1 #define DEBUG
2 
3 #include <linux/wait.h>
4 #include <linux/ptrace.h>
5 
6 #include <asm/spu.h>
7 #include <asm/spu_priv1.h>
8 #include <asm/io.h>
9 #include <asm/unistd.h>
10 
11 #include "spufs.h"
12 
13 /* interrupt-level stop callback function. */
14 void spufs_stop_callback(struct spu *spu, int irq)
15 {
16 	struct spu_context *ctx = spu->ctx;
17 
18 	/*
19 	 * It should be impossible to preempt a context while an exception
20 	 * is being processed, since the context switch code is specially
21 	 * coded to deal with interrupts ... But, just in case, sanity check
22 	 * the context pointer.  It is OK to return doing nothing since
23 	 * the exception will be regenerated when the context is resumed.
24 	 */
25 	if (ctx) {
26 		/* Copy exception arguments into module specific structure */
27 		switch(irq) {
28 		case 0 :
29 			ctx->csa.class_0_pending = spu->class_0_pending;
30 			ctx->csa.class_0_dar = spu->class_0_dar;
31 			break;
32 		case 1 :
33 			ctx->csa.class_1_dsisr = spu->class_1_dsisr;
34 			ctx->csa.class_1_dar = spu->class_1_dar;
35 			break;
36 		case 2 :
37 			break;
38 		}
39 
40 		/* ensure that the exception status has hit memory before a
41 		 * thread waiting on the context's stop queue is woken */
42 		smp_wmb();
43 
44 		wake_up_all(&ctx->stop_wq);
45 	}
46 }
47 
48 int spu_stopped(struct spu_context *ctx, u32 *stat)
49 {
50 	u64 dsisr;
51 	u32 stopped;
52 
53 	stopped = SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
54 		SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
55 
56 top:
57 	*stat = ctx->ops->status_read(ctx);
58 	if (*stat & stopped) {
59 		/*
60 		 * If the spu hasn't finished stopping, we need to
61 		 * re-read the register to get the stopped value.
62 		 */
63 		if (*stat & SPU_STATUS_RUNNING)
64 			goto top;
65 		return 1;
66 	}
67 
68 	if (test_bit(SPU_SCHED_NOTIFY_ACTIVE, &ctx->sched_flags))
69 		return 1;
70 
71 	dsisr = ctx->csa.class_1_dsisr;
72 	if (dsisr & (MFC_DSISR_PTE_NOT_FOUND | MFC_DSISR_ACCESS_DENIED))
73 		return 1;
74 
75 	if (ctx->csa.class_0_pending)
76 		return 1;
77 
78 	return 0;
79 }
80 
81 static int spu_setup_isolated(struct spu_context *ctx)
82 {
83 	int ret;
84 	u64 __iomem *mfc_cntl;
85 	u64 sr1;
86 	u32 status;
87 	unsigned long timeout;
88 	const u32 status_loading = SPU_STATUS_RUNNING
89 		| SPU_STATUS_ISOLATED_STATE | SPU_STATUS_ISOLATED_LOAD_STATUS;
90 
91 	ret = -ENODEV;
92 	if (!isolated_loader)
93 		goto out;
94 
95 	/*
96 	 * We need to exclude userspace access to the context.
97 	 *
98 	 * To protect against memory access we invalidate all ptes
99 	 * and make sure the pagefault handlers block on the mutex.
