1 /* 2 * SPU file system -- file contents 3 * 4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005 5 * 6 * Author: Arnd Bergmann <arndb@de.ibm.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2, or (at your option) 11 * any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #undef DEBUG 24 25 #include <linux/fs.h> 26 #include <linux/ioctl.h> 27 #include <linux/module.h> 28 #include <linux/pagemap.h> 29 #include <linux/poll.h> 30 #include <linux/ptrace.h> 31 #include <linux/seq_file.h> 32 #include <linux/slab.h> 33 34 #include <asm/io.h> 35 #include <asm/time.h> 36 #include <asm/spu.h> 37 #include <asm/spu_info.h> 38 #include <asm/uaccess.h> 39 40 #include "spufs.h" 41 #include "sputrace.h" 42 43 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000) 44 45 /* Simple attribute files */ 46 struct spufs_attr { 47 int (*get)(void *, u64 *); 48 int (*set)(void *, u64); 49 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 50 char set_buf[24]; 51 void *data; 52 const char *fmt; /* format for read operation */ 53 struct mutex mutex; /* protects access to these buffers */ 54 }; 55 56 static int spufs_attr_open(struct inode *inode, struct file *file, 57 int (*get)(void *, u64 *), int (*set)(void *, u64), 58 const char *fmt) 59 { 60 struct spufs_attr *attr; 61 62 attr = kmalloc(sizeof(*attr), GFP_KERNEL); 63 if (!attr) 64 return -ENOMEM; 65 66 attr->get = get; 67 attr->set = set; 68 attr->data = inode->i_private; 69 attr->fmt = fmt; 70 mutex_init(&attr->mutex); 71 file->private_data = attr; 72 73 return nonseekable_open(inode, file); 74 } 75 76 static int spufs_attr_release(struct inode *inode, struct file *file) 77 { 78 kfree(file->private_data); 79 return 0; 80 } 81 82 static ssize_t spufs_attr_read(struct file *file, char __user *buf, 83 size_t len, loff_t *ppos) 84 { 85 struct spufs_attr *attr; 86 size_t size; 87 ssize_t ret; 88 89 attr = file->private_data; 90 if (!attr->get) 91 return -EACCES; 92 93 ret = mutex_lock_interruptible(&attr->mutex); 94 if (ret) 95 return ret; 96 97 if (*ppos) { /* continued read */ 98 size = strlen(attr->get_buf); 99 } else { /* first read */ 100 u64 val; 101 ret = attr->get(attr->data, &val); 102 if (ret) 103 goto out; 104 105 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 106 attr->fmt, (unsigned long long)val); 107 } 108 109 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 110 out: 111 mutex_unlock(&attr->mutex); 112 return ret; 113 } 114 115 static ssize_t spufs_attr_write(struct file *file, const char __user *buf, 116 size_t len, loff_t *ppos) 117 { 118 struct spufs_attr *attr; 119 u64 val; 120 size_t size; 121 ssize_t ret; 122 123 attr = file->private_data; 124 if (!attr->set) 125 return -EACCES; 126 127 ret = mutex_lock_interruptible(&attr->mutex); 128 if (ret) 129 return ret; 130 131 ret = -EFAULT; 132 size = min(sizeof(attr->set_buf) - 1, len); 133 if (copy_from_user(attr->set_buf, buf, size)) 134 goto out; 135 136 ret = len; /* claim we got the whole input */ 137 attr->set_buf[size] = '\0'; 138 val = simple_strtol(attr->set_buf, NULL, 0); 139 attr->set(attr->data, val); 140 out: 141 mutex_unlock(&attr->mutex); 142 return ret; 143 } 144 145 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \ 146 static int __fops ## _open(struct inode *inode, struct file *file) \ 147 { \ 148 __simple_attr_check_format(__fmt, 0ull); \ 149 return spufs_attr_open(inode, file, __get, __set, __fmt); \ 150 } \ 151 static const struct file_operations __fops = { \ 152 .owner = THIS_MODULE, \ 153 .open = __fops ## _open, \ 154 .release = spufs_attr_release, \ 155 .read = spufs_attr_read, \ 156 .write = spufs_attr_write, \ 157 .llseek = generic_file_llseek, \ 158 }; 159 160 161 static int 162 spufs_mem_open(struct inode *inode, struct file *file) 163 { 164 struct spufs_inode_info *i = SPUFS_I(inode); 165 struct spu_context *ctx = i->i_ctx; 166 167 mutex_lock(&ctx->mapping_lock); 168 file->private_data = ctx; 169 if (!i->i_openers++) 170 ctx->local_store = inode->i_mapping; 171 mutex_unlock(&ctx->mapping_lock); 172 return 0; 173 } 174 175 static int 176 spufs_mem_release(struct inode *inode, struct file *file) 177 { 178 struct spufs_inode_info *i = SPUFS_I(inode); 179 struct spu_context *ctx = i->i_ctx; 180 181 mutex_lock(&ctx->mapping_lock); 182 if (!--i->i_openers) 183 ctx->local_store = NULL; 184 mutex_unlock(&ctx->mapping_lock); 185 return 0; 186 } 187 188 static ssize_t 189 __spufs_mem_read(struct spu_context *ctx, char __user *buffer, 190 size_t size, loff_t *pos) 191 { 192 char *local_store = ctx->ops->get_ls(ctx); 193 return simple_read_from_buffer(buffer, size, pos, local_store, 194 LS_SIZE); 195 } 196 197 static ssize_t 198 spufs_mem_read(struct file *file, char __user *buffer, 199 size_t size, loff_t *pos) 200 { 201 struct spu_context *ctx = file->private_data; 202 ssize_t ret; 203 204 ret = spu_acquire(ctx); 205 if (ret) 206 return ret; 207 ret = __spufs_mem_read(ctx, buffer, size, pos); 208 spu_release(ctx); 209 210 return ret; 211 } 212 213 static ssize_t 214 spufs_mem_write(struct file *file, const char __user *buffer, 215 size_t size, loff_t *ppos) 216 { 217 struct spu_context *ctx = file->private_data; 218 char *local_store; 219 loff_t pos = *ppos; 220 int ret; 221 222 if (pos > LS_SIZE) 223 return -EFBIG; 224 225 ret = spu_acquire(ctx); 226 if (ret) 227 return ret; 228 229 local_store = ctx->ops->get_ls(ctx); 230 size = simple_write_to_buffer(local_store, LS_SIZE, ppos, buffer, size); 231 spu_release(ctx); 232 233 return size; 234 } 235 236 static int 237 spufs_mem_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 238 { 239 struct spu_context *ctx = vma->vm_file->private_data; 240 unsigned long address = (unsigned long)vmf->virtual_address; 241 unsigned long pfn, offset; 242 243 #ifdef CONFIG_SPU_FS_64K_LS 244 struct spu_state *csa = &ctx->csa; 245 int psize; 246 247 /* Check what page size we are using */ 248 psize = get_slice_psize(vma->vm_mm, address); 249 250 /* Some sanity checking */ 251 BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K)); 252 253 /* Wow, 64K, cool, we need to align the address though */ 254 if (csa->use_big_pages) { 255 BUG_ON(vma->vm_start & 0xffff); 256 address &= ~0xfffful; 257 } 258 #endif /* CONFIG_SPU_FS_64K_LS */ 259 260 offset = vmf->pgoff << PAGE_SHIFT; 261 if (offset >= LS_SIZE) 262 return VM_FAULT_SIGBUS; 263 264 pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n", 265 address, offset); 266 267 if (spu_acquire(ctx)) 268 return VM_FAULT_NOPAGE; 269 270 if (ctx->state == SPU_STATE_SAVED) { 271 vma->vm_page_prot = pgprot_cached(vma->vm_page_prot); 272 pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset); 273 } else { 274 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot); 275 pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT; 276 } 277 vm_insert_pfn(vma, address, pfn); 278 279 spu_release(ctx); 280 281 return VM_FAULT_NOPAGE; 282 } 283 284 static int spufs_mem_mmap_access(struct vm_area_struct *vma, 285 unsigned long address, 286 void *buf, int len, int write) 287 { 288 struct spu_context *ctx = vma->vm_file->private_data; 289 unsigned long offset = address - vma->vm_start; 290 char *local_store; 291 292 if (write && !(vma->vm_flags & VM_WRITE)) 293 return -EACCES; 294 if (spu_acquire(ctx)) 295 return -EINTR; 296 if ((offset + len) > vma->vm_end) 297 len = vma->vm_end - offset; 298 local_store = ctx->ops->get_ls(ctx); 299 if (write) 300 memcpy_toio(local_store + offset, buf, len); 301 else 302 memcpy_fromio(buf, local_store + offset, len); 303 spu_release(ctx); 304 return len; 305 } 306 307 static const struct vm_operations_struct spufs_mem_mmap_vmops = { 308 .fault = spufs_mem_mmap_fault, 309 .access = spufs_mem_mmap_access, 310 }; 311 312 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma) 313 { 314 #ifdef CONFIG_SPU_FS_64K_LS 315 struct spu_context *ctx = file->private_data; 316 struct spu_state *csa = &ctx->csa; 317 318 /* Sanity check VMA alignment */ 319 if (csa->use_big_pages) { 320 pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx," 321 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end, 322 vma->vm_pgoff); 323 if (vma->vm_start & 0xffff) 324 return -EINVAL; 325 if (vma->vm_pgoff & 0xf) 326 return -EINVAL; 327 } 328 #endif /* CONFIG_SPU_FS_64K_LS */ 329 330 if (!(vma->vm_flags & VM_SHARED)) 331 return -EINVAL; 332 333 vma->vm_flags |= VM_IO | VM_PFNMAP; 334 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot); 335 336 vma->vm_ops = &spufs_mem_mmap_vmops; 337 return 0; 338 } 339 340 #ifdef CONFIG_SPU_FS_64K_LS 341 static unsigned long spufs_get_unmapped_area(struct file *file, 342 unsigned long addr, unsigned long len, unsigned long pgoff, 343 unsigned long flags) 344 { 345 struct spu_context *ctx = file->private_data; 346 struct spu_state *csa = &ctx->csa; 347 348 /* If not using big pages, fallback to normal MM g_u_a */ 349 if (!csa->use_big_pages) 350 return current->mm->get_unmapped_area(file, addr, len, 351 pgoff, flags); 352 353 /* Else, try to obtain a 64K pages slice */ 354 return slice_get_unmapped_area(addr, len, flags, 355 MMU_PAGE_64K, 1, 0); 356 } 357 #endif /* CONFIG_SPU_FS_64K_LS */ 358 359 static const struct file_operations spufs_mem_fops = { 360 .open = spufs_mem_open, 361 .release = spufs_mem_release, 362 .read = spufs_mem_read, 363 .write = spufs_mem_write, 364 .llseek = generic_file_llseek, 365 .mmap = spufs_mem_mmap, 366 #ifdef CONFIG_SPU_FS_64K_LS 367 .get_unmapped_area = spufs_get_unmapped_area, 368 #endif 369 }; 370 371 static int spufs_ps_fault(struct vm_area_struct *vma, 372 struct vm_fault *vmf, 373 unsigned long ps_offs, 374 unsigned long ps_size) 375 { 376 struct spu_context *ctx = vma->vm_file->private_data; 377 unsigned long area, offset = vmf->pgoff << PAGE_SHIFT; 378 int ret = 0; 379 380 spu_context_nospu_trace(spufs_ps_fault__enter, ctx); 381 382 if (offset >= ps_size) 383 return VM_FAULT_SIGBUS; 384 385 if (fatal_signal_pending(current)) 386 return VM_FAULT_SIGBUS; 387 388 /* 389 * Because we release the mmap_sem, the context may be destroyed while 390 * we're in spu_wait. Grab an extra reference so it isn't destroyed 391 * in the meantime. 