1 /* hw_ops.c - query/set operations on active SPU context. 2 * 3 * Copyright (C) IBM 2005 4 * Author: Mark Nutter <mnutter@us.ibm.com> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2, or (at your option) 9 * any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/module.h> 22 #include <linux/errno.h> 23 #include <linux/sched.h> 24 #include <linux/kernel.h> 25 #include <linux/mm.h> 26 #include <linux/poll.h> 27 #include <linux/smp.h> 28 #include <linux/stddef.h> 29 #include <linux/unistd.h> 30 31 #include <asm/io.h> 32 #include <asm/spu.h> 33 #include <asm/spu_priv1.h> 34 #include <asm/spu_csa.h> 35 #include <asm/mmu_context.h> 36 #include "spufs.h" 37 38 static int spu_hw_mbox_read(struct spu_context *ctx, u32 * data) 39 { 40 struct spu *spu = ctx->spu; 41 struct spu_problem __iomem *prob = spu->problem; 42 u32 mbox_stat; 43 int ret = 0; 44 45 spin_lock_irq(&spu->register_lock); 46 mbox_stat = in_be32(&prob->mb_stat_R); 47 if (mbox_stat & 0x0000ff) { 48 *data = in_be32(&prob->pu_mb_R); 49 ret = 4; 50 } 51 spin_unlock_irq(&spu->register_lock); 52 return ret; 53 } 54 55 static u32 spu_hw_mbox_stat_read(struct spu_context *ctx) 56 { 57 return in_be32(&ctx->spu->problem->mb_stat_R); 58 } 59 60 static unsigned int spu_hw_mbox_stat_poll(struct spu_context *ctx, 61 unsigned int events) 62 { 63 struct spu *spu = ctx->spu; 64 int ret = 0; 65 u32 stat; 66 67 spin_lock_irq(&spu->register_lock); 68 stat = in_be32(&spu->problem->mb_stat_R); 69 70 /* if the requested event is there, return the poll 71 mask, otherwise enable the interrupt to get notified, 72 but first mark any pending interrupts as done so 73 we don't get woken up unnecessarily */ 74 75 if (events & (POLLIN | POLLRDNORM)) { 76 if (stat & 0xff0000) 77 ret |= POLLIN | POLLRDNORM; 78 else { 79 spu_int_stat_clear(spu, 2, 0x1); 80 spu_int_mask_or(spu, 2, 0x1); 81 } 82 } 83 if (events & (POLLOUT | POLLWRNORM)) { 84 if (stat & 0x00ff00) 85 ret = POLLOUT | POLLWRNORM; 86 else { 87 spu_int_stat_clear(spu, 2, 0x10); 88 spu_int_mask_or(spu, 2, 0x10); 89 } 90 } 91 spin_unlock_irq(&spu->register_lock); 92 return ret; 93 } 94 95 static int spu_hw_ibox_read(struct spu_context *ctx, u32 * data) 96 { 97 struct spu *spu = ctx->spu; 98 struct spu_problem __iomem *prob = spu->problem; 99 struct spu_priv2 __iomem *priv2 = spu->priv2; 100 int ret; 101 102 spin_lock_irq(&spu->register_lock); 103 if (in_be32(&prob->mb_stat_R) & 0xff0000) { 104 /* read the first available word */ 105 *data = in_be64(&priv2->puint_mb_R); 106 ret = 4; 107 } else { 108 /* make sure we get woken up by the interrupt */ 109 spu_int_mask_or(spu, 2, 0x1); 110 ret = 0; 111 } 112 spin_unlock_irq(&spu->register_lock); 113 return ret; 114 } 115 116 static int spu_hw_wbox_write(struct spu_context *ctx, u32 data) 117 { 118 struct spu *spu = ctx->spu; 119 struct spu_problem __iomem *prob = spu->problem; 120 int ret; 121 122 spin_lock_irq(&spu->register_lock); 123 if (in_be32(&prob->mb_stat_R) & 0x00ff00) { 124 /* we have space to write wbox_data to */ 125 