1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * SPU file system -- file contents
4  *
5  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
6  *
7  * Author: Arnd Bergmann <arndb@de.ibm.com>
8  */
9 
10 #undef DEBUG
11 
12 #include <linux/coredump.h>
13 #include <linux/fs.h>
14 #include <linux/ioctl.h>
15 #include <linux/export.h>
16 #include <linux/pagemap.h>
17 #include <linux/poll.h>
18 #include <linux/ptrace.h>
19 #include <linux/seq_file.h>
20 #include <linux/slab.h>
21 
22 #include <asm/io.h>
23 #include <asm/time.h>
24 #include <asm/spu.h>
25 #include <asm/spu_info.h>
26 #include <linux/uaccess.h>
27 
28 #include "spufs.h"
29 #include "sputrace.h"
30 
31 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
32 
33 /* Simple attribute files */
34 struct spufs_attr {
35 	int (*get)(void *, u64 *);
36 	int (*set)(void *, u64);
37 	char get_buf[24];       /* enough to store a u64 and "\n\0" */
38 	char set_buf[24];
39 	void *data;
40 	const char *fmt;        /* format for read operation */
41 	struct mutex mutex;     /* protects access to these buffers */
42 };
43 
44 static int spufs_attr_open(struct inode *inode, struct file *file,
45 		int (*get)(void *, u64 *), int (*set)(void *, u64),
46 		const char *fmt)
47 {
48 	struct spufs_attr *attr;
49 
50 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
51 	if (!attr)
52 		return -ENOMEM;
53 
54 	attr->get = get;
55 	attr->set = set;
56 	attr->data = inode->i_private;
57 	attr->fmt = fmt;
58 	mutex_init(&attr->mutex);
59 	file->private_data = attr;
60 
61 	return nonseekable_open(inode, file);
62 }
63 
64 static int spufs_attr_release(struct inode *inode, struct file *file)
65 {
66        kfree(file->private_data);
67 	return 0;
68 }
69 
70 static ssize_t spufs_attr_read(struct file *file, char __user *buf,
71 		size_t len, loff_t *ppos)
72 {
73 	struct spufs_attr *attr;
74 	size_t size;
75 	ssize_t ret;
76 
77 	attr = file->private_data;
78 	if (!attr->get)
79 		return -EACCES;
80 
81 	ret = mutex_lock_interruptible(&attr->mutex);
82 	if (ret)
83 		return ret;
84 
85 	if (*ppos) {		/* continued read */
86 		size = strlen(attr->get_buf);
87 	} else {		/* first read */
88 		u64 val;
89 		ret = attr->get(attr->data, &val);
90 		if (ret)
91 			goto out;
92 
93 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
94 				 attr->fmt, (unsigned long long)val);
95 	}
96 
97 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
98 out:
99 	mutex_unlock(&attr->mutex);
100 	return ret;
101 }
102 
103 static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
104 		size_t len, loff_t *ppos)
105 {
106 	struct spufs_attr *attr;
107 	u64 val;
108 	size_t size;
109 	ssize_t ret;
110 
111 	attr = file->private_data;
112 	if (!attr->set)
113 		return -EACCES;
114 
115 	ret = mutex_lock_interruptible(&attr->mutex);
116 	if (ret)
117 		return ret;
118 
119 	ret = -EFAULT;
120 	size = min(sizeof(attr->set_buf) - 1, len);
121 	if (copy_from_user(attr->set_buf, buf, size))
122 		goto out;
123 
124 	ret = len; /* claim we got the whole input */
125 	attr->set_buf[size] = '\0';
126 	val = simple_strtol(attr->set_buf, NULL, 0);
127 	attr->set(attr->data, val);
128 out:
129 	mutex_unlock(&attr->mutex);
130 	return ret;
131 }
132 
133 static ssize_t spufs_dump_emit(struct coredump_params *cprm, void *buf,
134 		size_t size)
135 {
136 	if (!dump_emit(cprm, buf, size))
137 		return -EIO;
138 	return size;
139 }
140 
141 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)	\
142 static int __fops ## _open(struct inode *inode, struct file *file)	\
143 {									\
144 	__simple_attr_check_format(__fmt, 0ull);			\
145 	return spufs_attr_open(inode, file, __get, __set, __fmt);	\
146 }									\
147 static const struct file_operations __fops = {				\
148 	.open	 = __fops ## _open,					\
149 	.release = spufs_attr_release,					\
150 	.read	 = spufs_attr_read,					\
151 	.write	 = spufs_attr_write,					\
152 	.llseek  = generic_file_llseek,					\
153 };
154 
155 
156 static int
157 spufs_mem_open(struct inode *inode, struct file *file)
158 {
159 	struct spufs_inode_info *i = SPUFS_I(inode);
160 	struct spu_context *ctx = i->i_ctx;
161 
162 	mutex_lock(&ctx->mapping_lock);
163 	file->private_data = ctx;
164 	if (!i->i_openers++)
165 		ctx->local_store = inode->i_mapping;
166 	mutex_unlock(&ctx->mapping_lock);
167 	return 0;
168 }
169 
170 static int
171 spufs_mem_release(struct inode *inode, struct file *file)
172 {
173 	struct spufs_inode_info *i = SPUFS_I(inode);
174 	struct spu_context *ctx = i->i_ctx;
175 
176 	mutex_lock(&ctx->mapping_lock);
177 	if (!--i->i_openers)
178 		ctx->local_store = NULL;
179 	mutex_unlock(&ctx->mapping_lock);
180 	return 0;
181 }
182 
183 static ssize_t
184 spufs_mem_dump(struct spu_context *ctx, struct coredump_params *cprm)
185 {
186 	return spufs_dump_emit(cprm, ctx->ops->get_ls(ctx), LS_SIZE);
187 }
188 
189 static ssize_t
190 spufs_mem_read(struct file *file, char __user *buffer,
191 				size_t size, loff_t *pos)
192 {
193 	struct spu_context *ctx = file->private_data;
194 	ssize_t ret;
195 
196 	ret = spu_acquire(ctx);
197 	if (ret)
198 		return ret;
199 	ret = simple_read_from_buffer(buffer, size, pos, ctx->ops->get_ls(ctx),
200 				      LS_SIZE);
201 	spu_release(ctx);
202 
203 	return ret;
204 }
205 
206 static ssize_t
207 spufs_mem_write(struct file *file, const char __user *buffer,
208 					size_t size, loff_t *ppos)
209 {
210 	struct spu_context *ctx = file->private_data;
211 	char *local_store;
212 	loff_t pos = *ppos;
213 	int ret;
214 
215 	if (pos > LS_SIZE)
216 		return -EFBIG;
217 
218 	ret = spu_acquire(ctx);
219 	if (ret)
220 		return ret;
221 
222 	local_store = ctx->ops->get_ls(ctx);
223 	size = simple_write_to_buffer(local_store, LS_SIZE, ppos, buffer, size);
224 	spu_release(ctx);
225 
226 	return size;
227 }
228 
229 static vm_fault_t
230 spufs_mem_mmap_fault(struct vm_fault *vmf)
231 {
232 	struct vm_area_struct *vma = vmf->vma;
233 	struct spu_context *ctx	= vma->vm_file->private_data;
234 	unsigned long pfn, offset;
235 	vm_fault_t ret;
236 
237 	offset = vmf->pgoff << PAGE_SHIFT;
238 	if (offset >= LS_SIZE)
239 		return VM_FAULT_SIGBUS;
240 
241 	pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
242 			vmf->address, offset);
243 
244 	if (spu_acquire(ctx))
245 		return VM_FAULT_NOPAGE;
246 
247 	if (ctx->state == SPU_STATE_SAVED) {
248 		vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
249 		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
250 	} else {
251 		vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
252 		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
253 	}
254 	ret = vmf_insert_pfn(vma, vmf->address, pfn);
255 
256 	spu_release(ctx);
257 
258 	return ret;
259 }
260 
261 static int spufs_mem_mmap_access(struct vm_area_struct *vma,
262 				unsigned long address,
263 				void *buf, int len, int write)
264 {
265 	struct spu_context *ctx = vma->vm_file->private_data;
266 	unsigned long offset = address - vma->vm_start;
267 	char *local_store;
268 
269 	if (write && !(vma->vm_flags & VM_WRITE))
270 		return -EACCES;
271 	if (spu_acquire(ctx))
272 		return -EINTR;
273 	if ((offset + len) > vma->vm_end)
274 		len = vma->vm_end - offset;
275 	local_store = ctx->ops->get_ls(ctx);
276 	if (write)
277 		memcpy_toio(local_store + offset, buf, len);
278 	else
279 		memcpy_fromio(buf, local_store + offset, len);
280 	spu_release(ctx);
281 	return len;
282 }
283 
284 static const struct vm_operations_struct spufs_mem_mmap_vmops = {
285 	.fault = spufs_mem_mmap_fault,
286 	.access = spufs_mem_mmap_access,
287 };
288 
289 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
290 {
291 	if (!(vma->vm_flags & VM_SHARED))
292 		return -EINVAL;
293 
294 	vma->vm_flags |= VM_IO | VM_PFNMAP;
295 	vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
296 
297 	vma->vm_ops = &spufs_mem_mmap_vmops;
298 	return 0;
299 }
300 
301 static const struct file_operations spufs_mem_fops = {
302 	.open			= spufs_mem_open,
303 	.release		= spufs_mem_release,
304 	.read			= spufs_mem_read,
305 	.write			= spufs_mem_write,
306 	.llseek			= generic_file_llseek,
307 	.mmap			= spufs_mem_mmap,
308 };
309 
310 static vm_fault_t spufs_ps_fault(struct vm_fault *vmf,
311 				    unsigned long ps_offs,
312 				    unsigned long ps_size)
313 {
314 	struct spu_context *ctx = vmf->vma->vm_file->private_data;
315 	unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
316 	int err = 0;
317 	vm_fault_t ret = VM_FAULT_NOPAGE;
318 
319 	spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
320 
321 	if (offset >= ps_size)
322 		return VM_FAULT_SIGBUS;
323 
324 	if (fatal_signal_pending(current))
325 		return VM_FAULT_SIGBUS;
326 
327 	/*
328 	 * Because we release the mmap_lock, the context may be destroyed while
329 	 * we're in spu_wait. Grab an extra reference so it isn't destroyed
330 	 * in the meantime.
331 	 */
332 	get_spu_context(ctx);
333 
334 	/*
335 	 * We have to wait for context to be loaded before we have
336 	 * pages to hand out to the user, but we don't want to wait
337 	 * with the mmap_lock held.
338 	 * It is possible to drop the mmap_lock here, but then we need
339 	 * to return VM_FAULT_NOPAGE because the mappings may have
340 	 * hanged.
