1 /* sched.c - SPU scheduler. 2 * 3 * Copyright (C) IBM 2005 4 * Author: Mark Nutter <mnutter@us.ibm.com> 5 * 6 * 2006-03-31 NUMA domains added. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2, or (at your option) 11 * any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #undef DEBUG 24 25 #include <linux/module.h> 26 #include <linux/errno.h> 27 #include <linux/sched.h> 28 #include <linux/kernel.h> 29 #include <linux/mm.h> 30 #include <linux/completion.h> 31 #include <linux/vmalloc.h> 32 #include <linux/smp.h> 33 #include <linux/stddef.h> 34 #include <linux/unistd.h> 35 #include <linux/numa.h> 36 #include <linux/mutex.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/pid_namespace.h> 40 #include <linux/proc_fs.h> 41 #include <linux/seq_file.h> 42 #include <linux/marker.h> 43 44 #include <asm/io.h> 45 #include <asm/mmu_context.h> 46 #include <asm/spu.h> 47 #include <asm/spu_csa.h> 48 #include <asm/spu_priv1.h> 49 #include "spufs.h" 50 51 struct spu_prio_array { 52 DECLARE_BITMAP(bitmap, MAX_PRIO); 53 struct list_head runq[MAX_PRIO]; 54 spinlock_t runq_lock; 55 int nr_waiting; 56 }; 57 58 static unsigned long spu_avenrun[3]; 59 static struct spu_prio_array *spu_prio; 60 static struct task_struct *spusched_task; 61 static struct timer_list spusched_timer; 62 static struct timer_list spuloadavg_timer; 63 64 /* 65 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0). 66 */ 67 #define NORMAL_PRIO 120 68 69 /* 70 * Frequency of the spu scheduler tick. By default we do one SPU scheduler 71 * tick for every 10 CPU scheduler ticks. 72 */ 73 #define SPUSCHED_TICK (10) 74 75 /* 76 * These are the 'tuning knobs' of the scheduler: 77 * 78 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is 79 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs. 80 */ 81 #define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1) 82 #define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK)) 83 84 #define MAX_USER_PRIO (MAX_PRIO - MAX_RT_PRIO) 85 #define SCALE_PRIO(x, prio) \ 86 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE) 87 88 /* 89 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values: 90 * [800ms ... 100ms ... 5ms] 91 * 92 * The higher a thread's priority, the bigger timeslices 93 * it gets during one round of execution. But even the lowest 94 * priority thread gets MIN_TIMESLICE worth of execution time. 95 */ 96 void spu_set_timeslice(struct spu_context *ctx) 97 { 98 if (ctx->prio < NORMAL_PRIO) 99 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio); 100 else 101 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio); 102 } 103 104 /* 105 * Update scheduling information from the owning thread. 106 */ 107 void __spu_update_sched_info(struct spu_context *ctx) 108 { 109 /* 110 * assert that the context is not on the runqueue, so it is safe 111 * to change its scheduling parameters. 112 */ 113 BUG_ON(!list_empty(&ctx->rq)); 114 115 /* 116 * 32-Bit assignments are atomic on powerpc, and we don't care about 117 * memory ordering here because retrieving the controlling thread is 118 * per definition racy. 119 */ 120 ctx->tid = current->pid; 121 122 /* 123 * We do our own priority calculations, so we normally want 124 * ->static_prio to start with. Unfortunately this field 125 * contains junk for threads with a realtime scheduling 126 * policy so we have to look at ->prio in this case. 127 */ 128 if (rt_prio(current->prio)) 129 ctx->prio = current->prio; 130 else 131 ctx->prio = current->static_prio; 132 ctx->policy = current->policy; 133 134 /* 135 * TO DO: the context may be loaded, so we may need to activate 136 * it again on a different node. But it shouldn't hurt anything 137 * to update its parameters, because we know that the scheduler 138 * is not actively looking at this field, since it is not on the 139 * runqueue. The context will be rescheduled on the proper node 140 * if it is timesliced or preempted. 