1 #define DEBUG
2 
3 #include <linux/wait.h>
4 #include <linux/ptrace.h>
5 
6 #include <asm/spu.h>
7 #include <asm/spu_priv1.h>
8 #include <asm/io.h>
9 #include <asm/unistd.h>
10 
11 #include "spufs.h"
12 
13 /* interrupt-level stop callback function. */
14 void spufs_stop_callback(struct spu *spu, int irq)
15 {
16 	struct spu_context *ctx = spu->ctx;
17 
18 	/*
19 	 * It should be impossible to preempt a context while an exception
20 	 * is being processed, since the context switch code is specially
21 	 * coded to deal with interrupts ... But, just in case, sanity check
22 	 * the context pointer.  It is OK to return doing nothing since
23 	 * the exception will be regenerated when the context is resumed.
24 	 */
25 	if (ctx) {
26 		/* Copy exception arguments into module specific structure */
27 		switch(irq) {
28 		case 0 :
29 			ctx->csa.class_0_pending = spu->class_0_pending;
30 			ctx->csa.class_0_dar = spu->class_0_dar;
31 			break;
32 		case 1 :
33 			ctx->csa.class_1_dsisr = spu->class_1_dsisr;
34 			ctx->csa.class_1_dar = spu->class_1_dar;
35 			break;
36 		case 2 :
37 			break;
38 		}
39 
40 		/* ensure that the exception status has hit memory before a
41 		 * thread waiting on the context's stop queue is woken */
42 		smp_wmb();
43 
44 		wake_up_all(&ctx->stop_wq);
45 	}
46 }
47 
48 int spu_stopped(struct spu_context *ctx, u32 *stat)
49 {
50 	u64 dsisr;
51 	u32 stopped;
52 
53 	stopped = SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
54 		SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
55 
56 top:
57 	*stat = ctx->ops->status_read(ctx);
58 	if (*stat & stopped) {
59 		/*
60 		 * If the spu hasn't finished stopping, we need to
61 		 * re-read the register to get the stopped value.
62 		 */
63 		if (*stat & SPU_STATUS_RUNNING)
64 			goto top;
65 		return 1;
66 	}
67 
68 	if (test_bit(SPU_SCHED_NOTIFY_ACTIVE, &ctx->sched_flags))
69 		return 1;
70 
71 	dsisr = ctx->csa.class_1_dsisr;
72 	if (dsisr & (MFC_DSISR_PTE_NOT_FOUND | MFC_DSISR_ACCESS_DENIED))
73 		return 1;
74 
75 	if (ctx->csa.class_0_pending)
76 		return 1;
77 
78 	return 0;
79 }
80 
81 static int spu_setup_isolated(struct spu_context *ctx)
82 {
83 	int ret;
84 	u64 __iomem *mfc_cntl;
85 	u64 sr1;
86 	u32 status;
87 	unsigned long timeout;
88 	const u32 status_loading = SPU_STATUS_RUNNING
89 		| SPU_STATUS_ISOLATED_STATE | SPU_STATUS_ISOLATED_LOAD_STATUS;
90 
91 	ret = -ENODEV;
92 	if (!isolated_loader)
93 		goto out;
94 
95 	/*
96 	 * We need to exclude userspace access to the context.
97 	 *
98 	 * To protect against memory access we invalidate all ptes
99 	 * and make sure the pagefault handlers block on the mutex.