341 	 */
342 	if (spu_acquire(ctx))
343 		goto refault;
344 
345 	if (ctx->state == SPU_STATE_SAVED) {
346 		mmap_read_unlock(current->mm);
347 		spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
348 		err = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
349 		spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
350 		mmap_read_lock(current->mm);
351 	} else {
352 		area = ctx->spu->problem_phys + ps_offs;
353 		ret = vmf_insert_pfn(vmf->vma, vmf->address,
354 				(area + offset) >> PAGE_SHIFT);
355 		spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
356 	}
357 
358 	if (!err)
359 		spu_release(ctx);
360 
361 refault:
362 	put_spu_context(ctx);
363 	return ret;
364 }
365 
366 #if SPUFS_MMAP_4K
367 static vm_fault_t spufs_cntl_mmap_fault(struct vm_fault *vmf)
368 {
369 	return spufs_ps_fault(vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
370 }
371 
372 static const struct vm_operations_struct spufs_cntl_mmap_vmops = {
373 	.fault = spufs_cntl_mmap_fault,
374 };
375 
376 /*
377  * mmap support for problem state control area [0x4000 - 0x4fff].
378  */
379 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
380 {
381 	if (!(vma->vm_flags & VM_SHARED))
382 		return -EINVAL;
383 
384 	vma->vm_flags |= VM_IO | VM_PFNMAP;
385 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
386 
387 	vma->vm_ops = &spufs_cntl_mmap_vmops;
388 	return 0;
389 }
390 #else /* SPUFS_MMAP_4K */
391 #define spufs_cntl_mmap NULL
392 #endif /* !SPUFS_MMAP_4K */
393 
394 static int spufs_cntl_get(void *data, u64 *val)
395 {
396 	struct spu_context *ctx = data;
397 	int ret;
398 
399 	ret = spu_acquire(ctx);
400 	if (ret)
401 		return ret;
402 	*val = ctx->ops->status_read(ctx);
403 	spu_release(ctx);
404 
405 	return 0;
406 }
407 
408 static int spufs_cntl_set(void *data, u64 val)
409 {
410 	struct spu_context *ctx = data;
411 	int ret;
412 
413 	ret = spu_acquire(ctx);
414 	if (ret)
415 		return ret;
416 	ctx->ops->runcntl_write(ctx, val);
417 	spu_release(ctx);
418 
419 	return 0;
420 }
421 
422 static int spufs_cntl_open(struct inode *inode, struct file *file)
423 {
424 	struct spufs_inode_info *i = SPUFS_I(inode);
425 	struct spu_context *ctx = i->i_ctx;
426 
427 	mutex_lock(&ctx->mapping_lock);
428 	file->private_data = ctx;
429 	if (!i->i_openers++)
430 		ctx->cntl = inode->i_mapping;
431 	mutex_unlock(&ctx->mapping_lock);
432 	return simple_attr_open(inode, file, spufs_cntl_get,
433 					spufs_cntl_set, "0x%08lx");
434 }
435 
436 static int
437 spufs_cntl_release(struct inode *inode, struct file *file)
438 {
439 	struct spufs_inode_info *i = SPUFS_I(inode);
440 	struct spu_context *ctx = i->i_ctx;
441 
442 	simple_attr_release(inode, file);
443 
444 	mutex_lock(&ctx->mapping_lock);
445 	if (!--i->i_openers)
446 		ctx->cntl = NULL;
447 	mutex_unlock(&ctx->mapping_lock);
448 	return 0;
449 }
450 
451 static const struct file_operations spufs_cntl_fops = {
452 	.open = spufs_cntl_open,
453 	.release = spufs_cntl_release,
454 	.read = simple_attr_read,
455 	.write = simple_attr_write,
456 	.llseek	= no_llseek,
457 	.mmap = spufs_cntl_mmap,
458 };
459 
460 static int
461 spufs_regs_open(struct inode *inode, struct file *file)
462 {
463 	struct spufs_inode_info *i = SPUFS_I(inode);
464 	file->private_data = i->i_ctx;
465 	return 0;
466 }
467 
468 static ssize_t
469 spufs_regs_dump(struct spu_context *ctx, struct coredump_params *cprm)
470 {
471 	return spufs_dump_emit(cprm, ctx->csa.lscsa->gprs,
472 			       sizeof(ctx->csa.lscsa->gprs));
473 }
474 
475 static ssize_t
476 spufs_regs_read(struct file *file, char __user *buffer,
477 		size_t size, loff_t *pos)
478 {
479 	int ret;
480 	struct spu_context *ctx = file->private_data;
481 
482 	/* pre-check for file position: if we'd return EOF, there's no point
483 	 * causing a deschedule */
484 	if (*pos >= sizeof(ctx->csa.lscsa->gprs))
485 		return 0;
486 
487 	ret = spu_acquire_saved(ctx);
488 	if (ret)
489 		return ret;
490 	ret = simple_read_from_buffer(buffer, size, pos, ctx->csa.lscsa->gprs,
491 				      sizeof(ctx->csa.lscsa->gprs));
492 	spu_release_saved(ctx);
493 	return ret;
494 }
495 
496 static ssize_t
497 spufs_regs_write(struct file *file, const char __user *buffer,
498 		 size_t size, loff_t *pos)
499 {
500 	struct spu_context *ctx = file->private_data;
501 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
502 	int ret;
503 
504 	if (*pos >= sizeof(lscsa->gprs))
505 		return -EFBIG;
506 
507 	ret = spu_acquire_saved(ctx);
508 	if (ret)
509 		return ret;
510 
511 	size = simple_write_to_buffer(lscsa->gprs, sizeof(lscsa->gprs), pos,
512 					buffer, size);
513 
514 	spu_release_saved(ctx);
515 	return size;
516 }
517 
518 static const struct file_operations spufs_regs_fops = {
519 	.open	 = spufs_regs_open,
520 	.read    = spufs_regs_read,
521 	.write   = spufs_regs_write,
522 	.llseek  = generic_file_llseek,
523 };
524 
525 static ssize_t
526 spufs_fpcr_dump(struct spu_context *ctx, struct coredump_params *cprm)
527 {
528 	return spufs_dump_emit(cprm, &ctx->csa.lscsa->fpcr,
529 			       sizeof(ctx->csa.lscsa->fpcr));
530 }
531 
532 static ssize_t
533 spufs_fpcr_read(struct file *file, char __user * buffer,
534 		size_t size, loff_t * pos)
535 {
536 	int ret;
537 	struct spu_context *ctx = file->private_data;
538 
539 	ret = spu_acquire_saved(ctx);
540 	if (ret)
541 		return ret;
542 	ret = simple_read_from_buffer(buffer, size, pos, &ctx->csa.lscsa->fpcr,
543 				      sizeof(ctx->csa.lscsa->fpcr));
544 	spu_release_saved(ctx);
545 	return ret;
546 }
547 
548 static ssize_t
549 spufs_fpcr_write(struct file *file, const char __user * buffer,
550 		 size_t size, loff_t * pos)
551 {
552 	struct spu_context *ctx = file->private_data;
553 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
554 	int ret;
555 
556 	if (*pos >= sizeof(lscsa->fpcr))
557 		return -EFBIG;
558 
559 	ret = spu_acquire_saved(ctx);
560 	if (ret)
561 		return ret;
562 
563 	size = simple_write_to_buffer(&lscsa->fpcr, sizeof(lscsa->fpcr), pos,
564 					buffer, size);
565 
566 	spu_release_saved(ctx);
567 	return size;
568 }
569 
570 static const struct file_operations spufs_fpcr_fops = {
571 	.open = spufs_regs_open,
572 	.read = spufs_fpcr_read,
573 	.write = spufs_fpcr_write,
574 	.llseek = generic_file_llseek,
575 };
576 
577 /* generic open function for all pipe-like files */
578 static int spufs_pipe_open(struct inode *inode, struct file *file)
579 {
580 	struct spufs_inode_info *i = SPUFS_I(inode);
581 	file->private_data = i->i_ctx;
582 
583 	return stream_open(inode, file);
584 }
585 
586 /*
587  * Read as many bytes from the mailbox as possible, until
588  * one of the conditions becomes true:
589  *
590  * - no more data available in the mailbox
591  * - end of the user provided buffer
592  * - end of the mapped area
593  */
594 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
595 			size_t len, loff_t *pos)
596 {
597 	struct spu_context *ctx = file->private_data;
598 	u32 mbox_data, __user *udata = (void __user *)buf;
599 	ssize_t count;
600 
601 	if (len < 4)
602 		return -EINVAL;
603 
604 	count = spu_acquire(ctx);
605 	if (count)
606 		return count;
607 
608 	for (count = 0; (count + 4) <= len; count += 4, udata++) {
609 		int ret;
610 		ret = ctx->ops->mbox_read(ctx, &mbox_data);
611 		if (ret == 0)
612 			break;
613 
614 		/*
615 		 * at the end of the mapped area, we can fault
616 		 * but still need to return the data we have
617 		 * read successfully so far.
618 		 */
619 		ret = put_user(mbox_data, udata);
620 		if (ret) {
621 			if (!count)
622 				count = -EFAULT;
623 			break;
624 		}
625 	}
626 	spu_release(ctx);
627 
628 	if (!count)
629 		count = -EAGAIN;
630 
631 	return count;
632 }
633 
634 static const struct file_operations spufs_mbox_fops = {
635 	.open	= spufs_pipe_open,
636 	.read	= spufs_mbox_read,
637 	.llseek	= no_llseek,
638 };
639 
640 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
641 			size_t len, loff_t *pos)
642 {
643 	struct spu_context *ctx = file->private_data;
644 	ssize_t ret;
645 	u32 mbox_stat;
646 
647 	if (len < 4)
648 		return -EINVAL;
649 
650 	ret = spu_acquire(ctx);
651 	if (ret)
652 		return ret;
653 
654 	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
655 
656 	spu_release(ctx);
657 
658 	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
659 		return -EFAULT;
660 
661 	return 4;
662 }
663 
664 static const struct file_operations spufs_mbox_stat_fops = {
665 	.open	= spufs_pipe_open,
666 	.read	= spufs_mbox_stat_read,
667 	.llseek = no_llseek,
668 };
669 
670 /* low-level ibox access function */
671 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
672 {
673 	return ctx->ops->ibox_read(ctx, data);
674 }
675 
676 /* interrupt-level ibox callback function. */
677 void spufs_ibox_callback(struct spu *spu)
678 {
679 	struct spu_context *ctx = spu->ctx;
680 
681 	if (ctx)
682 		wake_up_all(&ctx->ibox_wq);
683 }
684 
685 /*
686  * Read as many bytes from the interrupt mailbox as possible, until
687  * one of the conditions becomes true:
688  *
689  * - no more data available in the mailbox
690  * - end of the user provided buffer
691  * - end of the mapped area
692  *
693  * If the file is opened without O_NONBLOCK, we wait here until
694  * any data is available, but return when we have been able to
695  * read something.