392 */ 393 get_spu_context(ctx); 394 395 /* 396 * We have to wait for context to be loaded before we have 397 * pages to hand out to the user, but we don't want to wait 398 * with the mmap_sem held. 399 * It is possible to drop the mmap_sem here, but then we need 400 * to return VM_FAULT_NOPAGE because the mappings may have 401 * hanged. 402 */ 403 if (spu_acquire(ctx)) 404 goto refault; 405 406 if (ctx->state == SPU_STATE_SAVED) { 407 up_read(¤t->mm->mmap_sem); 408 spu_context_nospu_trace(spufs_ps_fault__sleep, ctx); 409 ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE); 410 spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu); 411 down_read(¤t->mm->mmap_sem); 412 } else { 413 area = ctx->spu->problem_phys + ps_offs; 414 vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, 415 (area + offset) >> PAGE_SHIFT); 416 spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu); 417 } 418 419 if (!ret) 420 spu_release(ctx); 421 422 refault: 423 put_spu_context(ctx); 424 return VM_FAULT_NOPAGE; 425 } 426 427 #if SPUFS_MMAP_4K 428 static int spufs_cntl_mmap_fault(struct vm_area_struct *vma, 429 struct vm_fault *vmf) 430 { 431 return spufs_ps_fault(vma, vmf, 0x4000, SPUFS_CNTL_MAP_SIZE); 432 } 433 434 static const struct vm_operations_struct spufs_cntl_mmap_vmops = { 435 .fault = spufs_cntl_mmap_fault, 436 }; 437 438 /* 439 * mmap support for problem state control area [0x4000 - 0x4fff]. 440 */ 441 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma) 442 { 443 if (!(vma->vm_flags & VM_SHARED)) 444 return -EINVAL; 445 446 vma->vm_flags |= VM_IO | VM_PFNMAP; 447 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 448 449 vma->vm_ops = &spufs_cntl_mmap_vmops; 450 return 0; 451 } 452 #else /* SPUFS_MMAP_4K */ 453 #define spufs_cntl_mmap NULL 454 #endif /* !SPUFS_MMAP_4K */ 455 456 static int spufs_cntl_get(void *data, u64 *val) 457 { 458 struct spu_context *ctx = data; 459 int ret; 460 461 ret = spu_acquire(ctx); 462 if (ret) 463 return ret; 464 *val = ctx->ops->status_read(ctx); 465 spu_release(ctx); 466 467 return 0; 468 } 469 470 static int spufs_cntl_set(void *data, u64 val) 471 { 472 struct spu_context *ctx = data; 473 int ret; 474 475 ret = spu_acquire(ctx); 476 if (ret) 477 return ret; 478 ctx->ops->runcntl_write(ctx, val); 479 spu_release(ctx); 480 481 return 0; 482 } 483 484 static int spufs_cntl_open(struct inode *inode, struct file *file) 485 { 486 struct spufs_inode_info *i = SPUFS_I(inode); 487 struct spu_context *ctx = i->i_ctx; 488 489 mutex_lock(&ctx->mapping_lock); 490 file->private_data = ctx; 491 if (!i->i_openers++) 492 ctx->cntl = inode->i_mapping; 493 mutex_unlock(&ctx->mapping_lock); 494 return simple_attr_open(inode, file, spufs_cntl_get, 495 spufs_cntl_set, "0x%08lx"); 496 } 497 498 static int 499 spufs_cntl_release(struct inode *inode, struct file *file) 500 { 501 struct spufs_inode_info *i = SPUFS_I(inode); 502 struct spu_context *ctx = i->i_ctx; 503 504 simple_attr_release(inode, file); 505 506 mutex_lock(&ctx->mapping_lock); 507 if (!--i->i_openers) 508 ctx->cntl = NULL; 509 mutex_unlock(&ctx->mapping_lock); 510 return 0; 511 } 512 513 static const struct file_operations spufs_cntl_fops = { 514 .open = spufs_cntl_open, 515 .release = spufs_cntl_release, 516 .read = simple_attr_read, 517 .write = simple_attr_write, 518 .llseek = generic_file_llseek, 519 .mmap = spufs_cntl_mmap, 520 }; 521 522 static int 523 spufs_regs_open(struct inode *inode, struct file *file) 524 { 525 struct spufs_inode_info *i = SPUFS_I(inode); 526 file->private_data = i->i_ctx; 527 return 0; 528 } 529 530 static ssize_t 531 __spufs_regs_read(struct spu_context *ctx, char __user *buffer, 532 size_t size, loff_t *pos) 533 { 534 struct spu_lscsa *lscsa = ctx->csa.lscsa; 535 return simple_read_from_buffer(buffer, size, pos, 536 lscsa->gprs, sizeof lscsa->gprs); 537 } 538 539 static ssize_t 540 spufs_regs_read(struct file *file, char __user *buffer, 541 size_t size, loff_t *pos) 542 { 543 int ret; 544 struct spu_context *ctx = file->private_data; 545 546 /* pre-check for file position: if we'd return EOF, there's no point 547 * causing a deschedule */ 548 if (*pos >= sizeof(ctx->csa.lscsa->gprs)) 549 return 0; 550 551 ret = spu_acquire_saved(ctx); 552 if (ret) 553 return ret; 554 ret = __spufs_regs_read(ctx, buffer, size, pos); 555 spu_release_saved(ctx); 556 return ret; 557 } 558 559 static ssize_t 560 spufs_regs_write(struct file *file, const char __user *buffer, 561 size_t size, loff_t *pos) 562 { 563 struct spu_context *ctx = file->private_data; 564 struct spu_lscsa *lscsa = ctx->csa.lscsa; 565 int ret; 566 567 if (*pos >= sizeof(lscsa->gprs)) 568 return -EFBIG; 569 570 ret = spu_acquire_saved(ctx); 571 if (ret) 572 return ret; 573 574 size = simple_write_to_buffer(lscsa->gprs, sizeof(lscsa->gprs), pos, 575 buffer, size); 576 577 spu_release_saved(ctx); 578 return size; 579 } 580 581 static const struct file_operations spufs_regs_fops = { 582 .open = spufs_regs_open, 583 .read = spufs_regs_read, 584 .write = spufs_regs_write, 585 .llseek = generic_file_llseek, 586 }; 587 588 static ssize_t 589 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer, 590 size_t size, loff_t * pos) 591 { 592 struct spu_lscsa *lscsa = ctx->csa.lscsa; 593 return simple_read_from_buffer(buffer, size, pos, 594 &lscsa->fpcr, sizeof(lscsa->fpcr)); 595 } 596 597 static ssize_t 598 spufs_fpcr_read(struct file *file, char __user * buffer, 599 size_t size, loff_t * pos) 600 { 601 int ret; 602 struct spu_context *ctx = file->private_data; 603 604 ret = spu_acquire_saved(ctx); 605 if (ret) 606 return ret; 607 ret = __spufs_fpcr_read(ctx, buffer, size, pos); 608 spu_release_saved(ctx); 609 return ret; 610 } 611 612 static ssize_t 613 spufs_fpcr_write(struct file *file, const char __user * buffer, 614 size_t size, loff_t * pos) 615 { 616 struct spu_context *ctx = file->private_data; 617 struct spu_lscsa *lscsa = ctx->csa.lscsa; 618 int ret; 619 620 if (*pos >= sizeof(lscsa->fpcr)) 621 return -EFBIG; 622 623 ret = spu_acquire_saved(ctx); 624 if (ret) 625 return ret; 626 627 size = simple_write_to_buffer(&lscsa->fpcr, sizeof(lscsa->fpcr), pos, 628 buffer, size); 629 630 spu_release_saved(ctx); 631 return size; 632 } 633 634 static const struct file_operations spufs_fpcr_fops = { 635 .open = spufs_regs_open, 636 .read = spufs_fpcr_read, 637 .write = spufs_fpcr_write, 638 .llseek = generic_file_llseek, 639 }; 640 641 /* generic open function for all pipe-like files */ 642 static int spufs_pipe_open(struct inode *inode, struct file *file) 643 { 644 struct spufs_inode_info *i = SPUFS_I(inode); 645 file->private_data = i->i_ctx; 646 647 return nonseekable_open(inode, file); 648 } 649 650 /* 651 * Read as many bytes from the mailbox as possible, until 652 * one of the conditions becomes true: 653 * 654 * - no more data available in the mailbox 655 * - end of the user provided buffer 656 * - end of the mapped area 657 */ 658 static ssize_t spufs_mbox_read(struct file *file, char __user *buf, 659 size_t len, loff_t *pos) 660 { 661 struct spu_context *ctx = file->private_data; 662 u32 mbox_data, __user *udata; 663 ssize_t count; 664 665 if (len < 4) 666 return -EINVAL; 667 668 if (!access_ok(VERIFY_WRITE, buf, len)) 669 return -EFAULT; 670 671 udata = (void __user *)buf; 672 673 count = spu_acquire(ctx); 674 if (count) 675 return count; 676 677 for (count = 0; (count + 4) <= len; count += 4, udata++) { 678 int ret; 679 ret = ctx->ops->mbox_read(ctx, &mbox_data); 680 if (ret == 0) 681 break; 682 683 /* 684 * at the end of the mapped area, we can fault 685 * but still need to return the data we have 686 * read successfully so far. 687 */ 688 ret = __put_user(mbox_data, udata); 689 if (ret) { 690 if (!count) 691 count = -EFAULT; 692 break; 693 } 694 } 695 spu_release(ctx); 696 697 if (!count) 698 count = -EAGAIN; 699 700 return count; 701 } 702 703 static const struct file_operations spufs_mbox_fops = { 704 .open = spufs_pipe_open, 705 .read = spufs_mbox_read, 706 .llseek = no_llseek, 707 }; 708 709 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf, 710 size_t len, loff_t *pos) 711 { 712 struct spu_context *ctx = file->private_data; 713 ssize_t ret; 714 u32 mbox_stat; 715 716 if (len < 4) 717 return -EINVAL; 718 719 ret = spu_acquire(ctx); 720 if (ret) 721 return ret; 722 723 mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff; 724 725 spu_release(ctx); 726 727 if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat)) 728 return -EFAULT; 729 730 return 4; 731 } 732 733 static const struct file_operations spufs_mbox_stat_fops = { 734 .open = spufs_pipe_open, 735 .read = spufs_mbox_stat_read, 736 .llseek = no_llseek, 737 }; 738 739 /* low-level ibox access function */ 740 size_t spu_ibox_read(struct spu_context *ctx, u32 *data) 741 { 742 return ctx->ops->ibox_read(ctx, data); 743 } 744 745 static int spufs_ibox_fasync(int fd, struct file *file, int on) 746 { 747 struct spu_context *ctx = file->private_data; 748 749 return fasync_helper(fd, file, on, &ctx->ibox_fasync); 750 } 751 752 /* interrupt-level ibox callback function. */ 753 void spufs_ibox_callback(struct spu *spu) 754 { 755 struct spu_context *ctx = spu->ctx; 756 757 if (!ctx) 758 return; 759 760 wake_up_all(&ctx->ibox_wq); 761 kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN); 762 } 763 764 /* 765 * Read as many bytes from the interrupt mailbox as possible, until 766 * one of the conditions becomes true: 767 * 768 * - no more data available in the mailbox 769 * - end of the user provided buffer 770 * - end of the mapped area 771 * 772 * If the file is opened without O_NONBLOCK, we wait here until 773 * any data is available, but return when we have been able to 774 * read something. 