1 /* 2 * SPU file system -- file contents 3 * 4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005 5 * 6 * Author: Arnd Bergmann <arndb@de.ibm.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2, or (at your option) 11 * any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #undef DEBUG 24 25 #include <linux/fs.h> 26 #include <linux/ioctl.h> 27 #include <linux/module.h> 28 #include <linux/pagemap.h> 29 #include <linux/poll.h> 30 #include <linux/ptrace.h> 31 #include <linux/seq_file.h> 32 33 #include <asm/io.h> 34 #include <asm/semaphore.h> 35 #include <asm/spu.h> 36 #include <asm/spu_info.h> 37 #include <asm/uaccess.h> 38 39 #include "spufs.h" 40 41 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000) 42 43 44 static int 45 spufs_mem_open(struct inode *inode, struct file *file) 46 { 47 struct spufs_inode_info *i = SPUFS_I(inode); 48 struct spu_context *ctx = i->i_ctx; 49 50 mutex_lock(&ctx->mapping_lock); 51 file->private_data = ctx; 52 if (!i->i_openers++) 53 ctx->local_store = inode->i_mapping; 54 mutex_unlock(&ctx->mapping_lock); 55 return 0; 56 } 57 58 static int 59 spufs_mem_release(struct inode *inode, struct file *file) 60 { 61 struct spufs_inode_info *i = SPUFS_I(inode); 62 struct spu_context *ctx = i->i_ctx; 63 64 mutex_lock(&ctx->mapping_lock); 65 if (!--i->i_openers) 66 ctx->local_store = NULL; 67 mutex_unlock(&ctx->mapping_lock); 68 return 0; 69 } 70 71 static ssize_t 72 __spufs_mem_read(struct spu_context *ctx, char __user *buffer, 73 size_t size, loff_t *pos) 74 { 75 char *local_store = ctx->ops->get_ls(ctx); 76 return simple_read_from_buffer(buffer, size, pos, local_store, 77 LS_SIZE); 78 } 79 80 static ssize_t 81 spufs_mem_read(struct file *file, char __user *buffer, 82 size_t size, loff_t *pos) 83 { 84 struct spu_context *ctx = file->private_data; 85 ssize_t ret; 86 87 spu_acquire(ctx); 88 ret = __spufs_mem_read(ctx, buffer, size, pos); 89 spu_release(ctx); 90 return ret; 91 } 92 93 static ssize_t 94 spufs_mem_write(struct file *file, const char __user *buffer, 95 size_t size, loff_t *ppos) 96 { 97 struct spu_context *ctx = file->private_data; 98 char *local_store; 99 loff_t pos = *ppos; 100 int ret; 101 102 if (pos < 0) 103 return -EINVAL; 104 if (pos > LS_SIZE) 105 return -EFBIG; 106 if (size > LS_SIZE - pos) 107 size = LS_SIZE - pos; 108 109 spu_acquire(ctx); 110 local_store = ctx->ops->get_ls(ctx); 111 ret = copy_from_user(local_store + pos, buffer, size); 112 spu_release(ctx); 113 114 if (ret) 115 return -EFAULT; 116 *ppos = pos + size; 117 return size; 118 } 119 120 static unsigned long spufs_mem_mmap_nopfn(struct vm_area_struct *vma, 121 unsigned long address) 122 { 123 struct spu_context *ctx = vma->vm_file->private_data; 124 unsigned long pfn, offset, addr0 = address; 125 #ifdef CONFIG_SPU_FS_64K_LS 126 struct spu_state *csa = &ctx->csa; 127 int psize; 128 129 /* Check what page size we are using */ 130 psize = get_slice_psize(vma->vm_mm, address); 131 132 /* Some sanity checking */ 133 BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K)); 134 135 /* Wow, 64K, cool, we need to align the address though */ 136 if (csa->use_big_pages) { 137 BUG_ON(vma->vm_start & 0xffff); 138 address &= ~0xfffful; 139 } 140 #endif /* CONFIG_SPU_FS_64K_LS */ 141 142 offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT); 143 if (offset >= LS_SIZE) 144 return NOPFN_SIGBUS; 145 146 pr_debug("spufs_mem_mmap_nopfn address=0x%lx -> 0x%lx, offset=0x%lx\n", 147 addr0, address, offset); 148 149 spu_acquire(ctx); 150 151 if (ctx->state == SPU_STATE_SAVED) { 152 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot) 153 & ~_PAGE_NO_CACHE); 154 pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset); 155 } else { 156 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot) 157 | _PAGE_NO_CACHE); 158 pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT; 159 } 160 vm_insert_pfn(vma, address, pfn); 161 162 spu_release(ctx); 163 164 return NOPFN_REFAULT; 165 } 166 167 168 static struct vm_operations_struct spufs_mem_mmap_vmops = { 169 .nopfn = spufs_mem_mmap_nopfn, 170 }; 171 172 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma) 173 { 174 #ifdef CONFIG_SPU_FS_64K_LS 175 struct spu_context *ctx = file->private_data; 176 struct spu_state *csa = &ctx->csa; 177 178 /* Sanity check VMA alignment */ 179 if (csa->use_big_pages) { 180 pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx," 181 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end, 182 vma->vm_pgoff); 183 if (vma->vm_start & 0xffff) 184 return -EINVAL; 185 if (vma->vm_pgoff & 0xf) 186 return -EINVAL; 187 } 188 #endif /* CONFIG_SPU_FS_64K_LS */ 189 190 if (!(vma->vm_flags & VM_SHARED)) 191 return -EINVAL; 192 193 vma->vm_flags |= VM_IO | VM_PFNMAP; 194 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot) 195 | _PAGE_NO_CACHE); 196 197 vma->vm_ops = &spufs_mem_mmap_vmops; 198 return 0; 199 } 200 201 #ifdef CONFIG_SPU_FS_64K_LS 202 unsigned long spufs_get_unmapped_area(struct file *file, unsigned long addr, 203 unsigned long len, unsigned long pgoff, 204 unsigned long flags) 205 { 206 struct spu_context *ctx = file->private_data; 207 struct spu_state *csa = &ctx->csa; 208 209 /* If not using big pages, fallback to normal MM g_u_a */ 210 if (!csa->use_big_pages) 211 return current->mm->get_unmapped_area(file, addr, len, 212 pgoff, flags); 213 214 /* Else, try to obtain a 64K pages slice */ 215 return slice_get_unmapped_area(addr, len, flags, 216 MMU_PAGE_64K, 1, 0); 217 } 218 #endif /* CONFIG_SPU_FS_64K_LS */ 219 220 static const struct file_operations spufs_mem_fops = { 221 .open = spufs_mem_open, 222 .release = spufs_mem_release, 223 .read = spufs_mem_read, 224 .write = spufs_mem_write, 225 .llseek = generic_file_llseek, 226 .mmap = spufs_mem_mmap, 227 #ifdef CONFIG_SPU_FS_64K_LS 228 .get_unmapped_area = spufs_get_unmapped_area, 229 #endif 230 }; 231 232 static unsigned long spufs_ps_nopfn(struct vm_area_struct *vma, 233 unsigned long address, 234 unsigned long ps_offs, 235 unsigned long ps_size) 236 { 237 struct spu_context *ctx = vma->vm_file->private_data; 238 unsigned long area, offset = address - vma->vm_start; 239 int ret; 240 241 offset += vma->vm_pgoff << PAGE_SHIFT; 242 if (offset >= ps_size) 243 return NOPFN_SIGBUS; 244 245 /* error here usually means a signal.. we might want to test 246 * the error code more precisely though 247 */ 248 ret = spu_acquire_runnable(ctx, 0); 249 if (ret) 250 return NOPFN_REFAULT; 251 252 area = ctx->spu->problem_phys + ps_offs; 253 vm_insert_pfn(vma, address, (area + offset) >> PAGE_SHIFT); 254 spu_release(ctx); 255 256 return NOPFN_REFAULT; 257 } 258 259 #if SPUFS_MMAP_4K 260 static unsigned long spufs_cntl_mmap_nopfn(struct vm_area_struct *vma, 261 unsigned long address) 262 { 263 return spufs_ps_nopfn(vma, address, 0x4000, 0x1000); 264 } 265 266 static struct vm_operations_struct spufs_cntl_mmap_vmops = { 267 .nopfn = spufs_cntl_mmap_nopfn, 268 }; 269 270 /* 271 * mmap support for problem state control area [0x4000 - 0x4fff]. 