1 #define DEBUG
2 
3 #include <linux/wait.h>
4 #include <linux/ptrace.h>
5 
6 #include <asm/spu.h>
7 #include <asm/spu_priv1.h>
8 #include <asm/io.h>
9 #include <asm/unistd.h>
10 
11 #include "spufs.h"
12 
13 /* interrupt-level stop callback function. */
14 void spufs_stop_callback(struct spu *spu)
15 {
16 	struct spu_context *ctx = spu->ctx;
17 
18 	wake_up_all(&ctx->stop_wq);
19 }
20 
21 static inline int spu_stopped(struct spu_context *ctx, u32 *stat)
22 {
23 	struct spu *spu;
24 	u64 pte_fault;
25 
26 	*stat = ctx->ops->status_read(ctx);
27 
28 	spu = ctx->spu;
29 	if (ctx->state != SPU_STATE_RUNNABLE ||
30 	    test_bit(SPU_SCHED_NOTIFY_ACTIVE, &ctx->sched_flags))
31 		return 1;
32 	pte_fault = spu->dsisr &
33 	    (MFC_DSISR_PTE_NOT_FOUND | MFC_DSISR_ACCESS_DENIED);
34 	return (!(*stat & SPU_STATUS_RUNNING) || pte_fault || spu->class_0_pending) ?
35 		1 : 0;
36 }
37 
38 static int spu_setup_isolated(struct spu_context *ctx)
39 {
40 	int ret;
41 	u64 __iomem *mfc_cntl;
42 	u64 sr1;
43 	u32 status;
44 	unsigned long timeout;
45 	const u32 status_loading = SPU_STATUS_RUNNING
46 		| SPU_STATUS_ISOLATED_STATE | SPU_STATUS_ISOLATED_LOAD_STATUS;
47 
48 	ret = -ENODEV;
49 	if (!isolated_loader)
50 		goto out;
51 
52 	/*
53 	 * We need to exclude userspace access to the context.
54 	 *
55 	 * To protect against memory access we invalidate all ptes
56 	 * and make sure the pagefault handlers block on the mutex.
57 	 */
58 	spu_unmap_mappings(ctx);
59 
60 	mfc_cntl = &ctx->spu->priv2->mfc_control_RW;
61 
62 	/* purge the MFC DMA queue to ensure no spurious accesses before we
63 	 * enter kernel mode */
64 	timeout = jiffies + HZ;
65 	out_be64(mfc_cntl, MFC_CNTL_PURGE_DMA_REQUEST);
66 	while ((in_be64(mfc_cntl) & MFC_CNTL_PURGE_DMA_STATUS_MASK)
67 			!= MFC_CNTL_PURGE_DMA_COMPLETE) {
68 		if (time_after(jiffies, timeout)) {
69 			printk(KERN_ERR "%s: timeout flushing MFC DMA queue\n",
70 					__FUNCTION__);
71 			ret = -EIO;
72 			goto out;
73 		}
74 		cond_resched();
75 	}
76 
77 	/* put the SPE in kernel mode to allow access to the loader */
78 	sr1 = spu_mfc_sr1_get(ctx->spu);
79 	sr1 &= ~MFC_STATE1_PROBLEM_STATE_MASK;
80 	spu_mfc_sr1_set(ctx->spu, sr1);
81 
82 	/* start the loader */
83 	ctx->ops->signal1_write(ctx, (unsigned long)isolated_loader >> 32);
84 	ctx->ops->signal2_write(ctx,
85 			(unsigned long)isolated_loader & 0xffffffff);
86 
87 	ctx->ops->runcntl_write(ctx,
88 			SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE);
89 
90 	ret = 0;
91 	timeout = jiffies + HZ;
92 	while (((status = ctx->ops->status_read(ctx)) & status_loading) ==
93 				status_loading) {
94 		if (time_after(jiffies, timeout)) {
95 			printk(KERN_ERR "%s: timeout waiting for loader\n",
96 					__FUNCTION__);
97 			ret = -EIO;
98 			goto out_drop_priv;
99 		}
100 		cond_resched();
101 	}
102 
103 	if (!(status & SPU_STATUS_RUNNING)) {
104 		/* If isolated LOAD has failed: run SPU, we will get a stop-and
105 		 * signal later. */
