1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* sched.c - SPU scheduler. 3 * 4 * Copyright (C) IBM 2005 5 * Author: Mark Nutter <mnutter@us.ibm.com> 6 * 7 * 2006-03-31 NUMA domains added. 8 */ 9 10 #undef DEBUG 11 12 #include <linux/errno.h> 13 #include <linux/sched/signal.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/rt.h> 16 #include <linux/kernel.h> 17 #include <linux/mm.h> 18 #include <linux/slab.h> 19 #include <linux/completion.h> 20 #include <linux/vmalloc.h> 21 #include <linux/smp.h> 22 #include <linux/stddef.h> 23 #include <linux/unistd.h> 24 #include <linux/numa.h> 25 #include <linux/mutex.h> 26 #include <linux/notifier.h> 27 #include <linux/kthread.h> 28 #include <linux/pid_namespace.h> 29 #include <linux/proc_fs.h> 30 #include <linux/seq_file.h> 31 32 #include <asm/io.h> 33 #include <asm/mmu_context.h> 34 #include <asm/spu.h> 35 #include <asm/spu_csa.h> 36 #include <asm/spu_priv1.h> 37 #include "spufs.h" 38 #define CREATE_TRACE_POINTS 39 #include "sputrace.h" 40 41 struct spu_prio_array { 42 DECLARE_BITMAP(bitmap, MAX_PRIO); 43 struct list_head runq[MAX_PRIO]; 44 spinlock_t runq_lock; 45 int nr_waiting; 46 }; 47 48 static unsigned long spu_avenrun[3]; 49 static struct spu_prio_array *spu_prio; 50 static struct task_struct *spusched_task; 51 static struct timer_list spusched_timer; 52 static struct timer_list spuloadavg_timer; 53 54 /* 55 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0). 56 */ 57 #define NORMAL_PRIO 120 58 59 /* 60 * Frequency of the spu scheduler tick. By default we do one SPU scheduler 61 * tick for every 10 CPU scheduler ticks. 62 */ 63 #define SPUSCHED_TICK (10) 64 65 /* 66 * These are the 'tuning knobs' of the scheduler: 67 * 68 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is 69 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs. 70 */ 71 #define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1) 72 #define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK)) 73 74 #define SCALE_PRIO(x, prio) \ 75 max(x * (MAX_PRIO - prio) / (NICE_WIDTH / 2), MIN_SPU_TIMESLICE) 76 77 /* 78 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values: 79 * [800ms ... 100ms ... 5ms] 80 * 81 * The higher a thread's priority, the bigger timeslices 82 * it gets during one round of execution. But even the lowest 83 * priority thread gets MIN_TIMESLICE worth of execution time. 84 */ 85 void spu_set_timeslice(struct spu_context *ctx) 86 { 87 if (ctx->prio < NORMAL_PRIO) 88 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio); 89 else 90 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio); 91 } 92 93 /* 94 * Update scheduling information from the owning thread. 95 */ 96 void __spu_update_sched_info(struct spu_context *ctx) 97 { 98 /* 99 * assert that the context is not on the runqueue, so it is safe 100 * to change its scheduling parameters. 101 */ 102 BUG_ON(!list_empty(&ctx->rq)); 103 104 /* 105 * 32-Bit assignments are atomic on powerpc, and we don't care about 106 * memory ordering here because retrieving the controlling thread is 107 * per definition racy. 108 */ 109 ctx->tid = current->pid; 110 111 /* 112 * We do our own priority calculations, so we normally want 113 * ->static_prio to start with. Unfortunately this field 114 * contains junk for threads with a realtime scheduling 115 * policy so we have to look at ->prio in this case. 116 */ 117 if (rt_prio(current->prio)) 118 ctx->prio = current->prio; 119 else 120 ctx->prio = current->static_prio; 121 ctx->policy = current->policy; 122 123 /* 124 * TO DO: the context may be loaded, so we may need to activate 125 * it again on a different node. But it shouldn't hurt anything 126 * to update its parameters, because we know that the scheduler 127 * is not actively looking at this field, since it is not on the 128 * runqueue. The context will be rescheduled on the proper node 129 * if it is timesliced or preempted. 