272 */ 273 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma) 274 { 275 if (!(vma->vm_flags & VM_SHARED)) 276 return -EINVAL; 277 278 vma->vm_flags |= VM_IO | VM_PFNMAP; 279 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot) 280 | _PAGE_NO_CACHE | _PAGE_GUARDED); 281 282 vma->vm_ops = &spufs_cntl_mmap_vmops; 283 return 0; 284 } 285 #else /* SPUFS_MMAP_4K */ 286 #define spufs_cntl_mmap NULL 287 #endif /* !SPUFS_MMAP_4K */ 288 289 static u64 spufs_cntl_get(void *data) 290 { 291 struct spu_context *ctx = data; 292 u64 val; 293 294 spu_acquire(ctx); 295 val = ctx->ops->status_read(ctx); 296 spu_release(ctx); 297 298 return val; 299 } 300 301 static void spufs_cntl_set(void *data, u64 val) 302 { 303 struct spu_context *ctx = data; 304 305 spu_acquire(ctx); 306 ctx->ops->runcntl_write(ctx, val); 307 spu_release(ctx); 308 } 309 310 static int spufs_cntl_open(struct inode *inode, struct file *file) 311 { 312 struct spufs_inode_info *i = SPUFS_I(inode); 313 struct spu_context *ctx = i->i_ctx; 314 315 mutex_lock(&ctx->mapping_lock); 316 file->private_data = ctx; 317 if (!i->i_openers++) 318 ctx->cntl = inode->i_mapping; 319 mutex_unlock(&ctx->mapping_lock); 320 return simple_attr_open(inode, file, spufs_cntl_get, 321 spufs_cntl_set, "0x%08lx"); 322 } 323 324 static int 325 spufs_cntl_release(struct inode *inode, struct file *file) 326 { 327 struct spufs_inode_info *i = SPUFS_I(inode); 328 struct spu_context *ctx = i->i_ctx; 329 330 simple_attr_close(inode, file); 331 332 mutex_lock(&ctx->mapping_lock); 333 if (!--i->i_openers) 334 ctx->cntl = NULL; 335 mutex_unlock(&ctx->mapping_lock); 336 return 0; 337 } 338 339 static const struct file_operations spufs_cntl_fops = { 340 .open = spufs_cntl_open, 341 .release = spufs_cntl_release, 342 .read = simple_attr_read, 343 .write = simple_attr_write, 344 .mmap = spufs_cntl_mmap, 345 }; 346 347 static int 348 spufs_regs_open(struct inode *inode, struct file *file) 349 { 350 struct spufs_inode_info *i = SPUFS_I(inode); 351 file->private_data = i->i_ctx; 352 return 0; 353 } 354 355 static ssize_t 356 __spufs_regs_read(struct spu_context *ctx, char __user *buffer, 357 size_t size, loff_t *pos) 358 { 359 struct spu_lscsa *lscsa = ctx->csa.lscsa; 360 return simple_read_from_buffer(buffer, size, pos, 361 lscsa->gprs, sizeof lscsa->gprs); 362 } 363 364 static ssize_t 365 spufs_regs_read(struct file *file, char __user *buffer, 366 size_t size, loff_t *pos) 367 { 368 int ret; 369 struct spu_context *ctx = file->private_data; 370 371 spu_acquire_saved(ctx); 372 ret = __spufs_regs_read(ctx, buffer, size, pos); 373 spu_release_saved(ctx); 374 return ret; 375 } 376 377 static ssize_t 378 spufs_regs_write(struct file *file, const char __user *buffer, 379 size_t size, loff_t *pos) 380 { 381 struct spu_context *ctx = file->private_data; 382 struct spu_lscsa *lscsa = ctx->csa.lscsa; 383 int ret; 384 385 size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size); 386 if (size <= 0) 387 return -EFBIG; 388 *pos += size; 389 390 spu_acquire_saved(ctx); 391 392 ret = copy_from_user(lscsa->gprs + *pos - size, 393 buffer, size) ? -EFAULT : size; 394 395 spu_release_saved(ctx); 396 return ret; 397 } 398 399 static const struct file_operations spufs_regs_fops = { 400 .open = spufs_regs_open, 401 .read = spufs_regs_read, 402 .write = spufs_regs_write, 403 .llseek = generic_file_llseek, 404 }; 405 406 static ssize_t 407 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer, 408 size_t size, loff_t * pos) 409 { 410 struct spu_lscsa *lscsa = ctx->csa.lscsa; 411 return simple_read_from_buffer(buffer, size, pos, 412 &lscsa->fpcr, sizeof(lscsa->fpcr)); 413 } 414 415 static ssize_t 416 spufs_fpcr_read(struct file *file, char __user * buffer, 417 size_t size, loff_t * pos) 418 { 419 int ret; 420 struct spu_context *ctx = file->private_data; 421 422 spu_acquire_saved(ctx); 423 ret = __spufs_fpcr_read(ctx, buffer, size, pos); 424 spu_release_saved(ctx); 425 return ret; 426 } 427 428 static ssize_t 429 spufs_fpcr_write(struct file *file, const char __user * buffer, 430 size_t size, loff_t * pos) 431 { 432 struct spu_context *ctx = file->private_data; 433 struct spu_lscsa *lscsa = ctx->csa.lscsa; 434 int ret; 435 436 size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size); 437 if (size <= 0) 438 return -EFBIG; 439 *pos += size; 440 441 spu_acquire_saved(ctx); 442 443 ret = copy_from_user((char *)&lscsa->fpcr + *pos - size, 444 buffer, size) ? -EFAULT : size; 445 446 spu_release_saved(ctx); 447 return ret; 448 } 449 450 static const struct file_operations spufs_fpcr_fops = { 451 .open = spufs_regs_open, 452 .read = spufs_fpcr_read, 453 .write = spufs_fpcr_write, 454 .llseek = generic_file_llseek, 455 }; 456 457 /* generic open function for all pipe-like files */ 458 static int spufs_pipe_open(struct inode *inode, struct file *file) 459 { 460 struct spufs_inode_info *i = SPUFS_I(inode); 461 file->private_data = i->i_ctx; 462 463 return nonseekable_open(inode, file); 464 } 465 466 /* 467 * Read as many bytes from the mailbox as possible, until 468 * one of the conditions becomes true: 469 * 470 * - no more data available in the mailbox 471 * - end of the user provided buffer 472 * - end of the mapped area 473 */ 474 static ssize_t spufs_mbox_read(struct file *file, char __user *buf, 475 size_t len, loff_t *pos) 476 { 477 struct spu_context *ctx = file->private_data; 478 u32 mbox_data, __user *udata; 479 ssize_t count; 480 481 if (len < 4) 482 return -EINVAL; 483 484 if (!access_ok(VERIFY_WRITE, buf, len)) 485 return -EFAULT; 486 487 udata = (void __user *)buf; 488 489 spu_acquire(ctx); 490 for (count = 0; (count + 4) <= len; count += 4, udata++) { 491 int ret; 492 ret = ctx->ops->mbox_read(ctx, &mbox_data); 493 if (ret == 0) 494 break; 495 496 /* 497 * at the end of the mapped area, we can fault 498 * but still need to return the data we have 499 * read successfully so far. 500 */ 501 ret = __put_user(mbox_data, udata); 502 if (ret) { 503 if (!count) 504 count = -EFAULT; 505 break; 506 } 507 } 508 spu_release(ctx); 509 510 if (!count) 511 count = -EAGAIN; 512 513 return count; 514 } 515 516 static const struct file_operations spufs_mbox_fops = { 517 .open = spufs_pipe_open, 518 .read = spufs_mbox_read, 519 }; 520 521 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf, 522 size_t len, loff_t *pos) 523 { 524 struct spu_context *ctx = file->private_data; 525 u32 mbox_stat; 526 527 if (len < 4) 528 return -EINVAL; 529 530 spu_acquire(ctx); 531 532 mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff; 533 534 spu_release(ctx); 535 536 if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat)) 537 return -EFAULT; 538 539 return 4; 540 } 541 542 static const struct file_operations spufs_mbox_stat_fops = { 543 .open = spufs_pipe_open, 544 .read = spufs_mbox_stat_read, 545 }; 546 547 /* low-level ibox access function */ 548 size_t spu_ibox_read(struct spu_context *ctx, u32 *data) 549 { 550 return ctx->ops->ibox_read(ctx, data); 551 } 552 553 static int spufs_ibox_fasync(int fd, struct file *file, int on) 554 { 555 struct spu_context *ctx = file->private_data; 556 557 return fasync_helper(fd, file, on, &ctx->ibox_fasync); 558 } 559 560 /* interrupt-level ibox callback function. */ 561 void spufs_ibox_callback(struct spu *spu) 562 { 563 struct spu_context *ctx = spu->ctx; 564 565 wake_up_all(&ctx->ibox_wq); 566 kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN); 567 } 568 569 /* 570 * Read as many bytes from the interrupt mailbox as possible, until 571 * one of the conditions becomes true: 572 * 573 * - no more data available in the mailbox 574 * - end of the user provided buffer 575 * - end of the mapped area 576 * 577 * If the file is opened without O_NONBLOCK, we wait here until 578 * any data is available, but return when we have been able to 579 * read something. 580 */ 581 static ssize_t spufs_ibox_read(struct file *file, char __user *buf, 582 size_t len, loff_t *pos) 583 { 584 struct spu_context *ctx = file->private_data; 585 u32 ibox_data, __user *udata; 586 ssize_t count; 587 588 if (len < 4) 589 return -EINVAL; 590 591 if (!access_ok(VERIFY_WRITE, buf, len)) 592 return -EFAULT; 593 594 udata = (void __user *)buf; 595 596 spu_acquire(ctx); 597 598 /* wait only for the first element */ 599 count = 0; 600 if (file->f_flags & O_NONBLOCK) { 601 if (!spu_ibox_read(ctx, &ibox_data)) 602 count = -EAGAIN; 603 } else { 604 count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data)); 605 } 606 if (count) 607 goto out; 608 609 /* if we can't write at all, return -EFAULT */ 610 count = __put_user(ibox_data, udata); 611 if (count) 612 goto out; 613 614 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) { 615 int ret; 616 ret = ctx->ops->ibox_read(ctx, &ibox_data); 617 if (ret == 0) 618 break; 619 /* 620 * at the end of the mapped area, we can fault 621 * but still need to return the data we have 622 * read successfully so far. 623 */ 624 ret = __put_user(ibox_data, udata); 625 if (ret) 626 break; 627 } 628 629 out: 630 spu_release(ctx); 631 632 return count; 633 } 634 635 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait) 636 { 637 struct spu_context *ctx = file->private_data; 638 unsigned int mask; 639 640 poll_wait(file, &ctx->ibox_wq, wait); 641 642 spu_acquire(ctx); 643 mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM); 644 spu_release(ctx); 645 646 return mask; 647 } 648 649 static const struct file_operations spufs_ibox_fops = { 650 .open = spufs_pipe_open, 651 .read = spufs_ibox_read, 652 .poll = spufs_ibox_poll, 653 .fasync = spufs_ibox_fasync, 654 }; 655 656 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf, 657 size_t len, loff_t *pos) 658 { 659 struct spu_context *ctx = file->private_data; 660 u32 ibox_stat; 661 662 if (len < 4) 663 return -EINVAL; 664 665 spu_acquire(ctx); 666 ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff; 667 spu_release(ctx); 668 669 if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat)) 670 return -EFAULT; 671 672 return 4; 673 } 674 675 static const struct file_operations spufs_ibox_stat_fops = { 676 .open = spufs_pipe_open, 677 .read = spufs_ibox_stat_read, 678 }; 679 680 /* low-level mailbox write */ 681 size_t spu_wbox_write(struct spu_context *ctx, u32 data) 682 { 683 return ctx->ops->wbox_write(ctx, data); 684 } 685 686 static int spufs_wbox_fasync(int fd, struct file *file, int on) 687 { 688 struct spu_context *ctx = file->private_data; 689 int ret; 690 691 ret = fasync_helper(fd, file, on, &ctx->wbox_fasync); 692 693 return ret; 694 } 695 696 /* interrupt-level wbox callback function. */ 697 void spufs_wbox_callback(struct spu *spu) 698 { 699 struct spu_context *ctx = spu->ctx; 700 701 wake_up_all(&ctx->wbox_wq); 702 kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT); 703 } 704 705 /* 706 * Write as many bytes to the interrupt mailbox as possible, until 707 * one of the conditions becomes true: 708 * 709 * - the mailbox is full 710 * - end of the user provided buffer 711 * - end of the mapped area 712 * 713 * If the file is opened without O_NONBLOCK, we wait here until 714 * space is availabyl, but return when we have been able to 715 * write something. 