100 	 */
101 	spu_unmap_mappings(ctx);
102 
103 	mfc_cntl = &ctx->spu->priv2->mfc_control_RW;
104 
105 	/* purge the MFC DMA queue to ensure no spurious accesses before we
106 	 * enter kernel mode */
107 	timeout = jiffies + HZ;
108 	out_be64(mfc_cntl, MFC_CNTL_PURGE_DMA_REQUEST);
109 	while ((in_be64(mfc_cntl) & MFC_CNTL_PURGE_DMA_STATUS_MASK)
110 			!= MFC_CNTL_PURGE_DMA_COMPLETE) {
111 		if (time_after(jiffies, timeout)) {
112 			printk(KERN_ERR "%s: timeout flushing MFC DMA queue\n",
113 					__func__);
114 			ret = -EIO;
115 			goto out;
116 		}
117 		cond_resched();
118 	}
119 
120 	/* put the SPE in kernel mode to allow access to the loader */
121 	sr1 = spu_mfc_sr1_get(ctx->spu);
122 	sr1 &= ~MFC_STATE1_PROBLEM_STATE_MASK;
123 	spu_mfc_sr1_set(ctx->spu, sr1);
124 
125 	/* start the loader */
126 	ctx->ops->signal1_write(ctx, (unsigned long)isolated_loader >> 32);
127 	ctx->ops->signal2_write(ctx,
128 			(unsigned long)isolated_loader & 0xffffffff);
129 
130 	ctx->ops->runcntl_write(ctx,
131 			SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE);
132 
133 	ret = 0;
134 	timeout = jiffies + HZ;
135 	while (((status = ctx->ops->status_read(ctx)) & status_loading) ==
136 				status_loading) {
137 		if (time_after(jiffies, timeout)) {
138 			printk(KERN_ERR "%s: timeout waiting for loader\n",
139 					__func__);
140 			ret = -EIO;
141 			goto out_drop_priv;
142 		}
143 		cond_resched();
144 	}
145 
146 	if (!(status & SPU_STATUS_RUNNING)) {
147 		/* If isolated LOAD has failed: run SPU, we will get a stop-and
148 		 * signal later. */
149 		pr_debug("%s: isolated LOAD failed\n", __func__);
150 		ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
151 		ret = -EACCES;
152 		goto out_drop_priv;
153 	}
154 
155 	if (!(status & SPU_STATUS_ISOLATED_STATE)) {
156 		/* This isn't allowed by the CBEA, but check anyway */
157 		pr_debug("%s: SPU fell out of isolated mode?\n", __func__);
158 		ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_STOP);
159 		ret = -EINVAL;
160 		goto out_drop_priv;
161 	}
162 
163 out_drop_priv:
164 	/* Finished accessing the loader. Drop kernel mode */
165 	sr1 |= MFC_STATE1_PROBLEM_STATE_MASK;
166 	spu_mfc_sr1_set(ctx->spu, sr1);
167 
168 out:
169 	return ret;
170 }
171 
172 static int spu_run_init(struct spu_context *ctx, u32 *npc)
173 {
174 	unsigned long runcntl = SPU_RUNCNTL_RUNNABLE;
175 	int ret;
176 
177 	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
178 
179 	/*
180 	 * NOSCHED is synchronous scheduling with respect to the caller.
181 	 * The caller waits for the context to be loaded.
182 	 */
183 	if (ctx->flags & SPU_CREATE_NOSCHED) {
184 		if (ctx->state == SPU_STATE_SAVED) {
185 			ret = spu_activate(ctx, 0);
186 			if (ret)
187 				return ret;
188 		}
189 	}
190 
191 	/*
192 	 * Apply special setup as required.
193 	 */
194 	if (ctx->flags & SPU_CREATE_ISOLATE) {
195 		if (!(ctx->ops->status_read(ctx) & SPU_STATUS_ISOLATED_STATE)) {
196 			ret = spu_setup_isolated(ctx);
197 			if (ret)
198 				return ret;
199 		}
200 
201 		/*
202 		 * If userspace has set the runcntrl register (eg, to
203 		 * issue an isolated exit), we need to re-set it here
204 		 */
205 		runcntl = ctx->ops->runcntl_read(ctx) &
206 			(SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE);
207 		if (runcntl == 0)
208 			runcntl = SPU_RUNCNTL_RUNNABLE;
209 	}
210 
211 	if (ctx->flags & SPU_CREATE_NOSCHED) {
212 		spuctx_switch_state(ctx, SPU_UTIL_USER);
213 		ctx->ops->runcntl_write(ctx, runcntl);
214 	} else {
215 		unsigned long privcntl;
216 
217 		if (test_thread_flag(TIF_SINGLESTEP))
218 			privcntl = SPU_PRIVCNTL_MODE_SINGLE_STEP;
219 		else
220 			privcntl = SPU_PRIVCNTL_MODE_NORMAL;
221 
222 		ctx->ops->npc_write(ctx, *npc);
223 		ctx->ops->privcntl_write(ctx, privcntl);
224 		ctx->ops->runcntl_write(ctx, runcntl);
225 
226 		if (ctx->state == SPU_STATE_SAVED) {
227 			ret = spu_activate(ctx, 0);
228 			if (ret)
229 				return ret;
230 		} else {
231 			spuctx_switch_state(ctx, SPU_UTIL_USER);
232 		}
233 	}
234 
235 	set_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags);
236 	return 0;
237 }
238 
239 static int spu_run_fini(struct spu_context *ctx, u32 *npc,
240 			       u32 *status)
241 {
242 	int ret = 0;
243 
244 	spu_del_from_rq(ctx);
245 
246 	*status = ctx->ops->status_read(ctx);
247 	*npc = ctx->ops->npc_read(ctx);
248 
249 	spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
250 	clear_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags);
251 	spu_release(ctx);
252 
253 	if (signal_pending(current))
254 		ret = -ERESTARTSYS;
255 
256 	return ret;
257 }
258 
259 /*
260  * SPU syscall restarting is tricky because we violate the basic
261  * assumption that the signal handler is running on the interrupted
262  * thread. Here instead, the handler runs on PowerPC user space code,
263  * while the syscall was called from the SPU.