130 */ 131 cpumask_copy(&ctx->cpus_allowed, current->cpus_ptr); 132 133 /* Save the current cpu id for spu interrupt routing. */ 134 ctx->last_ran = raw_smp_processor_id(); 135 } 136 137 void spu_update_sched_info(struct spu_context *ctx) 138 { 139 int node; 140 141 if (ctx->state == SPU_STATE_RUNNABLE) { 142 node = ctx->spu->node; 143 144 /* 145 * Take list_mutex to sync with find_victim(). 146 */ 147 mutex_lock(&cbe_spu_info[node].list_mutex); 148 __spu_update_sched_info(ctx); 149 mutex_unlock(&cbe_spu_info[node].list_mutex); 150 } else { 151 __spu_update_sched_info(ctx); 152 } 153 } 154 155 static int __node_allowed(struct spu_context *ctx, int node) 156 { 157 if (nr_cpus_node(node)) { 158 const struct cpumask *mask = cpumask_of_node(node); 159 160 if (cpumask_intersects(mask, &ctx->cpus_allowed)) 161 return 1; 162 } 163 164 return 0; 165 } 166 167 static int node_allowed(struct spu_context *ctx, int node) 168 { 169 int rval; 170 171 spin_lock(&spu_prio->runq_lock); 172 rval = __node_allowed(ctx, node); 173 spin_unlock(&spu_prio->runq_lock); 174 175 return rval; 176 } 177 178 void do_notify_spus_active(void) 179 { 180 int node; 181 182 /* 183 * Wake up the active spu_contexts. 184 */ 185 for_each_online_node(node) { 186 struct spu *spu; 187 188 mutex_lock(&cbe_spu_info[node].list_mutex); 189 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 190 if (spu->alloc_state != SPU_FREE) { 191 struct spu_context *ctx = spu->ctx; 192 set_bit(SPU_SCHED_NOTIFY_ACTIVE, 193 &ctx->sched_flags); 194 mb(); 195 wake_up_all(&ctx->stop_wq); 196 } 197 } 198 mutex_unlock(&cbe_spu_info[node].list_mutex); 199 } 200 } 201 202 /** 203 * spu_bind_context - bind spu context to physical spu 204 * @spu: physical spu to bind to 205 * @ctx: context to bind 206 */ 207 static void spu_bind_context(struct spu *spu, struct spu_context *ctx) 208 { 209 spu_context_trace(spu_bind_context__enter, ctx, spu); 210 211 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); 212 213 if (ctx->flags & SPU_CREATE_NOSCHED) 214 atomic_inc(&cbe_spu_info[spu->node].reserved_spus); 215 216 ctx->stats.slb_flt_base = spu->stats.slb_flt; 217 ctx->stats.class2_intr_base = spu->stats.class2_intr; 218 219 spu_associate_mm(spu, ctx->owner); 220 221 spin_lock_irq(&spu->register_lock); 222 spu->ctx = ctx; 223 spu->flags = 0; 224 ctx->spu = spu; 225 ctx->ops = &spu_hw_ops; 226 spu->pid = current->pid; 227 spu->tgid = current->tgid; 228 spu->ibox_callback = spufs_ibox_callback; 229 spu->wbox_callback = spufs_wbox_callback; 230 spu->stop_callback = spufs_stop_callback; 231 spu->mfc_callback = spufs_mfc_callback; 232 spin_unlock_irq(&spu->register_lock); 233 234 spu_unmap_mappings(ctx); 235 236 spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0); 237 spu_restore(&ctx->csa, spu); 238 spu->timestamp = jiffies; 239 ctx->state = SPU_STATE_RUNNABLE; 240 241 spuctx_switch_state(ctx, SPU_UTIL_USER); 242 } 243 244 /* 245 * Must be used with the list_mutex held. 246 */ 247 static inline int sched_spu(struct spu *spu) 248 { 249 BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex)); 250 251 return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED)); 252 } 253 254 static void aff_merge_remaining_ctxs(struct spu_gang *gang) 255 { 256 struct spu_context *ctx; 257 258 list_for_each_entry(ctx, &gang->aff_list_head, aff_list) { 259 if (list_empty(&ctx->aff_list)) 260 list_add(&ctx->aff_list, &gang->aff_list_head); 261 } 262 gang->aff_flags |= AFF_MERGED; 263 } 264 265 static void aff_set_offsets(struct spu_gang *gang) 266 { 267 struct spu_context *ctx; 268 int offset; 269 270 offset = -1; 271 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list, 272 aff_list) { 273 if (&ctx->aff_list == &gang->aff_list_head) 274 break; 275 ctx->aff_offset = offset--; 276 } 277 278 offset = 0; 279 list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) { 280 if (&ctx->aff_list == &gang->aff_list_head) 281 break; 282 ctx->aff_offset = offset++; 283 } 284 285 gang->aff_flags |= AFF_OFFSETS_SET; 286 } 287 288 static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff, 289 int group_size, int lowest_offset) 290 { 291 struct spu *spu; 292 int node, n; 293 294 /* 295 * TODO: A better algorithm could be used to find a good spu to be 296 * used as reference location for the ctxs chain. 