716 */ 717 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf, 718 size_t len, loff_t *pos) 719 { 720 struct spu_context *ctx = file->private_data; 721 u32 wbox_data, __user *udata; 722 ssize_t count; 723 724 if (len < 4) 725 return -EINVAL; 726 727 udata = (void __user *)buf; 728 if (!access_ok(VERIFY_READ, buf, len)) 729 return -EFAULT; 730 731 if (__get_user(wbox_data, udata)) 732 return -EFAULT; 733 734 spu_acquire(ctx); 735 736 /* 737 * make sure we can at least write one element, by waiting 738 * in case of !O_NONBLOCK 739 */ 740 count = 0; 741 if (file->f_flags & O_NONBLOCK) { 742 if (!spu_wbox_write(ctx, wbox_data)) 743 count = -EAGAIN; 744 } else { 745 count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data)); 746 } 747 748 if (count) 749 goto out; 750 751 /* write aѕ much as possible */ 752 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) { 753 int ret; 754 ret = __get_user(wbox_data, udata); 755 if (ret) 756 break; 757 758 ret = spu_wbox_write(ctx, wbox_data); 759 if (ret == 0) 760 break; 761 } 762 763 out: 764 spu_release(ctx); 765 return count; 766 } 767 768 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait) 769 { 770 struct spu_context *ctx = file->private_data; 771 unsigned int mask; 772 773 poll_wait(file, &ctx->wbox_wq, wait); 774 775 spu_acquire(ctx); 776 mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM); 777 spu_release(ctx); 778 779 return mask; 780 } 781 782 static const struct file_operations spufs_wbox_fops = { 783 .open = spufs_pipe_open, 784 .write = spufs_wbox_write, 785 .poll = spufs_wbox_poll, 786 .fasync = spufs_wbox_fasync, 787 }; 788 789 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf, 790 size_t len, loff_t *pos) 791 { 792 struct spu_context *ctx = file->private_data; 793 u32 wbox_stat; 794 795 if (len < 4) 796 return -EINVAL; 797 798 spu_acquire(ctx); 799 wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff; 800 spu_release(ctx); 801 802 if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat)) 803 return -EFAULT; 804 805 return 4; 806 } 807 808 static const struct file_operations spufs_wbox_stat_fops = { 809 .open = spufs_pipe_open, 810 .read = spufs_wbox_stat_read, 811 }; 812 813 static int spufs_signal1_open(struct inode *inode, struct file *file) 814 { 815 struct spufs_inode_info *i = SPUFS_I(inode); 816 struct spu_context *ctx = i->i_ctx; 817 818 mutex_lock(&ctx->mapping_lock); 819 file->private_data = ctx; 820 if (!i->i_openers++) 821 ctx->signal1 = inode->i_mapping; 822 mutex_unlock(&ctx->mapping_lock); 823 return nonseekable_open(inode, file); 824 } 825 826 static int 827 spufs_signal1_release(struct inode *inode, struct file *file) 828 { 829 struct spufs_inode_info *i = SPUFS_I(inode); 830 struct spu_context *ctx = i->i_ctx; 831 832 mutex_lock(&ctx->mapping_lock); 833 if (!--i->i_openers) 834 ctx->signal1 = NULL; 835 mutex_unlock(&ctx->mapping_lock); 836 return 0; 837 } 838 839 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf, 840 size_t len, loff_t *pos) 841 { 842 int ret = 0; 843 u32 data; 844 845 if (len < 4) 846 return -EINVAL; 847 848 if (ctx->csa.spu_chnlcnt_RW[3]) { 849 data = ctx->csa.spu_chnldata_RW[3]; 850 ret = 4; 851 } 852 853 if (!ret) 854 goto out; 855 856 if (copy_to_user(buf, &data, 4)) 857 return -EFAULT; 858 859 out: 860 return ret; 861 } 862 863 static ssize_t spufs_signal1_read(struct file *file, char __user *buf, 864 size_t len, loff_t *pos) 865 { 866 int ret; 867 struct spu_context *ctx = file->private_data; 868 869 spu_acquire_saved(ctx); 870 ret = __spufs_signal1_read(ctx, buf, len, pos); 871 spu_release_saved(ctx); 872 873 return ret; 874 } 875 876 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf, 877 size_t len, loff_t *pos) 878 { 879 struct spu_context *ctx; 880 u32 data; 881 882 ctx = file->private_data; 883 884 if (len < 4) 885 return -EINVAL; 886 887 if (copy_from_user(&data, buf, 4)) 888 return -EFAULT; 889 890 spu_acquire(ctx); 891 ctx->ops->signal1_write(ctx, data); 892 spu_release(ctx); 893 894 return 4; 895 } 896 897 static unsigned long spufs_signal1_mmap_nopfn(struct vm_area_struct *vma, 898 unsigned long address) 899 { 900 #if PAGE_SIZE == 0x1000 901 return spufs_ps_nopfn(vma, address, 0x14000, 0x1000); 902 #elif PAGE_SIZE == 0x10000 903 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole 904 * signal 1 and 2 area 905 */ 906 return spufs_ps_nopfn(vma, address, 0x10000, 0x10000); 907 #else 908 #error unsupported page size 909 #endif 910 } 911 912 static struct vm_operations_struct spufs_signal1_mmap_vmops = { 913 .nopfn = spufs_signal1_mmap_nopfn, 914 }; 915 916 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma) 917 { 918 if (!(vma->vm_flags & VM_SHARED)) 919 return -EINVAL; 920 921 vma->vm_flags |= VM_IO | VM_PFNMAP; 922 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot) 923 | _PAGE_NO_CACHE | _PAGE_GUARDED); 924 925 vma->vm_ops = &spufs_signal1_mmap_vmops; 926 return 0; 927 } 928 929 static const struct file_operations spufs_signal1_fops = { 930 .open = spufs_signal1_open, 931 .release = spufs_signal1_release, 932 .read = spufs_signal1_read, 933 .write = spufs_signal1_write, 934 .mmap = spufs_signal1_mmap, 935 }; 936 937 static const struct file_operations spufs_signal1_nosched_fops = { 938 .open = spufs_signal1_open, 939 .release = spufs_signal1_release, 940 .write = spufs_signal1_write, 941 .mmap = spufs_signal1_mmap, 942 }; 943 944 static int spufs_signal2_open(struct inode *inode, struct file *file) 945 { 946 struct spufs_inode_info *i = SPUFS_I(inode); 947 struct spu_context *ctx = i->i_ctx; 948 949 mutex_lock(&ctx->mapping_lock); 950 file->private_data = ctx; 951 if (!i->i_openers++) 952 ctx->signal2 = inode->i_mapping; 953 mutex_unlock(&ctx->mapping_lock); 954 return nonseekable_open(inode, file); 955 } 956 957 static int 958 spufs_signal2_release(struct inode *inode, struct file *file) 959 { 960 struct spufs_inode_info *i = SPUFS_I(inode); 961 struct spu_context *ctx = i->i_ctx; 962 963 mutex_lock(&ctx->mapping_lock); 964 if (!