1 #define DEBUG 2 3 #include <linux/wait.h> 4 #include <linux/ptrace.h> 5 6 #include <asm/spu.h> 7 #include <asm/spu_priv1.h> 8 #include <asm/io.h> 9 #include <asm/unistd.h> 10 11 #include "spufs.h" 12 13 /* interrupt-level stop callback function. */ 14 void spufs_stop_callback(struct spu *spu, int irq) 15 { 16 struct spu_context *ctx = spu->ctx; 17 18 /* 19 * It should be impossible to preempt a context while an exception 20 * is being processed, since the context switch code is specially 21 * coded to deal with interrupts ... But, just in case, sanity check 22 * the context pointer. It is OK to return doing nothing since 23 * the exception will be regenerated when the context is resumed. 24 */ 25 if (ctx) { 26 /* Copy exception arguments into module specific structure */ 27 switch(irq) { 28 case 0 : 29 ctx->csa.class_0_pending = spu->class_0_pending; 30 ctx->csa.class_0_dar = spu->class_0_dar; 31 break; 32 case 1 : 33 ctx->csa.class_1_dsisr = spu->class_1_dsisr; 34 ctx->csa.class_1_dar = spu->class_1_dar; 35 break; 36 case 2 : 37 break; 38 } 39 40 /* ensure that the exception status has hit memory before a 41 * thread waiting on the context's stop queue is woken */ 42 smp_wmb(); 43 44 wake_up_all(&ctx->stop_wq); 45 } 46 } 47 48 int spu_stopped(struct spu_context *ctx, u32 *stat) 49 { 50 u64 dsisr; 51 u32 stopped; 52 53 stopped = SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP | 54 SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP; 55 56 top: 57 *stat = ctx->ops->status_read(ctx); 58 if (*stat & stopped) { 59 /* 60 * If the spu hasn't finished stopping, we need to 61 * re-read the register to get the stopped value. 62 */ 63 if (*stat & SPU_STATUS_RUNNING) 64 goto top; 65 return 1; 66 } 67 68 if (test_bit(SPU_SCHED_NOTIFY_ACTIVE, &ctx->sched_flags)) 69 return 1; 70 71 dsisr = ctx->csa.class_1_dsisr; 72 if (dsisr & (MFC_DSISR_PTE_NOT_FOUND | MFC_DSISR_ACCESS_DENIED)) 73 return 1; 74 75 if (ctx->csa.class_0_pending) 76 return 1; 77 78 return 0; 79 } 80 81 static int spu_setup_isolated(struct spu_context *ctx) 82 { 83 int ret; 84 u64 __iomem *mfc_cntl; 85 u64 sr1; 86 u32 status; 87 unsigned long timeout; 88 const u32 status_loading = SPU_STATUS_RUNNING 89 | SPU_STATUS_ISOLATED_STATE | SPU_STATUS_ISOLATED_LOAD_STATUS; 90 91 ret = -ENODEV; 92 if (!isolated_loader) 93 goto out; 94 95 /* 96 * We need to exclude userspace access to the context. 97 * 98 * To protect against memory access we invalidate all ptes 99 * and make sure the pagefault handlers block on the mutex. 100 */ 101 spu_unmap_mappings(ctx); 102 103 mfc_cntl = &ctx->spu->priv2->mfc_control_RW; 104 105 /* purge the MFC DMA queue to ensure no spurious accesses before we 106 * enter kernel mode */ 107 timeout = jiffies + HZ; 108 out_be64(mfc_cntl, MFC_CNTL_PURGE_DMA_REQUEST); 109 while ((in_be64(mfc_cntl) & MFC_CNTL_PURGE_DMA_STATUS_MASK) 110 != MFC_CNTL_PURGE_DMA_COMPLETE) { 111 if (time_after(jiffies, timeout)) { 112 printk(KERN_ERR "%s: timeout flushing MFC DMA queue\n", 113 __func__); 114 ret = -EIO; 