297 */ 298 node = cpu_to_node(raw_smp_processor_id()); 299 for (n = 0; n < MAX_NUMNODES; n++, node++) { 300 /* 301 * "available_spus" counts how many spus are not potentially 302 * going to be used by other affinity gangs whose reference 303 * context is already in place. Although this code seeks to 304 * avoid having affinity gangs with a summed amount of 305 * contexts bigger than the amount of spus in the node, 306 * this may happen sporadically. In this case, available_spus 307 * becomes negative, which is harmless. 308 */ 309 int available_spus; 310 311 node = (node < MAX_NUMNODES) ? node : 0; 312 if (!node_allowed(ctx, node)) 313 continue; 314 315 available_spus = 0; 316 mutex_lock(&cbe_spu_info[node].list_mutex); 317 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 318 if (spu->ctx && spu->ctx->gang && !spu->ctx->aff_offset 319 && spu->ctx->gang->aff_ref_spu) 320 available_spus -= spu->ctx->gang->contexts; 321 available_spus++; 322 } 323 if (available_spus < ctx->gang->contexts) { 324 mutex_unlock(&cbe_spu_info[node].list_mutex); 325 continue; 326 } 327 328 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 329 if ((!mem_aff || spu->has_mem_affinity) && 330 sched_spu(spu)) { 331 mutex_unlock(&cbe_spu_info[node].list_mutex); 332 return spu; 333 } 334 } 335 mutex_unlock(&cbe_spu_info[node].list_mutex); 336 } 337 return NULL; 338 } 339 340 static void aff_set_ref_point_location(struct spu_gang *gang) 341 { 342 int mem_aff, gs, lowest_offset; 343 struct spu_context *ctx; 344 struct spu *tmp; 345 346 mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM; 347 lowest_offset = 0; 348 gs = 0; 349 350 list_for_each_entry(tmp, &gang->aff_list_head, aff_list) 351 gs++; 352 353 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list, 354 aff_list) { 355 if (&ctx->aff_list == &gang->aff_list_head) 356 break; 357 lowest_offset = ctx->aff_offset; 358 } 359 360 gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs, 361 lowest_offset); 362 } 363 364 static struct spu *ctx_location(struct spu *ref, int offset, int node) 365 { 366 struct spu *spu; 367 368 spu = NULL; 369 if (offset >= 0) { 370 list_for_each_entry(spu, ref->aff_list.prev, aff_list) { 371 BUG_ON(spu->node != node); 372 if (offset == 0) 373 break; 374 if (sched_spu(spu)) 375 offset--; 376 } 377 } else { 378 list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) { 379 BUG_ON(spu->node != node); 380 if (offset == 0) 381 break; 382 if (sched_spu(spu)) 383 offset++; 384 } 385 } 386 387 return spu; 388 } 389 390 /* 391 * affinity_check is called each time a context is going to be scheduled. 392 * It returns the spu ptr on which the context must run. 393 */ 394 static int has_affinity(struct spu_context *ctx) 395 { 396 struct spu_gang *gang = ctx->gang; 397 398 if (list_empty(&ctx->aff_list)) 399 return 0; 400 401 if (atomic_read(&ctx->gang->aff_sched_count) == 0) 402 ctx->gang->aff_ref_spu = NULL; 403 404 if (!gang->aff_ref_spu) { 405 if (!(gang->aff_flags & AFF_MERGED)) 406 aff_merge_remaining_ctxs(gang); 407 if (!(gang->aff_flags & AFF_OFFSETS_SET)) 408 aff_set_offsets(gang); 409 aff_set_ref_point_location(gang); 410 } 411 412 return gang->aff_ref_spu != NULL; 413 } 414 415 /** 416 * spu_unbind_context - unbind spu context from physical spu 417 * @spu: physical spu to unbind from 418 * @ctx: context to unbind 419 */ 420 static void spu_unbind_context(struct spu *spu, struct spu_context *ctx) 421 { 422 u32 status; 423 424 spu_context_trace(spu_unbind_context__enter, ctx, spu); 425 426 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); 427 428 if (spu->ctx->flags & SPU_CREATE_NOSCHED) 429 atomic_dec(&cbe_spu_info[spu->node].reserved_spus); 430 431 if (ctx->gang) 432 /* 433 * If ctx->gang->aff_sched_count is positive, SPU affinity is 434 * being considered in this