264  * This means we can only do a very rough approximation of POSIX
265  * signal semantics.
266  */
267 static int spu_handle_restartsys(struct spu_context *ctx, long *spu_ret,
268 			  unsigned int *npc)
269 {
270 	int ret;
271 
272 	switch (*spu_ret) {
273 	case -ERESTARTSYS:
274 	case -ERESTARTNOINTR:
275 		/*
276 		 * Enter the regular syscall restarting for
277 		 * sys_spu_run, then restart the SPU syscall
278 		 * callback.
279 		 */
280 		*npc -= 8;
281 		ret = -ERESTARTSYS;
282 		break;
283 	case -ERESTARTNOHAND:
284 	case -ERESTART_RESTARTBLOCK:
285 		/*
286 		 * Restart block is too hard for now, just return -EINTR
287 		 * to the SPU.
288 		 * ERESTARTNOHAND comes from sys_pause, we also return
289 		 * -EINTR from there.
290 		 * Assume that we need to be restarted ourselves though.
291 		 */
292 		*spu_ret = -EINTR;
293 		ret = -ERESTARTSYS;
294 		break;
295 	default:
296 		printk(KERN_WARNING "%s: unexpected return code %ld\n",
297 			__func__, *spu_ret);
298 		ret = 0;
299 	}
300 	return ret;
301 }
302 
303 static int spu_process_callback(struct spu_context *ctx)
304 {
305 	struct spu_syscall_block s;
306 	u32 ls_pointer, npc;
307 	void __iomem *ls;
308 	long spu_ret;
309 	int ret;
310 
311 	/* get syscall block from local store */
312 	npc = ctx->ops->npc_read(ctx) & ~3;
313 	ls = (void __iomem *)ctx->ops->get_ls(ctx);
314 	ls_pointer = in_be32(ls + npc);
315 	if (ls_pointer > (LS_SIZE - sizeof(s)))
316 		return -EFAULT;
317 	memcpy_fromio(&s, ls + ls_pointer, sizeof(s));
318 
319 	/* do actual syscall without pinning the spu */
320 	ret = 0;
321 	spu_ret = -ENOSYS;
322 	npc += 4;
323 
324 	if (s.nr_ret < __NR_syscalls) {
325 		spu_release(ctx);
326 		/* do actual system call from here */
327 		spu_ret = spu_sys_callback(&s);
328 		if (spu_ret <= -ERESTARTSYS) {
329 			ret = spu_handle_restartsys(ctx, &spu_ret, &npc);
330 		}
331 		mutex_lock(&ctx->state_mutex);
332 		if (ret == -ERESTARTSYS)
333 			return ret;
334 	}
335 
336 	/* need to re-get the ls, as it may have changed when we released the
337 	 * spu */
338 	ls = (void __iomem *)ctx->ops->get_ls(ctx);
339 
340 	/* write result, jump over indirect pointer */
341 	memcpy_toio(ls + ls_pointer, &spu_ret, sizeof(spu_ret));
342 	ctx->ops->npc_write(ctx, npc);
343 	ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
344 	return ret;
345 }
346 
347 long spufs_run_spu(struct spu_context *ctx, u32 *npc, u32 *event)
348 {
349 	int ret;
350 	struct spu *spu;
351 	u32 status;
352 
353 	if (mutex_lock_interruptible(&ctx->run_mutex))
354 		return -ERESTARTSYS;
355 
356 	ctx->event_return = 0;
357 
358 	ret = spu_acquire(ctx);
359 	if (ret)
360 		goto out_unlock;
361 
362 	spu_enable_spu(ctx);
363 
364 	spu_update_sched_info(ctx);
365 
366 	ret = spu_run_init(ctx, npc);
367 	if (ret) {
368 		spu_release(ctx);
369 		goto out;
370 	}
371 
372 	do {
373 		ret = spufs_wait(ctx->stop_wq, spu_stopped(ctx, &status));
374 		if (unlikely(ret)) {
375 			/*
376 			 * This is nasty: we need the state_mutex for all the
377 			 * bookkeeping even if the syscall was interrupted by
378 			 * a signal. ewww.
