1 /*
2  * SPU file system -- file contents
3  *
4  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5  *
6  * Author: Arnd Bergmann <arndb@de.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #undef DEBUG
24 
25 #include <linux/fs.h>
26 #include <linux/ioctl.h>
27 #include <linux/module.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/seq_file.h>
32 #include <linux/marker.h>
33 
34 #include <asm/io.h>
35 #include <asm/spu.h>
36 #include <asm/spu_info.h>
37 #include <asm/uaccess.h>
38 
39 #include "spufs.h"
40 
41 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
42 
43 /* Simple attribute files */
44 struct spufs_attr {
45 	int (*get)(void *, u64 *);
46 	int (*set)(void *, u64);
47 	char get_buf[24];       /* enough to store a u64 and "\n\0" */
48 	char set_buf[24];
49 	void *data;
50 	const char *fmt;        /* format for read operation */
51 	struct mutex mutex;     /* protects access to these buffers */
52 };
53 
54 static int spufs_attr_open(struct inode *inode, struct file *file,
55 		int (*get)(void *, u64 *), int (*set)(void *, u64),
56 		const char *fmt)
57 {
58 	struct spufs_attr *attr;
59 
60 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
61 	if (!attr)
62 		return -ENOMEM;
63 
64 	attr->get = get;
65 	attr->set = set;
66 	attr->data = inode->i_private;
67 	attr->fmt = fmt;
68 	mutex_init(&attr->mutex);
69 	file->private_data = attr;
70 
71 	return nonseekable_open(inode, file);
72 }
73 
74 static int spufs_attr_release(struct inode *inode, struct file *file)
75 {
76        kfree(file->private_data);
77 	return 0;
78 }
79 
80 static ssize_t spufs_attr_read(struct file *file, char __user *buf,
81 		size_t len, loff_t *ppos)
82 {
83 	struct spufs_attr *attr;
84 	size_t size;
85 	ssize_t ret;
86 
87 	attr = file->private_data;
88 	if (!attr->get)
89 		return -EACCES;
90 
91 	ret = mutex_lock_interruptible(&attr->mutex);
92 	if (ret)
93 		return ret;
94 
95 	if (*ppos) {		/* continued read */
96 		size = strlen(attr->get_buf);
97 	} else {		/* first read */
98 		u64 val;
99 		ret = attr->get(attr->data, &val);
100 		if (ret)
101 			goto out;
102 
103 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
104 				 attr->fmt, (unsigned long long)val);
105 	}
106 
107 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
108 out:
109 	mutex_unlock(&attr->mutex);
110 	return ret;
111 }
112 
113 static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
114 		size_t len, loff_t *ppos)
115 {
116 	struct spufs_attr *attr;
117 	u64 val;
118 	size_t size;
119 	ssize_t ret;
120 
121 	attr = file->private_data;
122 	if (!attr->set)
123 		return -EACCES;
124 
125 	ret = mutex_lock_interruptible(&attr->mutex);
126 	if (ret)
127 		return ret;
128 
129 	ret = -EFAULT;
130 	size = min(sizeof(attr->set_buf) - 1, len);
131 	if (copy_from_user(attr->set_buf, buf, size))
132 		goto out;
133 
134 	ret = len; /* claim we got the whole input */
135 	attr->set_buf[size] = '\0';
136 	val = simple_strtol(attr->set_buf, NULL, 0);
137 	attr->set(attr->data, val);
138 out:
139 	mutex_unlock(&attr->mutex);
140 	return ret;
141 }
142 
143 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)	\
144 static int __fops ## _open(struct inode *inode, struct file *file)	\
145 {									\
146 	__simple_attr_check_format(__fmt, 0ull);			\
147 	return spufs_attr_open(inode, file, __get, __set, __fmt);	\
148 }									\
149 static struct file_operations __fops = {				\
150 	.owner	 = THIS_MODULE,						\
151 	.open	 = __fops ## _open,					\
152 	.release = spufs_attr_release,					\
153 	.read	 = spufs_attr_read,					\
154 	.write	 = spufs_attr_write,					\
155 };
156 
157 
158 static int
159 spufs_mem_open(struct inode *inode, struct file *file)
160 {
161 	struct spufs_inode_info *i = SPUFS_I(inode);
162 	struct spu_context *ctx = i->i_ctx;
163 
164 	mutex_lock(&ctx->mapping_lock);
165 	file->private_data = ctx;
166 	if (!i->i_openers++)
167 		ctx->local_store = inode->i_mapping;
168 	mutex_unlock(&ctx->mapping_lock);
169 	return 0;
170 }
171 
172 static int
173 spufs_mem_release(struct inode *inode, struct file *file)
174 {
175 	struct spufs_inode_info *i = SPUFS_I(inode);
176 	struct spu_context *ctx = i->i_ctx;
177 
178 	mutex_lock(&ctx->mapping_lock);
179 	if (!--i->i_openers)
180 		ctx->local_store = NULL;
181 	mutex_unlock(&ctx->mapping_lock);
182 	return 0;
183 }
184 
185 static ssize_t
186 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
187 			size_t size, loff_t *pos)
188 {
189 	char *local_store = ctx->ops->get_ls(ctx);
190 	return simple_read_from_buffer(buffer, size, pos, local_store,
191 					LS_SIZE);
192 }
193 
194 static ssize_t
195 spufs_mem_read(struct file *file, char __user *buffer,
196 				size_t size, loff_t *pos)
197 {
198 	struct spu_context *ctx = file->private_data;
199 	ssize_t ret;
200 
201 	ret = spu_acquire(ctx);
202 	if (ret)
203 		return ret;
204 	ret = __spufs_mem_read(ctx, buffer, size, pos);
205 	spu_release(ctx);
206 
207 	return ret;
208 }
209 
210 static ssize_t
211 spufs_mem_write(struct file *file, const char __user *buffer,
212 					size_t size, loff_t *ppos)
213 {
214 	struct spu_context *ctx = file->private_data;
215 	char *local_store;
216 	loff_t pos = *ppos;
217 	int ret;
218 
219 	if (pos < 0)
220 		return -EINVAL;
221 	if (pos > LS_SIZE)
222 		return -EFBIG;
223 	if (size > LS_SIZE - pos)
224 		size = LS_SIZE - pos;
225 
226 	ret = spu_acquire(ctx);
227 	if (ret)
228 		return ret;
229 
230 	local_store = ctx->ops->get_ls(ctx);
231 	ret = copy_from_user(local_store + pos, buffer, size);
232 	spu_release(ctx);
233 
234 	if (ret)
235 		return -EFAULT;
236 	*ppos = pos + size;
237 	return size;
238 }
239 
240 static unsigned long spufs_mem_mmap_nopfn(struct vm_area_struct *vma,
241 					  unsigned long address)
242 {
243 	struct spu_context *ctx	= vma->vm_file->private_data;
244 	unsigned long pfn, offset, addr0 = address;
245 #ifdef CONFIG_SPU_FS_64K_LS
246 	struct spu_state *csa = &ctx->csa;
247 	int psize;
248 
249 	/* Check what page size we are using */
250 	psize = get_slice_psize(vma->vm_mm, address);
251 
252 	/* Some sanity checking */
253 	BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));
254 
255 	/* Wow, 64K, cool, we need to align the address though */
256 	if (csa->use_big_pages) {
257 		BUG_ON(vma->vm_start & 0xffff);
258 		address &= ~0xfffful;
259 	}
260 #endif /* CONFIG_SPU_FS_64K_LS */
261 
262 	offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT);
263 	if (offset >= LS_SIZE)
264 		return NOPFN_SIGBUS;
265 
266 	pr_debug("spufs_mem_mmap_nopfn address=0x%lx -> 0x%lx, offset=0x%lx\n",
267 		 addr0, address, offset);
268 
269 	if (spu_acquire(ctx))
270 		return NOPFN_REFAULT;
271 
272 	if (ctx->state == SPU_STATE_SAVED) {
273 		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
274 							& ~_PAGE_NO_CACHE);
275 		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
276 	} else {
277 		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
278 					     | _PAGE_NO_CACHE);
279 		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
280 	}
281 	vm_insert_pfn(vma, address, pfn);
282 
283 	spu_release(ctx);
284 
285 	return NOPFN_REFAULT;
286 }
287 
288 
289 static struct vm_operations_struct spufs_mem_mmap_vmops = {
290 	.nopfn = spufs_mem_mmap_nopfn,
291 };
292 
293 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
294 {
295 #ifdef CONFIG_SPU_FS_64K_LS
296 	struct spu_context	*ctx = file->private_data;
297 	struct spu_state	*csa = &ctx->csa;
298 
299 	/* Sanity check VMA alignment */
300 	if (csa->use_big_pages) {
301 		pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
302 			 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
303 			 vma->vm_pgoff);
304 		if (vma->vm_start & 0xffff)
305 			return -EINVAL;
306 		if (vma->vm_pgoff & 0xf)
307 			return -EINVAL;
308 	}
309 #endif /* CONFIG_SPU_FS_64K_LS */
310 
311 	if (!(vma->vm_flags & VM_SHARED))
312 		return -EINVAL;
313 
314 	vma->vm_flags |= VM_IO | VM_PFNMAP;
315 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
316 				     | _PAGE_NO_CACHE);
317 
318 	vma->vm_ops = &spufs_mem_mmap_vmops;
319 	return 0;
320 }
321 
322 #ifdef CONFIG_SPU_FS_64K_LS
323 static unsigned long spufs_get_unmapped_area(struct file *file,
324 		unsigned long addr, unsigned long len, unsigned long pgoff,
325 		unsigned long flags)
326 {
327 	struct spu_context	*ctx = file->private_data;
328 	struct spu_state	*csa = &ctx->csa;
329 
330 	/* If not using big pages, fallback to normal MM g_u_a */
331 	if (!csa->use_big_pages)
332 		return current->mm->get_unmapped_area(file, addr, len,
333 						      pgoff, flags);
334 
335 	/* Else, try to obtain a 64K pages slice */
336 	return slice_get_unmapped_area(addr, len, flags,
337 				       MMU_PAGE_64K, 1, 0);
338 }
339 #endif /* CONFIG_SPU_FS_64K_LS */
340 
341 static const struct file_operations spufs_mem_fops = {
342 	.open			= spufs_mem_open,
343 	.release		= spufs_mem_release,
344 	.read			= spufs_mem_read,
345 	.write			= spufs_mem_write,
346 	.llseek			= generic_file_llseek,
347 	.mmap			= spufs_mem_mmap,
348 #ifdef CONFIG_SPU_FS_64K_LS
349 	.get_unmapped_area	= spufs_get_unmapped_area,
350 #endif
351 };
352 
353 static unsigned long spufs_ps_nopfn(struct vm_area_struct *vma,
354 				    unsigned long address,
355 				    unsigned long ps_offs,
356 				    unsigned long ps_size)
357 {
358 	struct spu_context *ctx = vma->vm_file->private_data;
359 	unsigned long area, offset = address - vma->vm_start;
360 	int ret = 0;
361 
362 	spu_context_nospu_trace(spufs_ps_nopfn__enter, ctx);
363 
364 	offset += vma->vm_pgoff << PAGE_SHIFT;
365 	if (offset >= ps_size)
366 		return NOPFN_SIGBUS;
367 
368 	/*
369 	 * Because we release the mmap_sem, the context may be destroyed while
370 	 * we're in spu_wait. Grab an extra reference so it isn't destroyed
371 	 * in the meantime.