696  */
697 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
698 			size_t len, loff_t *pos)
699 {
700 	struct spu_context *ctx = file->private_data;
701 	u32 ibox_data, __user *udata = (void __user *)buf;
702 	ssize_t count;
703 
704 	if (len < 4)
705 		return -EINVAL;
706 
707 	count = spu_acquire(ctx);
708 	if (count)
709 		goto out;
710 
711 	/* wait only for the first element */
712 	count = 0;
713 	if (file->f_flags & O_NONBLOCK) {
714 		if (!spu_ibox_read(ctx, &ibox_data)) {
715 			count = -EAGAIN;
716 			goto out_unlock;
717 		}
718 	} else {
719 		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
720 		if (count)
721 			goto out;
722 	}
723 
724 	/* if we can't write at all, return -EFAULT */
725 	count = put_user(ibox_data, udata);
726 	if (count)
727 		goto out_unlock;
728 
729 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
730 		int ret;
731 		ret = ctx->ops->ibox_read(ctx, &ibox_data);
732 		if (ret == 0)
733 			break;
734 		/*
735 		 * at the end of the mapped area, we can fault
736 		 * but still need to return the data we have
737 		 * read successfully so far.
738 		 */
739 		ret = put_user(ibox_data, udata);
740 		if (ret)
741 			break;
742 	}
743 
744 out_unlock:
745 	spu_release(ctx);
746 out:
747 	return count;
748 }
749 
750 static __poll_t spufs_ibox_poll(struct file *file, poll_table *wait)
751 {
752 	struct spu_context *ctx = file->private_data;
753 	__poll_t mask;
754 
755 	poll_wait(file, &ctx->ibox_wq, wait);
756 
757 	/*
758 	 * For now keep this uninterruptible and also ignore the rule
759 	 * that poll should not sleep.  Will be fixed later.
760 	 */
761 	mutex_lock(&ctx->state_mutex);
762 	mask = ctx->ops->mbox_stat_poll(ctx, EPOLLIN | EPOLLRDNORM);
763 	spu_release(ctx);
764 
765 	return mask;
766 }
767 
768 static const struct file_operations spufs_ibox_fops = {
769 	.open	= spufs_pipe_open,
770 	.read	= spufs_ibox_read,
771 	.poll	= spufs_ibox_poll,
772 	.llseek = no_llseek,
773 };
774 
775 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
776 			size_t len, loff_t *pos)
777 {
778 	struct spu_context *ctx = file->private_data;
779 	ssize_t ret;
780 	u32 ibox_stat;
781 
782 	if (len < 4)
783 		return -EINVAL;
784 
785 	ret = spu_acquire(ctx);
786 	if (ret)
787 		return ret;
788 	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
789 	spu_release(ctx);
790 
791 	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
792 		return -EFAULT;
793 
794 	return 4;
795 }
796 
797 static const struct file_operations spufs_ibox_stat_fops = {
798 	.open	= spufs_pipe_open,
799 	.read	= spufs_ibox_stat_read,
800 	.llseek = no_llseek,
801 };
802 
803 /* low-level mailbox write */
804 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
805 {
806 	return ctx->ops->wbox_write(ctx, data);
807 }
808 
809 /* interrupt-level wbox callback function. */
810 void spufs_wbox_callback(struct spu *spu)
811 {
812 	struct spu_context *ctx = spu->ctx;
813 
814 	if (ctx)
815 		wake_up_all(&ctx->wbox_wq);
816 }
817 
818 /*
819  * Write as many bytes to the interrupt mailbox as possible, until
820  * one of the conditions becomes true:
821  *
822  * - the mailbox is full
823  * - end of the user provided buffer
824  * - end of the mapped area
825  *
826  * If the file is opened without O_NONBLOCK, we wait here until
827  * space is available, but return when we have been able to
828  * write something.
829  */
830 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
831 			size_t len, loff_t *pos)
832 {
833 	struct spu_context *ctx = file->private_data;
834 	u32 wbox_data, __user *udata = (void __user *)buf;
835 	ssize_t count;
836 
837 	if (len < 4)
838 		return -EINVAL;
839 
840 	if (get_user(wbox_data, udata))
841 		return -EFAULT;
842 
843 	count = spu_acquire(ctx);
844 	if (count)
845 		goto out;
846 
847 	/*
848 	 * make sure we can at least write one element, by waiting
849 	 * in case of !O_NONBLOCK
850 	 */
851 	count = 0;
852 	if (file->f_flags & O_NONBLOCK) {
853 		if (!spu_wbox_write(ctx, wbox_data)) {
854 			count = -EAGAIN;
855 			goto out_unlock;
856 		}
857 	} else {
858 		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
859 		if (count)
860 			goto out;
861 	}
862 
863 
864 	/* write as much as possible */
865 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
866 		int ret;
867 		ret = get_user(wbox_data, udata);
868 		if (ret)
869 			break;
870 
871 		ret = spu_wbox_write(ctx, wbox_data);
872 		if (ret == 0)
873 			break;
874 	}
875 
876 out_unlock:
877 	spu_release(ctx);
878 out:
879 	return count;
880 }
881 
882 static __poll_t spufs_wbox_poll(struct file *file, poll_table *wait)
883 {
884 	struct spu_context *ctx = file->private_data;
885 	__poll_t mask;
886 
887 	poll_wait(file, &ctx->wbox_wq, wait);
888 
889 	/*
890 	 * For now keep this uninterruptible and also ignore the rule
891 	 * that poll should not sleep.  Will be fixed later.
892 	 */
893 	mutex_lock(&ctx->state_mutex);
894 	mask = ctx->ops->mbox_stat_poll(ctx, EPOLLOUT | EPOLLWRNORM);
895 	spu_release(ctx);
896 
897 	return mask;
898 }
899 
900 static const struct file_operations spufs_wbox_fops = {
901 	.open	= spufs_pipe_open,
902 	.write	= spufs_wbox_write,
903 	.poll	= spufs_wbox_poll,
904 	.llseek = no_llseek,
905 };
906 
907 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
908 			size_t len, loff_t *pos)
909 {
910 	struct spu_context *ctx = file->private_data;
911 	ssize_t ret;
912 	u32 wbox_stat;
913 
914 	if (len < 4)
915 		return -EINVAL;
916 
917 	ret = spu_acquire(ctx);
918 	if (ret)
919 		return ret;
920 	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
921 	spu_release(ctx);
922 
923 	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
924 		return -EFAULT;
925 
926 	return 4;
927 }
928 
929 static const struct file_operations spufs_wbox_stat_fops = {
930 	.open	= spufs_pipe_open,
931 	.read	= spufs_wbox_stat_read,
932 	.llseek = no_llseek,
933 };
934 
935 static int spufs_signal1_open(struct inode *inode, struct file *file)
936 {
937 	struct spufs_inode_info *i = SPUFS_I(inode);
938 	struct spu_context *ctx = i->i_ctx;
939 
940 	mutex_lock(&ctx->mapping_lock);
941 	file->private_data = ctx;
942 	if (!i->i_openers++)
943 		ctx->signal1 = inode->i_mapping;
944 	mutex_unlock(&ctx->mapping_lock);
945 	return nonseekable_open(inode, file);
946 }
947 
948 static int
949 spufs_signal1_release(struct inode *inode, struct file *file)
950 {
951 	struct spufs_inode_info *i = SPUFS_I(inode);
952 	struct spu_context *ctx = i->i_ctx;
953 
954 	mutex_lock(&ctx->mapping_lock);
955 	if (!--i->i_openers)
956 		ctx->signal1 = NULL;
957 	mutex_unlock(&ctx->mapping_lock);
958 	return 0;
959 }
960 
961 static ssize_t spufs_signal1_dump(struct spu_context *ctx,
962 		struct coredump_params *cprm)
963 {
964 	if (!ctx->csa.spu_chnlcnt_RW[3])
965 		return 0;
966 	return spufs_dump_emit(cprm, &ctx->csa.spu_chnldata_RW[3],
967 			       sizeof(ctx->csa.spu_chnldata_RW[3]));
968 }
969 
970 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
971 			size_t len)
972 {
973 	if (len < sizeof(ctx->csa.spu_chnldata_RW[3]))
974 		return -EINVAL;
975 	if (!ctx->csa.spu_chnlcnt_RW[3])
976 		return 0;
977 	if (copy_to_user(buf, &ctx->csa.spu_chnldata_RW[3],
978 			 sizeof(ctx->csa.spu_chnldata_RW[3])))
979 		return -EFAULT;
980 	return sizeof(ctx->csa.spu_chnldata_RW[3]);
981 }
982 
983 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
984 			size_t len, loff_t *pos)
985 {
986 	int ret;
987 	struct spu_context *ctx = file->private_data;
988 
989 	ret = spu_acquire_saved(ctx);
990 	if (ret)
991 		return ret;
992 	ret = __spufs_signal1_read(ctx, buf, len);
993 	spu_release_saved(ctx);
994 
995 	return ret;
996 }
997 
998 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
999 			size_t len, loff_t *pos)
1000 {
1001 	struct spu_context *ctx;
1002 	ssize_t ret;
1003 	u32 data;
1004 
1005 	ctx = file->private_data;
1006 
1007 	if (len < 4)
1008 		return -EINVAL;
1009 
1010 	if (copy_from_user(&data, buf, 4))
1011 		return -EFAULT;
1012 
1013 	ret = spu_acquire(ctx);
1014 	if (ret)
1015 		return ret;
1016 	ctx->ops->signal1_write(ctx, data);
1017 	spu_release(ctx);
1018 
1019 	return 4;
1020 }
1021 
1022 static vm_fault_t
1023 spufs_signal1_mmap_fault(struct vm_fault *vmf)
1024 {
1025 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1026 	return spufs_ps_fault(vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
1027 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1028 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1029 	 * signal 1 and 2 area
1030 	 */
1031 	return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1032 #else
1033 #error unsupported page size
1034 #endif
1035 }
1036 
1037 static const struct vm_operations_struct spufs_signal1_mmap_vmops = {
1038 	.fault = spufs_signal1_mmap_fault,
1039 };
1040 
1041 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1042 {
1043 	if (!(vma->vm_flags & VM_SHARED))
1044 		return -EINVAL;
1045 
1046 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1047 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1048 