gang. Using atomic_dec_if_positive 435 * allow us to skip an explicit check for affinity in this gang 436 */ 437 atomic_dec_if_positive(&ctx->gang->aff_sched_count); 438 439 spu_unmap_mappings(ctx); 440 spu_save(&ctx->csa, spu); 441 spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0); 442 443 spin_lock_irq(&spu->register_lock); 444 spu->timestamp = jiffies; 445 ctx->state = SPU_STATE_SAVED; 446 spu->ibox_callback = NULL; 447 spu->wbox_callback = NULL; 448 spu->stop_callback = NULL; 449 spu->mfc_callback = NULL; 450 spu->pid = 0; 451 spu->tgid = 0; 452 ctx->ops = &spu_backing_ops; 453 spu->flags = 0; 454 spu->ctx = NULL; 455 spin_unlock_irq(&spu->register_lock); 456 457 spu_associate_mm(spu, NULL); 458 459 ctx->stats.slb_flt += 460 (spu->stats.slb_flt - ctx->stats.slb_flt_base); 461 ctx->stats.class2_intr += 462 (spu->stats.class2_intr - ctx->stats.class2_intr_base); 463 464 /* This maps the underlying spu state to idle */ 465 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED); 466 ctx->spu = NULL; 467 468 if (spu_stopped(ctx, &status)) 469 wake_up_all(&ctx->stop_wq); 470 } 471 472 /** 473 * spu_add_to_rq - add a context to the runqueue 474 * @ctx: context to add 475 */ 476 static void __spu_add_to_rq(struct spu_context *ctx) 477 { 478 /* 479 * Unfortunately this code path can be called from multiple threads 480 * on behalf of a single context due to the way the problem state 481 * mmap support works. 482 * 483 * Fortunately we need to wake up all these threads at the same time 484 * and can simply skip the runqueue addition for every but the first 485 * thread getting into this codepath. 486 * 487 * It's still quite hacky, and long-term we should proxy all other 488 * threads through the owner thread so that spu_run is in control 489 * of all the scheduling activity for a given context. 490 */ 491 if (list_empty(&ctx->rq)) { 492 list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]); 493 set_bit(ctx->prio, spu_prio->bitmap); 494 if (!spu_prio->nr_waiting++) 495 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK); 496 } 497 } 498 499 static void spu_add_to_rq(struct spu_context *ctx) 500 { 501 spin_lock(&spu_prio->runq_lock); 502 __spu_add_to_rq(ctx); 503 spin_unlock(&spu_prio->runq_lock); 504 } 505 506 static void __spu_del_from_rq(struct spu_context *ctx) 507 { 508 int prio = ctx->prio; 509 510 if (!list_empty(&ctx->rq)) { 511 if (!--spu_prio->nr_waiting) 512 del_timer(&spusched_timer); 513 list_del_init(&ctx->rq); 514 515 if (list_empty(&spu_prio->runq[prio])) 516 clear_bit(prio, spu_prio->bitmap); 517 } 518 } 519 520 void spu_del_from_rq(struct spu_context *ctx) 521 { 522 spin_lock(&spu_prio->runq_lock); 523 __spu_del_from_rq(ctx); 524 spin_unlock(&spu_prio->runq_lock); 525 } 526 527 static void spu_prio_wait(struct spu_context *ctx) 528 { 529 DEFINE_WAIT(wait); 530 531 /* 532 * The caller must explicitly wait for a context to be loaded 533 * if the nosched flag is set. If NOSCHED is not set, the caller 534 * queues the context and waits for an spu event or error. 535 */ 536 BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED)); 537 538 spin_lock(&spu_prio->runq_lock); 539 prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE); 540 if (!signal_pending(current)) { 541 __spu_add_to_rq(ctx); 542 spin_unlock(&spu_prio->runq_lock); 543 mutex_unlock(&ctx->state_mutex); 544 schedule(); 545 mutex_lock(&ctx->state_mutex); 546 spin_lock(&spu_prio->runq_lock); 547 __spu_del_from_rq(ctx); 548 } 549 spin_unlock(&spu_prio->runq_lock); 550 __set_current_state(TASK_RUNNING); 551 remove_wait_queue(&ctx->stop_wq, &wait); 552 } 553 554 static struct spu *spu_get_idle(struct spu_context *ctx) 555 { 556 struct spu *spu, *aff_ref_spu; 557 int node, n; 558 559 spu_context_nospu_trace(spu_get_idle__enter, ctx); 560 561 if (ctx->gang) { 562 mutex_lock(&ctx->gang->aff_mutex); 563 if (has_affinity(ctx)) { 564 aff_ref_spu = ctx->gang->aff_ref_spu; 565 atomic_inc(&ctx->gang->aff_sched_count); 566 mutex_unlock(&ctx->gang->aff_mutex); 