372 	 */
373 	get_spu_context(ctx);
374 
375 	/*
376 	 * We have to wait for context to be loaded before we have
377 	 * pages to hand out to the user, but we don't want to wait
378 	 * with the mmap_sem held.
379 	 * It is possible to drop the mmap_sem here, but then we need
380 	 * to return NOPFN_REFAULT because the mappings may have
381 	 * hanged.
382 	 */
383 	if (spu_acquire(ctx))
384 		goto refault;
385 
386 	if (ctx->state == SPU_STATE_SAVED) {
387 		up_read(&current->mm->mmap_sem);
388 		spu_context_nospu_trace(spufs_ps_nopfn__sleep, ctx);
389 		ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
390 		spu_context_trace(spufs_ps_nopfn__wake, ctx, ctx->spu);
391 		down_read(&current->mm->mmap_sem);
392 	} else {
393 		area = ctx->spu->problem_phys + ps_offs;
394 		vm_insert_pfn(vma, address, (area + offset) >> PAGE_SHIFT);
395 		spu_context_trace(spufs_ps_nopfn__insert, ctx, ctx->spu);
396 	}
397 
398 	if (!ret)
399 		spu_release(ctx);
400 
401 refault:
402 	put_spu_context(ctx);
403 	return NOPFN_REFAULT;
404 }
405 
406 #if SPUFS_MMAP_4K
407 static unsigned long spufs_cntl_mmap_nopfn(struct vm_area_struct *vma,
408 					   unsigned long address)
409 {
410 	return spufs_ps_nopfn(vma, address, 0x4000, 0x1000);
411 }
412 
413 static struct vm_operations_struct spufs_cntl_mmap_vmops = {
414 	.nopfn = spufs_cntl_mmap_nopfn,
415 };
416 
417 /*
418  * mmap support for problem state control area [0x4000 - 0x4fff].
419  */
420 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
421 {
422 	if (!(vma->vm_flags & VM_SHARED))
423 		return -EINVAL;
424 
425 	vma->vm_flags |= VM_IO | VM_PFNMAP;
426 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
427 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
428 
429 	vma->vm_ops = &spufs_cntl_mmap_vmops;
430 	return 0;
431 }
432 #else /* SPUFS_MMAP_4K */
433 #define spufs_cntl_mmap NULL
434 #endif /* !SPUFS_MMAP_4K */
435 
436 static int spufs_cntl_get(void *data, u64 *val)
437 {
438 	struct spu_context *ctx = data;
439 	int ret;
440 
441 	ret = spu_acquire(ctx);
442 	if (ret)
443 		return ret;
444 	*val = ctx->ops->status_read(ctx);
445 	spu_release(ctx);
446 
447 	return 0;
448 }
449 
450 static int spufs_cntl_set(void *data, u64 val)
451 {
452 	struct spu_context *ctx = data;
453 	int ret;
454 
455 	ret = spu_acquire(ctx);
456 	if (ret)
457 		return ret;
458 	ctx->ops->runcntl_write(ctx, val);
459 	spu_release(ctx);
460 
461 	return 0;
462 }
463 
464 static int spufs_cntl_open(struct inode *inode, struct file *file)
465 {
466 	struct spufs_inode_info *i = SPUFS_I(inode);
467 	struct spu_context *ctx = i->i_ctx;
468 
469 	mutex_lock(&ctx->mapping_lock);
470 	file->private_data = ctx;
471 	if (!i->i_openers++)
472 		ctx->cntl = inode->i_mapping;
473 	mutex_unlock(&ctx->mapping_lock);
474 	return simple_attr_open(inode, file, spufs_cntl_get,
475 					spufs_cntl_set, "0x%08lx");
476 }
477 
478 static int
479 spufs_cntl_release(struct inode *inode, struct file *file)
480 {
481 	struct spufs_inode_info *i = SPUFS_I(inode);
482 	struct spu_context *ctx = i->i_ctx;
483 
484 	simple_attr_release(inode, file);
485 
486 	mutex_lock(&ctx->mapping_lock);
487 	if (!--i->i_openers)
488 		ctx->cntl = NULL;
489 	mutex_unlock(&ctx->mapping_lock);
490 	return 0;
491 }
492 
493 static const struct file_operations spufs_cntl_fops = {
494 	.open = spufs_cntl_open,
495 	.release = spufs_cntl_release,
496 	.read = simple_attr_read,
497 	.write = simple_attr_write,
498 	.mmap = spufs_cntl_mmap,
499 };
500 
501 static int
502 spufs_regs_open(struct inode *inode, struct file *file)
503 {
504 	struct spufs_inode_info *i = SPUFS_I(inode);
505 	file->private_data = i->i_ctx;
506 	return 0;
507 }
508 
509 static ssize_t
510 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
511 			size_t size, loff_t *pos)
512 {
513 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
514 	return simple_read_from_buffer(buffer, size, pos,
515 				      lscsa->gprs, sizeof lscsa->gprs);
516 }
517 
518 static ssize_t
519 spufs_regs_read(struct file *file, char __user *buffer,
520 		size_t size, loff_t *pos)
521 {
522 	int ret;
523 	struct spu_context *ctx = file->private_data;
524 
525 	ret = spu_acquire_saved(ctx);
526 	if (ret)
527 		return ret;
528 	ret = __spufs_regs_read(ctx, buffer, size, pos);
529 	spu_release_saved(ctx);
530 	return ret;
531 }
532 
533 static ssize_t
534 spufs_regs_write(struct file *file, const char __user *buffer,
535 		 size_t size, loff_t *pos)
536 {
537 	struct spu_context *ctx = file->private_data;
538 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
539 	int ret;
540 
541 	size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
542 	if (size <= 0)
543 		return -EFBIG;
544 	*pos += size;
545 
546 	ret = spu_acquire_saved(ctx);
547 	if (ret)
548 		return ret;
549 
550 	ret = copy_from_user(lscsa->gprs + *pos - size,
551 			     buffer, size) ? -EFAULT : size;
552 
553 	spu_release_saved(ctx);
554 	return ret;
555 }
556 
557 static const struct file_operations spufs_regs_fops = {
558 	.open	 = spufs_regs_open,
559 	.read    = spufs_regs_read,
560 	.write   = spufs_regs_write,
561 	.llseek  = generic_file_llseek,
562 };
563 
564 static ssize_t
565 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
566 			size_t size, loff_t * pos)
567 {
568 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
569 	return simple_read_from_buffer(buffer, size, pos,
570 				      &lscsa->fpcr, sizeof(lscsa->fpcr));
571 }
572 
573 static ssize_t
574 spufs_fpcr_read(struct file *file, char __user * buffer,
575 		size_t size, loff_t * pos)
576 {
577 	int ret;
578 	struct spu_context *ctx = file->private_data;
579 
580 	ret = spu_acquire_saved(ctx);
581 	if (ret)
582 		return ret;
583 	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
584 	spu_release_saved(ctx);
585 	return ret;
586 }
587 
588 static ssize_t
589 spufs_fpcr_write(struct file *file, const char __user * buffer,
590 		 size_t size, loff_t * pos)
591 {
592 	struct spu_context *ctx = file->private_data;
593 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
594 	int ret;
595 
596 	size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
597 	if (size <= 0)
598 		return -EFBIG;
599 
600 	ret = spu_acquire_saved(ctx);
601 	if (ret)
602 		return ret;
603 
604 	*pos += size;
605 	ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
606 			     buffer, size) ? -EFAULT : size;
607 
608 	spu_release_saved(ctx);
609 	return ret;
610 }
611 
612 static const struct file_operations spufs_fpcr_fops = {
613 	.open = spufs_regs_open,
614 	.read = spufs_fpcr_read,
615 	.write = spufs_fpcr_write,
616 	.llseek = generic_file_llseek,
617 };
618 
619 /* generic open function for all pipe-like files */
620 static int spufs_pipe_open(struct inode *inode, struct file *file)
621 {
622 	struct spufs_inode_info *i = SPUFS_I(inode);
623 	file->private_data = i->i_ctx;
624 
625 	return nonseekable_open(inode, file);
626 }
627 
628 /*
629  * Read as many bytes from the mailbox as possible, until
630  * one of the conditions becomes true:
631  *
632  * - no more data available in the mailbox
633  * - end of the user provided buffer
634  * - end of the mapped area
635  */
636 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
637 			size_t len, loff_t *pos)
638 {
639 	struct spu_context *ctx = file->private_data;
640 	u32 mbox_data, __user *udata;
641 	ssize_t count;
642 
643 	if (len < 4)
644 		return -EINVAL;
645 
646 	if (!access_ok(VERIFY_WRITE, buf, len))
647 		return -EFAULT;
648 
649 	udata = (void __user *)buf;
650 
651 	count = spu_acquire(ctx);
652 	if (count)
653 		return count;
654 
655 	for (count = 0; (count + 4) <= len; count += 4, udata++) {
656 		int ret;
657 		ret = ctx->ops->mbox_read(ctx, &mbox_data);
658 		if (ret == 0)
659 			break;
660 
661 		/*
662 		 * at the end of the mapped area, we can fault
663 		 * but still need to return the data we have
664 		 * read successfully so far.