1049 	vma->vm_ops = &spufs_signal1_mmap_vmops;
1050 	return 0;
1051 }
1052 
1053 static const struct file_operations spufs_signal1_fops = {
1054 	.open = spufs_signal1_open,
1055 	.release = spufs_signal1_release,
1056 	.read = spufs_signal1_read,
1057 	.write = spufs_signal1_write,
1058 	.mmap = spufs_signal1_mmap,
1059 	.llseek = no_llseek,
1060 };
1061 
1062 static const struct file_operations spufs_signal1_nosched_fops = {
1063 	.open = spufs_signal1_open,
1064 	.release = spufs_signal1_release,
1065 	.write = spufs_signal1_write,
1066 	.mmap = spufs_signal1_mmap,
1067 	.llseek = no_llseek,
1068 };
1069 
1070 static int spufs_signal2_open(struct inode *inode, struct file *file)
1071 {
1072 	struct spufs_inode_info *i = SPUFS_I(inode);
1073 	struct spu_context *ctx = i->i_ctx;
1074 
1075 	mutex_lock(&ctx->mapping_lock);
1076 	file->private_data = ctx;
1077 	if (!i->i_openers++)
1078 		ctx->signal2 = inode->i_mapping;
1079 	mutex_unlock(&ctx->mapping_lock);
1080 	return nonseekable_open(inode, file);
1081 }
1082 
1083 static int
1084 spufs_signal2_release(struct inode *inode, struct file *file)
1085 {
1086 	struct spufs_inode_info *i = SPUFS_I(inode);
1087 	struct spu_context *ctx = i->i_ctx;
1088 
1089 	mutex_lock(&ctx->mapping_lock);
1090 	if (!--i->i_openers)
1091 		ctx->signal2 = NULL;
1092 	mutex_unlock(&ctx->mapping_lock);
1093 	return 0;
1094 }
1095 
1096 static ssize_t spufs_signal2_dump(struct spu_context *ctx,
1097 		struct coredump_params *cprm)
1098 {
1099 	if (!ctx->csa.spu_chnlcnt_RW[4])
1100 		return 0;
1101 	return spufs_dump_emit(cprm, &ctx->csa.spu_chnldata_RW[4],
1102 			       sizeof(ctx->csa.spu_chnldata_RW[4]));
1103 }
1104 
1105 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1106 			size_t len)
1107 {
1108 	if (len < sizeof(ctx->csa.spu_chnldata_RW[4]))
1109 		return -EINVAL;
1110 	if (!ctx->csa.spu_chnlcnt_RW[4])
1111 		return 0;
1112 	if (copy_to_user(buf, &ctx->csa.spu_chnldata_RW[4],
1113 			 sizeof(ctx->csa.spu_chnldata_RW[4])))
1114 		return -EFAULT;
1115 	return sizeof(ctx->csa.spu_chnldata_RW[4]);
1116 }
1117 
1118 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1119 			size_t len, loff_t *pos)
1120 {
1121 	struct spu_context *ctx = file->private_data;
1122 	int ret;
1123 
1124 	ret = spu_acquire_saved(ctx);
1125 	if (ret)
1126 		return ret;
1127 	ret = __spufs_signal2_read(ctx, buf, len);
1128 	spu_release_saved(ctx);
1129 
1130 	return ret;
1131 }
1132 
1133 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1134 			size_t len, loff_t *pos)
1135 {
1136 	struct spu_context *ctx;
1137 	ssize_t ret;
1138 	u32 data;
1139 
1140 	ctx = file->private_data;
1141 
1142 	if (len < 4)
1143 		return -EINVAL;
1144 
1145 	if (copy_from_user(&data, buf, 4))
1146 		return -EFAULT;
1147 
1148 	ret = spu_acquire(ctx);
1149 	if (ret)
1150 		return ret;
1151 	ctx->ops->signal2_write(ctx, data);
1152 	spu_release(ctx);
1153 
1154 	return 4;
1155 }
1156 
1157 #if SPUFS_MMAP_4K
1158 static vm_fault_t
1159 spufs_signal2_mmap_fault(struct vm_fault *vmf)
1160 {
1161 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1162 	return spufs_ps_fault(vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
1163 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1164 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1165 	 * signal 1 and 2 area
1166 	 */
1167 	return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1168 #else
1169 #error unsupported page size
1170 #endif
1171 }
1172 
1173 static const struct vm_operations_struct spufs_signal2_mmap_vmops = {
1174 	.fault = spufs_signal2_mmap_fault,
1175 };
1176 
1177 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1178 {
1179 	if (!(vma->vm_flags & VM_SHARED))
1180 		return -EINVAL;
1181 
1182 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1183 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1184 
1185 	vma->vm_ops = &spufs_signal2_mmap_vmops;
1186 	return 0;
1187 }
1188 #else /* SPUFS_MMAP_4K */
1189 #define spufs_signal2_mmap NULL
1190 #endif /* !SPUFS_MMAP_4K */
1191 
1192 static const struct file_operations spufs_signal2_fops = {
1193 	.open = spufs_signal2_open,
1194 	.release = spufs_signal2_release,
1195 	.read = spufs_signal2_read,
1196 	.write = spufs_signal2_write,
1197 	.mmap = spufs_signal2_mmap,
1198 	.llseek = no_llseek,
1199 };
1200 
1201 static const struct file_operations spufs_signal2_nosched_fops = {
1202 	.open = spufs_signal2_open,
1203 	.release = spufs_signal2_release,
1204 	.write = spufs_signal2_write,
1205 	.mmap = spufs_signal2_mmap,
1206 	.llseek = no_llseek,
1207 };
1208 
1209 /*
1210  * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1211  * work of acquiring (or not) the SPU context before calling through
1212  * to the actual get routine. The set routine is called directly.
1213  */
1214 #define SPU_ATTR_NOACQUIRE	0
1215 #define SPU_ATTR_ACQUIRE	1
1216 #define SPU_ATTR_ACQUIRE_SAVED	2
1217 
1218 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)	\
1219 static int __##__get(void *data, u64 *val)				\
1220 {									\
1221 	struct spu_context *ctx = data;					\
1222 	int ret = 0;							\
1223 									\
1224 	if (__acquire == SPU_ATTR_ACQUIRE) {				\
1225 		ret = spu_acquire(ctx);					\
1226 		if (ret)						\
1227 			return ret;					\
1228 		*val = __get(ctx);					\
1229 		spu_release(ctx);					\
1230 	} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED)	{		\
1231 		ret = spu_acquire_saved(ctx);				\
1232 		if (ret)						\
1233 			return ret;					\
1234 		*val = __get(ctx);					\
1235 		spu_release_saved(ctx);					\
1236 	} else								\
1237 		*val = __get(ctx);					\
1238 									\
1239 	return 0;							\
1240 }									\
1241 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1242 
1243 static int spufs_signal1_type_set(void *data, u64 val)
1244 {
1245 	struct spu_context *ctx = data;
1246 	int ret;
1247 
1248 	ret = spu_acquire(ctx);
1249 	if (ret)
1250 		return ret;
1251 	ctx->ops->signal1_type_set(ctx, val);
1252 	spu_release(ctx);
1253 
1254 	return 0;
1255 }
1256 
1257 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1258 {
1259 	return ctx->ops->signal1_type_get(ctx);
1260 }
1261 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1262 		       spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1263 
1264 
1265 static int spufs_signal2_type_set(void *data, u64 val)
1266 {
1267 	struct spu_context *ctx = data;
1268 	int ret;
1269 
1270 	ret = spu_acquire(ctx);
1271 	if (ret)
1272 		return ret;
1273 	ctx->ops->signal2_type_set(ctx, val);
1274 	spu_release(ctx);
1275 
1276 	return 0;
1277 }
1278 
1279 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1280 {
1281 	return ctx->ops->signal2_type_get(ctx);
1282 }
1283 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1284 		       spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1285 
1286 #if SPUFS_MMAP_4K
1287 static vm_fault_t
1288 spufs_mss_mmap_fault(struct vm_fault *vmf)
1289 {
1290 	return spufs_ps_fault(vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1291 }
1292 
1293 static const struct vm_operations_struct spufs_mss_mmap_vmops = {
1294 	.fault = spufs_mss_mmap_fault,
1295 };
1296 
1297 /*
1298  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1299  */
1300 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1301 {
1302 	if (!(vma->vm_flags & VM_SHARED))
1303 		return -EINVAL;
1304 
1305 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1306 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1307 
1308 	vma->vm_ops = &spufs_mss_mmap_vmops;
1309 	return 0;
1310 }
1311 #else /* SPUFS_MMAP_4K */
1312 #define spufs_mss_mmap NULL
1313 #endif /* !SPUFS_MMAP_4K */
1314 
1315 static int spufs_mss_open(struct inode *inode, struct file *file)
1316 {
1317 	struct spufs_inode_info *i = SPUFS_I(inode);
1318 	struct spu_context *ctx = i->i_ctx;
1319 
1320 	file->private_data = i->i_ctx;
1321 
1322 	mutex_lock(&ctx->mapping_lock);
1323 	if (!i->i_openers++)
1324 		ctx->mss = inode->i_mapping;
1325 	mutex_unlock(&ctx->mapping_lock);
1326 	return nonseekable_open(inode, file);
1327 }
1328 
1329 static int
1330 spufs_mss_release(struct inode *inode, struct file *file)
1331 {
1332 	struct spufs_inode_info *i = SPUFS_I(inode);
1333 	struct spu_context *ctx = i->i_ctx;
1334 
1335 	mutex_lock(&ctx->mapping_lock);
1336 	if (!--i->i_openers)
1337 		ctx->mss = NULL;
1338 	mutex_unlock(&ctx->mapping_lock);
1339 	return 0;
1340 }
1341 
1342 static const struct file_operations spufs_mss_fops = {
1343 	.open	 = spufs_mss_open,
1344 	.release = spufs_mss_release,
1345 	.mmap	 = spufs_mss_mmap,
1346 	.llseek  = no_llseek,
1347 };
1348 
1349 static vm_fault_t
1350 spufs_psmap_mmap_fault(struct vm_fault *vmf)
1351 {
1352 	return spufs_ps_fault(vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1353 }
1354 
1355 static const struct vm_operations_struct spufs_psmap_mmap_vmops = {
1356 	.fault = spufs_psmap_mmap_fault,
1357 };
1358 
1359 /*
1360  * mmap support for full problem state area [0x00000 - 0x1ffff].