141 */ 142 ctx->cpus_allowed = current->cpus_allowed; 143 144 /* Save the current cpu id for spu interrupt routing. */ 145 ctx->last_ran = raw_smp_processor_id(); 146 } 147 148 void spu_update_sched_info(struct spu_context *ctx) 149 { 150 int node; 151 152 if (ctx->state == SPU_STATE_RUNNABLE) { 153 node = ctx->spu->node; 154 155 /* 156 * Take list_mutex to sync with find_victim(). 157 */ 158 mutex_lock(&cbe_spu_info[node].list_mutex); 159 __spu_update_sched_info(ctx); 160 mutex_unlock(&cbe_spu_info[node].list_mutex); 161 } else { 162 __spu_update_sched_info(ctx); 163 } 164 } 165 166 static int __node_allowed(struct spu_context *ctx, int node) 167 { 168 if (nr_cpus_node(node)) { 169 cpumask_t mask = node_to_cpumask(node); 170 171 if (cpus_intersects(mask, ctx->cpus_allowed)) 172 return 1; 173 } 174 175 return 0; 176 } 177 178 static int node_allowed(struct spu_context *ctx, int node) 179 { 180 int rval; 181 182 spin_lock(&spu_prio->runq_lock); 183 rval = __node_allowed(ctx, node); 184 spin_unlock(&spu_prio->runq_lock); 185 186 return rval; 187 } 188 189 void do_notify_spus_active(void) 190 { 191 int node; 192 193 /* 194 * Wake up the active spu_contexts. 195 * 196 * When the awakened processes see their "notify_active" flag is set, 197 * they will call spu_switch_notify(). 198 */ 199 for_each_online_node(node) { 200 struct spu *spu; 201 202 mutex_lock(&cbe_spu_info[node].list_mutex); 203 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 204 if (spu->alloc_state != SPU_FREE) { 205 struct spu_context *ctx = spu->ctx; 206 set_bit(SPU_SCHED_NOTIFY_ACTIVE, 207 &ctx->sched_flags); 208 mb(); 209 wake_up_all(&ctx->stop_wq); 210 } 211 } 212 mutex_unlock(&cbe_spu_info[node].list_mutex); 213 } 214 } 215 216 /** 217 * spu_bind_context - bind spu context to physical spu 218 * @spu: physical spu to bind to 219 * @ctx: context to bind 220 */ 221 static void spu_bind_context(struct spu *spu, struct spu_context *ctx) 222 { 223 spu_context_trace(spu_bind_context__enter, ctx, spu); 224 225 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); 226 227 if (ctx->flags & SPU_CREATE_NOSCHED) 228 atomic_inc(&cbe_spu_info[spu->node].reserved_spus); 229 230 ctx->stats.slb_flt_base = spu->stats.slb_flt; 231 ctx->stats.class2_intr_base = spu->stats.class2_intr; 232 233 spu_associate_mm(spu, ctx->owner); 234 235 spin_lock_irq(&spu->register_lock); 236 spu->ctx = ctx; 237 spu->flags = 0; 238 ctx->spu = spu; 239 ctx->ops = &spu_hw_ops; 240 spu->pid = current->pid; 241 spu->tgid = current->tgid; 242 spu->ibox_callback = spufs_ibox_callback; 243 spu->wbox_callback = spufs_wbox_callback; 244 spu->stop_callback = spufs_stop_callback; 245 spu->mfc_callback = spufs_mfc_callback; 246 spin_unlock_irq(&spu->register_lock); 247 248 spu_unmap_mappings(ctx); 249 250 spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0); 251 spu_restore(&ctx->csa, spu); 252 spu->timestamp = jiffies; 253 spu_switch_notify(spu, ctx); 254 ctx->state = SPU_STATE_RUNNABLE; 255 256 spuctx_switch_state(ctx, SPU_UTIL_USER); 257 } 258 259 /* 260 * Must be used with the list_mutex held. 261 */ 262 static inline int sched_spu(struct spu *spu) 263 { 264 BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex)); 265 266 return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED)); 267 } 268 269 static void aff_merge_remaining_ctxs(struct spu_gang *gang) 270 { 271 struct spu_context *ctx; 272 273 list_for_each_entry(ctx, &gang->aff_list_head, aff_list) { 274 if (list_empty(&ctx->aff_list)) 275 list_add(&ctx->aff_list, &gang->aff_list_head); 276 } 277 gang->aff_flags |= AFF_MERGED; 278 } 279 280 static void aff_set_offsets(struct spu_gang *gang) 281 { 282 struct spu_context *ctx; 283 int offset; 284 285 offset = -1; 286 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list, 287 aff_list) { 288 if (&ctx->aff_list == &gang->aff_list_head) 289 break; 290 ctx->aff_offset = offset--; 291 } 292 293 offset = 0; 294 list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) { 295 if (&ctx->aff_list == &gang->aff_list_head) 296 break; 297 ctx->aff_offset = offset++; 298 } 299 300 gang->aff_flags |= AFF_OFFSETS_SET; 301 } 302 303 static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff, 304 int group_size, int lowest_offset) 305 { 306 struct spu *spu; 307 int node, n; 308 309 /* 310 * TODO: A better algorithm could be used to find a good spu to be 311 * used as reference location for the ctxs chain. 