enter, ctx, spu);
407 
408 	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
409 
410  	if (spu->ctx->flags & SPU_CREATE_NOSCHED)
411 		atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
412 
413 	if (ctx->gang){
414 		mutex_lock(&ctx->gang->aff_mutex);
415 		if (has_affinity(ctx)) {
416 			if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
417 				ctx->gang->aff_ref_spu = NULL;
418 		}
419 		mutex_unlock(&ctx->gang->aff_mutex);
420 	}
421 
422 	spu_switch_notify(spu, NULL);
423 	spu_unmap_mappings(ctx);
424 	spu_save(&ctx->csa, spu);
425 	spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0);
426 	spu->timestamp = jiffies;
427 	ctx->state = SPU_STATE_SAVED;
428 	spu->ibox_callback = NULL;
429 	spu->wbox_callback = NULL;
430 	spu->stop_callback = NULL;
431 	spu->mfc_callback = NULL;
432 	spu_associate_mm(spu, NULL);
433 	spu->pid = 0;
434 	spu->tgid = 0;
435 	ctx->ops = &spu_backing_ops;
436 	spu->flags = 0;
437 	spu->ctx = NULL;
438 
439 	ctx->stats.slb_flt +=
440 		(spu->stats.slb_flt - ctx->stats.slb_flt_base);
441 	ctx->stats.class2_intr +=
442 		(spu->stats.class2_intr - ctx->stats.class2_intr_base);
443 
444 	/* This maps the underlying spu state to idle */
445 	spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
446 	ctx->spu = NULL;
447 }
448 
449 /**
450  * spu_add_to_rq - add a context to the runqueue
451  * @ctx:       context to add
452  */
453 static void __spu_add_to_rq(struct spu_context *ctx)
454 {
455 	/*
456 	 * Unfortunately this code path can be called from multiple threads
457 	 * on behalf of a single context due to the way the problem state
458 	 * mmap support works.
459 	 *
460 	 * Fortunately we need to wake up all these threads at the same time
461 	 * and can simply skip the runqueue addition for every but the first
462 	 * thread getting into this codepath.
463 	 *
464 	 * It's still quite hacky, and long-term we should proxy all other
465 	 * threads through the owner thread so that spu_run is in control
466 	 * of all the scheduling activity for a given context.
467 	 */
468 	if (list_empty(&ctx->rq)) {
469 		list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
470 		set_bit(ctx->prio, spu_prio->bitmap);
471 		if (!spu_prio->nr_waiting++)
472 			__mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
473 	}
474 }
475 
476 static void spu_add_to_rq(struct spu_context *ctx)
477 {
478 	spin_lock(&spu_prio->runq_lock);
479 	__spu_add_to_rq(ctx);
480 	spin_unlock(&spu_prio->runq_lock);
481 }
482 
483 static void __spu_del_from_rq(struct spu_context *ctx)
484 {
485 	int prio = ctx->prio;
486 
487 	if (!list_empty(&ctx->rq)) {
488 		if (!--spu_prio->nr_waiting)
489 			del_timer(&spusched_timer);
490 		list_del_init(&ctx->rq);
491 
492 		if (list_empty(&spu_prio->runq[prio]))
493 			clear_bit(prio, spu_prio->bitmap);
494 	}
495 }
496 
497 void spu_del_from_rq(struct spu_context *ctx)
498 {
499 	spin_lock(&spu_prio->runq_lock);
500 	__spu_del_from_rq(ctx);
501 	spin_unlock(&spu_prio->runq_lock);
502 }
503 
504 static void spu_prio_wait(struct spu_context *ctx)
505 {
506 	DEFINE_WAIT(wait);
507 
508 	/*
509 	 * The caller must explicitly wait for a context to be loaded
510 	 * if the nosched flag is set.  If NOSCHED is not set, the caller
511 	 * queues the context and waits for an spu event or error.