out_be32(&prob->spu_mb_W, data); 126 ret = 4; 127 } else { 128 /* make sure we get woken up by the interrupt when space 129 becomes available */ 130 spu_int_mask_or(spu, 2, 0x10); 131 ret = 0; 132 } 133 spin_unlock_irq(&spu->register_lock); 134 return ret; 135 } 136 137 static void spu_hw_signal1_write(struct spu_context *ctx, u32 data) 138 { 139 out_be32(&ctx->spu->problem->signal_notify1, data); 140 } 141 142 static void spu_hw_signal2_write(struct spu_context *ctx, u32 data) 143 { 144 out_be32(&ctx->spu->problem->signal_notify2, data); 145 } 146 147 static void spu_hw_signal1_type_set(struct spu_context *ctx, u64 val) 148 { 149 struct spu *spu = ctx->spu; 150 struct spu_priv2 __iomem *priv2 = spu->priv2; 151 u64 tmp; 152 153 spin_lock_irq(&spu->register_lock); 154 tmp = in_be64(&priv2->spu_cfg_RW); 155 if (val) 156 tmp |= 1; 157 else 158 tmp &= ~1; 159 out_be64(&priv2->spu_cfg_RW, tmp); 160 spin_unlock_irq(&spu->register_lock); 161 } 162 163 static u64 spu_hw_signal1_type_get(struct spu_context *ctx) 164 { 165 return ((in_be64(&ctx->spu->priv2->spu_cfg_RW) & 1) != 0); 166 } 167 168 static void spu_hw_signal2_type_set(struct spu_context *ctx, u64 val) 169 { 170 struct spu *spu = ctx->spu; 171 struct spu_priv2 __iomem *priv2 = spu->priv2; 172 u64 tmp; 173 174 spin_lock_irq(&spu->register_lock); 175 tmp = in_be64(&priv2->spu_cfg_RW); 176 if (val) 177 tmp |= 2; 178 else 179 tmp &= ~2; 180 out_be64(&priv2->spu_cfg_RW, tmp); 181 spin_unlock_irq(&spu->register_lock); 182 } 183 184 static u64 spu_hw_signal2_type_get(struct spu_context *ctx) 185 { 186 return ((in_be64(&ctx->spu->priv2->spu_cfg_RW) & 2) != 0); 187 } 188 189 static u32 spu_hw_npc_read(struct spu_context *ctx) 190 { 191 return in_be32(&ctx->spu->problem->spu_npc_RW); 192 } 193 194 static void spu_hw_npc_write(struct spu_context *ctx, u32 val) 195 { 196 out_be32(&ctx->spu->problem->spu_npc_RW, val); 197 } 198 199 static u32 spu_hw_status_read(struct spu_context *ctx) 200 { 201 return in_be32(&ctx->spu->problem->spu_status_R); 202 } 203 204 static char *spu_hw_get_ls(struct spu_context *ctx) 205 { 206 return ctx->spu->local_store; 207 } 208 209 static u32 spu_hw_runcntl_read(struct spu_context *ctx) 210 { 211 return in_be32(&ctx->spu->problem->spu_runcntl_RW); 212 } 213 214 static void spu_hw_runcntl_write(struct spu_context *ctx, u32 val) 215 { 216 spin_lock_irq(&ctx->spu->register_lock); 217 if (val & SPU_RUNCNTL_ISOLATE) 218 out_be64(&ctx->spu->priv2->spu_privcntl_RW, 4LL); 219 out_be32(&ctx->spu->problem->spu_runcntl_RW, val); 220 spin_unlock_irq(&ctx->spu->register_lock); 221 } 222 223 static void spu_hw_master_start(struct spu_context *ctx) 224 { 225 struct spu *spu = ctx->spu; 226 u64 sr1; 227 228 spin_lock_irq(&spu->register_lock); 229 sr1 = spu_mfc_sr1_get(spu) | MFC_STATE1_MASTER_RUN_CONTROL_MASK; 230 spu_mfc_sr1_set(spu, sr1); 231 spin_unlock_irq(&spu->register_lock); 232 } 233 234 static void spu_hw_master_stop(struct spu_context *ctx) 235 { 236 struct spu *spu = ctx->spu; 237 u64 sr1; 238 239 