775 */ 776 static ssize_t spufs_ibox_read(struct file *file, char __user *buf, 777 size_t len, loff_t *pos) 778 { 779 struct spu_context *ctx = file->private_data; 780 u32 ibox_data, __user *udata; 781 ssize_t count; 782 783 if (len < 4) 784 return -EINVAL; 785 786 if (!access_ok(VERIFY_WRITE, buf, len)) 787 return -EFAULT; 788 789 udata = (void __user *)buf; 790 791 count = spu_acquire(ctx); 792 if (count) 793 goto out; 794 795 /* wait only for the first element */ 796 count = 0; 797 if (file->f_flags & O_NONBLOCK) { 798 if (!spu_ibox_read(ctx, &ibox_data)) { 799 count = -EAGAIN; 800 goto out_unlock; 801 } 802 } else { 803 count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data)); 804 if (count) 805 goto out; 806 } 807 808 /* if we can't write at all, return -EFAULT */ 809 count = __put_user(ibox_data, udata); 810 if (count) 811 goto out_unlock; 812 813 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) { 814 int ret; 815 ret = ctx->ops->ibox_read(ctx, &ibox_data); 816 if (ret == 0) 817 break; 818 /* 819 * at the end of the mapped area, we can fault 820 * but still need to return the data we have 821 * read successfully so far. 822 */ 823 ret = __put_user(ibox_data, udata); 824 if (ret) 825 break; 826 } 827 828 out_unlock: 829 spu_release(ctx); 830 out: 831 return count; 832 } 833 834 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait) 835 { 836 struct spu_context *ctx = file->private_data; 837 unsigned int mask; 838 839 poll_wait(file, &ctx->ibox_wq, wait); 840 841 /* 842 * For now keep this uninterruptible and also ignore the rule 843 * that poll should not sleep. Will be fixed later. 844 */ 845 mutex_lock(&ctx->state_mutex); 846 mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM); 847 spu_release(ctx); 848 849 return mask; 850 } 851 852 static const struct file_operations spufs_ibox_fops = { 853 .open = spufs_pipe_open, 854 .read = spufs_ibox_read, 855 .poll = spufs_ibox_poll, 856 .fasync = spufs_ibox_fasync, 857 .llseek = no_llseek, 858 }; 859 860 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf, 861 size_t len, loff_t *pos) 862 { 863 struct spu_context *ctx = file->private_data; 864 ssize_t ret; 865 u32 ibox_stat; 866 867 if (len < 4) 868 return -EINVAL; 869 870 ret = spu_acquire(ctx); 871 if (ret) 872 return ret; 873 ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff; 874 spu_release(ctx); 875 876 if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat)) 877 return -EFAULT; 878 879 return 4; 880 } 881 882 static const struct file_operations spufs_ibox_stat_fops = { 883 .open = spufs_pipe_open, 884 .read = spufs_ibox_stat_read, 885 .llseek = no_llseek, 886 }; 887 888 /* low-level mailbox write */ 889 size_t spu_wbox_write(struct spu_context *ctx, u32 data) 890 { 891 return ctx->ops->wbox_write(ctx, data); 892 } 893 894 static int spufs_wbox_fasync(int fd, struct file *file, int on) 895 { 896 struct spu_context *ctx = file->private_data; 897 int ret; 898 899 ret = fasync_helper(fd, file, on, &ctx->wbox_fasync); 900 901 return ret; 902 } 903 904 /* interrupt-level wbox callback function. */ 905 void spufs_wbox_callback(struct spu *spu) 906 { 907 struct spu_context *ctx = spu->ctx; 908 909 if (!ctx) 910 return; 911 912 wake_up_all(&ctx->wbox_wq); 913 kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT); 914 } 915 916 /* 917 * Write as many bytes to the interrupt mailbox as possible, until 918 * one of the conditions becomes true: 919 * 920 * - the mailbox is full 921 * - end of the user provided buffer 922 * - end of the mapped area 923 * 924 * If the file is opened without O_NONBLOCK, we wait here until 925 * space is availabyl, but return when we have been able to 926 * write something. 927 */ 928 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf, 929 size_t len, loff_t *pos) 930 { 931 struct spu_context *ctx = file->private_data; 932 u32 wbox_data, __user *udata; 933 ssize_t count; 934 935 if (len < 4) 936 return -EINVAL; 937 938 udata = (void __user *)buf; 939 if (!access_ok(VERIFY_READ, buf, len)) 940 return -EFAULT; 941 942 if (__get_user(wbox_data, udata)) 943 return -EFAULT; 944 945 count = spu_acquire(ctx); 946 if (count) 947 goto out; 948 949 /* 950 * make sure we can at least write one element, by waiting 951 * in case of !O_NONBLOCK 952 */ 953 count = 0; 954 if (file->f_flags & O_NONBLOCK) { 955 if (!spu_wbox_write(ctx, wbox_data)) { 956 count = -EAGAIN; 957 goto out_unlock; 958 } 959 } else { 960 count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data)); 961 if (count) 962 goto out; 963 } 964 965 966 /* write as much as possible */ 967 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) { 968 int ret; 969 ret = __get_user(wbox_data, udata); 970 if (ret) 971 break; 972 973 ret = spu_wbox_write(ctx, wbox_data); 974 if (ret == 0) 975 break; 976 } 977 978 out_unlock: 979 spu_release(ctx); 980 out: 981 return count; 982 } 983 984 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait) 985 { 986 struct spu_context *ctx = file->private_data; 987 unsigned int mask; 988 989 poll_wait(file, &ctx->wbox_wq, wait); 990 991 /* 992 * For now keep this uninterruptible and also ignore the rule 993 * that poll should not sleep. Will be fixed later. 994 */ 995 mutex_lock(&ctx->state_mutex); 996 mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM); 997 spu_release(ctx); 998 999 return mask; 1000 } 1001 1002 static const struct file_operations spufs_wbox_fops = { 1003 .open = spufs_pipe_open, 1004 .write = spufs_wbox_write, 1005 .poll = spufs_wbox_poll, 1006 .fasync = spufs_wbox_fasync, 1007 .llseek = no_llseek, 1008 }; 1009 1010 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf, 1011 size_t len, loff_t *pos) 1012 { 1013 struct spu_context *ctx = file->private_data; 1014 ssize_t ret; 1015 u32 wbox_stat; 1016 1017 if (len < 4) 1018 return -EINVAL; 1019 1020 ret = spu_acquire(ctx); 1021 if (ret) 1022 return ret; 1023 wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff; 1024 spu_release(ctx); 1025 1026 if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat)) 1027 return -EFAULT; 1028 1029 return 4; 1030 } 1031 1032 static const struct file_operations spufs_wbox_stat_fops = { 1033 .open = spufs_pipe_open, 1034 .read = spufs_wbox_stat_read, 1035 .llseek = no_llseek, 1036 }; 1037 1038 static int spufs_signal1_open(struct inode *inode, struct file *file) 1039 { 1040 struct spufs_inode_info *i = SPUFS_I(inode); 1041 struct spu_context *ctx = i->i_ctx; 1042 1043 mutex_lock(&ctx->mapping_lock); 1044 file->private_data = ctx; 1045 if (!i->i_openers++) 1046 ctx->signal1 = inode->i_mapping; 1047 mutex_unlock(&ctx->mapping_lock); 1048 return nonseekable_open(inode, file); 1049 } 1050 1051 static int 1052 spufs_signal1_release(struct inode *inode, struct file *file) 1053 { 1054 struct spufs_inode_info *i = SPUFS_I(inode); 1055 struct spu_context *ctx = i->i_ctx; 1056 1057 mutex_lock(&ctx->mapping_lock); 1058 if (!