--i->i_openers) 965 ctx->signal2 = NULL; 966 mutex_unlock(&ctx->mapping_lock); 967 return 0; 968 } 969 970 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf, 971 size_t len, loff_t *pos) 972 { 973 int ret = 0; 974 u32 data; 975 976 if (len < 4) 977 return -EINVAL; 978 979 if (ctx->csa.spu_chnlcnt_RW[4]) { 980 data = ctx->csa.spu_chnldata_RW[4]; 981 ret = 4; 982 } 983 984 if (!ret) 985 goto out; 986 987 if (copy_to_user(buf, &data, 4)) 988 return -EFAULT; 989 990 out: 991 return ret; 992 } 993 994 static ssize_t spufs_signal2_read(struct file *file, char __user *buf, 995 size_t len, loff_t *pos) 996 { 997 struct spu_context *ctx = file->private_data; 998 int ret; 999 1000 spu_acquire_saved(ctx); 1001 ret = __spufs_signal2_read(ctx, buf, len, pos); 1002 spu_release_saved(ctx); 1003 1004 return ret; 1005 } 1006 1007 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf, 1008 size_t len, loff_t *pos) 1009 { 1010 struct spu_context *ctx; 1011 u32 data; 1012 1013 ctx = file->private_data; 1014 1015 if (len < 4) 1016 return -EINVAL; 1017 1018 if (copy_from_user(&data, buf, 4)) 1019 return -EFAULT; 1020 1021 spu_acquire(ctx); 1022 ctx->ops->signal2_write(ctx, data); 1023 spu_release(ctx); 1024 1025 return 4; 1026 } 1027 1028 #if SPUFS_MMAP_4K 1029 static unsigned long spufs_signal2_mmap_nopfn(struct vm_area_struct *vma, 1030 unsigned long address) 1031 { 1032 #if PAGE_SIZE == 0x1000 1033 return spufs_ps_nopfn(vma, address, 0x1c000, 0x1000); 1034 #elif PAGE_SIZE == 0x10000 1035 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole 1036 * signal 1 and 2 area 1037 */ 1038 return spufs_ps_nopfn(vma, address, 0x10000, 0x10000); 1039 #else 1040 #error unsupported page size 1041 #endif 1042 } 1043 1044 static struct vm_operations_struct spufs_signal2_mmap_vmops = { 1045 .nopfn = spufs_signal2_mmap_nopfn, 1046 }; 1047 1048 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma) 1049 { 1050 if (!(vma->vm_flags & VM_SHARED)) 1051 return -EINVAL; 1052 1053 vma->vm_flags |= VM_IO | VM_PFNMAP; 1054 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot) 1055 | _PAGE_NO_CACHE | _PAGE_GUARDED); 1056 1057 vma->vm_ops = &spufs_signal2_mmap_vmops; 1058 return 0; 1059 } 1060 #else /* SPUFS_MMAP_4K */ 1061 #define spufs_signal2_mmap NULL 1062 #endif /* !SPUFS_MMAP_4K */ 1063 1064 static const struct file_operations spufs_signal2_fops = { 1065 .open = spufs_signal2_open, 1066 .release = spufs_signal2_release, 1067 .read = spufs_signal2_read, 1068 .write = spufs_signal2_write, 1069 .mmap = spufs_signal2_mmap, 1070 }; 1071 1072 static const struct file_operations spufs_signal2_nosched_fops = { 1073 .open = spufs_signal2_open, 1074 .release = spufs_signal2_release, 1075 .write = spufs_signal2_write, 1076 .mmap = spufs_signal2_mmap, 1077 }; 1078 1079 static void spufs_signal1_type_set(void *data, u64 val) 1080 { 1081 struct spu_context *ctx = data; 1082 1083 spu_acquire(ctx); 1084 ctx->ops->signal1_type_set(ctx, val); 1085 spu_release(ctx); 1086 } 1087 1088 static u64 __spufs_signal1_type_get(void *data) 1089 { 1090 struct spu_context *ctx = data; 1091 return ctx->ops->signal1_type_get(ctx); 1092 } 1093 1094 static u64 spufs_signal1_type_get(void *data) 1095 { 1096 struct spu_context *ctx = data; 1097 u64 ret; 1098 1099 spu_acquire(ctx); 1100 ret = __spufs_signal1_type_get(data); 1101 spu_release(ctx); 1102 1103 return ret; 1104 } 1105 DEFINE_SIMPLE_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get, 1106 spufs_signal1_type_set, "%llu"); 1107 1108 static void spufs_signal2_type_set(void *data, u64 val) 1109 { 1110 struct spu_context *ctx = data; 1111 1112 spu_acquire(ctx); 1113 ctx->ops->signal2_type_set(ctx, val); 1114 spu_release(ctx); 1115 } 1116 1117 static u64 __spufs_signal2_type_get(void *data) 1118 { 1119 struct spu_context *ctx = data; 1120 return ctx->ops->signal2_type_get(ctx); 1121 } 1122 1123 static u64 spufs_signal2_type_get(void *data) 1124 { 1125 struct spu_context *ctx = data; 1126 u64 ret; 1127 1128 spu_acquire(ctx); 1129 ret = __spufs_signal2_type_get(data); 1130 spu_release(ctx); 1131 1132 return ret; 1133 } 1134 DEFINE_SIMPLE_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get, 1135 spufs_signal2_type_set, "%llu"); 1136 1137 #if SPUFS_MMAP_4K 1138 static unsigned long spufs_mss_mmap_nopfn(struct vm_area_struct *vma, 1139 unsigned long address) 1140 { 1141 return spufs_ps_nopfn(vma, address, 0x0000, 0x1000); 1142 } 1143 1144 static struct vm_operations_struct spufs_mss_mmap_vmops = { 1145 .nopfn = spufs_mss_mmap_nopfn, 1146 }; 1147 1148 /* 1149 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff]. 1150 */ 1151 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma) 1152 { 1153 if (!(vma->vm_flags & VM_SHARED)) 1154 return -EINVAL; 1155 1156 vma->vm_flags |= VM_IO | VM_PFNMAP; 1157 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot) 1158 | _PAGE_NO_CACHE | _PAGE_GUARDED); 1159 1160 vma->vm_ops = &spufs_mss_mmap_vmops; 1161 return 0; 1162 } 1163 #else /* SPUFS_MMAP_4K */ 1164 #define spufs_mss_mmap NULL 1165 #endif /* !SPUFS_MMAP_4K */ 1166 1167 static int spufs_mss_open(struct inode *inode, struct file *file) 1168 { 1169 struct spufs_inode_info *i = SPUFS_I(inode); 1170 struct spu_context *ctx = i->i_ctx; 1171 1172 file->private_data = i->i_ctx; 1173 1174 mutex_lock(&ctx->mapping_lock); 1175 if (!i->i_openers++) 1176 ctx->mss = inode->i_mapping; 1177 mutex_unlock(&ctx->mapping_lock); 1178 return nonseekable_open(inode, file); 1179 } 1180 1181 static int 1182 spufs_mss_release(struct inode *inode, struct file *file) 1183 { 1184 struct spufs_inode_info *i = SPUFS_I(inode); 1185 struct spu_context *ctx = i->i_ctx; 1186 1187 mutex_lock(&ctx->mapping_lock); 1188 if (!--i->i_openers) 1189 ctx->mss = NULL; 1190 mutex_unlock(&ctx->mapping_lock); 1191 return 0; 1192 } 1193 1194 static const struct file_operations spufs_mss_fops = { 1195 .open = spufs_mss_open, 1196 .release = spufs_mss_release, 1197 .mmap = spufs_mss_mmap, 1198 }; 1199 1200 static unsigned long spufs_psmap_mmap_nopfn(struct vm_area_struct *vma, 1201 unsigned long address) 1202 { 1203 return spufs_ps_nopfn(vma, address, 0x0000, 0x20000); 1204 } 1205 1206 static struct vm_operations_struct spufs_psmap_mmap_vmops = { 1207 .nopfn = spufs_psmap_mmap_nopfn, 1208 }; 1209 1210 /* 1211 * mmap support for full problem state area [0x00000 - 0x1ffff]. 