1361  */
1362 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1363 {
1364 	if (!(vma->vm_flags & VM_SHARED))
1365 		return -EINVAL;
1366 
1367 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1368 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1369 
1370 	vma->vm_ops = &spufs_psmap_mmap_vmops;
1371 	return 0;
1372 }
1373 
1374 static int spufs_psmap_open(struct inode *inode, struct file *file)
1375 {
1376 	struct spufs_inode_info *i = SPUFS_I(inode);
1377 	struct spu_context *ctx = i->i_ctx;
1378 
1379 	mutex_lock(&ctx->mapping_lock);
1380 	file->private_data = i->i_ctx;
1381 	if (!i->i_openers++)
1382 		ctx->psmap = inode->i_mapping;
1383 	mutex_unlock(&ctx->mapping_lock);
1384 	return nonseekable_open(inode, file);
1385 }
1386 
1387 static int
1388 spufs_psmap_release(struct inode *inode, struct file *file)
1389 {
1390 	struct spufs_inode_info *i = SPUFS_I(inode);
1391 	struct spu_context *ctx = i->i_ctx;
1392 
1393 	mutex_lock(&ctx->mapping_lock);
1394 	if (!--i->i_openers)
1395 		ctx->psmap = NULL;
1396 	mutex_unlock(&ctx->mapping_lock);
1397 	return 0;
1398 }
1399 
1400 static const struct file_operations spufs_psmap_fops = {
1401 	.open	 = spufs_psmap_open,
1402 	.release = spufs_psmap_release,
1403 	.mmap	 = spufs_psmap_mmap,
1404 	.llseek  = no_llseek,
1405 };
1406 
1407 
1408 #if SPUFS_MMAP_4K
1409 static vm_fault_t
1410 spufs_mfc_mmap_fault(struct vm_fault *vmf)
1411 {
1412 	return spufs_ps_fault(vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1413 }
1414 
1415 static const struct vm_operations_struct spufs_mfc_mmap_vmops = {
1416 	.fault = spufs_mfc_mmap_fault,
1417 };
1418 
1419 /*
1420  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1421  */
1422 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1423 {
1424 	if (!(vma->vm_flags & VM_SHARED))
1425 		return -EINVAL;
1426 
1427 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1428 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1429 
1430 	vma->vm_ops = &spufs_mfc_mmap_vmops;
1431 	return 0;
1432 }
1433 #else /* SPUFS_MMAP_4K */
1434 #define spufs_mfc_mmap NULL
1435 #endif /* !SPUFS_MMAP_4K */
1436 
1437 static int spufs_mfc_open(struct inode *inode, struct file *file)
1438 {
1439 	struct spufs_inode_info *i = SPUFS_I(inode);
1440 	struct spu_context *ctx = i->i_ctx;
1441 
1442 	/* we don't want to deal with DMA into other processes */
1443 	if (ctx->owner != current->mm)
1444 		return -EINVAL;
1445 
1446 	if (atomic_read(&inode->i_count) != 1)
1447 		return -EBUSY;
1448 
1449 	mutex_lock(&ctx->mapping_lock);
1450 	file->private_data = ctx;
1451 	if (!i->i_openers++)
1452 		ctx->mfc = inode->i_mapping;
1453 	mutex_unlock(&ctx->mapping_lock);
1454 	return nonseekable_open(inode, file);
1455 }
1456 
1457 static int
1458 spufs_mfc_release(struct inode *inode, struct file *file)
1459 {
1460 	struct spufs_inode_info *i = SPUFS_I(inode);
1461 	struct spu_context *ctx = i->i_ctx;
1462 
1463 	mutex_lock(&ctx->mapping_lock);
1464 	if (!--i->i_openers)
1465 		ctx->mfc = NULL;
1466 	mutex_unlock(&ctx->mapping_lock);
1467 	return 0;
1468 }
1469 
1470 /* interrupt-level mfc callback function. */
1471 void spufs_mfc_callback(struct spu *spu)
1472 {
1473 	struct spu_context *ctx = spu->ctx;
1474 
1475 	if (ctx)
1476 		wake_up_all(&ctx->mfc_wq);
1477 }
1478 
1479 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1480 {
1481 	/* See if there is one tag group is complete */
1482 	/* FIXME we need locking around tagwait */
1483 	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1484 	ctx->tagwait &= ~*status;
1485 	if (*status)
1486 		return 1;
1487 
1488 	/* enable interrupt waiting for any tag group,
1489 	   may silently fail if interrupts are already enabled */
1490 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1491 	return 0;
1492 }
1493 
1494 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1495 			size_t size, loff_t *pos)
1496 {
1497 	struct spu_context *ctx = file->private_data;
1498 	int ret = -EINVAL;
1499 	u32 status;
1500 
1501 	if (size != 4)
1502 		goto out;
1503 
1504 	ret = spu_acquire(ctx);
1505 	if (ret)
1506 		return ret;
1507 
1508 	ret = -EINVAL;
1509 	if (file->f_flags & O_NONBLOCK) {
1510 		status = ctx->ops->read_mfc_tagstatus(ctx);
1511 		if (!(status & ctx->tagwait))
1512 			ret = -EAGAIN;
1513 		else
1514 			/* XXX(hch): shouldn't we clear ret here? */
1515 			ctx->tagwait &= ~status;
1516 	} else {
1517 		ret = spufs_wait(ctx->mfc_wq,
1518 			   spufs_read_mfc_tagstatus(ctx, &status));
1519 		if (ret)
1520 			goto out;
1521 	}
1522 	spu_release(ctx);
1523 
1524 	ret = 4;
1525 	if (copy_to_user(buffer, &status, 4))
1526 		ret = -EFAULT;
1527 
1528 out:
1529 	return ret;
1530 }
1531 
1532 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1533 {
1534 	pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa,
1535 		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1536 
1537 	switch (cmd->cmd) {
1538 	case MFC_PUT_CMD:
1539 	case MFC_PUTF_CMD:
1540 	case MFC_PUTB_CMD:
1541 	case MFC_GET_CMD:
1542 	case MFC_GETF_CMD:
1543 	case MFC_GETB_CMD:
1544 		break;
1545 	default:
1546 		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1547 		return -EIO;
1548 	}
1549 
1550 	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1551 		pr_debug("invalid DMA alignment, ea %llx lsa %x\n",
1552 				cmd->ea, cmd->lsa);
1553 		return -EIO;
1554 	}
1555 
1556 	switch (cmd->size & 0xf) {
1557 	case 1:
1558 		break;
1559 	case 2:
1560 		if (cmd->lsa & 1)
1561 			goto error;
1562 		break;
1563 	case 4:
1564 		if (cmd->lsa & 3)
1565 			goto error;
1566 		break;
1567 	case 8:
1568 		if (cmd->lsa & 7)
1569 			goto error;
1570 		break;
1571 	case 0:
1572 		if (cmd->lsa & 15)
1573 			goto error;
1574 		break;
1575 	error:
1576 	default:
1577 		pr_debug("invalid DMA alignment %x for size %x\n",
1578 			cmd->lsa & 0xf, cmd->size);
1579 		return -EIO;
1580 	}
1581 
1582 	if (cmd->size > 16 * 1024) {
1583 		pr_debug("invalid DMA size %x\n", cmd->size);
1584 		return -EIO;
1585 	}
1586 
1587 	if (cmd->tag & 0xfff0) {
1588 		/* we reserve the higher tag numbers for kernel use */
1589 		pr_debug("invalid DMA tag\n");
1590 		return -EIO;
1591 	}
1592 
1593 	if (cmd->class) {
1594 		/* not supported in this version */
1595 		pr_debug("invalid DMA class\n");
1596 		return -EIO;
1597 	}
1598 
1599 	return 0;
1600 }
1601 
1602 static int spu_send_mfc_command(struct spu_context *ctx,
1603 				struct mfc_dma_command cmd,
1604 				int *error)
1605 {
1606 	*error = ctx->ops->send_mfc_command(ctx, &cmd);
1607 	if (*error == -EAGAIN) {
1608 		/* wait for any tag group to complete
1609 		   so we have space for the new command */
1610 		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1611 		/* try again, because the queue might be
1612 		   empty again */
1613 		*error = ctx->ops->send_mfc_command(ctx, &cmd);
1614 		if (*error == -EAGAIN)
1615 			return 0;
1616 	}
1617 	return 1;
1618 }
1619 
1620 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1621 			size_t size, loff_t *pos)
1622 {
1623 	struct spu_context *ctx = file->private_data;
1624 	struct mfc_dma_command cmd;
1625 	int ret = -EINVAL;
1626 
1627 	if (size != sizeof cmd)
1628 		goto out;
1629 
1630 	ret = -EFAULT;
1631 	if (copy_from_user(&cmd, buffer, sizeof cmd))
1632 		goto out;
1633 
1634 	ret = spufs_check_valid_dma(&cmd);
1635 	if (ret)
1636 		goto out;
1637 
1638 	ret = spu_acquire(ctx);
1639 	if (ret)
1640 		goto out;
1641 
1642 	ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1643 	if (ret)
1644 		goto out;
1645 
1646 	if (file->f_flags & O_NONBLOCK) {
1647 		ret = ctx->ops->send_mfc_command(ctx, &cmd);
1648 	} else {
1649 		int status;
1650 		ret = spufs_wait(ctx->mfc_wq,
1651 				 spu_send_mfc_command(ctx, cmd, &status));
1652 		if (ret)
1653 			goto out;
1654 		if (status)
1655 			ret = status;
1656 	}
1657 
1658 	if (ret)
1659 		goto out_unlock;
1660 
1661 	ctx->tagwait |= 1 << cmd.tag;
1662 	ret = size;
1663 
1664 out_unlock:
1665 	spu_release(ctx);
1666 out:
1667 	return ret;
1668 }
1669 
1670 static __poll_t spufs_mfc_poll(struct file *file,poll_table *wait)
1671 {
1672 	struct spu_context *ctx = file->private_data;
1673 	u32 free_elements, tagstatus;
1674 	__poll_t mask;
1675 
1676 	poll_wait(file, &ctx->mfc_wq, wait);
1677 
1678 	/*
1679 	 * For now keep this uninterruptible and also ignore the rule
1680 	 * that poll should not sleep.  Will be fixed later.