--i->i_openers) 1059 ctx->signal1 = NULL; 1060 mutex_unlock(&ctx->mapping_lock); 1061 return 0; 1062 } 1063 1064 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf, 1065 size_t len, loff_t *pos) 1066 { 1067 int ret = 0; 1068 u32 data; 1069 1070 if (len < 4) 1071 return -EINVAL; 1072 1073 if (ctx->csa.spu_chnlcnt_RW[3]) { 1074 data = ctx->csa.spu_chnldata_RW[3]; 1075 ret = 4; 1076 } 1077 1078 if (!ret) 1079 goto out; 1080 1081 if (copy_to_user(buf, &data, 4)) 1082 return -EFAULT; 1083 1084 out: 1085 return ret; 1086 } 1087 1088 static ssize_t spufs_signal1_read(struct file *file, char __user *buf, 1089 size_t len, loff_t *pos) 1090 { 1091 int ret; 1092 struct spu_context *ctx = file->private_data; 1093 1094 ret = spu_acquire_saved(ctx); 1095 if (ret) 1096 return ret; 1097 ret = __spufs_signal1_read(ctx, buf, len, pos); 1098 spu_release_saved(ctx); 1099 1100 return ret; 1101 } 1102 1103 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf, 1104 size_t len, loff_t *pos) 1105 { 1106 struct spu_context *ctx; 1107 ssize_t ret; 1108 u32 data; 1109 1110 ctx = file->private_data; 1111 1112 if (len < 4) 1113 return -EINVAL; 1114 1115 if (copy_from_user(&data, buf, 4)) 1116 return -EFAULT; 1117 1118 ret = spu_acquire(ctx); 1119 if (ret) 1120 return ret; 1121 ctx->ops->signal1_write(ctx, data); 1122 spu_release(ctx); 1123 1124 return 4; 1125 } 1126 1127 static int 1128 spufs_signal1_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1129 { 1130 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000 1131 return spufs_ps_fault(vma, vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE); 1132 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000 1133 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole 1134 * signal 1 and 2 area 1135 */ 1136 return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE); 1137 #else 1138 #error unsupported page size 1139 #endif 1140 } 1141 1142 static const struct vm_operations_struct spufs_signal1_mmap_vmops = { 1143 .fault = spufs_signal1_mmap_fault, 1144 }; 1145 1146 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma) 1147 { 1148 if (!(vma->vm_flags & VM_SHARED)) 1149 return -EINVAL; 1150 1151 vma->vm_flags |= VM_IO | VM_PFNMAP; 1152 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1153 1154 vma->vm_ops = &spufs_signal1_mmap_vmops; 1155 return 0; 1156 } 1157 1158 static const struct file_operations spufs_signal1_fops = { 1159 .open = spufs_signal1_open, 1160 .release = spufs_signal1_release, 1161 .read = spufs_signal1_read, 1162 .write = spufs_signal1_write, 1163 .mmap = spufs_signal1_mmap, 1164 .llseek = no_llseek, 1165 }; 1166 1167 static const struct file_operations spufs_signal1_nosched_fops = { 1168 .open = spufs_signal1_open, 1169 .release = spufs_signal1_release, 1170 .write = spufs_signal1_write, 1171 .mmap = spufs_signal1_mmap, 1172 .llseek = no_llseek, 1173 }; 1174 1175 static int spufs_signal2_open(struct inode *inode, struct file *file) 1176 { 1177 struct spufs_inode_info *i = SPUFS_I(inode); 1178 struct spu_context *ctx = i->i_ctx; 1179 1180 mutex_lock(&ctx->mapping_lock); 1181 file->private_data = ctx; 1182 if (!i->i_openers++) 1183 ctx->signal2 = inode->i_mapping; 1184 mutex_unlock(&ctx->mapping_lock); 1185 return nonseekable_open(inode, file); 1186 } 1187 1188 static int 1189 spufs_signal2_release(struct inode *inode, struct file *file) 1190 { 1191 struct spufs_inode_info *i = SPUFS_I(inode); 1192 struct spu_context *ctx = i->i_ctx; 1193 1194 mutex_lock(&ctx->mapping_lock); 1195 if (!--i->i_openers) 1196 ctx->signal2 = NULL; 1197 mutex_unlock(&ctx->mapping_lock); 1198 return 0; 1199 } 1200 1201 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf, 1202 size_t len, loff_t *pos) 1203 { 1204 int ret = 0; 1205 u32 data; 1206 1207 if (len < 4) 1208 return -EINVAL; 1209 1210 if (ctx->csa.spu_chnlcnt_RW[4]) { 1211 data = ctx->csa.spu_chnldata_RW[4]; 1212 ret = 4; 1213 } 1214 1215 if (!ret) 1216 goto out; 1217 1218 if (copy_to_user(buf, &data, 4)) 1219 return -EFAULT; 1220 1221 out: 1222 return ret; 1223 } 1224 1225 static ssize_t spufs_signal2_read(struct file *file, char __user *buf, 1226 size_t len, loff_t *pos) 1227 { 1228 struct spu_context *ctx = file->private_data; 1229 int ret; 1230 1231 ret = spu_acquire_saved(ctx); 1232 if (ret) 1233 return ret; 1234 ret = __spufs_signal2_read(ctx, buf, len, pos); 1235 spu_release_saved(ctx); 1236 1237 return ret; 1238 } 1239 1240 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf, 1241 size_t len, loff_t *pos) 1242 { 1243 struct spu_context *ctx; 1244 ssize_t ret; 1245 u32 data; 1246 1247 ctx = file->private_data; 1248 1249 if (len < 4) 1250 return -EINVAL; 1251 1252 if (copy_from_user(&data, buf, 4)) 1253 return -EFAULT; 1254 1255 ret = spu_acquire(ctx); 1256 if (ret) 1257 return ret; 1258 ctx->ops->signal2_write(ctx, data); 1259 spu_release(ctx); 1260 1261 return 4; 1262 } 1263 1264 #if SPUFS_MMAP_4K 1265 static int 1266 spufs_signal2_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1267 { 1268 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000 1269 return spufs_ps_fault(vma, vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE); 1270 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000 1271 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole 1272 * signal 1 and 2 area 1273 */ 1274 return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE); 1275 #else 1276 #error unsupported page size 1277 #endif 1278 } 1279 1280 static const struct vm_operations_struct spufs_signal2_mmap_vmops = { 1281 .fault = spufs_signal2_mmap_fault, 1282 }; 1283 1284 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma) 1285 { 1286 if (!(vma->vm_flags & VM_SHARED)) 1287 return -EINVAL; 1288 1289 vma->vm_flags |= VM_IO | VM_PFNMAP; 1290 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1291 1292 vma->vm_ops = &spufs_signal2_mmap_vmops; 1293 return 0; 1294 } 1295 #else /* SPUFS_MMAP_4K */ 1296 #define spufs_signal2_mmap NULL 1297 #endif /* !SPUFS_MMAP_4K */ 1298 1299 static const struct file_operations spufs_signal2_fops = { 1300 .open = spufs_signal2_open, 1301 .release = spufs_signal2_release, 1302 .read = spufs_signal2_read, 1303 .write = spufs_signal2_write, 1304 .mmap = spufs_signal2_mmap, 1305 .llseek = no_llseek, 1306 }; 1307 1308 static const struct file_operations spufs_signal2_nosched_fops = { 1309 .open = spufs_signal2_open, 1310 .release = spufs_signal2_release, 1311 .write = spufs_signal2_write, 1312 .mmap = spufs_signal2_mmap, 1313 .llseek = no_llseek, 1314 }; 1315 1316 /* 1317 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the 1318 * work of acquiring (or not) the SPU context before calling through 1319 * to the actual get routine. The set routine is called directly. 1320 */ 1321 #define SPU_ATTR_NOACQUIRE 0 1322 #define SPU_ATTR_ACQUIRE 1 1323 #define SPU_ATTR_ACQUIRE_SAVED 2 1324 1325 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire) \ 1326 static int __##__get(void *data, u64 *val) \ 1327 { \ 1328 struct spu_context *ctx = data; \ 1329 int ret = 0; \ 1330 \ 1331 if (__acquire == SPU_ATTR_ACQUIRE) { \ 1332 ret = spu_acquire(ctx); \ 1333 if (ret) \ 1334 return ret; \ 1335 *val = __get(ctx); \ 1336 spu_release(ctx); \ 1337 } else if (__acquire == SPU_ATTR_ACQUIRE_SAVED) { \ 1338 ret = spu_acquire_saved(ctx); \ 1339 if (ret) \ 1340 return ret; \ 1341 *val = __get(ctx); \ 1342 spu_release_saved(ctx); \ 1343 } else \ 1344 *val = __get(ctx); \ 1345 \ 1346 return 0; \ 1347 } \ 1348 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt); 1349 1350 static int spufs_signal1_type_set(void *data, u64 val) 1351 { 1352 struct spu_context *ctx = data; 1353 int ret; 1354 1355 ret = spu_acquire(ctx); 1356 if (ret) 1357 return ret; 1358 ctx->ops->signal1_type_set(ctx, val); 1359 spu_release(ctx); 1360 1361 return 0; 1362 } 1363 1364 static u64 spufs_signal1_type_get(struct spu_context *ctx) 1365 { 1366 return ctx->ops->signal1_type_get(ctx); 1367 } 1368 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get, 1369 spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE); 1370 1371 1372 static int spufs_signal2_type_set(void *data, u64 val) 1373 { 1374 struct spu_context *ctx = data; 1375 int ret; 1376 1377 ret = spu_acquire(ctx); 1378 if (ret) 1379 return ret; 1380 ctx->ops->signal2_type_set(ctx, val); 1381 spu_release(ctx); 1382 1383 return 0; 1384 } 1385 1386 static u64 spufs_signal2_type_get(struct spu_context *ctx) 1387 { 1388 return ctx->ops->signal2_type_get(ctx); 1389 } 1390 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get, 1391 spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE); 1392 1393 #if SPUFS_MMAP_4K 1394 static int 1395 spufs_mss_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1396 { 1397 return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_MSS_MAP_SIZE); 1398 } 1399 1400 static const struct vm_operations_struct spufs_mss_mmap_vmops = { 1401 .fault = spufs_mss_mmap_fault, 1402 }; 1403 1404 /* 1405 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff]. 1406 */ 1407 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma) 1408 { 1409 if (!(vma->vm_flags & VM_SHARED)) 1410 return -EINVAL; 1411 1412 vma->vm_flags |= VM_IO | VM_PFNMAP; 1413 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1414 1415 vma->vm_ops = &spufs_mss_mmap_vmops; 1416 return 0; 1417 } 1418 #else /* SPUFS_MMAP_4K */ 1419 #define spufs_mss_mmap NULL 1420 #endif /* !SPUFS_MMAP_4K */ 1421 1422 static int spufs_mss_open(struct inode *inode, struct file *file) 1423 { 1424 struct spufs_inode_info *i = SPUFS_I(inode); 1425 struct spu_context *ctx = i->i_ctx; 1426 1427 file->private_data = i->i_ctx; 1428 1429 mutex_lock(&ctx->mapping_lock); 1430 if (!i->i_openers++) 1431 ctx->mss = inode->i_mapping; 1432 mutex_unlock(&ctx->mapping_lock); 1433 return nonseekable_open(inode, file); 1434 } 1435 1436 static int 1437 spufs_mss_release(struct inode *inode, struct file *file) 1438 { 1439 struct spufs_inode_info *i = SPUFS_I(inode); 1440 struct spu_context *ctx = i->i_ctx; 1441 1442 mutex_lock(&ctx->mapping_lock); 1443 if (!