567 node = aff_ref_spu->node; 568 569 mutex_lock(&cbe_spu_info[node].list_mutex); 570 spu = ctx_location(aff_ref_spu, ctx->aff_offset, node); 571 if (spu && spu->alloc_state == SPU_FREE) 572 goto found; 573 mutex_unlock(&cbe_spu_info[node].list_mutex); 574 575 atomic_dec(&ctx->gang->aff_sched_count); 576 goto not_found; 577 } 578 mutex_unlock(&ctx->gang->aff_mutex); 579 } 580 node = cpu_to_node(raw_smp_processor_id()); 581 for (n = 0; n < MAX_NUMNODES; n++, node++) { 582 node = (node < MAX_NUMNODES) ? node : 0; 583 if (!node_allowed(ctx, node)) 584 continue; 585 586 mutex_lock(&cbe_spu_info[node].list_mutex); 587 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 588 if (spu->alloc_state == SPU_FREE) 589 goto found; 590 } 591 mutex_unlock(&cbe_spu_info[node].list_mutex); 592 } 593 594 not_found: 595 spu_context_nospu_trace(spu_get_idle__not_found, ctx); 596 return NULL; 597 598 found: 599 spu->alloc_state = SPU_USED; 600 mutex_unlock(&cbe_spu_info[node].list_mutex); 601 spu_context_trace(spu_get_idle__found, ctx, spu); 602 spu_init_channels(spu); 603 return spu; 604 } 605 606 /** 607 * find_victim - find a lower priority context to preempt 608 * @ctx: candidate context for running 609 * 610 * Returns the freed physical spu to run the new context on. 611 */ 612 static struct spu *find_victim(struct spu_context *ctx) 613 { 614 struct spu_context *victim = NULL; 615 struct spu *spu; 616 int node, n; 617 618 spu_context_nospu_trace(spu_find_victim__enter, ctx); 619 620 /* 621 * Look for a possible preemption candidate on the local node first. 622 * If there is no candidate look at the other nodes. This isn't 623 * exactly fair, but so far the whole spu scheduler tries to keep 624 * a strong node affinity. We might want to fine-tune this in 625 * the future. 626 */ 627 restart: 628 node = cpu_to_node(raw_smp_processor_id()); 629 for (n = 0; n < MAX_NUMNODES; n++, node++) { 630 node = (node < MAX_NUMNODES) ? node : 0; 631 if (!node_allowed(ctx, node)) 632 continue; 633 634 mutex_lock(&cbe_spu_info[node].list_mutex); 635 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 636 struct spu_context *tmp = spu->ctx; 637 638 if (tmp && tmp->prio > ctx->prio && 639 !(tmp->flags & SPU_CREATE_NOSCHED) && 640 (!victim || tmp->prio > victim->prio)) { 641 victim = spu->ctx; 642 } 643 } 644 if (victim) 645 get_spu_context(victim); 646 mutex_unlock(&cbe_spu_info[node].list_mutex); 647 648 if (victim) { 649 /* 650 * This nests ctx->state_mutex, but we always lock 651 * higher priority contexts before lower priority 652 * ones, so this is safe until we introduce 653 * priority inheritance schemes. 654 * 655 * XXX if the highest priority context is locked, 656 * this can loop a long time. Might be better to 657 * look at another context or give up after X retries. 658 */ 659 if (!mutex_trylock(&victim->state_mutex)) { 660 put_spu_context(victim); 661 victim = NULL; 662 goto restart; 663 } 664 665 spu = victim->spu; 666 if (!spu || victim->prio <= ctx->prio) { 667 /* 668 * This race can happen because we've dropped 669 * the active list mutex. Not a problem, just 670 * restart the search. 671 */ 672 mutex_unlock(&victim->state_mutex); 673 put_spu_context(victim); 674 victim = NULL; 675 goto restart; 676 } 677 678 spu_context_trace(__spu_deactivate__unload, ctx, spu); 679 680 mutex_lock(&cbe_spu_info[node].list_mutex); 681 cbe_spu_info[node].nr_active--; 682 spu_unbind_context(spu, victim); 683 mutex_unlock(&cbe_spu_info[node].list_mutex); 684 685 victim->stats.invol_ctx_switch++; 686 spu->stats.invol_ctx_switch++; 687 if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags)) 688 spu_add_to_rq(victim); 689 690 mutex_unlock(&victim->state_mutex); 691 put_spu_context(victim); 692 693 return spu; 694 } 695 } 696 697 return NULL; 698 } 699 700 static void __spu_schedule(struct spu *spu, struct spu_context *ctx) 701 { 702 int node = spu->node; 703 int success = 0; 704 705 spu_set_timeslice(ctx); 706 707 mutex_lock(&cbe_spu_info[node].list_mutex); 