665 		 */
666 		ret = __put_user(mbox_data, udata);
667 		if (ret) {
668 			if (!count)
669 				count = -EFAULT;
670 			break;
671 		}
672 	}
673 	spu_release(ctx);
674 
675 	if (!count)
676 		count = -EAGAIN;
677 
678 	return count;
679 }
680 
681 static const struct file_operations spufs_mbox_fops = {
682 	.open	= spufs_pipe_open,
683 	.read	= spufs_mbox_read,
684 };
685 
686 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
687 			size_t len, loff_t *pos)
688 {
689 	struct spu_context *ctx = file->private_data;
690 	ssize_t ret;
691 	u32 mbox_stat;
692 
693 	if (len < 4)
694 		return -EINVAL;
695 
696 	ret = spu_acquire(ctx);
697 	if (ret)
698 		return ret;
699 
700 	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
701 
702 	spu_release(ctx);
703 
704 	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
705 		return -EFAULT;
706 
707 	return 4;
708 }
709 
710 static const struct file_operations spufs_mbox_stat_fops = {
711 	.open	= spufs_pipe_open,
712 	.read	= spufs_mbox_stat_read,
713 };
714 
715 /* low-level ibox access function */
716 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
717 {
718 	return ctx->ops->ibox_read(ctx, data);
719 }
720 
721 static int spufs_ibox_fasync(int fd, struct file *file, int on)
722 {
723 	struct spu_context *ctx = file->private_data;
724 
725 	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
726 }
727 
728 /* interrupt-level ibox callback function. */
729 void spufs_ibox_callback(struct spu *spu)
730 {
731 	struct spu_context *ctx = spu->ctx;
732 
733 	if (!ctx)
734 		return;
735 
736 	wake_up_all(&ctx->ibox_wq);
737 	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
738 }
739 
740 /*
741  * Read as many bytes from the interrupt mailbox as possible, until
742  * one of the conditions becomes true:
743  *
744  * - no more data available in the mailbox
745  * - end of the user provided buffer
746  * - end of the mapped area
747  *
748  * If the file is opened without O_NONBLOCK, we wait here until
749  * any data is available, but return when we have been able to
750  * read something.
751  */
752 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
753 			size_t len, loff_t *pos)
754 {
755 	struct spu_context *ctx = file->private_data;
756 	u32 ibox_data, __user *udata;
757 	ssize_t count;
758 
759 	if (len < 4)
760 		return -EINVAL;
761 
762 	if (!access_ok(VERIFY_WRITE, buf, len))
763 		return -EFAULT;
764 
765 	udata = (void __user *)buf;
766 
767 	count = spu_acquire(ctx);
768 	if (count)
769 		goto out;
770 
771 	/* wait only for the first element */
772 	count = 0;
773 	if (file->f_flags & O_NONBLOCK) {
774 		if (!spu_ibox_read(ctx, &ibox_data)) {
775 			count = -EAGAIN;
776 			goto out_unlock;
777 		}
778 	} else {
779 		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
780 		if (count)
781 			goto out;
782 	}
783 
784 	/* if we can't write at all, return -EFAULT */
785 	count = __put_user(ibox_data, udata);
786 	if (count)
787 		goto out_unlock;
788 
789 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
790 		int ret;
791 		ret = ctx->ops->ibox_read(ctx, &ibox_data);
792 		if (ret == 0)
793 			break;
794 		/*
795 		 * at the end of the mapped area, we can fault
796 		 * but still need to return the data we have
797 		 * read successfully so far.
798 		 */
799 		ret = __put_user(ibox_data, udata);
800 		if (ret)
801 			break;
802 	}
803 
804 out_unlock:
805 	spu_release(ctx);
806 out:
807 	return count;
808 }
809 
810 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
811 {
812 	struct spu_context *ctx = file->private_data;
813 	unsigned int mask;
814 
815 	poll_wait(file, &ctx->ibox_wq, wait);
816 
817 	/*
818 	 * For now keep this uninterruptible and also ignore the rule
819 	 * that poll should not sleep.  Will be fixed later.
820 	 */
821 	mutex_lock(&ctx->state_mutex);
822 	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
823 	spu_release(ctx);
824 
825 	return mask;
826 }
827 
828 static const struct file_operations spufs_ibox_fops = {
829 	.open	= spufs_pipe_open,
830 	.read	= spufs_ibox_read,
831 	.poll	= spufs_ibox_poll,
832 	.fasync	= spufs_ibox_fasync,
833 };
834 
835 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
836 			size_t len, loff_t *pos)
837 {
838 	struct spu_context *ctx = file->private_data;
839 	ssize_t ret;
840 	u32 ibox_stat;
841 
842 	if (len < 4)
843 		return -EINVAL;
844 
845 	ret = spu_acquire(ctx);
846 	if (ret)
847 		return ret;
848 	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
849 	spu_release(ctx);
850 
851 	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
852 		return -EFAULT;
853 
854 	return 4;
855 }
856 
857 static const struct file_operations spufs_ibox_stat_fops = {
858 	.open	= spufs_pipe_open,
859 	.read	= spufs_ibox_stat_read,
860 };
861 
862 /* low-level mailbox write */
863 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
864 {
865 	return ctx->ops->wbox_write(ctx, data);
866 }
867 
868 static int spufs_wbox_fasync(int fd, struct file *file, int on)
869 {
870 	struct spu_context *ctx = file->private_data;
871 	int ret;
872 
873 	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
874 
875 	return ret;
876 }
877 
878 /* interrupt-level wbox callback function. */
879 void spufs_wbox_callback(struct spu *spu)
880 {
881 	struct spu_context *ctx = spu->ctx;
882 
883 	if (!ctx)
884 		return;
885 
886 	wake_up_all(&ctx->wbox_wq);
887 	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
888 }
889 
890 /*
891  * Write as many bytes to the interrupt mailbox as possible, until
892  * one of the conditions becomes true:
893  *
894  * - the mailbox is full
895  * - end of the user provided buffer
896  * - end of the mapped area
897  *
898  * If the file is opened without O_NONBLOCK, we wait here until
899  * space is availabyl, but return when we have been able to
900  * write something.
901  */
902 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
903 			size_t len, loff_t *pos)
904 {
905 	struct spu_context *ctx = file->private_data;
906 	u32 wbox_data, __user *udata;
907 	ssize_t count;
908 
909 	if (len < 4)
910 		return -EINVAL;
911 
912 	udata = (void __user *)buf;
913 	if (!access_ok(VERIFY_READ, buf, len))
914 		return -EFAULT;
915 
916 	if (__get_user(wbox_data, udata))
917 		return -EFAULT;
918 
919 	count = spu_acquire(ctx);
920 	if (count)
921 		goto out;
922 
923 	/*
924 	 * make sure we can at least write one element, by waiting
925 	 * in case of !O_NONBLOCK
926 	 */
927 	count = 0;
928 	if (file->f_flags & O_NONBLOCK) {
929 		if (!spu_wbox_write(ctx, wbox_data)) {
930 			count = -EAGAIN;
931 			goto out_unlock;
932 		}
933 	} else {
934 		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
935 		if (count)
936 			goto out;
937 	}
938 
939 
940 	/* write as much as possible */
941 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
942 		int ret;
943 		ret = __get_user(wbox_data, udata);
944 		if (ret)
945 			break;
946 
947 		ret = spu_wbox_write(ctx, wbox_data);
948 		if (ret == 0)
949 			break;
950 	}
951 
952 out_unlock:
953 	spu_release(ctx);
954 out:
955 	return count;
956 }
957 
958 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
959 {
960 	struct spu_context *ctx = file->private_data;
961 	unsigned int mask;
962 
963 	poll_wait(file, &ctx->wbox_wq, wait);
964 
965 	/*
966 	 * For now keep this uninterruptible and also ignore the rule
967 	 * that poll should not sleep.  Will be fixed later.