--i->i_openers) 1444 ctx->mss = NULL; 1445 mutex_unlock(&ctx->mapping_lock); 1446 return 0; 1447 } 1448 1449 static const struct file_operations spufs_mss_fops = { 1450 .open = spufs_mss_open, 1451 .release = spufs_mss_release, 1452 .mmap = spufs_mss_mmap, 1453 .llseek = no_llseek, 1454 }; 1455 1456 static int 1457 spufs_psmap_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1458 { 1459 return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_PS_MAP_SIZE); 1460 } 1461 1462 static const struct vm_operations_struct spufs_psmap_mmap_vmops = { 1463 .fault = spufs_psmap_mmap_fault, 1464 }; 1465 1466 /* 1467 * mmap support for full problem state area [0x00000 - 0x1ffff]. 1468 */ 1469 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma) 1470 { 1471 if (!(vma->vm_flags & VM_SHARED)) 1472 return -EINVAL; 1473 1474 vma->vm_flags |= VM_IO | VM_PFNMAP; 1475 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1476 1477 vma->vm_ops = &spufs_psmap_mmap_vmops; 1478 return 0; 1479 } 1480 1481 static int spufs_psmap_open(struct inode *inode, struct file *file) 1482 { 1483 struct spufs_inode_info *i = SPUFS_I(inode); 1484 struct spu_context *ctx = i->i_ctx; 1485 1486 mutex_lock(&ctx->mapping_lock); 1487 file->private_data = i->i_ctx; 1488 if (!i->i_openers++) 1489 ctx->psmap = inode->i_mapping; 1490 mutex_unlock(&ctx->mapping_lock); 1491 return nonseekable_open(inode, file); 1492 } 1493 1494 static int 1495 spufs_psmap_release(struct inode *inode, struct file *file) 1496 { 1497 struct spufs_inode_info *i = SPUFS_I(inode); 1498 struct spu_context *ctx = i->i_ctx; 1499 1500 mutex_lock(&ctx->mapping_lock); 1501 if (!--i->i_openers) 1502 ctx->psmap = NULL; 1503 mutex_unlock(&ctx->mapping_lock); 1504 return 0; 1505 } 1506 1507 static const struct file_operations spufs_psmap_fops = { 1508 .open = spufs_psmap_open, 1509 .release = spufs_psmap_release, 1510 .mmap = spufs_psmap_mmap, 1511 .llseek = no_llseek, 1512 }; 1513 1514 1515 #if SPUFS_MMAP_4K 1516 static int 1517 spufs_mfc_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1518 { 1519 return spufs_ps_fault(vma, vmf, 0x3000, SPUFS_MFC_MAP_SIZE); 1520 } 1521 1522 static const struct vm_operations_struct spufs_mfc_mmap_vmops = { 1523 .fault = spufs_mfc_mmap_fault, 1524 }; 1525 1526 /* 1527 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff]. 1528 */ 1529 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma) 1530 { 1531 if (!(vma->vm_flags & VM_SHARED)) 1532 return -EINVAL; 1533 1534 vma->vm_flags |= VM_IO | VM_PFNMAP; 1535 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1536 1537 vma->vm_ops = &spufs_mfc_mmap_vmops; 1538 return 0; 1539 } 1540 #else /* SPUFS_MMAP_4K */ 1541 #define spufs_mfc_mmap NULL 1542 #endif /* !SPUFS_MMAP_4K */ 1543 1544 static int spufs_mfc_open(struct inode *inode, struct file *file) 1545 { 1546 struct spufs_inode_info *i = SPUFS_I(inode); 1547 struct spu_context *ctx = i->i_ctx; 1548 1549 /* we don't want to deal with DMA into other processes */ 1550 if (ctx->owner != current->mm) 1551 return -EINVAL; 1552 1553 if (atomic_read(&inode->i_count) != 1) 1554 return -EBUSY; 1555 1556 mutex_lock(&ctx->mapping_lock); 1557 file->private_data = ctx; 1558 if (!i->i_openers++) 1559 ctx->mfc = inode->i_mapping; 1560 mutex_unlock(&ctx->mapping_lock); 1561 return nonseekable_open(inode, file); 1562 } 1563 1564 static int 1565 spufs_mfc_release(struct inode *inode, struct file *file) 1566 { 1567 struct spufs_inode_info *i = SPUFS_I(inode); 1568 struct spu_context *ctx = i->i_ctx; 1569 1570 mutex_lock(&ctx->mapping_lock); 1571 if (!--i->i_openers) 1572 ctx->mfc = NULL; 1573 mutex_unlock(&ctx->mapping_lock); 1574 return 0; 1575 } 1576 1577 /* interrupt-level mfc callback function. */ 1578 void spufs_mfc_callback(struct spu *spu) 1579 { 1580 struct spu_context *ctx = spu->ctx; 1581 1582 if (!ctx) 1583 return; 1584 1585 wake_up_all(&ctx->mfc_wq); 1586 1587 pr_debug("%s %s\n", __func__, spu->name); 1588 if (ctx->mfc_fasync) { 1589 u32 free_elements, tagstatus; 1590 unsigned int mask; 1591 1592 /* no need for spu_acquire in interrupt context */ 1593 free_elements = ctx->ops->get_mfc_free_elements(ctx); 1594 tagstatus = ctx->ops->read_mfc_tagstatus(ctx); 1595 1596 mask = 0; 1597 if (free_elements & 0xffff) 1598 mask |= POLLOUT; 1599 if (tagstatus & ctx->tagwait) 1600 mask |= POLLIN; 1601 1602 kill_fasync(&ctx->mfc_fasync, SIGIO, mask); 1603 } 1604 } 1605 1606 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status) 1607 { 1608 /* See if there is one tag group is complete */ 1609 /* FIXME we need locking around tagwait */ 1610 *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait; 1611 ctx->tagwait &= ~*status; 1612 if (*status) 1613 return 1; 1614 1615 /* enable interrupt waiting for any tag group, 1616 may silently fail if interrupts are already enabled */ 1617 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1); 1618 return 0; 1619 } 1620 1621 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer, 1622 size_t size, loff_t *pos) 1623 { 1624 struct spu_context *ctx = file->private_data; 1625 int ret = -EINVAL; 1626 u32 status; 1627 1628 if (size != 4) 1629 goto out; 1630 1631 ret = spu_acquire(ctx); 1632 if (ret) 1633 return ret; 1634 1635 ret = -EINVAL; 1636 if (file->f_flags & O_NONBLOCK) { 1637 status = ctx->ops->read_mfc_tagstatus(ctx); 1638 if (!(status & ctx->tagwait)) 1639 ret = -EAGAIN; 1640 else 1641 /* XXX(hch): shouldn't we clear ret here? */ 1642 ctx->tagwait &= ~status; 1643 } else { 1644 ret = spufs_wait(ctx->mfc_wq, 1645 spufs_read_mfc_tagstatus(ctx, &status)); 1646 if (ret) 1647 goto out; 1648 } 1649 spu_release(ctx); 1650 1651 ret = 4; 1652 if (copy_to_user(buffer, &status, 4)) 1653 ret = -EFAULT; 1654 1655 out: 1656 return ret; 1657 } 1658 1659 static int spufs_check_valid_dma(struct mfc_dma_command *cmd) 1660 { 1661 pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa, 1662 cmd->ea, cmd->size, cmd->tag, cmd->cmd); 1663 1664 switch (cmd->cmd) { 1665 case MFC_PUT_CMD: 1666 case MFC_PUTF_CMD: 1667 case MFC_PUTB_CMD: 1668 case MFC_GET_CMD: 1669 case MFC_GETF_CMD: 1670 case MFC_GETB_CMD: 1671 break; 1672 default: 1673 pr_debug("invalid DMA opcode %x\n", cmd->cmd); 1674 return -EIO; 1675 } 1676 1677 if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) { 1678 pr_debug("invalid DMA alignment, ea %llx lsa %x\n", 1679 cmd->ea, cmd->lsa); 1680 return -EIO; 1681 } 1682 1683 switch (cmd->size & 0xf) { 1684 case 1: 1685 break; 1686 case 2: 1687 if (cmd->lsa & 1) 1688 goto error; 1689 break; 1690 case 4: 1691 if (cmd->lsa & 3) 1692 goto error; 1693 break; 1694 case 8: 1695 if (cmd->lsa & 7) 1696 goto error; 1697 break; 1698 case 0: 1699 if (cmd->lsa & 15) 1700 goto error; 1701 break; 1702 error: 1703 default: 1704 pr_debug("invalid DMA alignment %x for size %x\n", 1705 cmd->lsa & 0xf, cmd->size); 1706 return -EIO; 1707 } 1708 1709 if (cmd->size > 16 * 1024) { 1710 pr_debug("invalid DMA size %x\n", cmd->size); 1711 return -EIO; 1712 } 1713 1714 if (cmd->tag & 0xfff0) { 1715 /* we reserve the higher tag numbers for kernel use */ 1716 pr_debug("invalid DMA tag\n"); 1717 return -EIO; 1718 } 1719 1720 if (cmd->class) { 1721 /* not supported in this version */ 1722 pr_debug("invalid DMA class\n"); 1723 return -EIO; 1724 } 1725 1726 return 0; 1727 } 1728 1729 static int spu_send_mfc_command(struct spu_context *ctx, 1730 struct mfc_dma_command cmd, 1731 int *error) 1732 { 1733 *error = ctx->ops->send_mfc_command(ctx, &cmd); 1734 if (*error == -EAGAIN) { 1735 /* wait for any tag group to complete 1736 so we have space for the new command */ 1737 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1); 1738 /* try again, because the queue might be 1739 empty again */ 1740 *error = ctx->ops->send_mfc_command(ctx, &cmd); 1741 if (*error == -EAGAIN) 1742 return 0; 1743 } 1744 return 1; 1745 } 1746 1747 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer, 1748 size_t size, loff_t *pos) 1749 { 1750 struct spu_context *ctx = file->private_data; 1751 struct mfc_dma_command cmd; 1752 int ret = -EINVAL; 1753 1754 if (size != sizeof cmd) 1755 goto out; 1756 1757 ret = -EFAULT; 1758 if (copy_from_user(&cmd, buffer, sizeof cmd)) 1759 goto out; 1760 1761 ret = spufs_check_valid_dma(&cmd); 1762 if (ret) 1763 goto out; 1764 1765 ret = spu_acquire(ctx); 1766 if (ret) 1767 goto out; 1768 1769 ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE); 1770 if (ret) 1771 goto out; 1772 1773 if (file->f_flags & O_NONBLOCK) { 1774 ret = ctx->ops->send_mfc_command(ctx, &cmd); 1775 } else { 1776 int status; 1777 ret = spufs_wait(ctx->mfc_wq, 1778 spu_send_mfc_command(ctx, cmd, &status)); 1779 if (ret) 1780 goto out; 1781 if (status) 1782 ret = status; 1783 } 1784 1785 if (ret) 1786 goto out_unlock; 1787 1788 ctx->tagwait |= 1 << cmd.tag; 1789 ret = size; 1790 1791 out_unlock: 1792 spu_release(ctx); 1793 out: 1794 return ret; 1795 } 1796 1797 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait) 1798 { 1799 struct spu_context *ctx = file->private_data; 1800 u32 free_elements, tagstatus; 1801 unsigned int mask; 1802 1803 poll_wait(file, &ctx->mfc_wq, wait); 1804 1805 /* 1806 * For now keep this uninterruptible and also ignore the rule 1807 * that poll should not sleep. Will be fixed later. 