512 	 */
513 	BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));
514 
515 	spin_lock(&spu_prio->runq_lock);
516 	prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
517 	if (!signal_pending(current)) {
518 		__spu_add_to_rq(ctx);
519 		spin_unlock(&spu_prio->runq_lock);
520 		mutex_unlock(&ctx->state_mutex);
521 		schedule();
522 		mutex_lock(&ctx->state_mutex);
523 		spin_lock(&spu_prio->runq_lock);
524 		__spu_del_from_rq(ctx);
525 	}
526 	spin_unlock(&spu_prio->runq_lock);
527 	__set_current_state(TASK_RUNNING);
528 	remove_wait_queue(&ctx->stop_wq, &wait);
529 }
530 
531 static struct spu *spu_get_idle(struct spu_context *ctx)
532 {
533 	struct spu *spu, *aff_ref_spu;
534 	int node, n;
535 
536 	spu_context_nospu_trace(spu_get_idle__enter, ctx);
537 
538 	if (ctx->gang) {
539 		mutex_lock(&ctx->gang->aff_mutex);
540 		if (has_affinity(ctx)) {
541 			aff_ref_spu = ctx->gang->aff_ref_spu;
542 			atomic_inc(&ctx->gang->aff_sched_count);
543 			mutex_unlock(&ctx->gang->aff_mutex);
544 			node = aff_ref_spu->node;
545 
546 			mutex_lock(&cbe_spu_info[node].list_mutex);
547 			spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
548 			if (spu && spu->alloc_state == SPU_FREE)
549 				goto found;
550 			mutex_unlock(&cbe_spu_info[node].list_mutex);
551 
552 			mutex_lock(&ctx->gang->aff_mutex);
553 			if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
554 				ctx->gang->aff_ref_spu = NULL;
555 			mutex_unlock(&ctx->gang->aff_mutex);
556 			goto not_found;
557 		}
558 		mutex_unlock(&ctx->gang->aff_mutex);
559 	}
560 	node = cpu_to_node(raw_smp_processor_id());
561 	for (n = 0; n < MAX_NUMNODES; n++, node++) {
562 		node = (node < MAX_NUMNODES) ? node : 0;
563 		if (!node_allowed(ctx, node))
564 			continue;
565 
566 		mutex_lock(&cbe_spu_info[node].list_mutex);
567 		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
568 			if (spu->alloc_state == SPU_FREE)
569 				goto found;
570 		}
571 		mutex_unlock(&cbe_spu_info[node].list_mutex);
572 	}
573 
574  not_found:
575 	spu_context_nospu_trace(spu_get_idle__not_found, ctx);
576 	return NULL;
577 
578  found:
579 	spu->alloc_state = SPU_USED;
580 	mutex_unlock(&cbe_spu_info[node].list_mutex);
581 	spu_context_trace(spu_get_idle__found, ctx, spu);
582 	spu_init_channels(spu);
583 	return spu;
584 }
585 
586 /**
587  * find_victim - find a lower priority context to preempt
588  * @ctx:	canidate context for running
589  *
590  * Returns the freed physical spu to run the new context on.
591  */
592 static struct spu *find_victim(struct spu_context *ctx)
593 {
594 	struct spu_context *victim = NULL;
595 	struct spu *spu;
596 	int node, n;
597 
598 	spu_context_nospu_trace(spu_find_victim__enter, ctx);
599 
600 	/*
601 	 * Look for a possible preemption candidate on the local node first.
602 	 * If there is no candidate look at the other nodes.  This isn't
603 	 * exactly fair, but so far the whole spu scheduler tries to keep
604 	 * a strong node affinity.  We might want to fine-tune this in
605 	 * the future.
606 	 */
607  restart:
608 	node = cpu_to_node(raw_smp_processor_id());
609 	for (n = 0; n < MAX_NUMNODES; n++, node++) {
610 		node = (node < MAX_NUMNODES) ? node : 0;
611 		if (!node_allowed(ctx, node))
612 			continue;
613 
614 		mutex_lock(&cbe_spu_info[node].list_mutex);
615 		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
616 			struct spu_context *tmp = spu->ctx;
617 
618 			if (tmp && tmp->prio > ctx->prio &&
619 			    !(tmp->flags & SPU_CREATE_NOSCHED) &&
620 			    (!victim || tmp->prio > victim->prio))
621 				victim = spu->ctx;
622 		}
623 		mutex_unlock(&cbe_spu_info[node].list_mutex);
624 
625 		if (victim) {
626 			/*
627 			 * This nests ctx->state_mutex, but we always lock
628 			 * higher priority contexts before lower priority
629 			 * ones, so this is safe until we introduce
630 			 * priority inheritance schemes.