968 	 */
969 	mutex_lock(&ctx->state_mutex);
970 	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
971 	spu_release(ctx);
972 
973 	return mask;
974 }
975 
976 static const struct file_operations spufs_wbox_fops = {
977 	.open	= spufs_pipe_open,
978 	.write	= spufs_wbox_write,
979 	.poll	= spufs_wbox_poll,
980 	.fasync	= spufs_wbox_fasync,
981 };
982 
983 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
984 			size_t len, loff_t *pos)
985 {
986 	struct spu_context *ctx = file->private_data;
987 	ssize_t ret;
988 	u32 wbox_stat;
989 
990 	if (len < 4)
991 		return -EINVAL;
992 
993 	ret = spu_acquire(ctx);
994 	if (ret)
995 		return ret;
996 	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
997 	spu_release(ctx);
998 
999 	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
1000 		return -EFAULT;
1001 
1002 	return 4;
1003 }
1004 
1005 static const struct file_operations spufs_wbox_stat_fops = {
1006 	.open	= spufs_pipe_open,
1007 	.read	= spufs_wbox_stat_read,
1008 };
1009 
1010 static int spufs_signal1_open(struct inode *inode, struct file *file)
1011 {
1012 	struct spufs_inode_info *i = SPUFS_I(inode);
1013 	struct spu_context *ctx = i->i_ctx;
1014 
1015 	mutex_lock(&ctx->mapping_lock);
1016 	file->private_data = ctx;
1017 	if (!i->i_openers++)
1018 		ctx->signal1 = inode->i_mapping;
1019 	mutex_unlock(&ctx->mapping_lock);
1020 	return nonseekable_open(inode, file);
1021 }
1022 
1023 static int
1024 spufs_signal1_release(struct inode *inode, struct file *file)
1025 {
1026 	struct spufs_inode_info *i = SPUFS_I(inode);
1027 	struct spu_context *ctx = i->i_ctx;
1028 
1029 	mutex_lock(&ctx->mapping_lock);
1030 	if (!--i->i_openers)
1031 		ctx->signal1 = NULL;
1032 	mutex_unlock(&ctx->mapping_lock);
1033 	return 0;
1034 }
1035 
1036 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1037 			size_t len, loff_t *pos)
1038 {
1039 	int ret = 0;
1040 	u32 data;
1041 
1042 	if (len < 4)
1043 		return -EINVAL;
1044 
1045 	if (ctx->csa.spu_chnlcnt_RW[3]) {
1046 		data = ctx->csa.spu_chnldata_RW[3];
1047 		ret = 4;
1048 	}
1049 
1050 	if (!ret)
1051 		goto out;
1052 
1053 	if (copy_to_user(buf, &data, 4))
1054 		return -EFAULT;
1055 
1056 out:
1057 	return ret;
1058 }
1059 
1060 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
1061 			size_t len, loff_t *pos)
1062 {
1063 	int ret;
1064 	struct spu_context *ctx = file->private_data;
1065 
1066 	ret = spu_acquire_saved(ctx);
1067 	if (ret)
1068 		return ret;
1069 	ret = __spufs_signal1_read(ctx, buf, len, pos);
1070 	spu_release_saved(ctx);
1071 
1072 	return ret;
1073 }
1074 
1075 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
1076 			size_t len, loff_t *pos)
1077 {
1078 	struct spu_context *ctx;
1079 	ssize_t ret;
1080 	u32 data;
1081 
1082 	ctx = file->private_data;
1083 
1084 	if (len < 4)
1085 		return -EINVAL;
1086 
1087 	if (copy_from_user(&data, buf, 4))
1088 		return -EFAULT;
1089 
1090 	ret = spu_acquire(ctx);
1091 	if (ret)
1092 		return ret;
1093 	ctx->ops->signal1_write(ctx, data);
1094 	spu_release(ctx);
1095 
1096 	return 4;
1097 }
1098 
1099 static unsigned long spufs_signal1_mmap_nopfn(struct vm_area_struct *vma,
1100 					      unsigned long address)
1101 {
1102 #if PAGE_SIZE == 0x1000
1103 	return spufs_ps_nopfn(vma, address, 0x14000, 0x1000);
1104 #elif PAGE_SIZE == 0x10000
1105 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1106 	 * signal 1 and 2 area
1107 	 */
1108 	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
1109 #else
1110 #error unsupported page size
1111 #endif
1112 }
1113 
1114 static struct vm_operations_struct spufs_signal1_mmap_vmops = {
1115 	.nopfn = spufs_signal1_mmap_nopfn,
1116 };
1117 
1118 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1119 {
1120 	if (!(vma->vm_flags & VM_SHARED))
1121 		return -EINVAL;
1122 
1123 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1124 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1125 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1126 
1127 	vma->vm_ops = &spufs_signal1_mmap_vmops;
1128 	return 0;
1129 }
1130 
1131 static const struct file_operations spufs_signal1_fops = {
1132 	.open = spufs_signal1_open,
1133 	.release = spufs_signal1_release,
1134 	.read = spufs_signal1_read,
1135 	.write = spufs_signal1_write,
1136 	.mmap = spufs_signal1_mmap,
1137 };
1138 
1139 static const struct file_operations spufs_signal1_nosched_fops = {
1140 	.open = spufs_signal1_open,
1141 	.release = spufs_signal1_release,
1142 	.write = spufs_signal1_write,
1143 	.mmap = spufs_signal1_mmap,
1144 };
1145 
1146 static int spufs_signal2_open(struct inode *inode, struct file *file)
1147 {
1148 	struct spufs_inode_info *i = SPUFS_I(inode);
1149 	struct spu_context *ctx = i->i_ctx;
1150 
1151 	mutex_lock(&ctx->mapping_lock);
1152 	file->private_data = ctx;
1153 	if (!i->i_openers++)
1154 		ctx->signal2 = inode->i_mapping;
1155 	mutex_unlock(&ctx->mapping_lock);
1156 	return nonseekable_open(inode, file);
1157 }
1158 
1159 static int
1160 spufs_signal2_release(struct inode *inode, struct file *file)
1161 {
1162 	struct spufs_inode_info *i = SPUFS_I(inode);
1163 	struct spu_context *ctx = i->i_ctx;
1164 
1165 	mutex_lock(&ctx->mapping_lock);
1166 	if (!--i->i_openers)
1167 		ctx->signal2 = NULL;
1168 	mutex_unlock(&ctx->mapping_lock);
1169 	return 0;
1170 }
1171 
1172 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1173 			size_t len, loff_t *pos)
1174 {
1175 	int ret = 0;
1176 	u32 data;
1177 
1178 	if (len < 4)
1179 		return -EINVAL;
1180 
1181 	if (ctx->csa.spu_chnlcnt_RW[4]) {
1182 		data =  ctx->csa.spu_chnldata_RW[4];
1183 		ret = 4;
1184 	}
1185 
1186 	if (!ret)
1187 		goto out;
1188 
1189 	if (copy_to_user(buf, &data, 4))
1190 		return -EFAULT;
1191 
1192 out:
1193 	return ret;
1194 }
1195 
1196 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1197 			size_t len, loff_t *pos)
1198 {
1199 	struct spu_context *ctx = file->private_data;
1200 	int ret;
1201 
1202 	ret = spu_acquire_saved(ctx);
1203 	if (ret)
1204 		return ret;
1205 	ret = __spufs_signal2_read(ctx, buf, len, pos);
1206 	spu_release_saved(ctx);
1207 
1208 	return ret;
1209 }
1210 
1211 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1212 			size_t len, loff_t *pos)
1213 {
1214 	struct spu_context *ctx;
1215 	ssize_t ret;
1216 	u32 data;
1217 
1218 	ctx = file->private_data;
1219 
1220 	if (len < 4)
1221 		return -EINVAL;
1222 
1223 	if (copy_from_user(&data, buf, 4))
1224 		return -EFAULT;
1225 
1226 	ret = spu_acquire(ctx);
1227 	if (ret)
1228 		return ret;
1229 	ctx->ops->signal2_write(ctx, data);
1230 	spu_release(ctx);
1231 
1232 	return 4;
1233 }
1234 
1235 #if SPUFS_MMAP_4K
1236 static unsigned long spufs_signal2_mmap_nopfn(struct vm_area_struct *vma,
1237 					      unsigned long address)
1238 {
1239 #if PAGE_SIZE == 0x1000
1240 	return spufs_ps_nopfn(vma, address, 0x1c000, 0x1000);
1241 #elif PAGE_SIZE == 0x10000
1242 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1243 	 * signal 1 and 2 area
1244 	 */
1245 	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
1246 #else
1247 #error unsupported page size
1248 #endif
1249 }
1250 
1251 static struct vm_operations_struct spufs_signal2_mmap_vmops = {
1252 	.nopfn = spufs_signal2_mmap_nopfn,
1253 };
1254 
1255 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1256 {
1257 	if (!(vma->vm_flags & VM_SHARED))
1258 		return -EINVAL;
1259 
1260 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1261 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1262 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1263 
1264 	vma->vm_ops = &spufs_signal2_mmap_vmops;
1265 	return 0;
1266 }
1267 #else /* SPUFS_MMAP_4K */
1268 #define spufs_signal2_mmap NULL
1269 #endif /* !SPUFS_MMAP_4K */
1270 
1271 static const struct file_operations spufs_signal2_fops = {
1272 	.open = spufs_signal2_open,
1273 	.release = spufs_signal2_release,
1274 	.read = spufs_signal2_read,
1275 	.write = spufs_signal2_write,
1276 	.mmap = spufs_signal2_mmap,
1277 };
1278 
1279 static const struct file_operations spufs_signal2_nosched_fops = {
1280 	.open = spufs_signal2_open,
1281 	.release = spufs_signal2_release,
1282 	.write = spufs_signal2_write,
1283 	.mmap = spufs_signal2_mmap,
1284 };
1285 
1286 /*
1287  * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1288  * work of acquiring (or not) the SPU context before calling through
1289  * to the actual get routine. The set routine is called directly.