708 if (spu->ctx == NULL) { 709 spu_bind_context(spu, ctx); 710 cbe_spu_info[node].nr_active++; 711 spu->alloc_state = SPU_USED; 712 success = 1; 713 } 714 mutex_unlock(&cbe_spu_info[node].list_mutex); 715 716 if (success) 717 wake_up_all(&ctx->run_wq); 718 else 719 spu_add_to_rq(ctx); 720 } 721 722 static void spu_schedule(struct spu *spu, struct spu_context *ctx) 723 { 724 /* not a candidate for interruptible because it's called either 725 from the scheduler thread or from spu_deactivate */ 726 mutex_lock(&ctx->state_mutex); 727 if (ctx->state == SPU_STATE_SAVED) 728 __spu_schedule(spu, ctx); 729 spu_release(ctx); 730 } 731 732 /** 733 * spu_unschedule - remove a context from a spu, and possibly release it. 734 * @spu: The SPU to unschedule from 735 * @ctx: The context currently scheduled on the SPU 736 * @free_spu Whether to free the SPU for other contexts 737 * 738 * Unbinds the context @ctx from the SPU @spu. If @free_spu is non-zero, the 739 * SPU is made available for other contexts (ie, may be returned by 740 * spu_get_idle). If this is zero, the caller is expected to schedule another 741 * context to this spu. 742 * 743 * Should be called with ctx->state_mutex held. 744 */ 745 static void spu_unschedule(struct spu *spu, struct spu_context *ctx, 746 int free_spu) 747 { 748 int node = spu->node; 749 750 mutex_lock(&cbe_spu_info[node].list_mutex); 751 cbe_spu_info[node].nr_active--; 752 if (free_spu) 753 spu->alloc_state = SPU_FREE; 754 spu_unbind_context(spu, ctx); 755 ctx->stats.invol_ctx_switch++; 756 spu->stats.invol_ctx_switch++; 757 mutex_unlock(&cbe_spu_info[node].list_mutex); 758 } 759 760 /** 761 * spu_activate - find a free spu for a context and execute it 762 * @ctx: spu context to schedule 763 * @flags: flags (currently ignored) 764 * 765 * Tries to find a free spu to run @ctx. If no free spu is available 766 * add the context to the runqueue so it gets woken up once an spu 767 * is available. 768 */ 769 int spu_activate(struct spu_context *ctx, unsigned long flags) 770 { 771 struct spu *spu; 772 773 /* 774 * If there are multiple threads waiting for a single context 775 * only one actually binds the context while the others will 776 * only be able to acquire the state_mutex once the context 777 * already is in runnable state. 778 */ 779 if (ctx->spu) 780 return 0; 781 782 spu_activate_top: 783 if (signal_pending(current)) 784 return -ERESTARTSYS; 785 786 spu = spu_get_idle(ctx); 787 /* 788 * If this is a realtime thread we try to get it running by 789 * preempting a lower priority thread. 790 */ 791 if (!spu && rt_prio(ctx->prio)) 792 spu = find_victim(ctx); 793 if (spu) { 794 unsigned long runcntl; 795 796 runcntl = ctx->ops->runcntl_read(ctx); 797 __spu_schedule(spu, ctx); 798 if (runcntl & SPU_RUNCNTL_RUNNABLE) 799 spuctx_switch_state(ctx, SPU_UTIL_USER); 800 801 return 0; 802 } 803 804 if (ctx->flags & SPU_CREATE_NOSCHED) { 805 spu_prio_wait(ctx); 806 goto spu_activate_top; 807 } 808 809 spu_add_to_rq(ctx); 810 811 return 0; 812 } 813 814 /** 815 * grab_runnable_context - try to find a runnable context 816 * 817 * Remove the highest priority context on the runqueue and return it 818 * to the caller. Returns %NULL if no runnable context was found. 819 */ 820 static struct spu_context *grab_runnable_context(int prio, int node) 821 { 822 struct spu_context *ctx; 823 int best; 824 825 spin_lock(&spu_prio->runq_lock); 826 best = find_first_bit(spu_prio->bitmap, prio); 827 while (best < prio) { 828 struct list_head *rq = &spu_prio->runq[best]; 829 830 list_for_each_entry(ctx, rq, rq) { 831 /* XXX(hch): check for affinity here as well */ 832 if (__node_allowed(ctx, node)) { 833 __spu_del_from_rq(ctx); 834 goto found; 835 } 836 } 837 best++; 838 } 839 ctx = NULL; 840 found: 841 spin_unlock(&spu_prio->runq_lock); 842 return ctx; 843 } 844 845 static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio) 846 { 847 struct spu *spu = ctx->spu; 848 struct spu_context *new = NULL; 849 850 if (spu) { 