100 	 */
101 	spu_unmap_mappings(ctx);
102 
103 	mfc_cntl = &ctx->spu->priv2->mfc_control_RW;
104 
105 	/* purge the MFC DMA queue to ensure no spurious accesses before we
106 	 * enter kernel mode */
107 	timeout = jiffies + HZ;
108 	out_be64(mfc_cntl, MFC_CNTL_PURGE_DMA_REQUEST);
109 	while ((in_be64(mfc_cntl) & MFC_CNTL_PURGE_DMA_STATUS_MASK)
110 			!= MFC_CNTL_PURGE_DMA_COMPLETE) {
111 		if (time_after(jiffies, timeout)) {
112 			printk(KERN_ERR "%s: timeout flushing MFC DMA queue\n",
113 					__func__);
114 			ret = -EIO;
115 			goto out;
116 		}
117 		cond_resched();
118 	}
119 
120 	/* put the SPE in kernel mode to allow access to the loader */
121 	sr1 = spu_mfc_sr1_get(ctx->spu);
122 	sr1 &= ~MFC_STATE1_PROBLEM_STATE_MASK;
123 	spu_mfc_sr1_set(ctx->spu, sr1);
124 
125 	/* start the loader */
126 	ctx->ops->signal1_write(ctx, (unsigned long)isolated_loader >> 32);
127 	ctx->ops->signal2_write(ctx,
128 			(unsigned long)isolated_loader & 0xffffffff);
129 
130 	ctx->ops->runcntl_write(ctx,
131 			SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE);
132 
133 	ret = 0;
134 	timeout = jiffies + HZ;
135 	while (((status = ctx->ops->status_read(ctx)) & status_loading) ==
136 				status_loading) {
137 		if (time_after(jiffies, timeout)) {
138 			printk(KERN_ERR "%s: timeout waiting for loader\n",
139 					__func__);
140 			ret = -EIO;
141 			goto out_drop_priv;
142 		}
143 		cond_resched();
144 	}
145 
146 	if (!(status & SPU_STATUS_RUNNING)) {
147 		/* If isolated LOAD has failed: run SPU, we will get a stop-and
148 		 * signal later. */
149 		pr_debug("%s: isolated LOAD failed\n", __func__);
150 		ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
151 		ret = -EACCES;
152 		goto out_drop_priv;
153 	}
154 
155 	if (!(status & SPU_STATUS_ISOLATED_STATE)) {
156 		/* This isn't allowed by the CBEA, but check anyway */
157 		pr_debug("%s: SPU fell out of isolated mode?\n", __func__);
158 		ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_STOP);
159 		ret = -EINVAL;
160 		goto out_drop_priv;
161 	}
162 
163 out_drop_priv:
164 	/* Finished accessing the loader. Drop kernel mode */
165 	sr1 |= MFC_STATE1_PROBLEM_STATE_MASK;
166 	spu_mfc_sr1_set(ctx->spu, sr1);
167 
168 out:
169 	return ret;
170 }
171 
172 static int spu_run_init(struct spu_context *ctx, u32 *npc)
173 {
174 	unsigned long runcntl = SPU_RUNCNTL_RUNNABLE;
175 	int ret;
176 
177 	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
178 
179 	/*
180 	 * NOSCHED is synchronous scheduling with respect to the caller.
181 	 * The caller waits for the context to be loaded.
182 	 */
183 	if (ctx->flags & SPU_CREATE_NOSCHED) {
184 		if (ctx->state == SPU_STATE_SAVED) {
185 			ret = spu_activate(ctx, 0);
186 			if (ret)
187 				return ret;
188 		}
189 	}
190 
191 	/*
192 	 * Apply special setup as required.
193 	 */
194 	if (ctx->flags & SPU_CREATE_ISOLATE) {
195 		if (!(ctx->ops->status_read(ctx) & SPU_STATUS_ISOLATED_STATE)) {
196 			ret = spu_setup_isolated(ctx);
197 			if (ret)
198 				return ret;
199 		}
200 
201 		/*
202 		 * If userspace has set the runcntrl register (eg, to
203 		 * issue an isolated exit), we need to re-set it here
204 		 */
205 		runcntl = ctx->ops->runcntl_read(ctx) &
206 			(SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE);
207 		if (runcntl == 0)
208 			runcntl = SPU_RUNCNTL_RUNNABLE;
209 	} else {
210 		unsigned long privcntl;
211 
212 		if (test_thread_flag(TIF_SINGLESTEP))
213 			privcntl = SPU_PRIVCNTL_MODE_SINGLE_STEP;
214 		else
215 			privcntl = SPU_PRIVCNTL_MODE_NORMAL;
216 
217 		ctx->ops->privcntl_write(ctx, privcntl);
218 		ctx->ops->npc_write(ctx, *npc);
219 	}
220 
221 	ctx->ops->runcntl_write(ctx, runcntl);
222 
223 	if (ctx->flags & SPU_CREATE_NOSCHED) {
224 		spuctx_switch_state(ctx, SPU_UTIL_USER);
225 	} else {
226 
227 		if (ctx->state == SPU_STATE_SAVED) {
228 			ret = spu_activate(ctx, 0);
229 			if (ret)
230 				return ret;
231 		} else {
232 			spuctx_switch_state(ctx, SPU_UTIL_USER);
233 		}
234 	}
235 
236 	set_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags);
237 	return 0;
238 }
239 
240 static int spu_run_fini(struct spu_context *ctx, u32 *npc,
241 			       u32 *status)
242 {
243 	int ret = 0;
244 
245 	spu_del_from_rq(ctx);
246 
247 	*status = ctx->ops->status_read(ctx);
248 	*npc = ctx->ops->npc_read(ctx);
249 
250 	spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
251 	clear_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags);
252 	spu_release(ctx);
253 
254 	if (signal_pending(current))
255 		ret = -ERESTARTSYS;
256 
257 	return ret;
258 }
259 
260 /*
261  * SPU syscall restarting is tricky because we violate the basic
262  * assumption that the signal handler is running on the interrupted
263  * thread. Here instead, the handler runs on PowerPC user space code,
264  * while the syscall was called from the SPU.