1290  */
1291 #define SPU_ATTR_NOACQUIRE	0
1292 #define SPU_ATTR_ACQUIRE	1
1293 #define SPU_ATTR_ACQUIRE_SAVED	2
1294 
1295 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)	\
1296 static int __##__get(void *data, u64 *val)				\
1297 {									\
1298 	struct spu_context *ctx = data;					\
1299 	int ret = 0;							\
1300 									\
1301 	if (__acquire == SPU_ATTR_ACQUIRE) {				\
1302 		ret = spu_acquire(ctx);					\
1303 		if (ret)						\
1304 			return ret;					\
1305 		*val = __get(ctx);					\
1306 		spu_release(ctx);					\
1307 	} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED)	{		\
1308 		ret = spu_acquire_saved(ctx);				\
1309 		if (ret)						\
1310 			return ret;					\
1311 		*val = __get(ctx);					\
1312 		spu_release_saved(ctx);					\
1313 	} else								\
1314 		*val = __get(ctx);					\
1315 									\
1316 	return 0;							\
1317 }									\
1318 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1319 
1320 static int spufs_signal1_type_set(void *data, u64 val)
1321 {
1322 	struct spu_context *ctx = data;
1323 	int ret;
1324 
1325 	ret = spu_acquire(ctx);
1326 	if (ret)
1327 		return ret;
1328 	ctx->ops->signal1_type_set(ctx, val);
1329 	spu_release(ctx);
1330 
1331 	return 0;
1332 }
1333 
1334 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1335 {
1336 	return ctx->ops->signal1_type_get(ctx);
1337 }
1338 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1339 		       spufs_signal1_type_set, "%llu", SPU_ATTR_ACQUIRE);
1340 
1341 
1342 static int spufs_signal2_type_set(void *data, u64 val)
1343 {
1344 	struct spu_context *ctx = data;
1345 	int ret;
1346 
1347 	ret = spu_acquire(ctx);
1348 	if (ret)
1349 		return ret;
1350 	ctx->ops->signal2_type_set(ctx, val);
1351 	spu_release(ctx);
1352 
1353 	return 0;
1354 }
1355 
1356 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1357 {
1358 	return ctx->ops->signal2_type_get(ctx);
1359 }
1360 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1361 		       spufs_signal2_type_set, "%llu", SPU_ATTR_ACQUIRE);
1362 
1363 #if SPUFS_MMAP_4K
1364 static unsigned long spufs_mss_mmap_nopfn(struct vm_area_struct *vma,
1365 					  unsigned long address)
1366 {
1367 	return spufs_ps_nopfn(vma, address, 0x0000, 0x1000);
1368 }
1369 
1370 static struct vm_operations_struct spufs_mss_mmap_vmops = {
1371 	.nopfn = spufs_mss_mmap_nopfn,
1372 };
1373 
1374 /*
1375  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1376  */
1377 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1378 {
1379 	if (!(vma->vm_flags & VM_SHARED))
1380 		return -EINVAL;
1381 
1382 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1383 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1384 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1385 
1386 	vma->vm_ops = &spufs_mss_mmap_vmops;
1387 	return 0;
1388 }
1389 #else /* SPUFS_MMAP_4K */
1390 #define spufs_mss_mmap NULL
1391 #endif /* !SPUFS_MMAP_4K */
1392 
1393 static int spufs_mss_open(struct inode *inode, struct file *file)
1394 {
1395 	struct spufs_inode_info *i = SPUFS_I(inode);
1396 	struct spu_context *ctx = i->i_ctx;
1397 
1398 	file->private_data = i->i_ctx;
1399 
1400 	mutex_lock(&ctx->mapping_lock);
1401 	if (!i->i_openers++)
1402 		ctx->mss = inode->i_mapping;
1403 	mutex_unlock(&ctx->mapping_lock);
1404 	return nonseekable_open(inode, file);
1405 }
1406 
1407 static int
1408 spufs_mss_release(struct inode *inode, struct file *file)
1409 {
1410 	struct spufs_inode_info *i = SPUFS_I(inode);
1411 	struct spu_context *ctx = i->i_ctx;
1412 
1413 	mutex_lock(&ctx->mapping_lock);
1414 	if (!--i->i_openers)
1415 		ctx->mss = NULL;
1416 	mutex_unlock(&ctx->mapping_lock);
1417 	return 0;
1418 }
1419 
1420 static const struct file_operations spufs_mss_fops = {
1421 	.open	 = spufs_mss_open,
1422 	.release = spufs_mss_release,
1423 	.mmap	 = spufs_mss_mmap,
1424 };
1425 
1426 static unsigned long spufs_psmap_mmap_nopfn(struct vm_area_struct *vma,
1427 					    unsigned long address)
1428 {
1429 	return spufs_ps_nopfn(vma, address, 0x0000, 0x20000);
1430 }
1431 
1432 static struct vm_operations_struct spufs_psmap_mmap_vmops = {
1433 	.nopfn = spufs_psmap_mmap_nopfn,
1434 };
1435 
1436 /*
1437  * mmap support for full problem state area [0x00000 - 0x1ffff].
1438  */
1439 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1440 {
1441 	if (!(vma->vm_flags & VM_SHARED))
1442 		return -EINVAL;
1443 
1444 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1445 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1446 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1447 
1448 	vma->vm_ops = &spufs_psmap_mmap_vmops;
1449 	return 0;
1450 }
1451 
1452 static int spufs_psmap_open(struct inode *inode, struct file *file)
1453 {
1454 	struct spufs_inode_info *i = SPUFS_I(inode);
1455 	struct spu_context *ctx = i->i_ctx;
1456 
1457 	mutex_lock(&ctx->mapping_lock);
1458 	file->private_data = i->i_ctx;
1459 	if (!i->i_openers++)
1460 		ctx->psmap = inode->i_mapping;
1461 	mutex_unlock(&ctx->mapping_lock);
1462 	return nonseekable_open(inode, file);
1463 }
1464 
1465 static int
1466 spufs_psmap_release(struct inode *inode, struct file *file)
1467 {
1468 	struct spufs_inode_info *i = SPUFS_I(inode);
1469 	struct spu_context *ctx = i->i_ctx;
1470 
1471 	mutex_lock(&ctx->mapping_lock);
1472 	if (!--i->i_openers)
1473 		ctx->psmap = NULL;
1474 	mutex_unlock(&ctx->mapping_lock);
1475 	return 0;
1476 }
1477 
1478 static const struct file_operations spufs_psmap_fops = {
1479 	.open	 = spufs_psmap_open,
1480 	.release = spufs_psmap_release,
1481 	.mmap	 = spufs_psmap_mmap,
1482 };
1483 
1484 
1485 #if SPUFS_MMAP_4K
1486 static unsigned long spufs_mfc_mmap_nopfn(struct vm_area_struct *vma,
1487 					  unsigned long address)
1488 {
1489 	return spufs_ps_nopfn(vma, address, 0x3000, 0x1000);
1490 }
1491 
1492 static struct vm_operations_struct spufs_mfc_mmap_vmops = {
1493 	.nopfn = spufs_mfc_mmap_nopfn,
1494 };
1495 
1496 /*
1497  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1498  */
1499 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1500 {
1501 	if (!(vma->vm_flags & VM_SHARED))
1502 		return -EINVAL;
1503 
1504 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1505 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1506 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1507 
1508 	vma->vm_ops = &spufs_mfc_mmap_vmops;
1509 	return 0;
1510 }
1511 #else /* SPUFS_MMAP_4K */
1512 #define spufs_mfc_mmap NULL
1513 #endif /* !SPUFS_MMAP_4K */
1514 
1515 static int spufs_mfc_open(struct inode *inode, struct file *file)
1516 {
1517 	struct spufs_inode_info *i = SPUFS_I(inode);
1518 	struct spu_context *ctx = i->i_ctx;
1519 
1520 	/* we don't want to deal with DMA into other processes */
1521 	if (ctx->owner != current->mm)
1522 		return -EINVAL;
1523 
1524 	if (atomic_read(&inode->i_count) != 1)
1525 		return -EBUSY;
1526 
1527 	mutex_lock(&ctx->mapping_lock);
1528 	file->private_data = ctx;
1529 	if (!i->i_openers++)
1530 		ctx->mfc = inode->i_mapping;
1531 	mutex_unlock(&ctx->mapping_lock);
1532 	return nonseekable_open(inode, file);
1533 }
1534 
1535 static int
1536 spufs_mfc_release(struct inode *inode, struct file *file)
1537 {
1538 	struct spufs_inode_info *i = SPUFS_I(inode);
1539 	struct spu_context *ctx = i->i_ctx;
1540 
1541 	mutex_lock(&ctx->mapping_lock);
1542 	if (!--i->i_openers)
1543 		ctx->mfc = NULL;
1544 	mutex_unlock(&ctx->mapping_lock);
1545 	return 0;
1546 }
1547 
1548 /* interrupt-level mfc callback function. */
1549 void spufs_mfc_callback(struct spu *spu)
1550 {
1551 	struct spu_context *ctx = spu->ctx;
1552 
1553 	if (!ctx)
1554 		return;
1555 
1556 	wake_up_all(&ctx->mfc_wq);
1557 
1558 	pr_debug("%s %s\n", __FUNCTION__, spu->name);
1559 	if (ctx->mfc_fasync) {
1560 		u32 free_elements, tagstatus;
1561 		unsigned int mask;
1562 
1563 		/* no need for spu_acquire in interrupt context */
1564 		free_elements = ctx->ops->get_mfc_free_elements(ctx);
1565 		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1566 
1567 		mask = 0;
1568 		if (free_elements & 0xffff)
1569 			mask |= POLLOUT;
1570 		if (tagstatus & ctx->tagwait)
1571 			mask |= POLLIN;
1572 
1573 		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
1574 	}
1575 }
1576 
1577 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1578 {
1579 	/* See if there is one tag group is complete */
1580 	/* FIXME we need locking around tagwait */
1581 	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1582 	ctx->tagwait &= ~*status;
1583 	if (*status)
1584 		return 1;
1585 
1586 	/* enable interrupt waiting for any tag group,
1587 	   may silently fail if interrupts are already enabled */
1588 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1589 	return 0;
1590 }
1591 
1592 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1593 			size_t size, loff_t *pos)
1594 {
1595 	struct spu_context *ctx = file->private_data;
1596 	int ret = -EINVAL;
1597 	u32 status;
1598 
1599 	if (size != 4)
1600 		goto out;
1601 
1602 	ret = spu_acquire(ctx);
1603 	if (ret)
1604 		return ret;
1605 
1606 	ret = -EINVAL;
1607 	if (file->f_flags & O_NONBLOCK) {
1608 		status = ctx->ops->read_mfc_tagstatus(ctx);
1609 		if (!(status & ctx->tagwait))
1610 			ret = -EAGAIN;
1611 		else
1612 			/* XXX(hch): shouldn't we clear ret here? */
1613 			ctx->tagwait &= ~status;
1614 	} else {
1615 		ret = spufs_wait(ctx->mfc_wq,
1616 			   spufs_read_mfc_tagstatus(ctx, &status));
1617 		if (ret)
1618 			goto out;
1619 	}
1620 	spu_release(ctx);
1621 
1622 	ret = 4;
1623 	if (copy_to_user(buffer, &status, 4))
1624 		ret = -EFAULT;
1625 