631 			 *
632 			 * XXX if the highest priority context is locked,
633 			 * this can loop a long time.  Might be better to
634 			 * look at another context or give up after X retries.
635 			 */
636 			if (!mutex_trylock(&victim->state_mutex)) {
637 				victim = NULL;
638 				goto restart;
639 			}
640 
641 			spu = victim->spu;
642 			if (!spu || victim->prio <= ctx->prio) {
643 				/*
644 				 * This race can happen because we've dropped
645 				 * the active list mutex.  Not a problem, just
646 				 * restart the search.
647 				 */
648 				mutex_unlock(&victim->state_mutex);
649 				victim = NULL;
650 				goto restart;
651 			}
652 
653 			spu_context_trace(__spu_deactivate__unload, ctx, spu);
654 
655 			mutex_lock(&cbe_spu_info[node].list_mutex);
656 			cbe_spu_info[node].nr_active--;
657 			spu_unbind_context(spu, victim);
658 			mutex_unlock(&cbe_spu_info[node].list_mutex);
659 
660 			victim->stats.invol_ctx_switch++;
661 			spu->stats.invol_ctx_switch++;
662 			if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags))
663 				spu_add_to_rq(victim);
664 
665 			mutex_unlock(&victim->state_mutex);
666 
667 			return spu;
668 		}
669 	}
670 
671 	return NULL;
672 }
673 
674 static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
675 {
676 	int node = spu->node;
677 	int success = 0;
678 
679 	spu_set_timeslice(ctx);
680 
681 	mutex_lock(&cbe_spu_info[node].list_mutex);
682 	if (spu->ctx == NULL) {
683 		spu_bind_context(spu, ctx);
684 		cbe_spu_info[node].nr_active++;
685 		spu->alloc_state = SPU_USED;
686 		success = 1;
687 	}
688 	mutex_unlock(&cbe_spu_info[node].list_mutex);
689 
690 	if (success)
691 		wake_up_all(&ctx->run_wq);
692 	else
693 		spu_add_to_rq(ctx);
694 }
695 
696 static void spu_schedule(struct spu *spu, struct spu_context *ctx)
697 {
698 	/* not a candidate for interruptible because it's called either
699 	   from the scheduler thread or from spu_deactivate */
700 	mutex_lock(&ctx->state_mutex);
701 	__spu_schedule(spu, ctx);
702 	spu_release(ctx);
703 }
704 
705 static void spu_unschedule(struct spu *spu, struct spu_context *ctx)
706 {
707 	int node = spu->node;
708 
709 	mutex_lock(&cbe_spu_info[node].list_mutex);
710 	cbe_spu_info[node].nr_active--;
711 	spu->alloc_state = SPU_FREE;
712 	spu_unbind_context(spu, ctx);
713 	ctx->stats.invol_ctx_switch++;
714 	spu->stats.invol_ctx_switch++;
715 	mutex_unlock(&cbe_spu_info[node].list_mutex);
716 }
717 
718 /**
719  * spu_activate - find a free spu for a context and execute it
720  * @ctx:	spu context to schedule
721  * @flags:	flags (currently ignored)
722  *
723  * Tries to find a free spu to run @ctx.  If no free spu is available
724  * add the context to the runqueue so it gets woken up once an spu
725  * is available.
726  */
727 int spu_activate(struct spu_context *ctx, unsigned long flags)
728 {
729 	struct spu *spu;
730 
731 	/*
732 	 * If there are multiple threads waiting for a single context
733 	 * only one actually binds the context while the others will
734 	 * only be able to acquire the state_mutex once the context
735 	 * already is in runnable state.