1212 */ 1213 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma) 1214 { 1215 if (!(vma->vm_flags & VM_SHARED)) 1216 return -EINVAL; 1217 1218 vma->vm_flags |= VM_IO | VM_PFNMAP; 1219 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot) 1220 | _PAGE_NO_CACHE | _PAGE_GUARDED); 1221 1222 vma->vm_ops = &spufs_psmap_mmap_vmops; 1223 return 0; 1224 } 1225 1226 static int spufs_psmap_open(struct inode *inode, struct file *file) 1227 { 1228 struct spufs_inode_info *i = SPUFS_I(inode); 1229 struct spu_context *ctx = i->i_ctx; 1230 1231 mutex_lock(&ctx->mapping_lock); 1232 file->private_data = i->i_ctx; 1233 if (!i->i_openers++) 1234 ctx->psmap = inode->i_mapping; 1235 mutex_unlock(&ctx->mapping_lock); 1236 return nonseekable_open(inode, file); 1237 } 1238 1239 static int 1240 spufs_psmap_release(struct inode *inode, struct file *file) 1241 { 1242 struct spufs_inode_info *i = SPUFS_I(inode); 1243 struct spu_context *ctx = i->i_ctx; 1244 1245 mutex_lock(&ctx->mapping_lock); 1246 if (!--i->i_openers) 1247 ctx->psmap = NULL; 1248 mutex_unlock(&ctx->mapping_lock); 1249 return 0; 1250 } 1251 1252 static const struct file_operations spufs_psmap_fops = { 1253 .open = spufs_psmap_open, 1254 .release = spufs_psmap_release, 1255 .mmap = spufs_psmap_mmap, 1256 }; 1257 1258 1259 #if SPUFS_MMAP_4K 1260 static unsigned long spufs_mfc_mmap_nopfn(struct vm_area_struct *vma, 1261 unsigned long address) 1262 { 1263 return spufs_ps_nopfn(vma, address, 0x3000, 0x1000); 1264 } 1265 1266 static struct vm_operations_struct spufs_mfc_mmap_vmops = { 1267 .nopfn = spufs_mfc_mmap_nopfn, 1268 }; 1269 1270 /* 1271 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff]. 1272 */ 1273 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma) 1274 { 1275 if (!(vma->vm_flags & VM_SHARED)) 1276 return -EINVAL; 1277 1278 vma->vm_flags |= VM_IO | VM_PFNMAP; 1279 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot) 1280 | _PAGE_NO_CACHE | _PAGE_GUARDED); 1281 1282 vma->vm_ops = &spufs_mfc_mmap_vmops; 1283 return 0; 1284 } 1285 #else /* SPUFS_MMAP_4K */ 1286 #define spufs_mfc_mmap NULL 1287 #endif /* !SPUFS_MMAP_4K */ 1288 1289 static int spufs_mfc_open(struct inode *inode, struct file *file) 1290 { 1291 struct spufs_inode_info *i = SPUFS_I(inode); 1292 struct spu_context *ctx = i->i_ctx; 1293 1294 /* we don't want to deal with DMA into other processes */ 1295 if (ctx->owner != current->mm) 1296 return -EINVAL; 1297 1298 if (atomic_read(&inode->i_count) != 1) 1299 return -EBUSY; 1300 1301 mutex_lock(&ctx->mapping_lock); 1302 file->private_data = ctx; 1303 if (!i->i_openers++) 1304 ctx->mfc = inode->i_mapping; 1305 mutex_unlock(&ctx->mapping_lock); 1306 return nonseekable_open(inode, file); 1307 } 1308 1309 static int 1310 spufs_mfc_release(struct inode *inode, struct file *file) 1311 { 1312 struct spufs_inode_info *i = SPUFS_I(inode); 1313 struct spu_context *ctx = i->i_ctx; 1314 1315 mutex_lock(&ctx->mapping_lock); 1316 if (!--i->i_openers) 1317 ctx->mfc = NULL; 1318 mutex_unlock(&ctx->mapping_lock); 1319 return 0; 1320 } 1321 1322 /* interrupt-level mfc callback function. */ 1323 void spufs_mfc_callback(struct spu *spu) 1324 { 1325 struct spu_context *ctx = spu->ctx; 1326 1327 wake_up_all(&ctx->mfc_wq); 1328 1329 pr_debug("%s %s\n", __FUNCTION__, spu->name); 1330 if (ctx->mfc_fasync) { 1331 u32 free_elements, tagstatus; 1332 unsigned int mask; 1333 1334 /* no need for spu_acquire in interrupt context */ 1335 free_elements = ctx->ops->get_mfc_free_elements(ctx); 1336 tagstatus = ctx->ops->read_mfc_tagstatus(ctx); 1337 1338 mask = 0; 1339 if (free_elements & 0xffff) 1340 mask |= POLLOUT; 1341 if (tagstatus & ctx->tagwait) 1342 mask |= POLLIN; 1343 1344 kill_fasync(&ctx->mfc_fasync, SIGIO, mask); 1345 } 1346 } 1347 1348 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status) 1349 { 1350 /* See if there is one tag group is complete */ 1351 /* FIXME we need locking around tagwait */ 1352 *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait; 1353 ctx->tagwait &= ~*status; 1354 if (*status) 1355 return 1; 1356 1357 /* enable interrupt waiting for any tag group, 1358 may silently fail if interrupts are already enabled */ 1359 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1); 1360 return 0; 1361 } 1362 1363 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer, 1364 size_t size, loff_t *pos) 1365 { 1366 struct spu_context *ctx = file->private_data; 1367 int ret = -EINVAL; 1368 u32 status; 1369 1370 if (size != 4) 1371 goto out; 1372 1373 spu_acquire(ctx); 1374 if (file->f_flags & O_NONBLOCK) { 1375 status = ctx->ops->read_mfc_tagstatus(ctx); 1376 if (!(status & ctx->tagwait)) 1377 ret = -EAGAIN; 1378 else 1379 ctx->tagwait &= ~status; 1380 } else { 1381 ret = spufs_wait(ctx->mfc_wq, 1382 spufs_read_mfc_tagstatus(ctx, &status)); 1383 } 1384 spu_release(ctx); 1385 1386 if (ret) 1387 goto out; 1388 1389 ret = 4; 1390 if (copy_to_user(buffer, &status, 4)) 1391 ret = -EFAULT; 1392 1393 out: 1394 return ret; 1395 } 1396 1397 static int spufs_check_valid_dma(struct mfc_dma_command *cmd) 1398 { 1399 pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa, 1400 cmd->ea, cmd->size, cmd->tag, cmd->cmd); 1401 1402 switch (cmd->cmd) { 1403 case MFC_PUT_CMD: 1404 case MFC_PUTF_CMD: 1405 case MFC_PUTB_CMD: 1406 case MFC_GET_CMD: 1407 case MFC_GETF_CMD: 1408 case MFC_GETB_CMD: 1409 break; 1410 default: 1411 pr_debug("invalid DMA opcode %x\n", cmd->cmd); 1412 return -EIO; 1413 } 1414 1415 if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) { 1416 pr_debug("invalid DMA alignment, ea %lx lsa %x\n", 1417 cmd->ea, cmd->lsa); 1418 return -EIO; 1419 } 1420 1421 switch (cmd->size & 0xf) { 1422 case 1: 1423 break; 1424 case 2: 1425 if (cmd->lsa & 1) 1426 goto error; 1427 break; 1428 case 4: 1429 if (cmd->lsa & 3) 1430 goto error; 1431 break; 1432 case 8: 1433 if (cmd->lsa & 7) 1434 goto error; 1435 break; 1436 case 0: 1437 if (cmd->lsa & 15) 1438 goto error; 1439 break; 1440 error: 1441 default: 1442 pr_debug("invalid DMA alignment %x for size %x\n", 1443 cmd->lsa & 0xf, cmd->size); 1444 return -EIO; 1445 } 1446 1447 if (cmd->size > 16 * 1024) { 1448 pr_debug("invalid DMA size %x\n", cmd->size); 1449 return -EIO; 1450 } 1451 1452 if (cmd->tag & 0xfff0) { 1453 /* we reserve the higher tag numbers for kernel use */ 1454 pr_debug("invalid DMA tag\n"); 1455 return -EIO; 1456 } 1457 1458 if (cmd->class) { 1459 /* not supported in this version */ 1460 pr_debug("invalid DMA class\n"); 1461 return -EIO; 1462 } 1463 1464 return 0; 1465 } 1466 1467 static int spu_send_mfc_command(struct spu_context *ctx, 1468 struct mfc_dma_command cmd, 1469 int *error) 1470 { 1471 *error = ctx->ops->send_mfc_command(ctx, &cmd); 1472 if (*error == -EAGAIN) { 1473 /* wait for any tag group to complete 1474 so we have space for the new command */ 1475 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1); 1476 /* try again, because the queue might be 1477 empty again */ 1478 *error = ctx->ops->send_mfc_command(ctx, &cmd); 1479 if (*error == -EAGAIN) 1480 return 0; 1481 } 1482 return 1; 1483 } 1484 1485 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer, 1486 size_t size, loff_t *pos) 1487 { 1488 struct spu_context *ctx = file->private_data; 1489 struct mfc_dma_command cmd; 1490 int ret = -EINVAL; 1491 1492 if (size != sizeof cmd) 1493 goto out; 1494 1495 ret = -EFAULT; 1496 if (copy_from_user(&cmd, buffer, sizeof cmd)) 1497 goto out; 1498 1499 ret = spufs_check_valid_dma(&cmd); 1500 if (ret) 1501 goto out; 1502 1503 ret = spu_acquire_runnable(ctx, 0); 1504 if (ret) 1505 goto out; 1506 1507 if (file->f_flags & O_NONBLOCK) { 1508 ret = ctx->ops->send_mfc_command(ctx, &cmd); 1509 } else { 1510 int status; 1511 ret = spufs_wait(ctx->mfc_wq, 1512 spu_send_mfc_command(ctx, cmd, &status)); 1513 if (status) 1514 ret = status; 1515 } 1516 1517 if (ret) 1518 goto out_unlock; 1519 1520 ctx->tagwait |= 1 << cmd.tag; 1521 ret = size; 1522 1523 out_unlock: 1524 spu_release(ctx); 1525 out: 1526 return ret; 1527 } 1528 1529 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait) 1530 { 1531 struct spu_context *ctx = file->private_data; 1532 u32 free_elements, tagstatus; 1533 unsigned int mask; 1534 1535 poll_wait(file, &ctx->mfc_wq, wait); 1536 1537 spu_acquire(ctx); 1538 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2); 1539 free_elements = ctx->ops->get_mfc_free_elements(ctx); 1540 tagstatus = ctx->ops->read_mfc_tagstatus(ctx); 1541 spu_release(ctx); 1542 1543 mask = 0; 1544 if (free_elements & 0xffff) 1545 mask |= POLLOUT | POLLWRNORM; 1546 if (tagstatus & ctx->tagwait) 1547 mask |= POLLIN | POLLRDNORM; 1548 1549 pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__, 1550 free_elements, tagstatus, ctx->tagwait); 1551 1552 return mask; 1553 } 1554 1555 static int spufs_mfc_flush(struct file *file, fl_owner_t id) 1556 { 1557 struct spu_context *ctx = file->private_data; 1558 int ret; 1559 1560 spu_acquire(ctx); 1561 #if 0 1562 /* this currently hangs */ 1563 ret = spufs_wait(ctx->mfc_wq, 1564 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2)); 1565 if (ret) 1566 goto out; 1567 ret = spufs_wait(ctx->mfc_wq, 1568 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait); 1569 out: 1570 #else 1571 ret = 0; 1572 #endif 1573 spu_release(ctx); 1574 1575 return ret; 1576 } 1577 1578 static int spufs_mfc_fsync(struct file *file, struct dentry *dentry, 1579 int datasync) 1580 { 1581 return spufs_mfc_flush(file, NULL); 1582 } 1583 1584 static int spufs_mfc_fasync(int fd, struct file *file, int on) 1585 { 1586 struct spu_context *ctx = file->private_data; 1587 1588 return fasync_helper(fd, file, on, &ctx->mfc_fasync); 1589 } 1590 1591 static const struct file_operations spufs_mfc_fops = { 1592 .open = spufs_mfc_open, 1593 .release = spufs_mfc_release, 1594 .read = spufs_mfc_read, 1595 .write = spufs_mfc_write, 1596 .poll = spufs_mfc_poll, 1597 .flush = spufs_mfc_flush, 1598 .fsync = spufs_mfc_fsync, 1599 .fasync = spufs_mfc_fasync, 1600 .mmap = spufs_mfc_mmap, 1601 }; 1602 1603 static void spufs_npc_set(void *data, u64 val) 1604 { 1605 struct spu_context *ctx = data; 1606 spu_acquire(ctx); 1607 ctx->ops->npc_write(ctx, val); 1608 spu_release(ctx); 1609 } 1610 1611 static u64 spufs_npc_get(void *data) 1612 { 1613 struct spu_context *ctx = data; 1614 u64 ret; 1615 spu_acquire(ctx); 1616 ret = ctx->ops->npc_read(ctx); 1617 spu_release(ctx); 1618 return ret; 1619 } 1620 DEFINE_SIMPLE_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set, 1621 "0x%llx\n") 1622 1623 static void spufs_decr_set(void *data, u64 val) 1624 { 1625 struct spu_context *ctx = data; 1626 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1627 spu_acquire_saved(ctx); 1628 lscsa->decr.slot[0] = (u32) val; 1629 spu_release_saved(ctx); 1630 } 1631 1632 static u64 __spufs_decr_get(void *data) 1633 { 1634 struct spu_context *ctx = data; 1635 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1636 return lscsa->decr.slot[0]; 1637 } 1638 1639 static u64 spufs_decr_get(void *data) 1640 { 1641 struct spu_context *ctx = data; 1642 u64 ret; 1643 spu_acquire_saved(ctx); 1644 ret = __spufs_decr_get(data); 1645 spu_release_saved(ctx); 1646 return ret; 1647 } 1648 DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set, 1649 "0x%llx\n") 1650 1651 static void spufs_decr_status_set(void *data, u64 val) 1652 { 1653 struct spu_context *ctx = data; 1654 spu_acquire_saved(ctx); 1655 if (val) 1656 ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING; 1657 else 1658 ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING; 1659 spu_release_saved(ctx); 1660 } 1661 1662 static u64 __spufs_decr_status_get(void *data) 1663 { 1664 struct spu_context *ctx = data; 1665 if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) 1666 return SPU_DECR_STATUS_RUNNING; 1667 else 1668 return 0; 1669 } 1670 1671 static u64 spufs_decr_status_get(void *data) 1672 { 1673 struct spu_context *ctx = data; 1674 u64 ret; 1675 spu_acquire_saved(ctx); 1676 ret = __spufs_decr_status_get(data); 1677 spu_release_saved(ctx); 1678 return ret; 1679 } 1680 DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get, 1681 spufs_decr_status_set, "0x%llx\n") 1682 1683 static void