1808 */ 1809 mutex_lock(&ctx->state_mutex); 1810 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2); 1811 free_elements = ctx->ops->get_mfc_free_elements(ctx); 1812 tagstatus = ctx->ops->read_mfc_tagstatus(ctx); 1813 spu_release(ctx); 1814 1815 mask = 0; 1816 if (free_elements & 0xffff) 1817 mask |= POLLOUT | POLLWRNORM; 1818 if (tagstatus & ctx->tagwait) 1819 mask |= POLLIN | POLLRDNORM; 1820 1821 pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__, 1822 free_elements, tagstatus, ctx->tagwait); 1823 1824 return mask; 1825 } 1826 1827 static int spufs_mfc_flush(struct file *file, fl_owner_t id) 1828 { 1829 struct spu_context *ctx = file->private_data; 1830 int ret; 1831 1832 ret = spu_acquire(ctx); 1833 if (ret) 1834 goto out; 1835 #if 0 1836 /* this currently hangs */ 1837 ret = spufs_wait(ctx->mfc_wq, 1838 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2)); 1839 if (ret) 1840 goto out; 1841 ret = spufs_wait(ctx->mfc_wq, 1842 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait); 1843 if (ret) 1844 goto out; 1845 #else 1846 ret = 0; 1847 #endif 1848 spu_release(ctx); 1849 out: 1850 return ret; 1851 } 1852 1853 static int spufs_mfc_fsync(struct file *file, int datasync) 1854 { 1855 return spufs_mfc_flush(file, NULL); 1856 } 1857 1858 static int spufs_mfc_fasync(int fd, struct file *file, int on) 1859 { 1860 struct spu_context *ctx = file->private_data; 1861 1862 return fasync_helper(fd, file, on, &ctx->mfc_fasync); 1863 } 1864 1865 static const struct file_operations spufs_mfc_fops = { 1866 .open = spufs_mfc_open, 1867 .release = spufs_mfc_release, 1868 .read = spufs_mfc_read, 1869 .write = spufs_mfc_write, 1870 .poll = spufs_mfc_poll, 1871 .flush = spufs_mfc_flush, 1872 .fsync = spufs_mfc_fsync, 1873 .fasync = spufs_mfc_fasync, 1874 .mmap = spufs_mfc_mmap, 1875 .llseek = no_llseek, 1876 }; 1877 1878 static int spufs_npc_set(void *data, u64 val) 1879 { 1880 struct spu_context *ctx = data; 1881 int ret; 1882 1883 ret = spu_acquire(ctx); 1884 if (ret) 1885 return ret; 1886 ctx->ops->npc_write(ctx, val); 1887 spu_release(ctx); 1888 1889 return 0; 1890 } 1891 1892 static u64 spufs_npc_get(struct spu_context *ctx) 1893 { 1894 return ctx->ops->npc_read(ctx); 1895 } 1896 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set, 1897 "0x%llx\n", SPU_ATTR_ACQUIRE); 1898 1899 static int spufs_decr_set(void *data, u64 val) 1900 { 1901 struct spu_context *ctx = data; 1902 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1903 int ret; 1904 1905 ret = spu_acquire_saved(ctx); 1906 if (ret) 1907 return ret; 1908 lscsa->decr.slot[0] = (u32) val; 1909 spu_release_saved(ctx); 1910 1911 return 0; 1912 } 1913 1914 static u64 spufs_decr_get(struct spu_context *ctx) 1915 { 1916 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1917 return lscsa->decr.slot[0]; 1918 } 1919 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set, 1920 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED); 1921 1922 static int spufs_decr_status_set(void *data, u64 val) 1923 { 1924 struct spu_context *ctx = data; 1925 int ret; 1926 1927 ret = spu_acquire_saved(ctx); 1928 if (ret) 1929 return ret; 1930 if (val) 1931 ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING; 1932 else 1933 ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING; 1934 spu_release_saved(ctx); 1935 1936 return 0; 1937 } 1938 1939 static u64 spufs_decr_status_get(struct spu_context *ctx) 1940 { 1941 if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) 1942 return SPU_DECR_STATUS_RUNNING; 1943 else 1944 return 0; 1945 } 1946 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get, 1947 spufs_decr_status_set, "0x%llx\n", 1948 SPU_ATTR_ACQUIRE_SAVED); 1949 1950 static int spufs_event_mask_set(void *data, u64 val) 1951 { 1952 struct spu_context *ctx = data; 1953 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1954 int ret; 1955 1956 ret = spu_acquire_saved(ctx); 1957 if (ret) 1958 return ret; 1959 lscsa->event_mask.slot[0] = (u32) val; 1960 spu_release_saved(ctx); 1961 1962 return 0; 1963 } 1964 1965 static u64 spufs_event_mask_get(struct spu_context *ctx) 1966 { 1967 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1968 return lscsa->event_mask.slot[0]; 1969 } 1970 1971 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get, 1972 spufs_event_mask_set, "0x%llx\n", 1973 SPU_ATTR_ACQUIRE_SAVED); 1974 1975 static u64 spufs_event_status_get(struct spu_context *ctx) 1976 { 1977 struct spu_state *state = &ctx->csa; 1978 u64 stat; 1979 stat = state->spu_chnlcnt_RW[0]; 1980 if (stat) 1981 return state->spu_chnldata_RW[0]; 1982 return 0; 1983 } 1984 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get, 1985 NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED) 1986 1987 static int spufs_srr0_set(void *data, u64 val) 1988 { 1989 struct spu_context *ctx = data; 1990 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1991 int ret; 1992 1993 ret = spu_acquire_saved(ctx); 1994 if (ret) 1995 return ret; 1996 lscsa->srr0.slot[0] = (u32) val; 1997 spu_release_saved(ctx); 1998 1999 return 0; 2000 } 2001 2002 static u64 spufs_srr0_get(struct spu_context *ctx) 2003 { 2004 struct spu_lscsa *lscsa = ctx->csa.lscsa; 2005 return lscsa->srr0.slot[0]; 2006 } 2007 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set, 2008 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED) 2009 2010 static u64 spufs_id_get(struct spu_context *ctx) 2011 { 2012 u64 num; 2013 2014 if (ctx->state == SPU_STATE_RUNNABLE) 2015 num = ctx->spu->number; 2016 else 2017 num = (unsigned int)-1; 2018 2019 return num; 2020 } 2021 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n", 2022 SPU_ATTR_ACQUIRE) 2023 2024 static u64 spufs_object_id_get(struct spu_context *ctx) 2025 { 2026 /* FIXME: Should there really be no locking here? */ 2027 return ctx->object_id; 2028 } 2029 2030 static int spufs_object_id_set(void *data, u64 id) 2031 { 2032 struct spu_context *ctx = data; 2033 ctx->object_id = id; 2034 2035 return 0; 2036 } 2037 2038 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get, 2039 spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE); 2040 2041 static u64 spufs_lslr_get(struct spu_context *ctx) 2042 { 2043 return ctx->csa.priv2.spu_lslr_RW; 2044 } 2045 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n", 2046 SPU_ATTR_ACQUIRE_SAVED); 2047 2048 static int spufs_info_open(struct inode *inode, struct file *file) 2049 { 2050 struct spufs_inode_info *i = SPUFS_I(inode); 2051 struct spu_context *ctx = i->i_ctx; 2052 file->private_data = ctx; 2053 return 0; 2054 } 2055 2056 static int spufs_caps_show(struct seq_file *s, void *private) 2057 { 2058 struct spu_context *ctx = s->private; 2059 2060 if (!(ctx->flags & SPU_CREATE_NOSCHED)) 2061 seq_puts(s, "sched\n"); 2062 if (!(ctx->flags & SPU_CREATE_ISOLATE)) 2063 seq_puts(s, "step\n"); 2064 return 0; 2065 } 2066 2067 static int spufs_caps_open(struct inode *inode, struct file *file) 2068 { 2069 return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx); 2070 } 2071 2072 static const struct file_operations spufs_caps_fops = { 2073 .open = spufs_caps_open, 2074 .read = seq_read, 2075 .llseek = seq_lseek, 2076 .release = single_release, 2077 }; 2078 2079 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx, 2080 char __user *buf, size_t len, loff_t *pos) 2081 { 2082 u32 data; 2083 2084 /* EOF if there's no entry in the mbox */ 2085 if (!(ctx->csa.prob.mb_stat_R & 0x0000ff)) 2086 return 0; 2087 2088 data = ctx->csa.prob.pu_mb_R; 2089 2090 return simple_read_from_buffer(buf, len, pos, &data, sizeof data); 2091 } 2092 2093 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf, 2094 size_t len, loff_t *pos) 2095 { 2096 int ret; 2097 struct spu_context *ctx = file->private_data; 2098 2099 if (!access_ok(VERIFY_WRITE, buf, len)) 2100 return -EFAULT; 2101 2102 ret = spu_acquire_saved(ctx); 2103 if (ret) 2104 return ret; 2105 spin_lock(&ctx->csa.register_lock); 2106 ret = __spufs_mbox_info_read(ctx, buf, len, pos); 2107 spin_unlock(&ctx->csa.register_lock); 2108 spu_release_saved(ctx); 2109 2110 return ret; 2111 } 2112 2113 static const struct file_operations spufs_mbox_info_fops = { 2114 .open = spufs_info_open, 2115 .read = spufs_mbox_info_read, 2116 .llseek = generic_file_llseek, 2117 }; 2118 2119 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx, 2120 char __user *buf, size_t len, loff_t *pos) 2121 { 2122 u32 data; 2123 2124 /* EOF if there's no entry in the ibox */ 2125 if (!