736 	 */
737 	if (ctx->spu)
738 		return 0;
739 
740 spu_activate_top:
741 	if (signal_pending(current))
742 		return -ERESTARTSYS;
743 
744 	spu = spu_get_idle(ctx);
745 	/*
746 	 * If this is a realtime thread we try to get it running by
747 	 * preempting a lower priority thread.
748 	 */
749 	if (!spu && rt_prio(ctx->prio))
750 		spu = find_victim(ctx);
751 	if (spu) {
752 		unsigned long runcntl;
753 
754 		runcntl = ctx->ops->runcntl_read(ctx);
755 		__spu_schedule(spu, ctx);
756 		if (runcntl & SPU_RUNCNTL_RUNNABLE)
757 			spuctx_switch_state(ctx, SPU_UTIL_USER);
758 
759 		return 0;
760 	}
761 
762 	if (ctx->flags & SPU_CREATE_NOSCHED) {
763 		spu_prio_wait(ctx);
764 		goto spu_activate_top;
765 	}
766 
767 	spu_add_to_rq(ctx);
768 
769 	return 0;
770 }
771 
772 /**
773  * grab_runnable_context - try to find a runnable context
774  *
775  * Remove the highest priority context on the runqueue and return it
776  * to the caller.  Returns %NULL if no runnable context was found.
777  */
778 static struct spu_context *grab_runnable_context(int prio, int node)
779 {
780 	struct spu_context *ctx;
781 	int best;
782 
783 	spin_lock(&spu_prio->runq_lock);
784 	best = find_first_bit(spu_prio->bitmap, prio);
785 	while (best < prio) {
786 		struct list_head *rq = &spu_prio->runq[best];
787 
788 		list_for_each_entry(ctx, rq, rq) {
789 			/* XXX(hch): check for affinity here aswell */
790 			if (__node_allowed(ctx, node)) {
791 				__spu_del_from_rq(ctx);
792 				goto found;
793 			}
794 		}
795 		best++;
796 	}
797 	ctx = NULL;
798  found:
799 	spin_unlock(&spu_prio->runq_lock);
800 	return ctx;
801 }
802 
803 static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
804 {
805 	struct spu *spu = ctx->spu;
806 	struct spu_context *new = NULL;
807 
808 	if (spu) {
809 		new = grab_runnable_context(max_prio, spu->node);
810 		if (new || force) {
811 			spu_unschedule(spu, ctx);
812 			if (new) {
813 				if (new->flags & SPU_CREATE_NOSCHED)
814 					wake_up(&new->stop_wq);
815 				else {
816 					spu_release(ctx);
817 					spu_schedule(spu, new);
818 					/* this one can't easily be made
819 					   interruptible */
820 					mutex_lock(&ctx->state_mutex);
821 				}
822 			}
823 		}
824 	}
825 
826 	return new != NULL;
827 }
828 
829 /**
830  * spu_deactivate - unbind a context from it's physical spu
831  * @ctx:	spu context to unbind
832  *
833  * Unbind @ctx from the physical spu it is running on and schedule
834  * the highest priority context to run on the freed physical spu.
835  */
836 void spu_deactivate(struct spu_context *ctx)
837 {
838 	spu_context_nospu_trace(spu_deactivate__enter, ctx);
839 	__spu_deactivate(ctx, 1, MAX_PRIO);
840 }
841 
842 /**
843  * spu_yield -	yield a physical spu if others are waiting
844  * @ctx:	spu context to yield
845  *
846  * Check if there is a higher priority context waiting and if yes
847  * unbind @ctx from the physical spu and schedule the highest
848  * priority context to run on the freed physical spu instead.