115 goto out; 116 } 117 cond_resched(); 118 } 119 120 /* clear purge status */ 121 out_be64(mfc_cntl, 0); 122 123 /* put the SPE in kernel mode to allow access to the loader */ 124 sr1 = spu_mfc_sr1_get(ctx->spu); 125 sr1 &= ~MFC_STATE1_PROBLEM_STATE_MASK; 126 spu_mfc_sr1_set(ctx->spu, sr1); 127 128 /* start the loader */ 129 ctx->ops->signal1_write(ctx, (unsigned long)isolated_loader >> 32); 130 ctx->ops->signal2_write(ctx, 131 (unsigned long)isolated_loader & 0xffffffff); 132 133 ctx->ops->runcntl_write(ctx, 134 SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE); 135 136 ret = 0; 137 timeout = jiffies + HZ; 138 while (((status = ctx->ops->status_read(ctx)) & status_loading) == 139 status_loading) { 140 if (time_after(jiffies, timeout)) { 141 printk(KERN_ERR "%s: timeout waiting for loader\n", 142 __func__); 143 ret = -EIO; 144 goto out_drop_priv; 145 } 146 cond_resched(); 147 } 148 149 if (!(status & SPU_STATUS_RUNNING)) { 150 /* If isolated LOAD has failed: run SPU, we will get a stop-and 151 * signal later. */ 152 pr_debug("%s: isolated LOAD failed\n", __func__); 153 ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE); 154 ret = -EACCES; 155 goto out_drop_priv; 156 } 157 158 if (!(status & SPU_STATUS_ISOLATED_STATE)) { 159 /* This isn't allowed by the CBEA, but check anyway */ 160 pr_debug("%s: SPU fell out of isolated mode?\n", __func__); 161 ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_STOP); 162 ret = -EINVAL; 163 goto out_drop_priv; 164 } 165 166 out_drop_priv: 167 /* Finished accessing the loader. Drop kernel mode */ 168 sr1 |= MFC_STATE1_PROBLEM_STATE_MASK; 169 spu_mfc_sr1_set(ctx->spu, sr1); 170 171 out: 172 return ret; 173 } 174 175 static int spu_run_init(struct spu_context *ctx, u32 *npc) 176 { 177 unsigned long runcntl = SPU_RUNCNTL_RUNNABLE; 178 int ret; 179 180 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); 181 182 /* 183 * NOSCHED is synchronous scheduling with respect to the caller. 184 * The caller waits for the context to be loaded. 185 */ 186 if (ctx->flags & SPU_CREATE_NOSCHED) { 187 if (ctx->state == SPU_STATE_SAVED) { 188 ret = spu_activate(ctx, 0); 189 if (ret) 190 return ret; 191 } 192 } 193 194 /* 195 * Apply special setup as required. 196 */ 197 if (ctx->flags & SPU_CREATE_ISOLATE) { 198 if (!(ctx->ops->status_read(ctx) & SPU_STATUS_ISOLATED_STATE)) { 199 ret = spu_setup_isolated(ctx); 200 if (ret) 201 return ret; 202 } 203 204 /* 205 * If userspace has set the runcntrl register (eg, to 206 * issue an isolated exit), we need to re-set it here 207 */ 208 runcntl = ctx->ops->runcntl_read(ctx) & 209 (SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE); 210 if (runcntl == 0) 211 runcntl = SPU_RUNCNTL_RUNNABLE; 212 } else { 213 unsigned long privcntl; 214 215 if (test_thread_flag(TIF_SINGLESTEP)) 216 privcntl = SPU_PRIVCNTL_MODE_SINGLE_STEP; 217 else 218 privcntl = SPU_PRIVCNTL_MODE_NORMAL; 219 220 ctx->ops->privcntl_write(ctx, privcntl); 221 ctx->ops->npc_write(ctx, *npc); 222 } 223 224 ctx->ops->runcntl_write(ctx, runcntl); 