312 */ 313 node = cpu_to_node(raw_smp_processor_id()); 314 for (n = 0; n < MAX_NUMNODES; n++, node++) { 315 int available_spus; 316 317 node = (node < MAX_NUMNODES) ? node : 0; 318 if (!node_allowed(ctx, node)) 319 continue; 320 321 available_spus = 0; 322 mutex_lock(&cbe_spu_info[node].list_mutex); 323 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 324 if (spu->ctx && spu->ctx->gang 325 && spu->ctx->aff_offset == 0) 326 available_spus -= 327 (spu->ctx->gang->contexts - 1); 328 else 329 available_spus++; 330 } 331 if (available_spus < ctx->gang->contexts) { 332 mutex_unlock(&cbe_spu_info[node].list_mutex); 333 continue; 334 } 335 336 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 337 if ((!mem_aff || spu->has_mem_affinity) && 338 sched_spu(spu)) { 339 mutex_unlock(&cbe_spu_info[node].list_mutex); 340 return spu; 341 } 342 } 343 mutex_unlock(&cbe_spu_info[node].list_mutex); 344 } 345 return NULL; 346 } 347 348 static void aff_set_ref_point_location(struct spu_gang *gang) 349 { 350 int mem_aff, gs, lowest_offset; 351 struct spu_context *ctx; 352 struct spu *tmp; 353 354 mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM; 355 lowest_offset = 0; 356 gs = 0; 357 358 list_for_each_entry(tmp, &gang->aff_list_head, aff_list) 359 gs++; 360 361 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list, 362 aff_list) { 363 if (&ctx->aff_list == &gang->aff_list_head) 364 break; 365 lowest_offset = ctx->aff_offset; 366 } 367 368 gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs, 369 lowest_offset); 370 } 371 372 static struct spu *ctx_location(struct spu *ref, int offset, int node) 373 { 374 struct spu *spu; 375 376 spu = NULL; 377 if (offset >= 0) { 378 list_for_each_entry(spu, ref->aff_list.prev, aff_list) { 379 BUG_ON(spu->node != node); 380 if (offset == 0) 381 break; 382 if (sched_spu(spu)) 383 offset--; 384 } 385 } else { 386 list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) { 387 BUG_ON(spu->node != node); 388 if (offset == 0) 389 break; 390 if (sched_spu(spu)) 391 offset++; 392 } 393 } 394 395 return spu; 396 } 397 398 /* 399 * affinity_check is called each time a context is going to be scheduled. 400 * It returns the spu ptr on which the context must run. 401 */ 402 static int has_affinity(struct spu_context *ctx) 403 { 404 struct spu_gang *gang = ctx->gang; 405 406 if (list_empty(&ctx->aff_list)) 407 return 0; 408 409 if (atomic_read(&ctx->gang->aff_sched_count) == 0) 410 ctx->gang->aff_ref_spu = NULL; 411 412 if (!gang->aff_ref_spu) { 413 if (!(gang->aff_flags & AFF_MERGED)) 414 aff_merge_remaining_ctxs(gang); 415 if (!(gang->aff_flags & AFF_OFFSETS_SET)) 416 aff_set_offsets(gang); 417 aff_set_ref_point_location(gang); 418 } 419 420 return gang->aff_ref_spu != NULL; 421 } 422 423 /** 424 * spu_unbind_context - unbind spu context from physical spu 425 * @spu: physical spu to unbind from 426 * @ctx: context to unbind 427 */ 428 static void spu_unbind_context(struct spu *spu, struct spu_context *ctx) 429 { 430 u32 status; 431 432 spu_context_trace(spu_unbind_context__enter, ctx, spu); 433 434 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); 435 436 if (spu->ctx->flags & SPU_CREATE_NOSCHED) 437 atomic_dec(&cbe_spu_info[spu->node].reserved_spus); 438 439 if (ctx->gang) 440 atomic_dec_if_positive(&ctx->gang->aff_sched_count); 441 442 spu_switch_notify(spu, NULL); 443 spu_unmap_mappings(ctx); 444 spu_save(&ctx->csa, spu); 445 spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0); 446 447 spin_lock_irq(&spu->register_lock); 448 spu->timestamp = jiffies; 449 ctx->state = SPU_STATE_SAVED; 450 spu->ibox_callback = NULL; 451 spu->wbox_callback = NULL; 452 