106 		pr_debug("%s: isolated LOAD failed\n", __FUNCTION__);
107 		ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
108 		ret = -EACCES;
109 		goto out_drop_priv;
110 	}
111 
112 	if (!(status & SPU_STATUS_ISOLATED_STATE)) {
113 		/* This isn't allowed by the CBEA, but check anyway */
114 		pr_debug("%s: SPU fell out of isolated mode?\n", __FUNCTION__);
115 		ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_STOP);
116 		ret = -EINVAL;
117 		goto out_drop_priv;
118 	}
119 
120 out_drop_priv:
121 	/* Finished accessing the loader. Drop kernel mode */
122 	sr1 |= MFC_STATE1_PROBLEM_STATE_MASK;
123 	spu_mfc_sr1_set(ctx->spu, sr1);
124 
125 out:
126 	return ret;
127 }
128 
129 static int spu_run_init(struct spu_context *ctx, u32 *npc)
130 {
131 	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
132 
133 	if (ctx->flags & SPU_CREATE_ISOLATE) {
134 		unsigned long runcntl;
135 
136 		if (!(ctx->ops->status_read(ctx) & SPU_STATUS_ISOLATED_STATE)) {
137 			int ret = spu_setup_isolated(ctx);
138 			if (ret)
139 				return ret;
140 		}
141 
142 		/* if userspace has set the runcntrl register (eg, to issue an
143 		 * isolated exit), we need to re-set it here */
144 		runcntl = ctx->ops->runcntl_read(ctx) &
145 			(SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE);
146 		if (runcntl == 0)
147 			runcntl = SPU_RUNCNTL_RUNNABLE;
148 		ctx->ops->runcntl_write(ctx, runcntl);
149 	} else {
150 		unsigned long mode = SPU_PRIVCNTL_MODE_NORMAL;
151 		ctx->ops->npc_write(ctx, *npc);
152 		if (test_thread_flag(TIF_SINGLESTEP))
153 			mode = SPU_PRIVCNTL_MODE_SINGLE_STEP;
154 		out_be64(&ctx->spu->priv2->spu_privcntl_RW, mode);
155 		ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
156 	}
157 
158 	spuctx_switch_state(ctx, SPU_UTIL_USER);
159 
160 	return 0;
161 }
162 
163 static int spu_run_fini(struct spu_context *ctx, u32 *npc,
164 			       u32 *status)
165 {
166 	int ret = 0;
167 
168 	*status = ctx->ops->status_read(ctx);
169 	*npc = ctx->ops->npc_read(ctx);
170 
171 	spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
172 	spu_release(ctx);
173 
174 	if (signal_pending(current))
175 		ret = -ERESTARTSYS;
176 
177 	return ret;
178 }
179 
180 static int spu_reacquire_runnable(struct spu_context *ctx, u32 *npc,
181 				         u32 *status)
182 {
183 	int ret;
184 
185 	ret = spu_run_fini(ctx, npc, status);
186 	if (ret)
187 		return ret;
188 
189 	if (*status & (SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_STOPPED_BY_HALT))
190 		return *status;
191 
192 	ret = spu_acquire_runnable(ctx, 0);
193 	if (ret)
194 		return ret;
195 
196 	ret = spu_run_init(ctx, npc);
197 	if (ret) {
198 		spu_release(ctx);
199 		return ret;
200 	}
201 	return 0;
202 }
203 
204 /*
205  * SPU syscall restarting is tricky because we violate the basic
206  * assumption that the signal handler is running on the interrupted
207  * thread. Here instead, the handler runs on PowerPC user space code,
208  * while the syscall was called from the SPU.