1681 	 */
1682 	mutex_lock(&ctx->state_mutex);
1683 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1684 	free_elements = ctx->ops->get_mfc_free_elements(ctx);
1685 	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1686 	spu_release(ctx);
1687 
1688 	mask = 0;
1689 	if (free_elements & 0xffff)
1690 		mask |= EPOLLOUT | EPOLLWRNORM;
1691 	if (tagstatus & ctx->tagwait)
1692 		mask |= EPOLLIN | EPOLLRDNORM;
1693 
1694 	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1695 		free_elements, tagstatus, ctx->tagwait);
1696 
1697 	return mask;
1698 }
1699 
1700 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1701 {
1702 	struct spu_context *ctx = file->private_data;
1703 	int ret;
1704 
1705 	ret = spu_acquire(ctx);
1706 	if (ret)
1707 		goto out;
1708 #if 0
1709 /* this currently hangs */
1710 	ret = spufs_wait(ctx->mfc_wq,
1711 			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1712 	if (ret)
1713 		goto out;
1714 	ret = spufs_wait(ctx->mfc_wq,
1715 			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1716 	if (ret)
1717 		goto out;
1718 #else
1719 	ret = 0;
1720 #endif
1721 	spu_release(ctx);
1722 out:
1723 	return ret;
1724 }
1725 
1726 static int spufs_mfc_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1727 {
1728 	struct inode *inode = file_inode(file);
1729 	int err = file_write_and_wait_range(file, start, end);
1730 	if (!err) {
1731 		inode_lock(inode);
1732 		err = spufs_mfc_flush(file, NULL);
1733 		inode_unlock(inode);
1734 	}
1735 	return err;
1736 }
1737 
1738 static const struct file_operations spufs_mfc_fops = {
1739 	.open	 = spufs_mfc_open,
1740 	.release = spufs_mfc_release,
1741 	.read	 = spufs_mfc_read,
1742 	.write	 = spufs_mfc_write,
1743 	.poll	 = spufs_mfc_poll,
1744 	.flush	 = spufs_mfc_flush,
1745 	.fsync	 = spufs_mfc_fsync,
1746 	.mmap	 = spufs_mfc_mmap,
1747 	.llseek  = no_llseek,
1748 };
1749 
1750 static int spufs_npc_set(void *data, u64 val)
1751 {
1752 	struct spu_context *ctx = data;
1753 	int ret;
1754 
1755 	ret = spu_acquire(ctx);
1756 	if (ret)
1757 		return ret;
1758 	ctx->ops->npc_write(ctx, val);
1759 	spu_release(ctx);
1760 
1761 	return 0;
1762 }
1763 
1764 static u64 spufs_npc_get(struct spu_context *ctx)
1765 {
1766 	return ctx->ops->npc_read(ctx);
1767 }
1768 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1769 		       "0x%llx\n", SPU_ATTR_ACQUIRE);
1770 
1771 static int spufs_decr_set(void *data, u64 val)
1772 {
1773 	struct spu_context *ctx = data;
1774 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1775 	int ret;
1776 
1777 	ret = spu_acquire_saved(ctx);
1778 	if (ret)
1779 		return ret;
1780 	lscsa->decr.slot[0] = (u32) val;
1781 	spu_release_saved(ctx);
1782 
1783 	return 0;
1784 }
1785 
1786 static u64 spufs_decr_get(struct spu_context *ctx)
1787 {
1788 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1789 	return lscsa->decr.slot[0];
1790 }
1791 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1792 		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1793 
1794 static int spufs_decr_status_set(void *data, u64 val)
1795 {
1796 	struct spu_context *ctx = data;
1797 	int ret;
1798 
1799 	ret = spu_acquire_saved(ctx);
1800 	if (ret)
1801 		return ret;
1802 	if (val)
1803 		ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1804 	else
1805 		ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1806 	spu_release_saved(ctx);
1807 
1808 	return 0;
1809 }
1810 
1811 static u64 spufs_decr_status_get(struct spu_context *ctx)
1812 {
1813 	if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1814 		return SPU_DECR_STATUS_RUNNING;
1815 	else
1816 		return 0;
1817 }
1818 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1819 		       spufs_decr_status_set, "0x%llx\n",
1820 		       SPU_ATTR_ACQUIRE_SAVED);
1821 
1822 static int spufs_event_mask_set(void *data, u64 val)
1823 {
1824 	struct spu_context *ctx = data;
1825 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1826 	int ret;
1827 
1828 	ret = spu_acquire_saved(ctx);
1829 	if (ret)
1830 		return ret;
1831 	lscsa->event_mask.slot[0] = (u32) val;
1832 	spu_release_saved(ctx);
1833 
1834 	return 0;
1835 }
1836 
1837 static u64 spufs_event_mask_get(struct spu_context *ctx)
1838 {
1839 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1840 	return lscsa->event_mask.slot[0];
1841 }
1842 
1843 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1844 		       spufs_event_mask_set, "0x%llx\n",
1845 		       SPU_ATTR_ACQUIRE_SAVED);
1846 
1847 static u64 spufs_event_status_get(struct spu_context *ctx)
1848 {
1849 	struct spu_state *state = &ctx->csa;
1850 	u64 stat;
1851 	stat = state->spu_chnlcnt_RW[0];
1852 	if (stat)
1853 		return state->spu_chnldata_RW[0];
1854 	return 0;
1855 }
1856 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1857 		       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1858 
1859 static int spufs_srr0_set(void *data, u64 val)
1860 {
1861 	struct spu_context *ctx = data;
1862 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1863 	int ret;
1864 
1865 	ret = spu_acquire_saved(ctx);
1866 	if (ret)
1867 		return ret;
1868 	lscsa->srr0.slot[0] = (u32) val;
1869 	spu_release_saved(ctx);
1870 
1871 	return 0;
1872 }
1873 
1874 static u64 spufs_srr0_get(struct spu_context *ctx)
1875 {
1876 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1877 	return lscsa->srr0.slot[0];
1878 }
1879 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1880 		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1881 
1882 static u64 spufs_id_get(struct spu_context *ctx)
1883 {
1884 	u64 num;
1885 
1886 	if (ctx->state == SPU_STATE_RUNNABLE)
1887 		num = ctx->spu->number;
1888 	else
1889 		num = (unsigned int)-1;
1890 
1891 	return num;
1892 }
1893 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
1894 		       SPU_ATTR_ACQUIRE)
1895 
1896 static u64 spufs_object_id_get(struct spu_context *ctx)
1897 {
1898 	/* FIXME: Should there really be no locking here? */
1899 	return ctx->object_id;
1900 }
1901 
1902 static int spufs_object_id_set(void *data, u64 id)
1903 {
1904 	struct spu_context *ctx = data;
1905 	ctx->object_id = id;
1906 
1907 	return 0;
1908 }
1909 
1910 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
1911 		       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
1912 
1913 static u64 spufs_lslr_get(struct spu_context *ctx)
1914 {
1915 	return ctx->csa.priv2.spu_lslr_RW;
1916 }
1917 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
1918 		       SPU_ATTR_ACQUIRE_SAVED);
1919 
1920 static int spufs_info_open(struct inode *inode, struct file *file)
1921 {
1922 	struct spufs_inode_info *i = SPUFS_I(inode);
1923 	struct spu_context *ctx = i->i_ctx;
1924 	file->private_data = ctx;
1925 	return 0;
1926 }
1927 
1928 static int spufs_caps_show(struct seq_file *s, void *private)
1929 {
1930 	struct spu_context *ctx = s->private;
1931 
1932 	if (!(ctx->flags & SPU_CREATE_NOSCHED))
1933 		seq_puts(s, "sched\n");
1934 	if (!(ctx->flags & SPU_CREATE_ISOLATE))
1935 		seq_puts(s, "step\n");
1936 	return 0;
1937 }
1938 
1939 static int spufs_caps_open(struct inode *inode, struct file *file)
1940 {
1941 	return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
1942 }
1943 
1944 static const struct file_operations spufs_caps_fops = {
1945 	.open		= spufs_caps_open,
1946 	.read		= seq_read,
1947 	.llseek		= seq_lseek,
1948 	.release	= single_release,
1949 };
1950 
1951 static ssize_t spufs_mbox_info_dump(struct spu_context *ctx,
1952 		struct coredump_params *cprm)
1953 {
1954 	if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
1955 		return 0;
1956 	return spufs_dump_emit(cprm, &ctx->csa.prob.pu_mb_R,
1957 			       sizeof(ctx->csa.prob.pu_mb_R));
1958 }
1959 
1960 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
1961 				   size_t len, loff_t *pos)
1962 {
1963 	struct spu_context *ctx = file->private_data;
1964 	u32 stat, data;
1965 	int ret;
1966 
1967 	ret = spu_acquire_saved(ctx);
1968 	if (ret)
1969 		return ret;
1970 	spin_lock(&ctx->csa.register_lock);
1971 	stat = ctx->csa.prob.mb_stat_R;
1972 	data = ctx->csa.prob.pu_mb_R;
1973 	spin_unlock(&ctx->csa.register_lock);
1974 	spu_release_saved(ctx);
1975 
1976 	/* EOF if there's no entry in the mbox */
1977 	if (!(stat & 0x0000ff))
1978 		return 0;
1979 
1980 	return simple_read_from_buffer(buf, len, pos, &data, sizeof(data));
1981 }
1982 
1983 static const struct file_operations spufs_mbox_info_fops = {
1984 	.open = spufs_info_open,
1985 	.read = spufs_mbox_info_read,
1986 	.llseek  = generic_file_llseek,
1987 };
1988 
1989 static ssize_t spufs_ibox_info_dump(struct spu_context *ctx,
1990 		struct coredump_params *cprm)
1991 {
1992 	if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
1993 		return 0;
1994 	return spufs_dump_emit(cprm, &ctx->csa.priv2.puint_mb_R,
1995 			       sizeof(ctx->csa.priv2.puint_mb_R));
1996 }
1997 
1998 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
1999 				   size_t len, loff_t *pos)
2000 {
2001 	struct spu_context *ctx = file->private_data;
2002 	u32 stat, data;
2003 	int ret;
2004 
2005 	ret = spu_acquire_saved(ctx);
2006 	if (ret)
2007 		return ret;
2008 	spin_lock(&ctx->csa.register_lock);
2009 	stat = ctx->csa.prob.mb_stat_R;
2010 	data = ctx->csa.priv2.puint_mb_R;
2011 	spin_unlock(&ctx->csa.register_lock);
2012 	spu_release_saved(ctx);
2013 
2014 	/* EOF if there's no entry in the ibox */
2015 	if (!(stat & 0xff0000))
2016 		return 0;
2017 
2018 	return simple_read_from_buffer(buf, len, pos, &data, sizeof(data));
2019 }
2020 
2021 static const struct file_operations spufs_ibox_info_fops = {
2022 	.open = spufs_info_open,
2023 	.read = spufs_ibox_info_read,
2024 	.llseek  = generic_file_llseek,
2025 };
2026 
2027 static size_t spufs_wbox_info_cnt(struct spu_context *ctx)
2028 {
2029 	return (4 - ((ctx->csa.prob.mb_stat_R & 0x00ff00) >> 8)) * sizeof(u32);
2030 }
2031 
2032 static ssize_t spufs_wbox_info_dump(struct spu_context *ctx,
2033 		struct coredump_params *cprm)
2034 {
2035 	return spufs_dump_emit(cprm, &ctx->csa.spu_mailbox_data,
2036 			spufs_wbox_info_cnt(ctx));
2037 }
2038 
2039 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2040 				   size_t len, loff_t *pos)
2041 {
2042 	struct spu_context *ctx = file->private_data;
2043 	u32 data[ARRAY_SIZE(ctx->csa.spu_mailbox_data)];
2044 	int ret, count;
2045 
2046 	ret = spu_acquire_saved(ctx);