(ctx->csa.prob.mb_stat_R & 0xff0000)) 2126 return 0; 2127 2128 data = ctx->csa.priv2.puint_mb_R; 2129 2130 return simple_read_from_buffer(buf, len, pos, &data, sizeof data); 2131 } 2132 2133 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf, 2134 size_t len, loff_t *pos) 2135 { 2136 struct spu_context *ctx = file->private_data; 2137 int ret; 2138 2139 if (!access_ok(VERIFY_WRITE, buf, len)) 2140 return -EFAULT; 2141 2142 ret = spu_acquire_saved(ctx); 2143 if (ret) 2144 return ret; 2145 spin_lock(&ctx->csa.register_lock); 2146 ret = __spufs_ibox_info_read(ctx, buf, len, pos); 2147 spin_unlock(&ctx->csa.register_lock); 2148 spu_release_saved(ctx); 2149 2150 return ret; 2151 } 2152 2153 static const struct file_operations spufs_ibox_info_fops = { 2154 .open = spufs_info_open, 2155 .read = spufs_ibox_info_read, 2156 .llseek = generic_file_llseek, 2157 }; 2158 2159 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx, 2160 char __user *buf, size_t len, loff_t *pos) 2161 { 2162 int i, cnt; 2163 u32 data[4]; 2164 u32 wbox_stat; 2165 2166 wbox_stat = ctx->csa.prob.mb_stat_R; 2167 cnt = 4 - ((wbox_stat & 0x00ff00) >> 8); 2168 for (i = 0; i < cnt; i++) { 2169 data[i] = ctx->csa.spu_mailbox_data[i]; 2170 } 2171 2172 return simple_read_from_buffer(buf, len, pos, &data, 2173 cnt * sizeof(u32)); 2174 } 2175 2176 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf, 2177 size_t len, loff_t *pos) 2178 { 2179 struct spu_context *ctx = file->private_data; 2180 int ret; 2181 2182 if (!access_ok(VERIFY_WRITE, buf, len)) 2183 return -EFAULT; 2184 2185 ret = spu_acquire_saved(ctx); 2186 if (ret) 2187 return ret; 2188 spin_lock(&ctx->csa.register_lock); 2189 ret = __spufs_wbox_info_read(ctx, buf, len, pos); 2190 spin_unlock(&ctx->csa.register_lock); 2191 spu_release_saved(ctx); 2192 2193 return ret; 2194 } 2195 2196 static const struct file_operations spufs_wbox_info_fops = { 2197 .open = spufs_info_open, 2198 .read = spufs_wbox_info_read, 2199 .llseek = generic_file_llseek, 2200 }; 2201 2202 static ssize_t __spufs_dma_info_read(struct spu_context *ctx, 2203 char __user *buf, size_t len, loff_t *pos) 2204 { 2205 struct spu_dma_info info; 2206 struct mfc_cq_sr *qp, *spuqp; 2207 int i; 2208 2209 info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW; 2210 info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0]; 2211 info.dma_info_status = ctx->csa.spu_chnldata_RW[24]; 2212 info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25]; 2213 info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27]; 2214 for (i = 0; i < 16; i++) { 2215 qp = &info.dma_info_command_data[i]; 2216 spuqp = &ctx->csa.priv2.spuq[i]; 2217 2218 qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW; 2219 qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW; 2220 qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW; 2221 qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW; 2222 } 2223 2224 return simple_read_from_buffer(buf, len, pos, &info, 2225 sizeof info); 2226 } 2227 2228 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf, 2229 size_t len, loff_t *pos) 2230 { 2231 struct spu_context *ctx = file->private_data; 2232 int ret; 2233 2234 if (!access_ok(VERIFY_WRITE, buf, len)) 2235 return -EFAULT; 2236 2237 ret = spu_acquire_saved(ctx); 2238 if (ret) 2239 return ret; 2240 spin_lock(&ctx->csa.register_lock); 2241 ret = __spufs_dma_info_read(ctx, buf, len, pos); 2242 spin_unlock(&ctx->csa.register_lock); 2243 spu_release_saved(ctx); 2244 2245 return ret; 2246 } 2247 2248 static const struct file_operations spufs_dma_info_fops = { 2249 .open = spufs_info_open, 2250 .read = spufs_dma_info_read, 2251 .llseek = no_llseek, 2252 }; 2253 2254 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx, 2255 char __user *buf, size_t len, loff_t *pos) 2256 { 2257 struct spu_proxydma_info info; 2258 struct mfc_cq_sr *qp, *puqp; 2259 int ret = sizeof info; 2260 int i; 2261 2262 if (len < ret) 2263 return -EINVAL; 2264 2265 if (!access_ok(VERIFY_WRITE, buf, len)) 2266 return -EFAULT; 2267 2268 info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW; 2269 info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW; 2270 info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R; 2271 for (i = 0; i < 8; i++) { 2272 qp = &info.proxydma_info_command_data[i]; 2273 puqp = &ctx->csa.priv2.puq[i]; 2274 2275 qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW; 2276 qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW; 2277 qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW; 2278 qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW; 2279 } 2280 2281 return simple_read_from_buffer(buf, len, pos, &info, 2282 sizeof info); 2283 } 2284 2285 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf, 2286 size_t len, loff_t *pos) 2287 { 2288 struct spu_context *ctx = file->private_data; 2289 int ret; 2290 2291 ret = spu_acquire_saved(ctx); 2292 if (ret) 2293 return ret; 2294 spin_lock(&ctx->csa.register_lock); 2295 ret = __spufs_proxydma_info_read(ctx, buf, len, pos); 2296 spin_unlock(&ctx->csa.register_lock); 2297 spu_release_saved(ctx); 2298 2299 return ret; 2300 } 2301 2302 static const struct file_operations spufs_proxydma_info_fops = { 2303 .open = spufs_info_open, 2304 .read = spufs_proxydma_info_read, 2305 .llseek = no_llseek, 2306 }; 2307 2308 static int spufs_show_tid(struct seq_file *s, void *private) 2309 { 2310 struct spu_context *ctx = s->private; 2311 2312 seq_printf(s, "%d\n", ctx->tid); 2313 return 0; 2314 } 2315 2316 static int spufs_tid_open(struct inode *inode, struct file *file) 2317 { 2318 return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx); 2319 } 2320 2321 static const struct file_operations spufs_tid_fops = { 2322 .open = spufs_tid_open, 2323 .read = seq_read, 2324 .llseek = seq_lseek, 2325 .release = single_release, 2326 }; 2327 2328 static const char *ctx_state_names[] = { 2329 "user", "system", "iowait", "loaded" 2330 }; 2331 2332 static unsigned long long spufs_acct_time(struct spu_context *ctx, 2333 enum spu_utilization_state state) 2334 { 2335 struct timespec ts; 2336 unsigned long long time = ctx->stats.times[state]; 2337 2338 /* 2339 * In general, utilization statistics are updated by the controlling 2340 * thread as the spu context moves through various well defined 2341 * state transitions, but if the context is lazily loaded its 2342 * utilization statistics are not updated as the controlling thread 2343 * is not tightly coupled with the execution of the spu context. We 2344 * calculate and apply the time delta from the last recorded state 2345 * of the spu context. 2346 */ 2347 if (ctx->spu && ctx->stats.util_state == state) { 2348 ktime_get_ts(&ts); 2349 time += timespec_to_ns(&ts) - ctx->stats.tstamp; 2350 } 2351 2352 return time / NSEC_PER_MSEC; 2353 } 2354 2355 static unsigned long long spufs_slb_flts(struct spu_context *ctx) 2356 { 2357 unsigned long long slb_flts = ctx->stats.slb_flt; 2358 2359 if (ctx->state == SPU_STATE_RUNNABLE) { 2360 slb_flts += (ctx->spu->stats.slb_flt - 2361 ctx->stats.slb_flt_base); 2362 } 2363 2364 return slb_flts; 2365 } 2366 2367 static unsigned long long spufs_class2_intrs(struct spu_context *ctx) 2368 { 2369 unsigned long long class2_intrs = ctx->stats.class2_intr; 2370 2371 if (ctx->state == SPU_STATE_RUNNABLE) { 2372 class2_intrs += (ctx->spu->stats.class2_intr - 2373 ctx->stats.class2_intr_base); 2374 } 2375 2376 return class2_intrs; 2377 } 2378 2379 2380 static int spufs_show_stat(struct seq_file *s, void *private) 2381 { 2382 struct spu_context *ctx = s->private; 2383 int ret; 2384 2385 ret = spu_acquire(ctx); 2386 if (ret) 2387 return ret; 2388 2389 seq_printf(s, "%s %llu %llu %llu %llu " 2390 "%llu %llu %llu %llu %llu %llu %llu %llu\n", 2391 ctx_state_names[ctx->stats.util_state], 2392 spufs_acct_time(ctx, SPU_UTIL_USER), 2393 spufs_acct_time(ctx, SPU_UTIL_SYSTEM), 2394 spufs_acct_time(ctx, SPU_UTIL_IOWAIT), 2395 spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED), 2396 ctx->stats.vol_ctx_switch, 2397 ctx->stats.invol_ctx_switch, 2398 spufs_slb_flts(ctx), 2399 ctx->stats.hash_flt, 2400 ctx->stats.min_flt, 2401 ctx->stats.maj_flt, 2402 spufs_class2_intrs(ctx), 2403 ctx->stats.libassist); 2404 spu_release(ctx); 2405 return 0; 2406 } 2407 2408 static int spufs_stat_open(struct inode *inode, struct file *file) 2409 { 2410 return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx); 2411 } 2412 2413 static const struct file_operations spufs_stat_fops = { 2414 .open = spufs_stat_open, 2415 .read = seq_read, 2416 .llseek = seq_lseek, 2417 .release = single_release, 2418 }; 2419 2420 static inline int spufs_switch_log_used(struct spu_context *ctx) 2421 { 2422 return (ctx->switch_log->head - ctx->switch_log->tail) % 2423 SWITCH_LOG_BUFSIZE; 2424 } 2425 2426 static inline int spufs_switch_log_avail(struct spu_context *ctx) 2427 { 2428 return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx); 2429 } 2430 2431 static int spufs_switch_log_open(struct inode *inode, struct file *file) 2432 { 2433 struct spu_context *ctx = SPUFS_I(inode)->i_ctx; 2434 int rc; 2435 2436 rc = spu_acquire(ctx); 2437 if (rc) 2438 return rc; 2439 2440 if (ctx->switch_log) { 2441 rc = -EBUSY; 2442 goto out; 2443 } 2444 2445 ctx->switch_log = kmalloc(sizeof(struct switch_log) + 2446 SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry), 2447 GFP_KERNEL); 2448 2449 if (!ctx->switch_log) { 2450 rc = -ENOMEM; 2451 goto out; 2452 } 2453 2454 ctx->switch_log->head = ctx->switch_log->tail = 0; 2455 init_waitqueue_head(&ctx->switch_log->wait); 2456 rc = 0; 2457 2458 out: 2459 spu_release(ctx); 2460 return rc; 2461 } 2462 2463 static int spufs_switch_log_release(struct inode *inode, struct file *file) 2464 { 2465 struct spu_context *ctx = SPUFS_I(inode)->i_ctx; 2466 int rc; 2467 2468 rc = spu_acquire(ctx); 2469 if (rc) 2470 return rc; 2471 2472 kfree(ctx->switch_log); 2473 ctx->switch_log = NULL; 2474 spu_release(ctx); 2475 2476 return 0; 2477 } 2478 2479 static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n) 2480 { 2481 struct switch_log_entry *p; 2482 2483 p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE; 2484 2485 return snprintf(tbuf, n, "%u.