849  */
850 void spu_yield(struct spu_context *ctx)
851 {
852 	spu_context_nospu_trace(spu_yield__enter, ctx);
853 	if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
854 		mutex_lock(&ctx->state_mutex);
855 		__spu_deactivate(ctx, 0, MAX_PRIO);
856 		mutex_unlock(&ctx->state_mutex);
857 	}
858 }
859 
860 static noinline void spusched_tick(struct spu_context *ctx)
861 {
862 	struct spu_context *new = NULL;
863 	struct spu *spu = NULL;
864 
865 	if (spu_acquire(ctx))
866 		BUG();	/* a kernel thread never has signals pending */
867 
868 	if (ctx->state != SPU_STATE_RUNNABLE)
869 		goto out;
870 	if (ctx->flags & SPU_CREATE_NOSCHED)
871 		goto out;
872 	if (ctx->policy == SCHED_FIFO)
873 		goto out;
874 
875 	if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
876 		goto out;
877 
878 	spu = ctx->spu;
879 
880 	spu_context_trace(spusched_tick__preempt, ctx, spu);
881 
882 	new = grab_runnable_context(ctx->prio + 1, spu->node);
883 	if (new) {
884 		spu_unschedule(spu, ctx);
885 		if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
886 			spu_add_to_rq(ctx);
887 	} else {
888 		spu_context_nospu_trace(spusched_tick__newslice, ctx);
889 		ctx->time_slice++;
890 	}
891 out:
892 	spu_release(ctx);
893 
894 	if (new)
895 		spu_schedule(spu, new);
896 }
897 
898 /**
899  * count_active_contexts - count nr of active tasks
900  *
901  * Return the number of tasks currently running or waiting to run.
902  *
903  * Note that we don't take runq_lock / list_mutex here.  Reading
904  * a single 32bit value is atomic on powerpc, and we don't care
905  * about memory ordering issues here.
906  */
907 static unsigned long count_active_contexts(void)
908 {
909 	int nr_active = 0, node;
910 
911 	for (node = 0; node < MAX_NUMNODES; node++)
912 		nr_active += cbe_spu_info[node].nr_active;
913 	nr_active += spu_prio->nr_waiting;
914 
915 	return nr_active;
916 }
917 
918 /**
919  * spu_calc_load - update the avenrun load estimates.
920  *
921  * No locking against reading these values from userspace, as for
922  * the CPU loadavg code.
923  */
924 static void spu_calc_load(void)
925 {
926 	unsigned long active_tasks; /* fixed-point */
927 
928 	active_tasks = count_active_contexts() * FIXED_1;
929 	CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
930 	CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
931 	CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
932 }
933 
934 static void spusched_wake(unsigned long data)
935 {
936 	mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
937 	wake_up_process(spusched_task);
938 }
939 
940 static void spuloadavg_wake(unsigned long data)
941 {
942 	mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
943 	spu_calc_load();
944 }
945 
946 static int spusched_thread(void *unused)
947 {
948 	struct spu *spu;
949 	int node;
950 
951 	while (!kthread_should_stop()) {
952 		set_current_state(TASK_INTERRUPTIBLE);
953 		schedule();
954 		for (node = 0; node < MAX_NUMNODES; node++) {
955 			struct mutex *mtx = &cbe_spu_info[node].list_mutex;
956 
957 			mutex_lock(mtx);
958 			list_for_each_entry(spu, &cbe_spu_info[node].spus,
959 					cbe_list) {
960 				struct spu_context *ctx = spu->ctx;
961 
962 				if (ctx) {
963 					mutex_unlock(mtx);
964 					spusched_tick(ctx);
965 					mutex_lock(mtx);
966 				}
967 			}
968 			mutex_unlock(mtx);
969 		}
970 	}
971 
972 	return 0;
973 }
974 
975 void spuctx_switch_state(struct spu_context *ctx,
976 		enum spu_utilization_state new_state)
977 {
978 	unsigned long long curtime;
979 	signed long long delta;
980 	struct timespec ts;
981 	struct spu *spu;
982 	enum spu_utilization_state old_state;
983 
984 	ktime_get_ts(&ts);
985 	curtime = timespec_to_ns(&ts);
986 	delta = curtime - ctx->stats.tstamp;
987 
988 	WARN_ON(!mutex_is_locked(&ctx->state_mutex));
989 	WARN_ON(delta < 0);
990 
991 	spu = ctx->spu;
992 	old_state = ctx->stats.util_state;
993 	ctx->stats.util_state = new_state;
994 	ctx->stats.tstamp = curtime;
995 
996 	/*
997 	 * Update the physical SPU utilization statistics.