379 			 */
380 			mutex_lock(&ctx->state_mutex);
381 			break;
382 		}
383 		spu = ctx->spu;
384 		if (unlikely(test_and_clear_bit(SPU_SCHED_NOTIFY_ACTIVE,
385 						&ctx->sched_flags))) {
386 			if (!(status & SPU_STATUS_STOPPED_BY_STOP)) {
387 				spu_switch_notify(spu, ctx);
388 				continue;
389 			}
390 		}
391 
392 		spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
393 
394 		if ((status & SPU_STATUS_STOPPED_BY_STOP) &&
395 		    (status >> SPU_STOP_STATUS_SHIFT == 0x2104)) {
396 			ret = spu_process_callback(ctx);
397 			if (ret)
398 				break;
399 			status &= ~SPU_STATUS_STOPPED_BY_STOP;
400 		}
401 		ret = spufs_handle_class1(ctx);
402 		if (ret)
403 			break;
404 
405 		ret = spufs_handle_class0(ctx);
406 		if (ret)
407 			break;
408 
409 		if (signal_pending(current))
410 			ret = -ERESTARTSYS;
411 	} while (!ret && !(status & (SPU_STATUS_STOPPED_BY_STOP |
412 				      SPU_STATUS_STOPPED_BY_HALT |
413 				       SPU_STATUS_SINGLE_STEP)));
414 
415 	spu_disable_spu(ctx);
416 	ret = spu_run_fini(ctx, npc, &status);
417 	spu_yield(ctx);
418 
419 	spu_switch_log_notify(NULL, ctx, SWITCH_LOG_EXIT, status);
420 
421 	if ((status & SPU_STATUS_STOPPED_BY_STOP) &&
422 	    (((status >> SPU_STOP_STATUS_SHIFT) & 0x3f00) == 0x2100))
423 		ctx->stats.libassist++;
424 
425 	if ((ret == 0) ||
426 	    ((ret == -ERESTARTSYS) &&
427 	     ((status & SPU_STATUS_STOPPED_BY_HALT) ||
428 	      (status & SPU_STATUS_SINGLE_STEP) ||
429 	      ((status & SPU_STATUS_STOPPED_BY_STOP) &&
430 	       (status >> SPU_STOP_STATUS_SHIFT != 0x2104)))))
431 		ret = status;
432 
433 	/* Note: we don't need to force_sig SIGTRAP on single-step
434 	 * since we have TIF_SINGLESTEP set, thus the kernel will do
435 	 * it upon return from the syscall anyawy
436 	 */
437 	if (unlikely(status & SPU_STATUS_SINGLE_STEP))
438 		ret = -ERESTARTSYS;
439 
440 	else if (unlikely((status & SPU_STATUS_STOPPED_BY_STOP)
441 	    && (status >> SPU_STOP_STATUS_SHIFT) == 0x3fff)) {
442 		force_sig(SIGTRAP, current);
443 		ret = -ERESTARTSYS;
444 	}
445 
446 out:
447 	*event = ctx->event_return;
448 out_unlock:
449 	mutex_unlock(&ctx->run_mutex);
450 	return ret;
451 }
452