%09u %d %u %u %llu\n", 2486 (unsigned int) p->tstamp.tv_sec, 2487 (unsigned int) p->tstamp.tv_nsec, 2488 p->spu_id, 2489 (unsigned int) p->type, 2490 (unsigned int) p->val, 2491 (unsigned long long) p->timebase); 2492 } 2493 2494 static ssize_t spufs_switch_log_read(struct file *file, char __user *buf, 2495 size_t len, loff_t *ppos) 2496 { 2497 struct inode *inode = file->f_path.dentry->d_inode; 2498 struct spu_context *ctx = SPUFS_I(inode)->i_ctx; 2499 int error = 0, cnt = 0; 2500 2501 if (!buf) 2502 return -EINVAL; 2503 2504 error = spu_acquire(ctx); 2505 if (error) 2506 return error; 2507 2508 while (cnt < len) { 2509 char tbuf[128]; 2510 int width; 2511 2512 if (spufs_switch_log_used(ctx) == 0) { 2513 if (cnt > 0) { 2514 /* If there's data ready to go, we can 2515 * just return straight away */ 2516 break; 2517 2518 } else if (file->f_flags & O_NONBLOCK) { 2519 error = -EAGAIN; 2520 break; 2521 2522 } else { 2523 /* spufs_wait will drop the mutex and 2524 * re-acquire, but since we're in read(), the 2525 * file cannot be _released (and so 2526 * ctx->switch_log is stable). 2527 */ 2528 error = spufs_wait(ctx->switch_log->wait, 2529 spufs_switch_log_used(ctx) > 0); 2530 2531 /* On error, spufs_wait returns without the 2532 * state mutex held */ 2533 if (error) 2534 return error; 2535 2536 /* We may have had entries read from underneath 2537 * us while we dropped the mutex in spufs_wait, 2538 * so re-check */ 2539 if (spufs_switch_log_used(ctx) == 0) 2540 continue; 2541 } 2542 } 2543 2544 width = switch_log_sprint(ctx, tbuf, sizeof(tbuf)); 2545 if (width < len) 2546 ctx->switch_log->tail = 2547 (ctx->switch_log->tail + 1) % 2548 SWITCH_LOG_BUFSIZE; 2549 else 2550 /* If the record is greater than space available return 2551 * partial buffer (so far) */ 2552 break; 2553 2554 error = copy_to_user(buf + cnt, tbuf, width); 2555 if (error) 2556 break; 2557 cnt += width; 2558 } 2559 2560 spu_release(ctx); 2561 2562 return cnt == 0 ? error : cnt; 2563 } 2564 2565 static unsigned int spufs_switch_log_poll(struct file *file, poll_table *wait) 2566 { 2567 struct inode *inode = file->f_path.dentry->d_inode; 2568 struct spu_context *ctx = SPUFS_I(inode)->i_ctx; 2569 unsigned int mask = 0; 2570 int rc; 2571 2572 poll_wait(file, &ctx->switch_log->wait, wait); 2573 2574 rc = spu_acquire(ctx); 2575 if (rc) 2576 return rc; 2577 2578 if (spufs_switch_log_used(ctx) > 0) 2579 mask |= POLLIN; 2580 2581 spu_release(ctx); 2582 2583 return mask; 2584 } 2585 2586 static const struct file_operations spufs_switch_log_fops = { 2587 .owner = THIS_MODULE, 2588 .open = spufs_switch_log_open, 2589 .read = spufs_switch_log_read, 2590 .poll = spufs_switch_log_poll, 2591 .release = spufs_switch_log_release, 2592 .llseek = no_llseek, 2593 }; 2594 2595 /** 2596 * Log a context switch event to a switch log reader. 2597 * 2598 * Must be called with ctx->state_mutex held. 2599 */ 2600 void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx, 2601 u32 type, u32 val) 2602 { 2603 if (!ctx->switch_log) 2604 return; 2605 2606 if (spufs_switch_log_avail(ctx) > 1) { 2607 struct switch_log_entry *p; 2608 2609 p = ctx->switch_log->log + ctx->switch_log->head; 2610 ktime_get_ts(&p->tstamp); 2611 p->timebase = get_tb(); 2612 p->spu_id = spu ? spu->number : -1; 2613 p->type = type; 2614 p->val = val; 2615 2616 ctx->switch_log->head = 2617 (ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE; 2618 } 2619 2620 wake_up(&ctx->switch_log->wait); 2621 } 2622 2623 static int spufs_show_ctx(struct seq_file *s, void *private) 2624 { 2625 struct spu_context *ctx = s->private; 2626 u64 mfc_control_RW; 2627 2628 mutex_lock(&ctx->state_mutex); 2629 if (ctx->spu) { 2630 struct spu *spu = ctx->spu; 2631 struct spu_priv2 __iomem *priv2 = spu->priv2; 2632 2633 spin_lock_irq(&spu->register_lock); 2634 mfc_control_RW = in_be64(&priv2->mfc_control_RW); 2635 spin_unlock_irq(&spu->register_lock); 2636 } else { 2637 struct spu_state *csa = &ctx->csa; 2638 2639 mfc_control_RW = csa->priv2.mfc_control_RW; 2640 } 2641 2642 seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)" 2643 " %c %llx %llx %llx %llx %x %x\n", 2644 ctx->state == SPU_STATE_SAVED ? 'S' : 'R', 2645 ctx->flags, 2646 ctx->sched_flags, 2647 ctx->prio, 2648 ctx->time_slice, 2649 ctx->spu ? ctx->spu->number : -1, 2650 !list_empty(&ctx->rq) ? 'q' : ' ', 2651 ctx->csa.class_0_pending, 2652 ctx->csa.class_0_dar, 2653 ctx->csa.class_1_dsisr, 2654 mfc_control_RW, 2655 ctx->ops->runcntl_read(ctx), 2656 ctx->ops->status_read(ctx)); 2657 2658 mutex_unlock(&ctx->state_mutex); 2659 2660 return 0; 2661 } 2662 2663 static int spufs_ctx_open(struct inode *inode, struct file *file) 2664 { 2665 return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx); 2666 } 2667 2668 static const struct file_operations spufs_ctx_fops = { 2669 .open = spufs_ctx_open, 2670 .read = seq_read, 2671 .llseek = seq_lseek, 2672 .release = single_release, 2673 }; 2674 2675 const struct spufs_tree_descr spufs_dir_contents[] = { 2676 { "capabilities", &spufs_caps_fops, 0444, }, 2677 { "mem", &spufs_mem_fops, 0666, LS_SIZE, }, 2678 { "regs", &spufs_regs_fops, 0666, sizeof(struct spu_reg128[128]), }, 2679 { "mbox", &spufs_mbox_fops, 0444, }, 2680 { "ibox", &spufs_ibox_fops, 0444, }, 2681 { "wbox", &spufs_wbox_fops, 0222, }, 2682 { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), }, 2683 { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), }, 2684 { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), }, 2685 { "signal1", &spufs_signal1_fops, 0666, }, 2686 { "signal2", &spufs_signal2_fops, 0666, }, 2687 { "signal1_type", &spufs_signal1_type, 0666, }, 2688 { "signal2_type", &spufs_signal2_type, 0666, }, 2689 { "cntl", &spufs_cntl_fops, 0666, }, 2690 { "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), }, 2691 { "lslr", &spufs_lslr_ops, 0444, }, 2692 { "mfc", &spufs_mfc_fops, 0666, }, 2693 { "mss", &spufs_mss_fops, 0666, }, 2694 { "npc", &spufs_npc_ops, 0666, }, 2695 { "srr0", &spufs_srr0_ops, 0666, }, 2696 { "decr", &spufs_decr_ops, 0666, }, 2697 { "decr_status", &spufs_decr_status_ops, 0666, }, 2698 { "event_mask", &spufs_event_mask_ops, 0666, }, 2699 { "event_status", &spufs_event_status_ops, 0444, }, 2700 { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, }, 2701 { "phys-id", &spufs_id_ops, 0666, }, 2702 { "object-id", &spufs_object_id_ops, 0666, }, 2703 { "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), }, 2704 { "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), }, 2705 { "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), }, 2706 { "dma_info", &spufs_dma_info_fops, 0444, 2707 sizeof(struct spu_dma_info), }, 2708 { "proxydma_info", &spufs_proxydma_info_fops, 0444, 2709 sizeof(struct spu_proxydma_info)}, 2710 { "tid", &spufs_tid_fops, 0444, }, 2711 { "stat", &spufs_stat_fops, 0444, }, 2712 { "switch_log", &spufs_switch_log_fops, 0444 }, 2713 {}, 2714 }; 2715 2716 const struct spufs_tree_descr spufs_dir_nosched_contents[] = { 2717 { "capabilities", &spufs_caps_fops, 0444, }, 2718 { "mem", &spufs_mem_fops, 0666, LS_SIZE, }, 2719 { "mbox", &spufs_mbox_fops, 0444, }, 2720 { "ibox", &spufs_ibox_fops, 0444, }, 2721 { "wbox", &spufs_wbox_fops, 0222, }, 2722 { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), }, 2723 { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), }, 2724 { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), }, 2725 { "signal1", &spufs_signal1_nosched_fops, 0222, }, 2726 { "signal2", &spufs_signal2_nosched_fops, 0222, }, 2727 { "signal1_type", &spufs_signal1_type, 0666, }, 2728 { "signal2_type", &spufs_signal2_type, 0666, }, 2729 { "mss", &spufs_mss_fops, 0666, }, 2730 { "mfc", &spufs_mfc_fops, 0666, }, 2731 { "cntl", &spufs_cntl_fops, 0666, }, 2732 { "npc", &spufs_npc_ops, 0666, }, 2733 { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, }, 2734 { "phys-id", &spufs_id_ops, 0666, }, 2735 { "object-id", &spufs_object_id_ops, 0666, }, 2736 { "tid", &spufs_tid_fops, 0444, }, 2737 { "stat", &spufs_stat_fops, 0444, }, 2738 {}, 2739 }; 2740 2741 const struct spufs_tree_descr spufs_dir_debug_contents[] = { 2742 { ".ctx", &spufs_ctx_fops, 0444, }, 2743 {}, 2744 }; 2745 2746 const struct spufs_coredump_reader spufs_coredump_read[] = { 2747 { "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])}, 2748 { "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) }, 2749 { "lslr", NULL, spufs_lslr_get, 19 }, 2750 { "decr", NULL, spufs_decr_get, 19 }, 2751 { "decr_status", NULL, spufs_decr_status_get, 19 }, 2752 { "mem", __spufs_mem_read, NULL, LS_SIZE, }, 2753 { "signal1", __spufs_signal1_read, NULL, sizeof(u32) }, 2754 { "signal1_type", NULL, spufs_signal1_type_get, 19 }, 2755 { "signal2", __spufs_signal2_read, NULL, sizeof(u32) }, 2756 { "signal2_type", NULL, spufs_signal2_type_get, 19 }, 2757 { "event_mask", NULL, spufs_event_mask_get, 19 }, 2758 { "event_status", NULL, spufs_event_status_get, 19 }, 2759 { "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) }, 2760 { "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) }, 2761 { "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)}, 2762 { "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)}, 2763 { "proxydma_info", __spufs_proxydma_info_read, 2764 NULL, sizeof(struct spu_proxydma_info)}, 2765 { "object-id", NULL, spufs_object_id_get, 19 }, 2766 { "npc", NULL, spufs_npc_get, 19 }, 2767 { NULL }, 2768 }; 2769