spu->stop_callback = NULL; 453 spu->mfc_callback = NULL; 454 spu->pid = 0; 455 spu->tgid = 0; 456 ctx->ops = &spu_backing_ops; 457 spu->flags = 0; 458 spu->ctx = NULL; 459 spin_unlock_irq(&spu->register_lock); 460 461 spu_associate_mm(spu, NULL); 462 463 ctx->stats.slb_flt += 464 (spu->stats.slb_flt - ctx->stats.slb_flt_base); 465 ctx->stats.class2_intr += 466 (spu->stats.class2_intr - ctx->stats.class2_intr_base); 467 468 /* This maps the underlying spu state to idle */ 469 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED); 470 ctx->spu = NULL; 471 472 if (spu_stopped(ctx, &status)) 473 wake_up_all(&ctx->stop_wq); 474 } 475 476 /** 477 * spu_add_to_rq - add a context to the runqueue 478 * @ctx: context to add 479 */ 480 static void __spu_add_to_rq(struct spu_context *ctx) 481 { 482 /* 483 * Unfortunately this code path can be called from multiple threads 484 * on behalf of a single context due to the way the problem state 485 * mmap support works. 486 * 487 * Fortunately we need to wake up all these threads at the same time 488 * and can simply skip the runqueue addition for every but the first 489 * thread getting into this codepath. 490 * 491 * It's still quite hacky, and long-term we should proxy all other 492 * threads through the owner thread so that spu_run is in control 493 * of all the scheduling activity for a given context. 494 */ 495 if (list_empty(&ctx->rq)) { 496 list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]); 497 set_bit(ctx->prio, spu_prio->bitmap); 498 if (!spu_prio->nr_waiting++) 499 __mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK); 500 } 501 } 502 503 static void spu_add_to_rq(struct spu_context *ctx) 504 { 505 spin_lock(&spu_prio->runq_lock); 506 __spu_add_to_rq(ctx); 507 spin_unlock(&spu_prio->runq_lock); 508 } 509 510 static void __spu_del_from_rq(struct spu_context *ctx) 511 { 512 int prio = ctx->prio; 513 514 if (!list_empty(&ctx->rq)) { 515 if (!--spu_prio->nr_waiting) 516 del_timer(&spusched_timer); 517 list_del_init(&ctx->rq); 518 519 if (list_empty(&spu_prio->runq[prio])) 520 clear_bit(prio, spu_prio->bitmap); 521 } 522 } 523 524 void spu_del_from_rq(struct spu_context *ctx) 525 { 526 spin_lock(&spu_prio->runq_lock); 527 __spu_del_from_rq(ctx); 528 spin_unlock(&spu_prio->runq_lock); 529 } 530 531 static void spu_prio_wait(struct spu_context *ctx) 532 { 533 DEFINE_WAIT(wait); 534 535 /* 536 * The caller must explicitly wait for a context to be loaded 537 * if the nosched flag is set. If NOSCHED is not set, the caller 538 * queues the context and waits for an spu event or error. 539 */ 540 BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED)); 541 542 spin_lock(&spu_prio->runq_lock); 543 prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE); 544 if (!signal_pending(current)) { 545 __spu_add_to_rq(ctx); 546 spin_unlock(&spu_prio->runq_lock); 547 mutex_unlock(&ctx->state_mutex); 548 schedule(); 549 mutex_lock(&ctx->state_mutex); 550 spin_lock(&spu_prio->runq_lock); 551 __spu_del_from_rq(ctx); 552 } 553 spin_unlock(&spu_prio->runq_lock); 554 __set_current_state(TASK_RUNNING); 555 remove_wait_queue(&ctx->stop_wq, &wait); 556 } 557 558 static struct spu *spu_get_idle(struct spu_context *ctx) 559 { 560 struct spu *spu, *aff_ref_spu; 561 int node, n; 562 563 spu_context_nospu_trace(spu_get_idle__enter, ctx); 564 565 if (ctx->gang) { 566 mutex_lock(&ctx->gang->aff_mutex); 567 if (has_affinity(ctx)) { 568 aff_ref_spu = ctx->gang->aff_ref_spu; 569 atomic_inc(&ctx->gang->aff_sched_count); 570 mutex_unlock(&ctx->gang->aff_mutex); 571 node = aff_ref_spu->node; 572 573 mutex_lock(&cbe_spu_info[node].list_mutex); 574 spu = ctx_location(aff_ref_spu, ctx->aff_offset, node); 575 if (spu && spu->alloc_state == SPU_FREE) 576 goto found; 577 mutex_unlock(&cbe_spu_info[node].list_mutex); 578 579 atomic_dec(&ctx->gang->aff_sched_count); 580 goto not_found; 581 } 582 mutex_unlock(&ctx->gang->aff_mutex); 583 } 584 node = cpu_to_node(raw_smp_processor_id()); 585 for (n = 0; n < MAX_NUMNODES; n++, node++) { 586 node = (node < MAX_NUMNODES) ? node : 0; 587 if (!node_allowed(ctx, node)) 588 continue; 589 590 mutex_lock(&cbe_spu_info[node].list_mutex); 591 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 592 if (spu->alloc_state == SPU_FREE) 593 goto found; 594 } 595 mutex_unlock(&cbe_spu_info[node].list_mutex); 596 } 597 598 not_found: 599 spu_context_nospu_trace(spu_get_idle__not_found, ctx); 600 return NULL; 601 602 found: 603 spu->alloc_state = SPU_USED; 604 mutex_unlock(&cbe_spu_info[node].list_mutex); 605 spu_context_trace(spu_get_idle__found, ctx, spu); 606 spu_init_channels(spu); 607 return spu; 608 } 609 610 /** 611 * find_victim - find a lower priority context to preempt 612 * @ctx: canidate context for running 613 * 614 * Returns the freed physical spu to run the new context on. 615 */ 616 static struct spu *find_victim(struct spu_context *ctx) 617 { 618 struct spu_context *victim = NULL; 619 struct spu *spu; 620 int node, n; 621 622 spu_context_nospu_trace(spu_find_victim__enter, ctx); 623 624 /* 625 * Look for a possible preemption candidate on the local node first. 626 * If there is no candidate look at the other nodes. This isn't 627 * exactly fair, but so far the whole spu scheduler tries to keep 628 * a strong node affinity. We might want to fine-tune this in 629 * the future. 630 */ 631 restart: 632 node = cpu_to_node(raw_smp_processor_id()); 633 for (n = 0; n < MAX_NUMNODES; n++, node++) { 634 node = (node < MAX_NUMNODES) ? node : 0; 635 if (!node_allowed(ctx, node)) 636 continue; 637 638 mutex_lock(&cbe_spu_info[node].list_mutex); 639 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 640 struct spu_context *tmp = spu->ctx; 641 642 if (tmp && tmp->prio > ctx->prio && 643 !(tmp->flags & SPU_CREATE_NOSCHED) && 644 (!victim || tmp->prio > victim->prio)) { 645 victim = spu->ctx; 646 } 647 } 648 if (victim) 649 get_spu_context(victim); 650 mutex_unlock(&cbe_spu_info[node].list_mutex); 651 652 if (victim) { 653 /* 654 * This nests ctx->state_mutex, but we always lock 655 * higher priority contexts before lower priority 656 * ones, so this is safe until we introduce 657 * priority inheritance schemes. 658 * 659 * XXX if the highest priority context is locked, 660 * this can loop a long time. Might be better to 661 * look at another context or give up after X retries. 662 */ 663 if (!mutex_trylock(&victim->state_mutex)) { 664 put_spu_context(victim); 665 victim = NULL; 666 goto restart; 667 } 668 669 spu = victim->spu; 670 if (!spu || victim->prio <= ctx->prio) { 671 /* 672 * This race can happen because we've dropped 673 * the active list mutex. Not a problem, just 674 * restart the search. 675 */ 676 mutex_unlock(&victim->state_mutex); 677 put_spu_context(victim); 678 victim = NULL; 679 goto restart; 680 } 681 682 spu_context_trace(__spu_deactivate__unload, ctx, spu); 683 684 mutex_lock(&cbe_spu_info[node].list_mutex); 685 cbe_spu_info[node].nr_active--; 686 spu_unbind_context(spu, victim); 687 mutex_unlock(&cbe_spu_info[node].list_mutex); 688 689 victim->stats.invol_ctx_switch++; 690 spu->stats.invol_ctx_switch++; 691 if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags)) 692 spu_add_to_rq(victim); 693 694 mutex_unlock(&victim->state_mutex); 695 put_spu_context(victim); 696 697 return spu; 698 } 699 } 700 701 return NULL; 702 } 703 704 static void __spu_schedule(struct spu *spu, struct spu_context *ctx) 705 { 706 int node = spu->node; 707 int success = 0; 708 709 spu_set_timeslice(ctx); 710 711 mutex_lock(&cbe_spu_info[node].list_mutex); 712 if (spu->ctx == NULL) { 713 spu_bind_context(spu, ctx); 714 cbe_spu_info[node].nr_active++; 715 spu->alloc_state = SPU_USED; 716 success = 1; 717 } 718 mutex_unlock(&cbe_spu_info[node].list_mutex); 719 720 if (success) 721 wake_up_all(&ctx->run_wq); 722 else 723 spu_add_to_rq(ctx); 724 } 725 726 static void spu_schedule(struct spu *spu, struct spu_context *ctx) 727 { 728 /* not a candidate for interruptible because it's called either 