1626 out:
1627 	return ret;
1628 }
1629 
1630 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1631 {
1632 	pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
1633 		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1634 
1635 	switch (cmd->cmd) {
1636 	case MFC_PUT_CMD:
1637 	case MFC_PUTF_CMD:
1638 	case MFC_PUTB_CMD:
1639 	case MFC_GET_CMD:
1640 	case MFC_GETF_CMD:
1641 	case MFC_GETB_CMD:
1642 		break;
1643 	default:
1644 		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1645 		return -EIO;
1646 	}
1647 
1648 	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1649 		pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
1650 				cmd->ea, cmd->lsa);
1651 		return -EIO;
1652 	}
1653 
1654 	switch (cmd->size & 0xf) {
1655 	case 1:
1656 		break;
1657 	case 2:
1658 		if (cmd->lsa & 1)
1659 			goto error;
1660 		break;
1661 	case 4:
1662 		if (cmd->lsa & 3)
1663 			goto error;
1664 		break;
1665 	case 8:
1666 		if (cmd->lsa & 7)
1667 			goto error;
1668 		break;
1669 	case 0:
1670 		if (cmd->lsa & 15)
1671 			goto error;
1672 		break;
1673 	error:
1674 	default:
1675 		pr_debug("invalid DMA alignment %x for size %x\n",
1676 			cmd->lsa & 0xf, cmd->size);
1677 		return -EIO;
1678 	}
1679 
1680 	if (cmd->size > 16 * 1024) {
1681 		pr_debug("invalid DMA size %x\n", cmd->size);
1682 		return -EIO;
1683 	}
1684 
1685 	if (cmd->tag & 0xfff0) {
1686 		/* we reserve the higher tag numbers for kernel use */
1687 		pr_debug("invalid DMA tag\n");
1688 		return -EIO;
1689 	}
1690 
1691 	if (cmd->class) {
1692 		/* not supported in this version */
1693 		pr_debug("invalid DMA class\n");
1694 		return -EIO;
1695 	}
1696 
1697 	return 0;
1698 }
1699 
1700 static int spu_send_mfc_command(struct spu_context *ctx,
1701 				struct mfc_dma_command cmd,
1702 				int *error)
1703 {
1704 	*error = ctx->ops->send_mfc_command(ctx, &cmd);
1705 	if (*error == -EAGAIN) {
1706 		/* wait for any tag group to complete
1707 		   so we have space for the new command */
1708 		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1709 		/* try again, because the queue might be
1710 		   empty again */
1711 		*error = ctx->ops->send_mfc_command(ctx, &cmd);
1712 		if (*error == -EAGAIN)
1713 			return 0;
1714 	}
1715 	return 1;
1716 }
1717 
1718 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1719 			size_t size, loff_t *pos)
1720 {
1721 	struct spu_context *ctx = file->private_data;
1722 	struct mfc_dma_command cmd;
1723 	int ret = -EINVAL;
1724 
1725 	if (size != sizeof cmd)
1726 		goto out;
1727 
1728 	ret = -EFAULT;
1729 	if (copy_from_user(&cmd, buffer, sizeof cmd))
1730 		goto out;
1731 
1732 	ret = spufs_check_valid_dma(&cmd);
1733 	if (ret)
1734 		goto out;
1735 
1736 	ret = spu_acquire(ctx);
1737 	if (ret)
1738 		goto out;
1739 
1740 	ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1741 	if (ret)
1742 		goto out;
1743 
1744 	if (file->f_flags & O_NONBLOCK) {
1745 		ret = ctx->ops->send_mfc_command(ctx, &cmd);
1746 	} else {
1747 		int status;
1748 		ret = spufs_wait(ctx->mfc_wq,
1749 				 spu_send_mfc_command(ctx, cmd, &status));
1750 		if (ret)
1751 			goto out;
1752 		if (status)
1753 			ret = status;
1754 	}
1755 
1756 	if (ret)
1757 		goto out_unlock;
1758 
1759 	ctx->tagwait |= 1 << cmd.tag;
1760 	ret = size;
1761 
1762 out_unlock:
1763 	spu_release(ctx);
1764 out:
1765 	return ret;
1766 }
1767 
1768 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
1769 {
1770 	struct spu_context *ctx = file->private_data;
1771 	u32 free_elements, tagstatus;
1772 	unsigned int mask;
1773 
1774 	poll_wait(file, &ctx->mfc_wq, wait);
1775 
1776 	/*
1777 	 * For now keep this uninterruptible and also ignore the rule
1778 	 * that poll should not sleep.  Will be fixed later.
1779 	 */
1780 	mutex_lock(&ctx->state_mutex);
1781 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1782 	free_elements = ctx->ops->get_mfc_free_elements(ctx);
1783 	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1784 	spu_release(ctx);
1785 
1786 	mask = 0;
1787 	if (free_elements & 0xffff)
1788 		mask |= POLLOUT | POLLWRNORM;
1789 	if (tagstatus & ctx->tagwait)
1790 		mask |= POLLIN | POLLRDNORM;
1791 
1792 	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__,
1793 		free_elements, tagstatus, ctx->tagwait);
1794 
1795 	return mask;
1796 }
1797 
1798 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1799 {
1800 	struct spu_context *ctx = file->private_data;
1801 	int ret;
1802 
1803 	ret = spu_acquire(ctx);
1804 	if (ret)
1805 		goto out;
1806 #if 0
1807 /* this currently hangs */
1808 	ret = spufs_wait(ctx->mfc_wq,
1809 			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1810 	if (ret)
1811 		goto out;
1812 	ret = spufs_wait(ctx->mfc_wq,
1813 			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1814 	if (ret)
1815 		goto out;
1816 #else
1817 	ret = 0;
1818 #endif
1819 	spu_release(ctx);
1820 out:
1821 	return ret;
1822 }
1823 
1824 static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
1825 			   int datasync)
1826 {
1827 	return spufs_mfc_flush(file, NULL);
1828 }
1829 
1830 static int spufs_mfc_fasync(int fd, struct file *file, int on)
1831 {
1832 	struct spu_context *ctx = file->private_data;
1833 
1834 	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
1835 }
1836 
1837 static const struct file_operations spufs_mfc_fops = {
1838 	.open	 = spufs_mfc_open,
1839 	.release = spufs_mfc_release,
1840 	.read	 = spufs_mfc_read,
1841 	.write	 = spufs_mfc_write,
1842 	.poll	 = spufs_mfc_poll,
1843 	.flush	 = spufs_mfc_flush,
1844 	.fsync	 = spufs_mfc_fsync,
1845 	.fasync	 = spufs_mfc_fasync,
1846 	.mmap	 = spufs_mfc_mmap,
1847 };
1848 
1849 static int spufs_npc_set(void *data, u64 val)
1850 {
1851 	struct spu_context *ctx = data;
1852 	int ret;
1853 
1854 	ret = spu_acquire(ctx);
1855 	if (ret)
1856 		return ret;
1857 	ctx->ops->npc_write(ctx, val);
1858 	spu_release(ctx);
1859 
1860 	return 0;
1861 }
1862 
1863 static u64 spufs_npc_get(struct spu_context *ctx)
1864 {
1865 	return ctx->ops->npc_read(ctx);
1866 }
1867 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1868 		       "0x%llx\n", SPU_ATTR_ACQUIRE);
1869 
1870 static int spufs_decr_set(void *data, u64 val)
1871 {
1872 	struct spu_context *ctx = data;
1873 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1874 	int ret;
1875 
1876 	ret = spu_acquire_saved(ctx);
1877 	if (ret)
1878 		return ret;
1879 	lscsa->decr.slot[0] = (u32) val;
1880 	spu_release_saved(ctx);
1881 
1882 	return 0;
1883 }
1884 
1885 static u64 spufs_decr_get(struct spu_context *ctx)
1886 {
1887 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1888 	return lscsa->decr.slot[0];
1889 }
1890 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1891 		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1892 
1893 static int spufs_decr_status_set(void *data, u64 val)
1894 {
1895 	struct spu_context *ctx = data;
1896 	int ret;
1897 
1898 	ret = spu_acquire_saved(ctx);
1899 	if (ret)
1900 		return ret;
1901 	if (val)
1902 		ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1903 	else
1904 		ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1905 	spu_release_saved(ctx);
1906 
1907 	return 0;
1908 }
1909 
1910 static u64 spufs_decr_status_get(struct spu_context *ctx)
1911 {
1912 	if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1913 		return SPU_DECR_STATUS_RUNNING;
1914 	else
1915 		return 0;
1916 }
1917 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1918 		       spufs_decr_status_set, "0x%llx\n",
1919 		       SPU_ATTR_ACQUIRE_SAVED);
1920 
1921 static int spufs_event_mask_set(void *data, u64 val)
1922 {
1923 	struct spu_context *ctx = data;
1924 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1925 	int ret;
1926 
1927 	ret = spu_acquire_saved(ctx);
1928 	if (ret)
1929 		return ret;
1930 	lscsa->event_mask.slot[0] = (u32) val;
1931 	spu_release_saved(ctx);
1932 
1933 	return 0;
1934 }
1935 
1936 static u64 spufs_event_mask_get(struct spu_context *ctx)
1937 {
1938 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1939 	return lscsa->event_mask.slot[0];
1940 }
1941 
1942 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1943 		       spufs_event_mask_set, "0x%llx\n",
1944 		       SPU_ATTR_ACQUIRE_SAVED);
1945 
1946 static u64 spufs_event_status_get(struct spu_context *ctx)
1947 {
1948 	struct spu_state *state = &ctx->csa;
1949 	u64 stat;
1950 	stat = state->spu_chnlcnt_RW[0];
1951 	if (stat)
1952 		return state->spu_chnldata_RW[0];
1953 	return 0;
1954 }
1955 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1956 		       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1957 
1958 static int spufs_srr0_set(void *data, u64 val)
1959 {
1960 	struct spu_context *ctx = data;
1961 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1962 	int ret;
1963 
1964 	ret = spu_acquire_saved(ctx);
1965 	if (ret)
1966 		return ret;
1967 	lscsa->srr0.slot[0] = (u32) val;
1968 	spu_release_saved(ctx);
1969 
1970 	return 0;
1971 }
1972 
1973 static u64 spufs_srr0_get(struct spu_context *ctx)
1974 {
1975 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1976 	return lscsa->srr0.slot[0];
1977 }
1978 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1979 		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1980 
1981 static u64 spufs_id_get(struct spu_context *ctx)
1982 {
1983 	u64 num;
1984 
1985 	if (ctx->state == SPU_STATE_RUNNABLE)
1986 		num = ctx->spu->number;
1987 	else
1988 		num = (unsigned int)-1;
1989 
1990 	return num;
1991 }
1992 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
1993 		       SPU_ATTR_ACQUIRE)
1994 