851 new = grab_runnable_context(max_prio, spu->node); 852 if (new || force) { 853 spu_unschedule(spu, ctx, new == NULL); 854 if (new) { 855 if (new->flags & SPU_CREATE_NOSCHED) 856 wake_up(&new->stop_wq); 857 else { 858 spu_release(ctx); 859 spu_schedule(spu, new); 860 /* this one can't easily be made 861 interruptible */ 862 mutex_lock(&ctx->state_mutex); 863 } 864 } 865 } 866 } 867 868 return new != NULL; 869 } 870 871 /** 872 * spu_deactivate - unbind a context from it's physical spu 873 * @ctx: spu context to unbind 874 * 875 * Unbind @ctx from the physical spu it is running on and schedule 876 * the highest priority context to run on the freed physical spu. 877 */ 878 void spu_deactivate(struct spu_context *ctx) 879 { 880 spu_context_nospu_trace(spu_deactivate__enter, ctx); 881 __spu_deactivate(ctx, 1, MAX_PRIO); 882 } 883 884 /** 885 * spu_yield - yield a physical spu if others are waiting 886 * @ctx: spu context to yield 887 * 888 * Check if there is a higher priority context waiting and if yes 889 * unbind @ctx from the physical spu and schedule the highest 890 * priority context to run on the freed physical spu instead. 891 */ 892 void spu_yield(struct spu_context *ctx) 893 { 894 spu_context_nospu_trace(spu_yield__enter, ctx); 895 if (!(ctx->flags & SPU_CREATE_NOSCHED)) { 896 mutex_lock(&ctx->state_mutex); 897 __spu_deactivate(ctx, 0, MAX_PRIO); 898 mutex_unlock(&ctx->state_mutex); 899 } 900 } 901 902 static noinline void spusched_tick(struct spu_context *ctx) 903 { 904 struct spu_context *new = NULL; 905 struct spu *spu = NULL; 906 907 if (spu_acquire(ctx)) 908 BUG(); /* a kernel thread never has signals pending */ 909 910 if (ctx->state != SPU_STATE_RUNNABLE) 911 goto out; 912 if (ctx->flags & SPU_CREATE_NOSCHED) 913 goto out; 914 if (ctx->policy == SCHED_FIFO) 915 goto out; 916 917 if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags)) 918 goto out; 919 920 spu = ctx->spu; 921 922 spu_context_trace(spusched_tick__preempt, ctx, spu); 923 924 new = grab_runnable_context(ctx->prio + 1, spu->node); 925 if (new) { 926 spu_unschedule(spu, ctx, 0); 927 if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags)) 928 spu_add_to_rq(ctx); 929 } else { 930 spu_context_nospu_trace(spusched_tick__newslice, ctx); 931 if (!ctx->time_slice) 932 ctx->time_slice++; 933 } 934 out: 935 spu_release(ctx); 936 937 if (new) 938 spu_schedule(spu, new); 939 } 940 941 /** 942 * count_active_contexts - count nr of active tasks 943 * 944 * Return the number of tasks currently running or waiting to run. 945 * 946 * Note that we don't take runq_lock / list_mutex here. Reading 947 * a single 32bit value is atomic on powerpc, and we don't care 948 * about memory ordering issues here. 949 */ 950 static unsigned long count_active_contexts(void) 951 { 952 int nr_active = 0, node; 953 954 for (node = 0; node < MAX_NUMNODES; node++) 955 nr_active += cbe_spu_info[node].nr_active; 956 nr_active += spu_prio->nr_waiting; 957 958 return nr_active; 959 } 960 961 /** 962 * spu_calc_load - update the avenrun load estimates. 963 * 964 * No locking against reading these values from userspace, as for 965 * the CPU loadavg code. 966 */ 967 static void spu_calc_load(void) 968 { 969 unsigned long active_tasks; /* fixed-point */ 970 971 active_tasks = count_active_contexts() * FIXED_1; 972 spu_avenrun[0] = calc_load(spu_avenrun[0], EXP_1, active_tasks); 973 spu_avenrun[1] = calc_load(spu_avenrun[1], EXP_5, active_tasks); 974 spu_avenrun[2] = calc_load(spu_avenrun[2], EXP_15, active_tasks); 975 } 976 977 static void spusched_wake(struct timer_list *unused) 978 { 979 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK); 980 wake_up_process(spusched_task); 981 } 982 983 static void spuloadavg_wake(struct timer_list *unused) 984 { 985 mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ); 986 spu_calc_load(); 987 } 988 989 static int spusched_thread(void *unused) 990 { 991 struct spu *spu; 992 int node; 993 994 while (!kthread_should_stop()) { 995 