2047 	if (ret)
2048 		return ret;
2049 	spin_lock(&ctx->csa.register_lock);
2050 	count = spufs_wbox_info_cnt(ctx);
2051 	memcpy(&data, &ctx->csa.spu_mailbox_data, sizeof(data));
2052 	spin_unlock(&ctx->csa.register_lock);
2053 	spu_release_saved(ctx);
2054 
2055 	return simple_read_from_buffer(buf, len, pos, &data,
2056 				count * sizeof(u32));
2057 }
2058 
2059 static const struct file_operations spufs_wbox_info_fops = {
2060 	.open = spufs_info_open,
2061 	.read = spufs_wbox_info_read,
2062 	.llseek  = generic_file_llseek,
2063 };
2064 
2065 static void spufs_get_dma_info(struct spu_context *ctx,
2066 		struct spu_dma_info *info)
2067 {
2068 	int i;
2069 
2070 	info->dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2071 	info->dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2072 	info->dma_info_status = ctx->csa.spu_chnldata_RW[24];
2073 	info->dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2074 	info->dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2075 	for (i = 0; i < 16; i++) {
2076 		struct mfc_cq_sr *qp = &info->dma_info_command_data[i];
2077 		struct mfc_cq_sr *spuqp = &ctx->csa.priv2.spuq[i];
2078 
2079 		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2080 		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2081 		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2082 		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2083 	}
2084 }
2085 
2086 static ssize_t spufs_dma_info_dump(struct spu_context *ctx,
2087 		struct coredump_params *cprm)
2088 {
2089 	struct spu_dma_info info;
2090 
2091 	spufs_get_dma_info(ctx, &info);
2092 	return spufs_dump_emit(cprm, &info, sizeof(info));
2093 }
2094 
2095 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2096 			      size_t len, loff_t *pos)
2097 {
2098 	struct spu_context *ctx = file->private_data;
2099 	struct spu_dma_info info;
2100 	int ret;
2101 
2102 	ret = spu_acquire_saved(ctx);
2103 	if (ret)
2104 		return ret;
2105 	spin_lock(&ctx->csa.register_lock);
2106 	spufs_get_dma_info(ctx, &info);
2107 	spin_unlock(&ctx->csa.register_lock);
2108 	spu_release_saved(ctx);
2109 
2110 	return simple_read_from_buffer(buf, len, pos, &info,
2111 				sizeof(info));
2112 }
2113 
2114 static const struct file_operations spufs_dma_info_fops = {
2115 	.open = spufs_info_open,
2116 	.read = spufs_dma_info_read,
2117 	.llseek = no_llseek,
2118 };
2119 
2120 static void spufs_get_proxydma_info(struct spu_context *ctx,
2121 		struct spu_proxydma_info *info)
2122 {
2123 	int i;
2124 
2125 	info->proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2126 	info->proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2127 	info->proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2128 
2129 	for (i = 0; i < 8; i++) {
2130 		struct mfc_cq_sr *qp = &info->proxydma_info_command_data[i];
2131 		struct mfc_cq_sr *puqp = &ctx->csa.priv2.puq[i];
2132 
2133 		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2134 		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2135 		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2136 		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2137 	}
2138 }
2139 
2140 static ssize_t spufs_proxydma_info_dump(struct spu_context *ctx,
2141 		struct coredump_params *cprm)
2142 {
2143 	struct spu_proxydma_info info;
2144 
2145 	spufs_get_proxydma_info(ctx, &info);
2146 	return spufs_dump_emit(cprm, &info, sizeof(info));
2147 }
2148 
2149 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2150 				   size_t len, loff_t *pos)
2151 {
2152 	struct spu_context *ctx = file->private_data;
2153 	struct spu_proxydma_info info;
2154 	int ret;
2155 
2156 	if (len < sizeof(info))
2157 		return -EINVAL;
2158 
2159 	ret = spu_acquire_saved(ctx);
2160 	if (ret)
2161 		return ret;
2162 	spin_lock(&ctx->csa.register_lock);
2163 	spufs_get_proxydma_info(ctx, &info);
2164 	spin_unlock(&ctx->csa.register_lock);
2165 	spu_release_saved(ctx);
2166 
2167 	return simple_read_from_buffer(buf, len, pos, &info,
2168 				sizeof(info));
2169 }
2170 
2171 static const struct file_operations spufs_proxydma_info_fops = {
2172 	.open = spufs_info_open,
2173 	.read = spufs_proxydma_info_read,
2174 	.llseek = no_llseek,
2175 };
2176 
2177 static int spufs_show_tid(struct seq_file *s, void *private)
2178 {
2179 	struct spu_context *ctx = s->private;
2180 
2181 	seq_printf(s, "%d\n", ctx->tid);
2182 	return 0;
2183 }
2184 
2185 static int spufs_tid_open(struct inode *inode, struct file *file)
2186 {
2187 	return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2188 }
2189 
2190 static const struct file_operations spufs_tid_fops = {
2191 	.open		= spufs_tid_open,
2192 	.read		= seq_read,
2193 	.llseek		= seq_lseek,
2194 	.release	= single_release,
2195 };
2196 
2197 static const char *ctx_state_names[] = {
2198 	"user", "system", "iowait", "loaded"
2199 };
2200 
2201 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2202 		enum spu_utilization_state state)
2203 {
2204 	unsigned long long time = ctx->stats.times[state];
2205 
2206 	/*
2207 	 * In general, utilization statistics are updated by the controlling
2208 	 * thread as the spu context moves through various well defined
2209 	 * state transitions, but if the context is lazily loaded its
2210 	 * utilization statistics are not updated as the controlling thread
2211 	 * is not tightly coupled with the execution of the spu context.  We
2212 	 * calculate and apply the time delta from the last recorded state
2213 	 * of the spu context.
2214 	 */
2215 	if (ctx->spu && ctx->stats.util_state == state) {
2216 		time += ktime_get_ns() - ctx->stats.tstamp;
2217 	}
2218 
2219 	return time / NSEC_PER_MSEC;
2220 }
2221 
2222 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2223 {
2224 	unsigned long long slb_flts = ctx->stats.slb_flt;
2225 
2226 	if (ctx->state == SPU_STATE_RUNNABLE) {
2227 		slb_flts += (ctx->spu->stats.slb_flt -
2228 			     ctx->stats.slb_flt_base);
2229 	}
2230 
2231 	return slb_flts;
2232 }
2233 
2234 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2235 {
2236 	unsigned long long class2_intrs = ctx->stats.class2_intr;
2237 
2238 	if (ctx->state == SPU_STATE_RUNNABLE) {
2239 		class2_intrs += (ctx->spu->stats.class2_intr -
2240 				 ctx->stats.class2_intr_base);
2241 	}
2242 
2243 	return class2_intrs;
2244 }
2245 
2246 
2247 static int spufs_show_stat(struct seq_file *s, void *private)
2248 {
2249 	struct spu_context *ctx = s->private;
2250 	int ret;
2251 
2252 	ret = spu_acquire(ctx);
2253 	if (ret)
2254 		return ret;
2255 
2256 	seq_printf(s, "%s %llu %llu %llu %llu "
2257 		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2258 		ctx_state_names[ctx->stats.util_state],
2259 		spufs_acct_time(ctx, SPU_UTIL_USER),
2260 		spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2261 		spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2262 		spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2263 		ctx->stats.vol_ctx_switch,
2264 		ctx->stats.invol_ctx_switch,
2265 		spufs_slb_flts(ctx),
2266 		ctx->stats.hash_flt,
2267 		ctx->stats.min_flt,
2268 		ctx->stats.maj_flt,
2269 		spufs_class2_intrs(ctx),
2270 		ctx->stats.libassist);
2271 	spu_release(ctx);
2272 	return 0;
2273 }
2274 
2275 static int spufs_stat_open(struct inode *inode, struct file *file)
2276 {
2277 	return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2278 }
2279 
2280 static const struct file_operations spufs_stat_fops = {
2281 	.open		= spufs_stat_open,
2282 	.read		= seq_read,
2283 	.llseek		= seq_lseek,
2284 	.release	= single_release,
2285 };
2286 
2287 static inline int spufs_switch_log_used(struct spu_context *ctx)
2288 {
2289 	return (ctx->switch_log->head - ctx->switch_log->tail) %
2290 		SWITCH_LOG_BUFSIZE;
2291 }
2292 
2293 static inline int spufs_switch_log_avail(struct spu_context *ctx)
2294 {
2295 	return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
2296 }
2297 
2298 static int spufs_switch_log_open(struct inode *inode, struct file *file)
2299 {
2300 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2301 	int rc;
2302 
2303 	rc = spu_acquire(ctx);
2304 	if (rc)
2305 		return rc;
2306 
2307 	if (ctx->switch_log) {
2308 		rc = -EBUSY;
2309 		goto out;
2310 	}
2311 
2312 	ctx->switch_log = kmalloc(struct_size(ctx->switch_log, log,
2313 				  SWITCH_LOG_BUFSIZE), GFP_KERNEL);
2314 
2315 	if (!ctx->switch_log) {
2316 		rc = -ENOMEM;
2317 		goto out;
2318 	}
2319 
2320 	ctx->switch_log->head = ctx->switch_log->tail = 0;
2321 	init_waitqueue_head(&ctx->switch_log->wait);
2322 	rc = 0;
2323 
2324 out:
2325 	spu_release(ctx);
2326 	return rc;
2327 }
2328 
2329 static int spufs_switch_log_release(struct inode *inode, struct file *file)
2330 {
2331 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2332 	int rc;
2333 
2334 	rc = spu_acquire(ctx);
2335 	if (rc)
2336 		return rc;
2337 
2338 	kfree(ctx->switch_log);
2339 	ctx->switch_log = NULL;
2340 	spu_release(ctx);
2341 
2342 	return 0;
2343 }
2344 
2345 static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
2346 {
2347 	struct switch_log_entry *p;
2348 
2349 	p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;
2350 
2351 	return snprintf(tbuf, n, "%llu.%09u %d %u %u %llu\n",
2352 			(unsigned long long) p->tstamp.tv_sec,
2353 			(unsigned int) p->tstamp.tv_nsec,
2354 			p->spu_id,
2355 			(unsigned int) p->type,
2356 			(unsigned int) p->val,
2357 			(unsigned long long) p->timebase);
2358 }
2359 
2360 static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
2361 			     size_t len, loff_t *ppos)
2362 {
2363 	struct inode *inode = file_inode(file);
2364 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2365 	int error = 0, cnt = 0;
2366 
2367 	if (!buf)
2368 		return -EINVAL;
2369 
2370 	error = spu_acquire(ctx);
2371 	if (error)
2372 		return error;
2373 
2374 	while (cnt < len) {
2375 		char tbuf[128];
2376 		int width;
2377 
2378 		if (spufs_switch_log_used(ctx) == 0) {
2379 			if (cnt > 0) {
2380 				/* If there's data ready to go, we can
2381 				 * just return straight away */
2382 				break;
2383 
2384 			} else if (file->f_flags & O_NONBLOCK) {
2385 				error = -EAGAIN;
2386 				break;
2387 
2388 			} else {
2389 				/* spufs_wait will drop the mutex and
2390 				 * re-acquire, but since we're in read(), the
2391 				 * file cannot be _released (and so
2392 				 * ctx->switch_log is stable).