1995 static u64 spufs_object_id_get(struct spu_context *ctx)
1996 {
1997 	/* FIXME: Should there really be no locking here? */
1998 	return ctx->object_id;
1999 }
2000 
2001 static int spufs_object_id_set(void *data, u64 id)
2002 {
2003 	struct spu_context *ctx = data;
2004 	ctx->object_id = id;
2005 
2006 	return 0;
2007 }
2008 
2009 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
2010 		       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
2011 
2012 static u64 spufs_lslr_get(struct spu_context *ctx)
2013 {
2014 	return ctx->csa.priv2.spu_lslr_RW;
2015 }
2016 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
2017 		       SPU_ATTR_ACQUIRE_SAVED);
2018 
2019 static int spufs_info_open(struct inode *inode, struct file *file)
2020 {
2021 	struct spufs_inode_info *i = SPUFS_I(inode);
2022 	struct spu_context *ctx = i->i_ctx;
2023 	file->private_data = ctx;
2024 	return 0;
2025 }
2026 
2027 static int spufs_caps_show(struct seq_file *s, void *private)
2028 {
2029 	struct spu_context *ctx = s->private;
2030 
2031 	if (!(ctx->flags & SPU_CREATE_NOSCHED))
2032 		seq_puts(s, "sched\n");
2033 	if (!(ctx->flags & SPU_CREATE_ISOLATE))
2034 		seq_puts(s, "step\n");
2035 	return 0;
2036 }
2037 
2038 static int spufs_caps_open(struct inode *inode, struct file *file)
2039 {
2040 	return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
2041 }
2042 
2043 static const struct file_operations spufs_caps_fops = {
2044 	.open		= spufs_caps_open,
2045 	.read		= seq_read,
2046 	.llseek		= seq_lseek,
2047 	.release	= single_release,
2048 };
2049 
2050 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
2051 			char __user *buf, size_t len, loff_t *pos)
2052 {
2053 	u32 data;
2054 
2055 	/* EOF if there's no entry in the mbox */
2056 	if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
2057 		return 0;
2058 
2059 	data = ctx->csa.prob.pu_mb_R;
2060 
2061 	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2062 }
2063 
2064 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
2065 				   size_t len, loff_t *pos)
2066 {
2067 	int ret;
2068 	struct spu_context *ctx = file->private_data;
2069 
2070 	if (!access_ok(VERIFY_WRITE, buf, len))
2071 		return -EFAULT;
2072 
2073 	ret = spu_acquire_saved(ctx);
2074 	if (ret)
2075 		return ret;
2076 	spin_lock(&ctx->csa.register_lock);
2077 	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2078 	spin_unlock(&ctx->csa.register_lock);
2079 	spu_release_saved(ctx);
2080 
2081 	return ret;
2082 }
2083 
2084 static const struct file_operations spufs_mbox_info_fops = {
2085 	.open = spufs_info_open,
2086 	.read = spufs_mbox_info_read,
2087 	.llseek  = generic_file_llseek,
2088 };
2089 
2090 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
2091 				char __user *buf, size_t len, loff_t *pos)
2092 {
2093 	u32 data;
2094 
2095 	/* EOF if there's no entry in the ibox */
2096 	if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
2097 		return 0;
2098 
2099 	data = ctx->csa.priv2.puint_mb_R;
2100 
2101 	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2102 }
2103 
2104 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
2105 				   size_t len, loff_t *pos)
2106 {
2107 	struct spu_context *ctx = file->private_data;
2108 	int ret;
2109 
2110 	if (!access_ok(VERIFY_WRITE, buf, len))
2111 		return -EFAULT;
2112 
2113 	ret = spu_acquire_saved(ctx);
2114 	if (ret)
2115 		return ret;
2116 	spin_lock(&ctx->csa.register_lock);
2117 	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2118 	spin_unlock(&ctx->csa.register_lock);
2119 	spu_release_saved(ctx);
2120 
2121 	return ret;
2122 }
2123 
2124 static const struct file_operations spufs_ibox_info_fops = {
2125 	.open = spufs_info_open,
2126 	.read = spufs_ibox_info_read,
2127 	.llseek  = generic_file_llseek,
2128 };
2129 
2130 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
2131 			char __user *buf, size_t len, loff_t *pos)
2132 {
2133 	int i, cnt;
2134 	u32 data[4];
2135 	u32 wbox_stat;
2136 
2137 	wbox_stat = ctx->csa.prob.mb_stat_R;
2138 	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
2139 	for (i = 0; i < cnt; i++) {
2140 		data[i] = ctx->csa.spu_mailbox_data[i];
2141 	}
2142 
2143 	return simple_read_from_buffer(buf, len, pos, &data,
2144 				cnt * sizeof(u32));
2145 }
2146 
2147 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2148 				   size_t len, loff_t *pos)
2149 {
2150 	struct spu_context *ctx = file->private_data;
2151 	int ret;
2152 
2153 	if (!access_ok(VERIFY_WRITE, buf, len))
2154 		return -EFAULT;
2155 
2156 	ret = spu_acquire_saved(ctx);
2157 	if (ret)
2158 		return ret;
2159 	spin_lock(&ctx->csa.register_lock);
2160 	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2161 	spin_unlock(&ctx->csa.register_lock);
2162 	spu_release_saved(ctx);
2163 
2164 	return ret;
2165 }
2166 
2167 static const struct file_operations spufs_wbox_info_fops = {
2168 	.open = spufs_info_open,
2169 	.read = spufs_wbox_info_read,
2170 	.llseek  = generic_file_llseek,
2171 };
2172 
2173 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
2174 			char __user *buf, size_t len, loff_t *pos)
2175 {
2176 	struct spu_dma_info info;
2177 	struct mfc_cq_sr *qp, *spuqp;
2178 	int i;
2179 
2180 	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2181 	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2182 	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
2183 	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2184 	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2185 	for (i = 0; i < 16; i++) {
2186 		qp = &info.dma_info_command_data[i];
2187 		spuqp = &ctx->csa.priv2.spuq[i];
2188 
2189 		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2190 		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2191 		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2192 		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2193 	}
2194 
2195 	return simple_read_from_buffer(buf, len, pos, &info,
2196 				sizeof info);
2197 }
2198 
2199 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2200 			      size_t len, loff_t *pos)
2201 {
2202 	struct spu_context *ctx = file->private_data;
2203 	int ret;
2204 
2205 	if (!access_ok(VERIFY_WRITE, buf, len))
2206 		return -EFAULT;
2207 
2208 	ret = spu_acquire_saved(ctx);
2209 	if (ret)
2210 		return ret;
2211 	spin_lock(&ctx->csa.register_lock);
2212 	ret = __spufs_dma_info_read(ctx, buf, len, pos);
2213 	spin_unlock(&ctx->csa.register_lock);
2214 	spu_release_saved(ctx);
2215 
2216 	return ret;
2217 }
2218 
2219 static const struct file_operations spufs_dma_info_fops = {
2220 	.open = spufs_info_open,
2221 	.read = spufs_dma_info_read,
2222 };
2223 
2224 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
2225 			char __user *buf, size_t len, loff_t *pos)
2226 {
2227 	struct spu_proxydma_info info;
2228 	struct mfc_cq_sr *qp, *puqp;
2229 	int ret = sizeof info;
2230 	int i;
2231 
2232 	if (len < ret)
2233 		return -EINVAL;
2234 
2235 	if (!access_ok(VERIFY_WRITE, buf, len))
2236 		return -EFAULT;
2237 
2238 	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2239 	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2240 	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2241 	for (i = 0; i < 8; i++) {
2242 		qp = &info.proxydma_info_command_data[i];
2243 		puqp = &ctx->csa.priv2.puq[i];
2244 
2245 		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2246 		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2247 		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2248 		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2249 	}
2250 
2251 	return simple_read_from_buffer(buf, len, pos, &info,
2252 				sizeof info);
2253 }
2254 
2255 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2256 				   size_t len, loff_t *pos)
2257 {
2258 	struct spu_context *ctx = file->private_data;
2259 	int ret;
2260 
2261 	ret = spu_acquire_saved(ctx);
2262 	if (ret)
2263 		return ret;
2264 	spin_lock(&ctx->csa.register_lock);
2265 	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2266 	spin_unlock(&ctx->csa.register_lock);
2267 	spu_release_saved(ctx);
2268 
2269 	return ret;
2270 }
2271 
2272 static const struct file_operations spufs_proxydma_info_fops = {
2273 	.open = spufs_info_open,
2274 	.read = spufs_proxydma_info_read,
2275 };
2276 
2277 static int spufs_show_tid(struct seq_file *s, void *private)
2278 {
2279 	struct spu_context *ctx = s->private;
2280 
2281 	seq_printf(s, "%d\n", ctx->tid);
2282 	return 0;
2283 }
2284 
2285 static int spufs_tid_open(struct inode *inode, struct file *file)
2286 {
2287 	return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2288 }
2289 
2290 static const struct file_operations spufs_tid_fops = {
2291 	.open		= spufs_tid_open,
2292 	.read		= seq_read,
2293 	.llseek		= seq_lseek,
2294 	.release	= single_release,
2295 };
2296 
2297 static const char *ctx_state_names[] = {
2298 	"user", "system", "iowait", "loaded"
2299 };
2300 
2301 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2302 		enum spu_utilization_state state)
2303 {
2304 	struct timespec ts;
2305 	unsigned long long time = ctx->stats.times[state];
2306 
2307 	/*
2308 	 * In general, utilization statistics are updated by the controlling
2309 	 * thread as the spu context moves through various well defined
2310 	 * state transitions, but if the context is lazily loaded its
2311 	 * utilization statistics are not updated as the controlling thread
2312 	 * is not tightly coupled with the execution of the spu context.  We
2313 	 * calculate and apply the time delta from the last recorded state
2314 	 * of the spu context.