998 	 */
999 	if (spu) {
1000 		ctx->stats.times[old_state] += delta;
1001 		spu->stats.times[old_state] += delta;
1002 		spu->stats.util_state = new_state;
1003 		spu->stats.tstamp = curtime;
1004 	}
1005 }
1006 
1007 #define LOAD_INT(x) ((x) >> FSHIFT)
1008 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
1009 
1010 static int show_spu_loadavg(struct seq_file *s, void *private)
1011 {
1012 	int a, b, c;
1013 
1014 	a = spu_avenrun[0] + (FIXED_1/200);
1015 	b = spu_avenrun[1] + (FIXED_1/200);
1016 	c = spu_avenrun[2] + (FIXED_1/200);
1017 
1018 	/*
1019 	 * Note that last_pid doesn't really make much sense for the
1020 	 * SPU loadavg (it even seems very odd on the CPU side...),
1021 	 * but we include it here to have a 100% compatible interface.
1022 	 */
1023 	seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
1024 		LOAD_INT(a), LOAD_FRAC(a),
1025 		LOAD_INT(b), LOAD_FRAC(b),
1026 		LOAD_INT(c), LOAD_FRAC(c),
1027 		count_active_contexts(),
1028 		atomic_read(&nr_spu_contexts),
1029 		current->nsproxy->pid_ns->last_pid);
1030 	return 0;
1031 }
1032 
1033 static int spu_loadavg_open(struct inode *inode, struct file *file)
1034 {
1035 	return single_open(file, show_spu_loadavg, NULL);
1036 }
1037 
1038 static const struct file_operations spu_loadavg_fops = {
1039 	.open		= spu_loadavg_open,
1040 	.read		= seq_read,
1041 	.llseek		= seq_lseek,
1042 	.release	= single_release,
1043 };
1044 
1045 int __init spu_sched_init(void)
1046 {
1047 	struct proc_dir_entry *entry;
1048 	int err = -ENOMEM, i;
1049 
1050 	spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
1051 	if (!spu_prio)
1052 		goto out;
1053 
1054 	for (i = 0; i < MAX_PRIO; i++) {
1055 		INIT_LIST_HEAD(&spu_prio->runq[i]);
1056 		__clear_bit(i, spu_prio->bitmap);
1057 	}
1058 	spin_lock_init(&spu_prio->runq_lock);
1059 
1060 	setup_timer(&spusched_timer, spusched_wake, 0);
1061 	setup_timer(&spuloadavg_timer, spuloadavg_wake, 0);
1062 
1063 	spusched_task = kthread_run(spusched_thread, NULL, "spusched");
1064 	if (IS_ERR(spusched_task)) {
1065 		err = PTR_ERR(spusched_task);
1066 		goto out_free_spu_prio;
1067 	}
1068 
1069 	mod_timer(&spuloadavg_timer, 0);
1070 
1071 	entry = proc_create("spu_loadavg", 0, NULL, &spu_loadavg_fops);
1072 	if (!entry)
1073 		goto out_stop_kthread;
1074 
1075 	pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
1076 			SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
1077 	return 0;
1078 
1079  out_stop_kthread:
1080 	kthread_stop(spusched_task);
1081  out_free_spu_prio:
1082 	kfree(spu_prio);
1083  out:
1084 	return err;
1085 }
1086 
1087 void spu_sched_exit(void)
1088 {
1089 	struct spu *spu;
1090 	int node;
1091 
1092 	remove_proc_entry("spu_loadavg", NULL);
1093 
1094 	del_timer_sync(&spusched_timer);
1095 	del_timer_sync(&spuloadavg_timer);
1096 	kthread_stop(spusched_task);
1097 
1098 	for (node = 0; node < MAX_NUMNODES; node++) {
1099 		mutex_lock(&cbe_spu_info[node].list_mutex);
1100 		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
1101 			if (spu->alloc_state != SPU_FREE)
1102 				spu->alloc_state = SPU_FREE;
1103 		mutex_unlock(&cbe_spu_info[node].list_mutex);
1104 	}
1105 	kfree(spu_prio);
1106 }
1107