209  * This means we can only do a very rough approximation of POSIX
210  * signal semantics.
211  */
212 int spu_handle_restartsys(struct spu_context *ctx, long *spu_ret,
213 			  unsigned int *npc)
214 {
215 	int ret;
216 
217 	switch (*spu_ret) {
218 	case -ERESTARTSYS:
219 	case -ERESTARTNOINTR:
220 		/*
221 		 * Enter the regular syscall restarting for
222 		 * sys_spu_run, then restart the SPU syscall
223 		 * callback.
224 		 */
225 		*npc -= 8;
226 		ret = -ERESTARTSYS;
227 		break;
228 	case -ERESTARTNOHAND:
229 	case -ERESTART_RESTARTBLOCK:
230 		/*
231 		 * Restart block is too hard for now, just return -EINTR
232 		 * to the SPU.
233 		 * ERESTARTNOHAND comes from sys_pause, we also return
234 		 * -EINTR from there.
235 		 * Assume that we need to be restarted ourselves though.
236 		 */
237 		*spu_ret = -EINTR;
238 		ret = -ERESTARTSYS;
239 		break;
240 	default:
241 		printk(KERN_WARNING "%s: unexpected return code %ld\n",
242 			__FUNCTION__, *spu_ret);
243 		ret = 0;
244 	}
245 	return ret;
246 }
247 
248 int spu_process_callback(struct spu_context *ctx)
249 {
250 	struct spu_syscall_block s;
251 	u32 ls_pointer, npc;
252 	void __iomem *ls;
253 	long spu_ret;
254 	int ret;
255 
256 	/* get syscall block from local store */
257 	npc = ctx->ops->npc_read(ctx) & ~3;
258 	ls = (void __iomem *)ctx->ops->get_ls(ctx);
259 	ls_pointer = in_be32(ls + npc);
260 	if (ls_pointer > (LS_SIZE - sizeof(s)))
261 		return -EFAULT;
262 	memcpy_fromio(&s, ls + ls_pointer, sizeof(s));
263 
264 	/* do actual syscall without pinning the spu */
265 	ret = 0;
266 	spu_ret = -ENOSYS;
267 	npc += 4;
268 
269 	if (s.nr_ret < __NR_syscalls) {
270 		spu_release(ctx);
271 		/* do actual system call from here */
272 		spu_ret = spu_sys_callback(&s);
273 		if (spu_ret <= -ERESTARTSYS) {
274 			ret = spu_handle_restartsys(ctx, &spu_ret, &npc);
275 		}
276 		spu_acquire(ctx);
277 		if (ret == -ERESTARTSYS)
278 			return ret;
279 	}
280 
281 	/* write result, jump over indirect pointer */
282 	memcpy_toio(ls + ls_pointer, &spu_ret, sizeof(spu_ret));
283 	ctx->ops->npc_write(ctx, npc);
284 	ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
285 	return ret;
286 }
287 
288 static inline int spu_process_events(struct spu_context *ctx)
289 {
290 	struct spu *spu = ctx->spu;
291 	int ret = 0;
292 
293 	if (spu->class_0_pending)
294 		ret = spu_irq_class_0_bottom(spu);
295 	if (!ret && signal_pending(current))
296 		ret = -ERESTARTSYS;
297 	return ret;
298 }
299 
300 long spufs_run_spu(struct spu_context *ctx, u32 *npc, u32 *event)
301 {
302 	int ret;
303 	struct spu *spu;
304 	u32 status;
305 
306 	if (mutex_lock_interruptible(&ctx->run_mutex))
307 		return -ERESTARTSYS;
308 
309 	ctx->ops->master_start(ctx);
310 	ctx->event_return = 0;
311 
312 	spu_acquire(ctx);
313 	if (ctx->state == SPU_STATE_SAVED) {
314 		__spu_update_sched_info(ctx);
315 		spu_set_timeslice(ctx);
316 
317 		ret = spu_activate(ctx, 0);
318 		if (ret) {
319 			spu_release(ctx);
320 			goto out;
321 		}
322 	} else {
323 		/*
324 		 * We have to update the scheduling priority under active_mutex
325 		 * to protect against find_victim().