2393 				 */
2394 				error = spufs_wait(ctx->switch_log->wait,
2395 						spufs_switch_log_used(ctx) > 0);
2396 
2397 				/* On error, spufs_wait returns without the
2398 				 * state mutex held */
2399 				if (error)
2400 					return error;
2401 
2402 				/* We may have had entries read from underneath
2403 				 * us while we dropped the mutex in spufs_wait,
2404 				 * so re-check */
2405 				if (spufs_switch_log_used(ctx) == 0)
2406 					continue;
2407 			}
2408 		}
2409 
2410 		width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2411 		if (width < len)
2412 			ctx->switch_log->tail =
2413 				(ctx->switch_log->tail + 1) %
2414 				 SWITCH_LOG_BUFSIZE;
2415 		else
2416 			/* If the record is greater than space available return
2417 			 * partial buffer (so far) */
2418 			break;
2419 
2420 		error = copy_to_user(buf + cnt, tbuf, width);
2421 		if (error)
2422 			break;
2423 		cnt += width;
2424 	}
2425 
2426 	spu_release(ctx);
2427 
2428 	return cnt == 0 ? error : cnt;
2429 }
2430 
2431 static __poll_t spufs_switch_log_poll(struct file *file, poll_table *wait)
2432 {
2433 	struct inode *inode = file_inode(file);
2434 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2435 	__poll_t mask = 0;
2436 	int rc;
2437 
2438 	poll_wait(file, &ctx->switch_log->wait, wait);
2439 
2440 	rc = spu_acquire(ctx);
2441 	if (rc)
2442 		return rc;
2443 
2444 	if (spufs_switch_log_used(ctx) > 0)
2445 		mask |= EPOLLIN;
2446 
2447 	spu_release(ctx);
2448 
2449 	return mask;
2450 }
2451 
2452 static const struct file_operations spufs_switch_log_fops = {
2453 	.open		= spufs_switch_log_open,
2454 	.read		= spufs_switch_log_read,
2455 	.poll		= spufs_switch_log_poll,
2456 	.release	= spufs_switch_log_release,
2457 	.llseek		= no_llseek,
2458 };
2459 
2460 /**
2461  * Log a context switch event to a switch log reader.
2462  *
2463  * Must be called with ctx->state_mutex held.
2464  */
2465 void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
2466 		u32 type, u32 val)
2467 {
2468 	if (!ctx->switch_log)
2469 		return;
2470 
2471 	if (spufs_switch_log_avail(ctx) > 1) {
2472 		struct switch_log_entry *p;
2473 
2474 		p = ctx->switch_log->log + ctx->switch_log->head;
2475 		ktime_get_ts64(&p->tstamp);
2476 		p->timebase = get_tb();
2477 		p->spu_id = spu ? spu->number : -1;
2478 		p->type = type;
2479 		p->val = val;
2480 
2481 		ctx->switch_log->head =
2482 			(ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
2483 	}
2484 
2485 	wake_up(&ctx->switch_log->wait);
2486 }
2487 
2488 static int spufs_show_ctx(struct seq_file *s, void *private)
2489 {
2490 	struct spu_context *ctx = s->private;
2491 	u64 mfc_control_RW;
2492 
2493 	mutex_lock(&ctx->state_mutex);
2494 	if (ctx->spu) {
2495 		struct spu *spu = ctx->spu;
2496 		struct spu_priv2 __iomem *priv2 = spu->priv2;
2497 
2498 		spin_lock_irq(&spu->register_lock);
2499 		mfc_control_RW = in_be64(&priv2->mfc_control_RW);
2500 		spin_unlock_irq(&spu->register_lock);
2501 	} else {
2502 		struct spu_state *csa = &ctx->csa;
2503 
2504 		mfc_control_RW = csa->priv2.mfc_control_RW;
2505 	}
2506 
2507 	seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
2508 		" %c %llx %llx %llx %llx %x %x\n",
2509 		ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
2510 		ctx->flags,
2511 		ctx->sched_flags,
2512 		ctx->prio,
2513 		ctx->time_slice,
2514 		ctx->spu ? ctx->spu->number : -1,
2515 		!list_empty(&ctx->rq) ? 'q' : ' ',
2516 		ctx->csa.class_0_pending,
2517 		ctx->csa.class_0_dar,
2518 		ctx->csa.class_1_dsisr,
2519 		mfc_control_RW,
2520 		ctx->ops->runcntl_read(ctx),
2521 		ctx->ops->status_read(ctx));
2522 
2523 	mutex_unlock(&ctx->state_mutex);
2524 
2525 	return 0;
2526 }
2527 
2528 static int spufs_ctx_open(struct inode *inode, struct file *file)
2529 {
2530 	return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
2531 }
2532 
2533 static const struct file_operations spufs_ctx_fops = {
2534 	.open           = spufs_ctx_open,
2535 	.read           = seq_read,
2536 	.llseek         = seq_lseek,
2537 	.release        = single_release,
2538 };
2539 
2540 const struct spufs_tree_descr spufs_dir_contents[] = {
2541 	{ "capabilities", &spufs_caps_fops, 0444, },
2542 	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2543 	{ "regs", &spufs_regs_fops,  0666, sizeof(struct spu_reg128[128]), },
2544 	{ "mbox", &spufs_mbox_fops, 0444, },
2545 	{ "ibox", &spufs_ibox_fops, 0444, },
2546 	{ "wbox", &spufs_wbox_fops, 0222, },
2547 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2548 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2549 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2550 	{ "signal1", &spufs_signal1_fops, 0666, },
2551 	{ "signal2", &spufs_signal2_fops, 0666, },
2552 	{ "signal1_type", &spufs_signal1_type, 0666, },
2553 	{ "signal2_type", &spufs_signal2_type, 0666, },
2554 	{ "cntl", &spufs_cntl_fops,  0666, },
2555 	{ "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2556 	{ "lslr", &spufs_lslr_ops, 0444, },
2557 	{ "mfc", &spufs_mfc_fops, 0666, },
2558 	{ "mss", &spufs_mss_fops, 0666, },
2559 	{ "npc", &spufs_npc_ops, 0666, },
2560 	{ "srr0", &spufs_srr0_ops, 0666, },
2561 	{ "decr", &spufs_decr_ops, 0666, },
2562 	{ "decr_status", &spufs_decr_status_ops, 0666, },
2563 	{ "event_mask", &spufs_event_mask_ops, 0666, },
2564 	{ "event_status", &spufs_event_status_ops, 0444, },
2565 	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2566 	{ "phys-id", &spufs_id_ops, 0666, },
2567 	{ "object-id", &spufs_object_id_ops, 0666, },
2568 	{ "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
2569 	{ "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
2570 	{ "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
2571 	{ "dma_info", &spufs_dma_info_fops, 0444,
2572 		sizeof(struct spu_dma_info), },
2573 	{ "proxydma_info", &spufs_proxydma_info_fops, 0444,
2574 		sizeof(struct spu_proxydma_info)},
2575 	{ "tid", &spufs_tid_fops, 0444, },
2576 	{ "stat", &spufs_stat_fops, 0444, },
2577 	{ "switch_log", &spufs_switch_log_fops, 0444 },
2578 	{},
2579 };
2580 
2581 const struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2582 	{ "capabilities", &spufs_caps_fops, 0444, },
2583 	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2584 	{ "mbox", &spufs_mbox_fops, 0444, },
2585 	{ "ibox", &spufs_ibox_fops, 0444, },
2586 	{ "wbox", &spufs_wbox_fops, 0222, },
2587 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2588 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2589 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2590 	{ "signal1", &spufs_signal1_nosched_fops, 0222, },
2591 	{ "signal2", &spufs_signal2_nosched_fops, 0222, },
2592 	{ "signal1_type", &spufs_signal1_type, 0666, },
2593 	{ "signal2_type", &spufs_signal2_type, 0666, },
2594 	{ "mss", &spufs_mss_fops, 0666, },
2595 	{ "mfc", &spufs_mfc_fops, 0666, },
2596 	{ "cntl", &spufs_cntl_fops,  0666, },
2597 	{ "npc", &spufs_npc_ops, 0666, },
2598 	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2599 	{ "phys-id", &spufs_id_ops, 0666, },
2600 	{ "object-id", &spufs_object_id_ops, 0666, },
2601 	{ "tid", &spufs_tid_fops, 0444, },
2602 	{ "stat", &spufs_stat_fops, 0444, },
2603 	{},
2604 };
2605 
2606 const struct spufs_tree_descr spufs_dir_debug_contents[] = {
2607 	{ ".ctx", &spufs_ctx_fops, 0444, },
2608 	{},
2609 };
2610 
2611 const struct spufs_coredump_reader spufs_coredump_read[] = {
2612 	{ "regs", spufs_regs_dump, NULL, sizeof(struct spu_reg128[128])},
2613 	{ "fpcr", spufs_fpcr_dump, NULL, sizeof(struct spu_reg128) },
2614 	{ "lslr", NULL, spufs_lslr_get, 19 },
2615 	{ "decr", NULL, spufs_decr_get, 19 },
2616 	{ "decr_status", NULL, spufs_decr_status_get, 19 },
2617 	{ "mem", spufs_mem_dump, NULL, LS_SIZE, },
2618 	{ "signal1", spufs_signal1_dump, NULL, sizeof(u32) },
2619 	{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
2620 	{ "signal2", spufs_signal2_dump, NULL, sizeof(u32) },
2621 	{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
2622 	{ "event_mask", NULL, spufs_event_mask_get, 19 },
2623 	{ "event_status", NULL, spufs_event_status_get, 19 },
2624 	{ "mbox_info", spufs_mbox_info_dump, NULL, sizeof(u32) },
2625 	{ "ibox_info", spufs_ibox_info_dump, NULL, sizeof(u32) },
2626 	{ "wbox_info", spufs_wbox_info_dump, NULL, 4 * sizeof(u32)},
2627 	{ "dma_info", spufs_dma_info_dump, NULL, sizeof(struct spu_dma_info)},
2628 	{ "proxydma_info", spufs_proxydma_info_dump,
2629 			   NULL, sizeof(struct spu_proxydma_info)},
2630 	{ "object-id", NULL, spufs_object_id_get, 19 },
2631 	{ "npc", NULL, spufs_npc_get, 19 },
2632 	{ NULL },
2633 };
2634