265  * This means we can only do a very rough approximation of POSIX
266  * signal semantics.
267  */
268 static int spu_handle_restartsys(struct spu_context *ctx, long *spu_ret,
269 			  unsigned int *npc)
270 {
271 	int ret;
272 
273 	switch (*spu_ret) {
274 	case -ERESTARTSYS:
275 	case -ERESTARTNOINTR:
276 		/*
277 		 * Enter the regular syscall restarting for
278 		 * sys_spu_run, then restart the SPU syscall
279 		 * callback.
280 		 */
281 		*npc -= 8;
282 		ret = -ERESTARTSYS;
283 		break;
284 	case -ERESTARTNOHAND:
285 	case -ERESTART_RESTARTBLOCK:
286 		/*
287 		 * Restart block is too hard for now, just return -EINTR
288 		 * to the SPU.
289 		 * ERESTARTNOHAND comes from sys_pause, we also return
290 		 * -EINTR from there.
291 		 * Assume that we need to be restarted ourselves though.
292 		 */
293 		*spu_ret = -EINTR;
294 		ret = -ERESTARTSYS;
295 		break;
296 	default:
297 		printk(KERN_WARNING "%s: unexpected return code %ld\n",
298 			__func__, *spu_ret);
299 		ret = 0;
300 	}
301 	return ret;
302 }
303 
304 static int spu_process_callback(struct spu_context *ctx)
305 {
306 	struct spu_syscall_block s;
307 	u32 ls_pointer, npc;
308 	void __iomem *ls;
309 	long spu_ret;
310 	int ret;
311 
312 	/* get syscall block from local store */
313 	npc = ctx->ops->npc_read(ctx) & ~3;
314 	ls = (void __iomem *)ctx->ops->get_ls(ctx);
315 	ls_pointer = in_be32(ls + npc);
316 	if (ls_pointer > (LS_SIZE - sizeof(s)))
317 		return -EFAULT;
318 	memcpy_fromio(&s, ls + ls_pointer, sizeof(s));
319 
320 	/* do actual syscall without pinning the spu */
321 	ret = 0;
322 	spu_ret = -ENOSYS;
323 	npc += 4;
324 
325 	if (s.nr_ret < __NR_syscalls) {
326 		spu_release(ctx);
327 		/* do actual system call from here */
328 		spu_ret = spu_sys_callback(&s);
329 		if (spu_ret <= -ERESTARTSYS) {
330 			ret = spu_handle_restartsys(ctx, &spu_ret, &npc);
331 		}
332 		mutex_lock(&ctx->state_mutex);
333 		if (ret == -ERESTARTSYS)
334 			return ret;
335 	}
336 
337 	/* need to re-get the ls, as it may have changed when we released the
338 	 * spu */
339 	ls = (void __iomem *)ctx->ops->get_ls(ctx);
340 
341 	/* write result, jump over indirect pointer */
342 	memcpy_toio(ls + ls_pointer, &spu_ret, sizeof(spu_ret));
343 	ctx->ops->npc_write(ctx, npc);
344 	ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
345 	return ret;
346 }
347 
348 long spufs_run_spu(struct spu_context *ctx, u32 *npc, u32 *event)
349 {
350 	int ret;
351 	struct spu *spu;
352 	u32 status;
353 
354 	if (mutex_lock_interruptible(&ctx->run_mutex))
355 		return -ERESTARTSYS;
356 
357 	ctx->event_return = 0;
358 
359 	ret = spu_acquire(ctx);
360 	if (ret)
361 		goto out_unlock;
362 
363 	spu_enable_spu(ctx);
364 
365 	spu_update_sched_info(ctx);
366 
367 	ret = spu_run_init(ctx, npc);
368 	if (ret) {
369 		spu_release(ctx);
370 		goto out;
371 	}
372 
373 	do {
374 		ret = spufs_wait(ctx->stop_wq, spu_stopped(ctx, &status));
375 		if (unlikely(ret)) {
376 			/*
377 			 * This is nasty: we need the state_mutex for all the
378 			 * bookkeeping even if the syscall was interrupted by
379 			 * a signal. ewww.