set_current_state(TASK_INTERRUPTIBLE); 996 schedule(); 997 for (node = 0; node < MAX_NUMNODES; node++) { 998 struct mutex *mtx = &cbe_spu_info[node].list_mutex; 999 1000 mutex_lock(mtx); 1001 list_for_each_entry(spu, &cbe_spu_info[node].spus, 1002 cbe_list) { 1003 struct spu_context *ctx = spu->ctx; 1004 1005 if (ctx) { 1006 get_spu_context(ctx); 1007 mutex_unlock(mtx); 1008 spusched_tick(ctx); 1009 mutex_lock(mtx); 1010 put_spu_context(ctx); 1011 } 1012 } 1013 mutex_unlock(mtx); 1014 } 1015 } 1016 1017 return 0; 1018 } 1019 1020 void spuctx_switch_state(struct spu_context *ctx, 1021 enum spu_utilization_state new_state) 1022 { 1023 unsigned long long curtime; 1024 signed long long delta; 1025 struct spu *spu; 1026 enum spu_utilization_state old_state; 1027 int node; 1028 1029 curtime = ktime_get_ns(); 1030 delta = curtime - ctx->stats.tstamp; 1031 1032 WARN_ON(!mutex_is_locked(&ctx->state_mutex)); 1033 WARN_ON(delta < 0); 1034 1035 spu = ctx->spu; 1036 old_state = ctx->stats.util_state; 1037 ctx->stats.util_state = new_state; 1038 ctx->stats.tstamp = curtime; 1039 1040 /* 1041 * Update the physical SPU utilization statistics. 1042 */ 1043 if (spu) { 1044 ctx->stats.times[old_state] += delta; 1045 spu->stats.times[old_state] += delta; 1046 spu->stats.util_state = new_state; 1047 spu->stats.tstamp = curtime; 1048 node = spu->node; 1049 if (old_state == SPU_UTIL_USER) 1050 atomic_dec(&cbe_spu_info[node].busy_spus); 1051 if (new_state == SPU_UTIL_USER) 1052 atomic_inc(&cbe_spu_info[node].busy_spus); 1053 } 1054 } 1055 1056 static int show_spu_loadavg(struct seq_file *s, void *private) 1057 { 1058 int a, b, c; 1059 1060 a = spu_avenrun[0] + (FIXED_1/200); 1061 b = spu_avenrun[1] + (FIXED_1/200); 1062 c = spu_avenrun[2] + (FIXED_1/200); 1063 1064 /* 1065 * Note that last_pid doesn't really make much sense for the 1066 * SPU loadavg (it even seems very odd on the CPU side...), 1067 * but we include it here to have a 100% compatible interface. 1068 */ 1069 seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n", 1070 LOAD_INT(a), LOAD_FRAC(a), 1071 LOAD_INT(b), LOAD_FRAC(b), 1072 LOAD_INT(c), LOAD_FRAC(c), 1073 count_active_contexts(), 1074 atomic_read(&nr_spu_contexts), 1075 idr_get_cursor(&task_active_pid_ns(current)->idr) - 1); 1076 return 0; 1077 }; 1078 1079 int __init spu_sched_init(void) 1080 { 1081 struct proc_dir_entry *entry; 1082 int err = -ENOMEM, i; 1083 1084 spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL); 1085 if (!spu_prio) 1086 goto out; 1087 1088 for (i = 0; i < MAX_PRIO; i++) { 1089 INIT_LIST_HEAD(&spu_prio->runq[i]); 1090 __clear_bit(i, spu_prio->bitmap); 1091 } 1092 spin_lock_init(&spu_prio->runq_lock); 1093 1094 timer_setup(&spusched_timer, spusched_wake, 0); 1095 timer_setup(&spuloadavg_timer, spuloadavg_wake, 0); 1096 1097 spusched_task = kthread_run(spusched_thread, NULL, "spusched"); 1098 if (IS_ERR(spusched_task)) { 1099 err = PTR_ERR(spusched_task); 1100 goto out_free_spu_prio; 1101 } 1102 1103 mod_timer(&spuloadavg_timer, 0); 1104 1105 entry = proc_create_single("spu_loadavg", 0, NULL, show_spu_loadavg); 1106 if (!entry) 1107 goto out_stop_kthread; 1108 1109 pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n", 1110 SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE); 1111 return 0; 1112 1113 out_stop_kthread: 1114 kthread_stop(spusched_task); 1115 out_free_spu_prio: 1116 kfree(spu_prio); 1117 out: 1118 return err; 1119 } 1120 1121 void spu_sched_exit(void) 1122 { 1123 struct spu *spu; 1124 int node; 1125 1126 remove_proc_entry("spu_loadavg", NULL); 1127 1128 del_timer_sync(&spusched_timer); 1129 del_timer_sync(&spuloadavg_timer); 1130 kthread_stop(spusched_task); 1131 1132 for (node = 0; node < MAX_NUMNODES; node++) { 1133 mutex_lock(&cbe_spu_info[node].list_mutex); 1134 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) 1135 if (spu->alloc_state != SPU_FREE) 1136 spu->alloc_state = SPU_FREE; 1137 mutex_unlock(&cbe_spu_info[node].list_mutex); 1138 } 1139 kfree(spu_prio); 1140 } 1141