225 226 if (ctx->flags & SPU_CREATE_NOSCHED) { 227 spuctx_switch_state(ctx, SPU_UTIL_USER); 228 } else { 229 230 if (ctx->state == SPU_STATE_SAVED) { 231 ret = spu_activate(ctx, 0); 232 if (ret) 233 return ret; 234 } else { 235 spuctx_switch_state(ctx, SPU_UTIL_USER); 236 } 237 } 238 239 set_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags); 240 return 0; 241 } 242 243 static int spu_run_fini(struct spu_context *ctx, u32 *npc, 244 u32 *status) 245 { 246 int ret = 0; 247 248 spu_del_from_rq(ctx); 249 250 *status = ctx->ops->status_read(ctx); 251 *npc = ctx->ops->npc_read(ctx); 252 253 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED); 254 clear_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags); 255 spu_switch_log_notify(NULL, ctx, SWITCH_LOG_EXIT, *status); 256 spu_release(ctx); 257 258 if (signal_pending(current)) 259 ret = -ERESTARTSYS; 260 261 return ret; 262 } 263 264 /* 265 * SPU syscall restarting is tricky because we violate the basic 266 * assumption that the signal handler is running on the interrupted 267 * thread. Here instead, the handler runs on PowerPC user space code, 268 * while the syscall was called from the SPU. 269 * This means we can only do a very rough approximation of POSIX 270 * signal semantics. 271 */ 272 static int spu_handle_restartsys(struct spu_context *ctx, long *spu_ret, 273 unsigned int *npc) 274 { 275 int ret; 276 277 switch (*spu_ret) { 278 case -ERESTARTSYS: 279 case -ERESTARTNOINTR: 280 /* 281 * Enter the regular syscall restarting for 282 * sys_spu_run, then restart the SPU syscall 283 * callback. 284 */ 285 *npc -= 8; 286 ret = -ERESTARTSYS; 287 break; 288 case -ERESTARTNOHAND: 289 case -ERESTART_RESTARTBLOCK: 290 /* 291 * Restart block is too hard for now, just return -EINTR 292 * to the SPU. 293 * ERESTARTNOHAND comes from sys_pause, we also return 294 * -EINTR from there. 295 * Assume that we need to be restarted ourselves though. 296 */ 297 *spu_ret = -EINTR; 298 ret = -ERESTARTSYS; 299 break; 300 default: 301 printk(KERN_WARNING "%s: unexpected return code %ld\n", 302 __func__, *spu_ret); 303 ret = 0; 304 } 305 return ret; 306 } 307 308 static int spu_process_callback(struct spu_context *ctx) 309 { 310 struct spu_syscall_block s; 311 u32 ls_pointer, npc; 312 void __iomem *ls; 313 long spu_ret; 314 int ret; 315 316 /* get syscall block from local store */ 317 npc = ctx->ops->npc_read(ctx) & ~3; 318 ls = (void __iomem *)ctx->ops->get_ls(ctx); 319 ls_pointer = in_be32(ls + npc); 320 if (ls_pointer > (LS_SIZE - sizeof(s))) 321 return -EFAULT; 322 memcpy_fromio(&s, ls + ls_pointer, sizeof(s)); 323 324 /* do actual syscall without pinning the spu */ 325 ret = 0; 326 spu_ret = -ENOSYS; 327 npc += 4; 328 329 if (s.nr_ret < __NR_syscalls) { 330 spu_release(ctx); 331 /* do actual system call from here */ 332 spu_ret = spu_sys_callback(&s); 333 if (spu_ret <= -ERESTARTSYS) { 334 ret = spu_handle_restartsys(ctx, &spu_ret, &npc); 335 } 336 mutex_lock(&ctx->state_mutex); 337 if (ret == -ERESTARTSYS) 338 