spin_lock_irq(&spu->register_lock); 240 sr1 = spu_mfc_sr1_get(spu) & ~MFC_STATE1_MASTER_RUN_CONTROL_MASK; 241 spu_mfc_sr1_set(spu, sr1); 242 spin_unlock_irq(&spu->register_lock); 243 } 244 245 static int spu_hw_set_mfc_query(struct spu_context * ctx, u32 mask, u32 mode) 246 { 247 struct spu_problem __iomem *prob = ctx->spu->problem; 248 int ret; 249 250 spin_lock_irq(&ctx->spu->register_lock); 251 ret = -EAGAIN; 252 if (in_be32(&prob->dma_querytype_RW)) 253 goto out; 254 ret = 0; 255 out_be32(&prob->dma_querymask_RW, mask); 256 out_be32(&prob->dma_querytype_RW, mode); 257 out: 258 spin_unlock_irq(&ctx->spu->register_lock); 259 return ret; 260 } 261 262 static u32 spu_hw_read_mfc_tagstatus(struct spu_context * ctx) 263 { 264 return in_be32(&ctx->spu->problem->dma_tagstatus_R); 265 } 266 267 static u32 spu_hw_get_mfc_free_elements(struct spu_context *ctx) 268 { 269 return in_be32(&ctx->spu->problem->dma_qstatus_R); 270 } 271 272 static int spu_hw_send_mfc_command(struct spu_context *ctx, 273 struct mfc_dma_command *cmd) 274 { 275 u32 status; 276 struct spu_problem __iomem *prob = ctx->spu->problem; 277 278 spin_lock_irq(&ctx->spu->register_lock); 279 out_be32(&prob->mfc_lsa_W, cmd->lsa); 280 out_be64(&prob->mfc_ea_W, cmd->ea); 281 out_be32(&prob->mfc_union_W.by32.mfc_size_tag32, 282 cmd->size << 16 | cmd->tag); 283 out_be32(&prob->mfc_union_W.by32.mfc_class_cmd32, 284 cmd->class << 16 | cmd->cmd); 285 status = in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32); 286 spin_unlock_irq(&ctx->spu->register_lock); 287 288 switch (status & 0xffff) { 289 case 0: 290 return 0; 291 case 2: 292 return -EAGAIN; 293 default: 294 return -EINVAL; 295 } 296 } 297 298 static void spu_hw_restart_dma(struct spu_context *ctx) 299 { 300 struct spu_priv2 __iomem *priv2 = ctx->spu->priv2; 301 302 if (!test_bit(SPU_CONTEXT_SWITCH_PENDING, &ctx->spu->flags)) 303 out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND); 304 } 305 306 struct spu_context_ops spu_hw_ops = { 307 .mbox_read = spu_hw_mbox_read, 308 .mbox_stat_read = spu_hw_mbox_stat_read, 309 .mbox_stat_poll = spu_hw_mbox_stat_poll, 310 .ibox_read = spu_hw_ibox_read, 311 .wbox_write = spu_hw_wbox_write, 312 .signal1_write = spu_hw_signal1_write, 313 .signal2_write = spu_hw_signal2_write, 314 .signal1_type_set = spu_hw_signal1_type_set, 315 .signal1_type_get = spu_hw_signal1_type_get, 316 .signal2_type_set = spu_hw_signal2_type_set, 317 .signal2_type_get = spu_hw_signal2_type_get, 318 .npc_read = spu_hw_npc_read, 319 .npc_write = spu_hw_npc_write, 320 .status_read = spu_hw_status_read, 321 .get_ls = spu_hw_get_ls, 322 .runcntl_read = spu_hw_runcntl_read, 323 .runcntl_write = spu_hw_runcntl_write, 324 .master_start = spu_hw_master_start, 325 .master_stop = spu_hw_master_stop, 326 .set_mfc_query = spu_hw_set_mfc_query, 327 .read_mfc_tagstatus = spu_hw_read_mfc_tagstatus, 328 .get_mfc_free_elements = spu_hw_get_mfc_free_elements, 329 .send_mfc_command = spu_hw_send_mfc_command, 330 .restart_dma = spu_hw_restart_dma, 331 }; 332