729 from the scheduler thread or from spu_deactivate */ 730 mutex_lock(&ctx->state_mutex); 731 if (ctx->state == SPU_STATE_SAVED) 732 __spu_schedule(spu, ctx); 733 spu_release(ctx); 734 } 735 736 /** 737 * spu_unschedule - remove a context from a spu, and possibly release it. 738 * @spu: The SPU to unschedule from 739 * @ctx: The context currently scheduled on the SPU 740 * @free_spu Whether to free the SPU for other contexts 741 * 742 * Unbinds the context @ctx from the SPU @spu. If @free_spu is non-zero, the 743 * SPU is made available for other contexts (ie, may be returned by 744 * spu_get_idle). If this is zero, the caller is expected to schedule another 745 * context to this spu. 746 * 747 * Should be called with ctx->state_mutex held. 748 */ 749 static void spu_unschedule(struct spu *spu, struct spu_context *ctx, 750 int free_spu) 751 { 752 int node = spu->node; 753 754 mutex_lock(&cbe_spu_info[node].list_mutex); 755 cbe_spu_info[node].nr_active--; 756 if (free_spu) 757 spu->alloc_state = SPU_FREE; 758 spu_unbind_context(spu, ctx); 759 ctx->stats.invol_ctx_switch++; 760 spu->stats.invol_ctx_switch++; 761 mutex_unlock(&cbe_spu_info[node].list_mutex); 762 } 763 764 /** 765 * spu_activate - find a free spu for a context and execute it 766 * @ctx: spu context to schedule 767 * @flags: flags (currently ignored) 768 * 769 * Tries to find a free spu to run @ctx. If no free spu is available 770 * add the context to the runqueue so it gets woken up once an spu 771 * is available. 772 */ 773 int spu_activate(struct spu_context *ctx, unsigned long flags) 774 { 775 struct spu *spu; 776 777 /* 778 * If there are multiple threads waiting for a single context 779 * only one actually binds the context while the others will 780 * only be able to acquire the state_mutex once the context 781 * already is in runnable state. 782 */ 783 if (ctx->spu) 784 return 0; 785 786 spu_activate_top: 787 if (signal_pending(current)) 788 return -ERESTARTSYS; 789 790 spu = spu_get_idle(ctx); 791 /* 792 * If this is a realtime thread we try to get it running by 793 * preempting a lower priority thread. 794 */ 795 if (!spu && rt_prio(ctx->prio)) 796 spu = find_victim(ctx); 797 if (spu) { 798 unsigned long runcntl; 799 800 runcntl = ctx->ops->runcntl_read(ctx); 801 __spu_schedule(spu, ctx); 802 if (runcntl & SPU_RUNCNTL_RUNNABLE) 803 spuctx_switch_state(ctx, SPU_UTIL_USER); 804 805 return 0; 806 } 807 808 if (ctx->flags & SPU_CREATE_NOSCHED) { 809 spu_prio_wait(ctx); 810 goto spu_activate_top; 811 } 812 813 spu_add_to_rq(ctx); 814 815 return 0; 816 } 817 818 /** 819 * grab_runnable_context - try to find a runnable context 820 * 821 * Remove the highest priority context on the runqueue and return it 822 * to the caller. Returns %NULL if no runnable context was found. 823 */ 824 static struct spu_context *grab_runnable_context(int prio, int node) 825 { 826 struct spu_context *ctx; 827 int best; 828 829 spin_lock(&spu_prio->runq_lock); 830 best = find_first_bit(spu_prio->bitmap, prio); 831 while (best < prio) { 832 struct list_head *rq = &spu_prio->runq[best]; 833 834 list_for_each_entry(ctx, rq, rq) { 835 /* XXX(hch): check for affinity here aswell */ 836 if (__node_allowed(ctx, node)) { 837 __spu_del_from_rq(ctx); 838 goto found; 839 } 840 } 841 best++; 842 } 843 ctx = NULL; 844 found: 845 spin_unlock(&spu_prio->runq_lock); 846 return ctx; 847 } 848 849 static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio) 850 { 851 struct spu *spu = ctx->spu; 852 struct spu_context *new = NULL; 853 854 if (spu) { 855 new = grab_runnable_context(max_prio, spu->node); 856 if (new || force) { 857 spu_unschedule(spu, ctx, new == NULL); 858 if (new) { 859 if (new->flags & SPU_CREATE_NOSCHED) 860 wake_up(&new->stop_wq); 861 else { 862 spu_release(ctx); 863 spu_schedule(spu, new); 864 /* this one can't easily be made 865 interruptible */ 866 mutex_lock(&ctx->state_mutex); 867 } 868 } 869 } 870 } 871 872 return new != NULL; 873 } 874 875 /** 876 * spu_deactivate - unbind a context from it's physical spu 877 * @ctx: spu context to unbind 878 * 879 * Unbind @ctx from the physical spu it is running on and schedule 880 * the highest priority context to run on the freed physical spu. 881 */ 882 void spu_deactivate(struct spu_context *ctx) 883 { 884 spu_context_nospu_trace(spu_deactivate__enter, ctx); 885 __spu_deactivate(ctx, 1, MAX_PRIO); 886 } 887 888 /** 889 * spu_yield - yield a physical spu if others are waiting 890 * @ctx: spu context to yield 891 * 892 * Check if there is a higher priority context waiting and if yes 893 * unbind @ctx from the physical spu and schedule the highest 894 * priority context to run on the freed physical spu instead. 895 */ 896 void spu_yield(struct spu_context *ctx) 897 { 898 spu_context_nospu_trace(spu_yield__enter, ctx); 899 if (!(ctx->flags & SPU_CREATE_NOSCHED)) { 900 mutex_lock(&ctx->state_mutex); 901 __spu_deactivate(ctx, 0, MAX_PRIO); 902 mutex_unlock(&ctx->state_mutex); 903 } 904 } 905 906 static noinline void spusched_tick(struct spu_context *ctx) 907 { 908 struct spu_context *new = NULL; 909 struct spu *spu = NULL; 910 911 if (spu_acquire(ctx)) 912 BUG(); /* a kernel thread never has signals pending */ 913 914 if (ctx->state != SPU_STATE_RUNNABLE) 915 goto out; 916 if (ctx->flags & SPU_CREATE_NOSCHED) 917 goto out; 918 if (ctx->policy == SCHED_FIFO) 919 goto out; 920 921 if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags)) 922 goto out; 923 924 spu = ctx->spu; 925 926 spu_context_trace(spusched_tick__preempt, ctx, spu); 927 928 new = grab_runnable_context(ctx->prio + 1, spu->node); 929 if (new) { 930 spu_unschedule(spu, ctx, 0); 931 if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags)) 932 spu_add_to_rq(ctx); 933 } else { 934 spu_context_nospu_trace(spusched_tick__newslice, ctx); 935 if (!ctx->time_slice) 936 ctx->time_slice++; 937 } 938 out: 939 spu_release(ctx); 940 941 if (new) 942 spu_schedule(spu, new); 943 } 944 945 /** 946 * count_active_contexts - count nr of active tasks 947 * 948 * Return the number of tasks currently running or waiting to run. 949 * 950 * Note that we don't take runq_lock / list_mutex here. Reading 951 * a single 32bit value is atomic on powerpc, and we don't care 952 * about memory ordering issues here. 953 */ 954 static unsigned long count_active_contexts(void) 955 { 956 int nr_active = 0, node; 957 958 for (node = 0; node < MAX_NUMNODES; node++) 959 nr_active += cbe_spu_info[node].nr_active; 960 nr_active += spu_prio->nr_waiting; 961 962 return nr_active; 963 } 964 965 /** 966 * spu_calc_load - update the avenrun load estimates. 967 * 968 * No locking against reading these values from userspace, as for 969 * the CPU loadavg code. 970 */ 971 static void spu_calc_load(void) 972 { 973 unsigned long active_tasks; /* fixed-point */ 974 975 active_tasks = count_active_contexts() * FIXED_1; 976 CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks); 977 CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks); 978 CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks); 979 } 980 981 static void spusched_wake(unsigned long data) 982 { 983 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK); 984 wake_up_process(spusched_task); 985 } 986 987 static void spuloadavg_wake(unsigned long data) 988 { 989 mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ); 990 spu_calc_load(); 991 } 992 993 static int spusched_thread(void *unused) 994 { 995 struct spu *spu; 996 int node; 997 998 while (!kthread_should_stop()) { 999 set_current_state(TASK_INTERRUPTIBLE); 1000 schedule(); 1001 for (node = 0; node < MAX_NUMNODES; node++) { 1002 struct mutex *mtx = &cbe_spu_info[node].list_mutex; 1003 1004 mutex_lock(mtx); 1005 list_for_each_entry(spu, &cbe_spu_info[node].spus, 1006 cbe_list) { 1007 struct spu_context *ctx = spu->ctx; 1008 1009 if (ctx) { 1010 get_spu_context(ctx); 1011 mutex_unlock(mtx); 1012 spusched_tick(ctx); 1013 mutex_lock(mtx); 1014 put_spu_context(ctx); 1015 } 1016 } 1017 mutex_unlock(mtx); 