return ret; 339 } 340 341 /* need to re-get the ls, as it may have changed when we released the 342 * spu */ 343 ls = (void __iomem *)ctx->ops->get_ls(ctx); 344 345 /* write result, jump over indirect pointer */ 346 memcpy_toio(ls + ls_pointer, &spu_ret, sizeof(spu_ret)); 347 ctx->ops->npc_write(ctx, npc); 348 ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE); 349 return ret; 350 } 351 352 long spufs_run_spu(struct spu_context *ctx, u32 *npc, u32 *event) 353 { 354 int ret; 355 struct spu *spu; 356 u32 status; 357 358 if (mutex_lock_interruptible(&ctx->run_mutex)) 359 return -ERESTARTSYS; 360 361 ctx->event_return = 0; 362 363 ret = spu_acquire(ctx); 364 if (ret) 365 goto out_unlock; 366 367 spu_enable_spu(ctx); 368 369 spu_update_sched_info(ctx); 370 371 ret = spu_run_init(ctx, npc); 372 if (ret) { 373 spu_release(ctx); 374 goto out; 375 } 376 377 do { 378 ret = spufs_wait(ctx->stop_wq, spu_stopped(ctx, &status)); 379 if (unlikely(ret)) { 380 /* 381 * This is nasty: we need the state_mutex for all the 382 * bookkeeping even if the syscall was interrupted by 383 * a signal. ewww. 384 */ 385 mutex_lock(&ctx->state_mutex); 386 break; 387 } 388 spu = ctx->spu; 389 if (unlikely(test_and_clear_bit(SPU_SCHED_NOTIFY_ACTIVE, 390 &ctx->sched_flags))) { 391 if (!(status & SPU_STATUS_STOPPED_BY_STOP)) { 392 spu_switch_notify(spu, ctx); 393 continue; 394 } 395 } 396 397 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); 398 399 if ((status & SPU_STATUS_STOPPED_BY_STOP) && 400 (status >> SPU_STOP_STATUS_SHIFT == 0x2104)) { 401 ret = spu_process_callback(ctx); 402 if (ret) 403 break; 404 status &= ~SPU_STATUS_STOPPED_BY_STOP; 405 } 406 ret = spufs_handle_class1(ctx); 407 if (ret) 408 break; 409 410 ret = spufs_handle_class0(ctx); 411 if (ret) 412 break; 413 414 if (signal_pending(current)) 415 ret = -ERESTARTSYS; 416 } while (!ret && !(status & (SPU_STATUS_STOPPED_BY_STOP | 417 SPU_STATUS_STOPPED_BY_HALT | 418 SPU_STATUS_SINGLE_STEP))); 419 420 spu_disable_spu(ctx); 421 ret = spu_run_fini(ctx, npc, &status); 422 spu_yield(ctx); 423 424 if ((status & SPU_STATUS_STOPPED_BY_STOP) && 425 (((status >> SPU_STOP_STATUS_SHIFT) & 0x3f00) == 0x2100)) 426 ctx->stats.libassist++; 427 428 if ((ret == 0) || 429 ((ret == -ERESTARTSYS) && 430 ((status & SPU_STATUS_STOPPED_BY_HALT) || 431 (status & SPU_STATUS_SINGLE_STEP) || 432 ((status & SPU_STATUS_STOPPED_BY_STOP) && 433 (status >> SPU_STOP_STATUS_SHIFT != 0x2104))))) 434 ret = status; 435 436 /* Note: we don't need to force_sig SIGTRAP on single-step 437 * since we have TIF_SINGLESTEP set, thus the kernel will do 438 * it upon return from the syscall anyawy 439 */ 440 if (unlikely(status & SPU_STATUS_SINGLE_STEP)) 441 ret = -ERESTARTSYS; 442 443 else if (unlikely((status & SPU_STATUS_STOPPED_BY_STOP) 444 && (status >> SPU_STOP_STATUS_SHIFT) == 0x3fff)) { 445 force_sig(SIGTRAP, current); 446 ret = -ERESTARTSYS; 447 } 448 449 out: 450 *event = ctx->event_return; 451 out_unlock: 452 mutex_unlock(&ctx->run_mutex); 453 return ret; 454 } 455