380 			 */
381 			mutex_lock(&ctx->state_mutex);
382 			break;
383 		}
384 		spu = ctx->spu;
385 		if (unlikely(test_and_clear_bit(SPU_SCHED_NOTIFY_ACTIVE,
386 						&ctx->sched_flags))) {
387 			if (!(status & SPU_STATUS_STOPPED_BY_STOP)) {
388 				spu_switch_notify(spu, ctx);
389 				continue;
390 			}
391 		}
392 
393 		spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
394 
395 		if ((status & SPU_STATUS_STOPPED_BY_STOP) &&
396 		    (status >> SPU_STOP_STATUS_SHIFT == 0x2104)) {
397 			ret = spu_process_callback(ctx);
398 			if (ret)
399 				break;
400 			status &= ~SPU_STATUS_STOPPED_BY_STOP;
401 		}
402 		ret = spufs_handle_class1(ctx);
403 		if (ret)
404 			break;
405 
406 		ret = spufs_handle_class0(ctx);
407 		if (ret)
408 			break;
409 
410 		if (signal_pending(current))
411 			ret = -ERESTARTSYS;
412 	} while (!ret && !(status & (SPU_STATUS_STOPPED_BY_STOP |
413 				      SPU_STATUS_STOPPED_BY_HALT |
414 				       SPU_STATUS_SINGLE_STEP)));
415 
416 	spu_disable_spu(ctx);
417 	ret = spu_run_fini(ctx, npc, &status);
418 	spu_yield(ctx);
419 
420 	spu_switch_log_notify(NULL, ctx, SWITCH_LOG_EXIT, status);
421 
422 	if ((status & SPU_STATUS_STOPPED_BY_STOP) &&
423 	    (((status >> SPU_STOP_STATUS_SHIFT) & 0x3f00) == 0x2100))
424 		ctx->stats.libassist++;
425 
426 	if ((ret == 0) ||
427 	    ((ret == -ERESTARTSYS) &&
428 	     ((status & SPU_STATUS_STOPPED_BY_HALT) ||
429 	      (status & SPU_STATUS_SINGLE_STEP) ||
430 	      ((status & SPU_STATUS_STOPPED_BY_STOP) &&
431 	       (status >> SPU_STOP_STATUS_SHIFT != 0x2104)))))
432 		ret = status;
433 
434 	/* Note: we don't need to force_sig SIGTRAP on single-step
435 	 * since we have TIF_SINGLESTEP set, thus the kernel will do
436 	 * it upon return from the syscall anyawy
437 	 */
438 	if (unlikely(status & SPU_STATUS_SINGLE_STEP))
439 		ret = -ERESTARTSYS;
440 
441 	else if (unlikely((status & SPU_STATUS_STOPPED_BY_STOP)
442 	    && (status >> SPU_STOP_STATUS_SHIFT) == 0x3fff)) {
443 		force_sig(SIGTRAP, current);
444 		ret = -ERESTARTSYS;
445 	}
446 
447 out:
448 	*event = ctx->event_return;
449 out_unlock:
450 	mutex_unlock(&ctx->run_mutex);
451 	return ret;
452 }
453