1018 } 1019 } 1020 1021 return 0; 1022 } 1023 1024 void spuctx_switch_state(struct spu_context *ctx, 1025 enum spu_utilization_state new_state) 1026 { 1027 unsigned long long curtime; 1028 signed long long delta; 1029 struct timespec ts; 1030 struct spu *spu; 1031 enum spu_utilization_state old_state; 1032 int node; 1033 1034 ktime_get_ts(&ts); 1035 curtime = timespec_to_ns(&ts); 1036 delta = curtime - ctx->stats.tstamp; 1037 1038 WARN_ON(!mutex_is_locked(&ctx->state_mutex)); 1039 WARN_ON(delta < 0); 1040 1041 spu = ctx->spu; 1042 old_state = ctx->stats.util_state; 1043 ctx->stats.util_state = new_state; 1044 ctx->stats.tstamp = curtime; 1045 1046 /* 1047 * Update the physical SPU utilization statistics. 1048 */ 1049 if (spu) { 1050 ctx->stats.times[old_state] += delta; 1051 spu->stats.times[old_state] += delta; 1052 spu->stats.util_state = new_state; 1053 spu->stats.tstamp = curtime; 1054 node = spu->node; 1055 if (old_state == SPU_UTIL_USER) 1056 atomic_dec(&cbe_spu_info[node].busy_spus); 1057 if (new_state == SPU_UTIL_USER) 1058 atomic_inc(&cbe_spu_info[node].busy_spus); 1059 } 1060 } 1061 1062 #define LOAD_INT(x) ((x) >> FSHIFT) 1063 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100) 1064 1065 static int show_spu_loadavg(struct seq_file *s, void *private) 1066 { 1067 int a, b, c; 1068 1069 a = spu_avenrun[0] + (FIXED_1/200); 1070 b = spu_avenrun[1] + (FIXED_1/200); 1071 c = spu_avenrun[2] + (FIXED_1/200); 1072 1073 /* 1074 * Note that last_pid doesn't really make much sense for the 1075 * SPU loadavg (it even seems very odd on the CPU side...), 1076 * but we include it here to have a 100% compatible interface. 1077 */ 1078 seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n", 1079 LOAD_INT(a), LOAD_FRAC(a), 1080 LOAD_INT(b), LOAD_FRAC(b), 1081 LOAD_INT(c), LOAD_FRAC(c), 1082 count_active_contexts(), 1083 atomic_read(&nr_spu_contexts), 1084 current->nsproxy->pid_ns->last_pid); 1085 return 0; 1086 } 1087 1088 static int spu_loadavg_open(struct inode *inode, struct file *file) 1089 { 1090 return single_open(file, show_spu_loadavg, NULL); 1091 } 1092 1093 static const struct file_operations spu_loadavg_fops = { 1094 .open = spu_loadavg_open, 1095 .read = seq_read, 1096 .llseek = seq_lseek, 1097 .release = single_release, 1098 }; 1099 1100 int __init spu_sched_init(void) 1101 { 1102 struct proc_dir_entry *entry; 1103 int err = -ENOMEM, i; 1104 1105 spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL); 1106 if (!spu_prio) 1107 goto out; 1108 1109 for (i = 0; i < MAX_PRIO; i++) { 1110 INIT_LIST_HEAD(&spu_prio->runq[i]); 1111 __clear_bit(i, spu_prio->bitmap); 1112 } 1113 spin_lock_init(&spu_prio->runq_lock); 1114 1115 setup_timer(&spusched_timer, spusched_wake, 0); 1116 setup_timer(&spuloadavg_timer, spuloadavg_wake, 0); 1117 1118 spusched_task = kthread_run(spusched_thread, NULL, "spusched"); 1119 if (IS_ERR(spusched_task)) { 1120 err = PTR_ERR(spusched_task); 1121 goto out_free_spu_prio; 1122 } 1123 1124 mod_timer(&spuloadavg_timer, 0); 1125 1126 entry = proc_create("spu_loadavg", 0, NULL, &spu_loadavg_fops); 1127 if (!entry) 1128 goto out_stop_kthread; 1129 1130 pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n", 1131 SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE); 1132 return 0; 1133 1134 out_stop_kthread: 1135 kthread_stop(spusched_task); 1136 out_free_spu_prio: 1137 kfree(spu_prio); 1138 out: 1139 return err; 1140 } 1141 1142 void spu_sched_exit(void) 1143 { 1144 struct spu *spu; 1145 int node; 1146 1147 remove_proc_entry("spu_loadavg", NULL); 1148 1149 del_timer_sync(&spusched_timer); 1150 del_timer_sync(&spuloadavg_timer); 1151 kthread_stop(spusched_task); 1152 1153 for (node = 0; node < MAX_NUMNODES; node++) { 1154 mutex_lock(&cbe_spu_info[node].list_mutex); 1155 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) 1156 if (spu->alloc_state != SPU_FREE) 1157 spu->alloc_state = SPU_FREE; 1158 mutex_unlock(&cbe_spu_info[node].list_mutex); 1159 } 1160 kfree(spu_prio); 1161 } 1162