2315 	 */
2316 	if (ctx->spu && ctx->stats.util_state == state) {
2317 		ktime_get_ts(&ts);
2318 		time += timespec_to_ns(&ts) - ctx->stats.tstamp;
2319 	}
2320 
2321 	return time / NSEC_PER_MSEC;
2322 }
2323 
2324 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2325 {
2326 	unsigned long long slb_flts = ctx->stats.slb_flt;
2327 
2328 	if (ctx->state == SPU_STATE_RUNNABLE) {
2329 		slb_flts += (ctx->spu->stats.slb_flt -
2330 			     ctx->stats.slb_flt_base);
2331 	}
2332 
2333 	return slb_flts;
2334 }
2335 
2336 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2337 {
2338 	unsigned long long class2_intrs = ctx->stats.class2_intr;
2339 
2340 	if (ctx->state == SPU_STATE_RUNNABLE) {
2341 		class2_intrs += (ctx->spu->stats.class2_intr -
2342 				 ctx->stats.class2_intr_base);
2343 	}
2344 
2345 	return class2_intrs;
2346 }
2347 
2348 
2349 static int spufs_show_stat(struct seq_file *s, void *private)
2350 {
2351 	struct spu_context *ctx = s->private;
2352 	int ret;
2353 
2354 	ret = spu_acquire(ctx);
2355 	if (ret)
2356 		return ret;
2357 
2358 	seq_printf(s, "%s %llu %llu %llu %llu "
2359 		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2360 		ctx_state_names[ctx->stats.util_state],
2361 		spufs_acct_time(ctx, SPU_UTIL_USER),
2362 		spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2363 		spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2364 		spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2365 		ctx->stats.vol_ctx_switch,
2366 		ctx->stats.invol_ctx_switch,
2367 		spufs_slb_flts(ctx),
2368 		ctx->stats.hash_flt,
2369 		ctx->stats.min_flt,
2370 		ctx->stats.maj_flt,
2371 		spufs_class2_intrs(ctx),
2372 		ctx->stats.libassist);
2373 	spu_release(ctx);
2374 	return 0;
2375 }
2376 
2377 static int spufs_stat_open(struct inode *inode, struct file *file)
2378 {
2379 	return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2380 }
2381 
2382 static const struct file_operations spufs_stat_fops = {
2383 	.open		= spufs_stat_open,
2384 	.read		= seq_read,
2385 	.llseek		= seq_lseek,
2386 	.release	= single_release,
2387 };
2388 
2389 
2390 struct tree_descr spufs_dir_contents[] = {
2391 	{ "capabilities", &spufs_caps_fops, 0444, },
2392 	{ "mem",  &spufs_mem_fops,  0666, },
2393 	{ "regs", &spufs_regs_fops,  0666, },
2394 	{ "mbox", &spufs_mbox_fops, 0444, },
2395 	{ "ibox", &spufs_ibox_fops, 0444, },
2396 	{ "wbox", &spufs_wbox_fops, 0222, },
2397 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
2398 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
2399 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2400 	{ "signal1", &spufs_signal1_fops, 0666, },
2401 	{ "signal2", &spufs_signal2_fops, 0666, },
2402 	{ "signal1_type", &spufs_signal1_type, 0666, },
2403 	{ "signal2_type", &spufs_signal2_type, 0666, },
2404 	{ "cntl", &spufs_cntl_fops,  0666, },
2405 	{ "fpcr", &spufs_fpcr_fops, 0666, },
2406 	{ "lslr", &spufs_lslr_ops, 0444, },
2407 	{ "mfc", &spufs_mfc_fops, 0666, },
2408 	{ "mss", &spufs_mss_fops, 0666, },
2409 	{ "npc", &spufs_npc_ops, 0666, },
2410 	{ "srr0", &spufs_srr0_ops, 0666, },
2411 	{ "decr", &spufs_decr_ops, 0666, },
2412 	{ "decr_status", &spufs_decr_status_ops, 0666, },
2413 	{ "event_mask", &spufs_event_mask_ops, 0666, },
2414 	{ "event_status", &spufs_event_status_ops, 0444, },
2415 	{ "psmap", &spufs_psmap_fops, 0666, },
2416 	{ "phys-id", &spufs_id_ops, 0666, },
2417 	{ "object-id", &spufs_object_id_ops, 0666, },
2418 	{ "mbox_info", &spufs_mbox_info_fops, 0444, },
2419 	{ "ibox_info", &spufs_ibox_info_fops, 0444, },
2420 	{ "wbox_info", &spufs_wbox_info_fops, 0444, },
2421 	{ "dma_info", &spufs_dma_info_fops, 0444, },
2422 	{ "proxydma_info", &spufs_proxydma_info_fops, 0444, },
2423 	{ "tid", &spufs_tid_fops, 0444, },
2424 	{ "stat", &spufs_stat_fops, 0444, },
2425 	{},
2426 };
2427 
2428 struct tree_descr spufs_dir_nosched_contents[] = {
2429 	{ "capabilities", &spufs_caps_fops, 0444, },
2430 	{ "mem",  &spufs_mem_fops,  0666, },
2431 	{ "mbox", &spufs_mbox_fops, 0444, },
2432 	{ "ibox", &spufs_ibox_fops, 0444, },
2433 	{ "wbox", &spufs_wbox_fops, 0222, },
2434 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
2435 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
2436 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2437 	{ "signal1", &spufs_signal1_nosched_fops, 0222, },
2438 	{ "signal2", &spufs_signal2_nosched_fops, 0222, },
2439 	{ "signal1_type", &spufs_signal1_type, 0666, },
2440 	{ "signal2_type", &spufs_signal2_type, 0666, },
2441 	{ "mss", &spufs_mss_fops, 0666, },
2442 	{ "mfc", &spufs_mfc_fops, 0666, },
2443 	{ "cntl", &spufs_cntl_fops,  0666, },
2444 	{ "npc", &spufs_npc_ops, 0666, },
2445 	{ "psmap", &spufs_psmap_fops, 0666, },
2446 	{ "phys-id", &spufs_id_ops, 0666, },
2447 	{ "object-id", &spufs_object_id_ops, 0666, },
2448 	{ "tid", &spufs_tid_fops, 0444, },
2449 	{ "stat", &spufs_stat_fops, 0444, },
2450 	{},
2451 };
2452 
2453 struct spufs_coredump_reader spufs_coredump_read[] = {
2454 	{ "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
2455 	{ "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2456 	{ "lslr", NULL, spufs_lslr_get, 19 },
2457 	{ "decr", NULL, spufs_decr_get, 19 },
2458 	{ "decr_status", NULL, spufs_decr_status_get, 19 },
2459 	{ "mem", __spufs_mem_read, NULL, LS_SIZE, },
2460 	{ "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2461 	{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
2462 	{ "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2463 	{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
2464 	{ "event_mask", NULL, spufs_event_mask_get, 19 },
2465 	{ "event_status", NULL, spufs_event_status_get, 19 },
2466 	{ "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
2467 	{ "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
2468 	{ "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
2469 	{ "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
2470 	{ "proxydma_info", __spufs_proxydma_info_read,
2471 			   NULL, sizeof(struct spu_proxydma_info)},
2472 	{ "object-id", NULL, spufs_object_id_get, 19 },
2473 	{ "npc", NULL, spufs_npc_get, 19 },
2474 	{ NULL },
2475 };
2476