326 		 *
327 		 * No need to update the timeslice ASAP, it will get updated
328 		 * once the current one has expired.
329 		 */
330 		spu_update_sched_info(ctx);
331 	}
332 
333 	ret = spu_run_init(ctx, npc);
334 	if (ret) {
335 		spu_release(ctx);
336 		goto out;
337 	}
338 
339 	do {
340 		ret = spufs_wait(ctx->stop_wq, spu_stopped(ctx, &status));
341 		if (unlikely(ret))
342 			break;
343 		spu = ctx->spu;
344 		if (unlikely(test_and_clear_bit(SPU_SCHED_NOTIFY_ACTIVE,
345 						&ctx->sched_flags))) {
346 			if (!(status & SPU_STATUS_STOPPED_BY_STOP)) {
347 				spu_switch_notify(spu, ctx);
348 				continue;
349 			}
350 		}
351 
352 		spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
353 
354 		if ((status & SPU_STATUS_STOPPED_BY_STOP) &&
355 		    (status >> SPU_STOP_STATUS_SHIFT == 0x2104)) {
356 			ret = spu_process_callback(ctx);
357 			if (ret)
358 				break;
359 			status &= ~SPU_STATUS_STOPPED_BY_STOP;
360 		}
361 		ret = spufs_handle_class1(ctx);
362 		if (ret)
363 			break;
364 
365 		if (unlikely(ctx->state != SPU_STATE_RUNNABLE)) {
366 			ret = spu_reacquire_runnable(ctx, npc, &status);
367 			if (ret)
368 				goto out2;
369 			continue;
370 		}
371 		ret = spu_process_events(ctx);
372 
373 	} while (!ret && !(status & (SPU_STATUS_STOPPED_BY_STOP |
374 				      SPU_STATUS_STOPPED_BY_HALT |
375 				       SPU_STATUS_SINGLE_STEP)));
376 
377 	if ((status & SPU_STATUS_STOPPED_BY_STOP) &&
378 	    (((status >> SPU_STOP_STATUS_SHIFT) & 0x3f00) == 0x2100) &&
379 	    (ctx->state == SPU_STATE_RUNNABLE))
380 		ctx->stats.libassist++;
381 
382 
383 	ctx->ops->master_stop(ctx);
384 	ret = spu_run_fini(ctx, npc, &status);
385 	spu_yield(ctx);
386 
387 out2:
388 	if ((ret == 0) ||
389 	    ((ret == -ERESTARTSYS) &&
390 	     ((status & SPU_STATUS_STOPPED_BY_HALT) ||
391 	      (status & SPU_STATUS_SINGLE_STEP) ||
392 	      ((status & SPU_STATUS_STOPPED_BY_STOP) &&
393 	       (status >> SPU_STOP_STATUS_SHIFT != 0x2104)))))
394 		ret = status;
395 
396 	/* Note: we don't need to force_sig SIGTRAP on single-step
397 	 * since we have TIF_SINGLESTEP set, thus the kernel will do
398 	 * it upon return from the syscall anyawy
399 	 */
400 	if ((status & SPU_STATUS_STOPPED_BY_STOP)
401 	    && (status >> SPU_STOP_STATUS_SHIFT) == 0x3fff) {
402 		force_sig(SIGTRAP, current);
403 		ret = -ERESTARTSYS;
404 	}
405 
406 out:
407 	*event = ctx->event_return;
408 	mutex_unlock(&ctx->run_mutex);
409 	return ret;
410 }
411