spufs_event_mask_set(void *data, u64 val) 1684 { 1685 struct spu_context *ctx = data; 1686 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1687 spu_acquire_saved(ctx); 1688 lscsa->event_mask.slot[0] = (u32) val; 1689 spu_release_saved(ctx); 1690 } 1691 1692 static u64 __spufs_event_mask_get(void *data) 1693 { 1694 struct spu_context *ctx = data; 1695 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1696 return lscsa->event_mask.slot[0]; 1697 } 1698 1699 static u64 spufs_event_mask_get(void *data) 1700 { 1701 struct spu_context *ctx = data; 1702 u64 ret; 1703 spu_acquire_saved(ctx); 1704 ret = __spufs_event_mask_get(data); 1705 spu_release_saved(ctx); 1706 return ret; 1707 } 1708 DEFINE_SIMPLE_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get, 1709 spufs_event_mask_set, "0x%llx\n") 1710 1711 static u64 __spufs_event_status_get(void *data) 1712 { 1713 struct spu_context *ctx = data; 1714 struct spu_state *state = &ctx->csa; 1715 u64 stat; 1716 stat = state->spu_chnlcnt_RW[0]; 1717 if (stat) 1718 return state->spu_chnldata_RW[0]; 1719 return 0; 1720 } 1721 1722 static u64 spufs_event_status_get(void *data) 1723 { 1724 struct spu_context *ctx = data; 1725 u64 ret = 0; 1726 1727 spu_acquire_saved(ctx); 1728 ret = __spufs_event_status_get(data); 1729 spu_release_saved(ctx); 1730 return ret; 1731 } 1732 DEFINE_SIMPLE_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get, 1733 NULL, "0x%llx\n") 1734 1735 static void spufs_srr0_set(void *data, u64 val) 1736 { 1737 struct spu_context *ctx = data; 1738 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1739 spu_acquire_saved(ctx); 1740 lscsa->srr0.slot[0] = (u32) val; 1741 spu_release_saved(ctx); 1742 } 1743 1744 static u64 spufs_srr0_get(void *data) 1745 { 1746 struct spu_context *ctx = data; 1747 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1748 u64 ret; 1749 spu_acquire_saved(ctx); 1750 ret = lscsa->srr0.slot[0]; 1751 spu_release_saved(ctx); 1752 return ret; 1753 } 1754 DEFINE_SIMPLE_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set, 1755 "0x%llx\n") 1756 1757 static u64 spufs_id_get(void *data) 1758 { 1759 struct spu_context *ctx = data; 1760 u64 num; 1761 1762 spu_acquire(ctx); 1763 if (ctx->state == SPU_STATE_RUNNABLE) 1764 num = ctx->spu->number; 1765 else 1766 num = (unsigned int)-1; 1767 spu_release(ctx); 1768 1769 return num; 1770 } 1771 DEFINE_SIMPLE_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n") 1772 1773 static u64 __spufs_object_id_get(void *data) 1774 { 1775 struct spu_context *ctx = data; 1776 return ctx->object_id; 1777 } 1778 1779 static u64 spufs_object_id_get(void *data) 1780 { 1781 /* FIXME: Should there really be no locking here? */ 1782 return __spufs_object_id_get(data); 1783 } 1784 1785 static void spufs_object_id_set(void *data, u64 id) 1786 { 1787 struct spu_context *ctx = data; 1788 ctx->object_id = id; 1789 } 1790 1791 DEFINE_SIMPLE_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get, 1792 spufs_object_id_set, "0x%llx\n"); 1793 1794 static u64 __spufs_lslr_get(void *data) 1795 { 1796 struct spu_context *ctx = data; 1797 return ctx->csa.priv2.spu_lslr_RW; 1798 } 1799 1800 static u64 spufs_lslr_get(void *data) 1801 { 1802 struct spu_context *ctx = data; 1803 u64 ret; 1804 1805 spu_acquire_saved(ctx); 1806 ret = __spufs_lslr_get(data); 1807 spu_release_saved(ctx); 1808 1809 return ret; 1810 } 1811 DEFINE_SIMPLE_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n") 1812 1813 static int spufs_info_open(struct inode *inode, struct file *file) 1814 { 1815 struct spufs_inode_info *i = SPUFS_I(inode); 1816 struct spu_context *ctx = i->i_ctx; 1817 file->private_data = ctx; 1818 return 0; 1819 } 1820 1821 static int spufs_caps_show(struct seq_file *s, void *private) 1822 { 1823 struct spu_context *ctx = s->private; 1824 1825 if (!(ctx->flags & SPU_CREATE_NOSCHED)) 1826 seq_puts(s, "sched\n"); 1827 if (!(ctx->flags & SPU_CREATE_ISOLATE)) 1828 seq_puts(s, "step\n"); 1829 return 0; 1830 } 1831 1832 static int spufs_caps_open(struct inode *inode, struct file *file) 1833 { 1834 return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx); 1835 } 1836 1837 static const struct file_operations spufs_caps_fops = { 1838 .open = spufs_caps_open, 1839 .read = seq_read, 1840 .llseek = seq_lseek, 1841 .release = single_release, 1842 }; 1843 1844 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx, 1845 char __user *buf, size_t len, loff_t *pos) 1846 { 1847 u32 mbox_stat; 1848 u32 data; 1849 1850 mbox_stat = ctx->csa.prob.mb_stat_R; 1851 if (mbox_stat & 0x0000ff) { 1852 data = ctx->csa.prob.pu_mb_R; 1853 } 1854 1855 return simple_read_from_buffer(buf, len, pos, &data, sizeof data); 1856 } 1857 1858 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf, 1859 size_t len, loff_t *pos) 1860 { 1861 int ret; 1862 struct spu_context *ctx = file->private_data; 1863 1864 if (!access_ok(VERIFY_WRITE, buf, len)) 1865 return -EFAULT; 1866 1867 spu_acquire_saved(ctx); 1868 spin_lock(&ctx->csa.register_lock); 1869 ret = __spufs_mbox_info_read(ctx, buf, len, pos); 1870 spin_unlock(&ctx->csa.register_lock); 1871 spu_release_saved(ctx); 1872 1873 return ret; 1874 } 1875 1876 static const struct file_operations spufs_mbox_info_fops = { 1877 .open = spufs_info_open, 1878 .read = spufs_mbox_info_read, 1879 .llseek = generic_file_llseek, 1880 }; 1881 1882 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx, 1883 char __user *buf, size_t len, loff_t *pos) 1884 { 1885 u32 ibox_stat; 1886 u32 data; 1887 1888 ibox_stat = ctx->csa.prob.mb_stat_R; 1889 if (ibox_stat & 0xff0000) { 1890 data = ctx->csa.priv2.puint_mb_R; 1891 } 1892 1893 return simple_read_from_buffer(buf, len, pos, &data, sizeof data); 1894 } 1895 1896 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf, 1897 size_t len, loff_t *pos) 1898 { 1899 struct spu_context *ctx = file->private_data; 1900 int ret; 1901 1902 if (!access_ok(VERIFY_WRITE, buf, len)) 1903 return -EFAULT; 1904 1905 spu_acquire_saved(ctx); 1906 spin_lock(&ctx->csa.register_lock); 1907 ret = __spufs_ibox_info_read(ctx, buf, len, pos); 1908 spin_unlock(&ctx->csa.register_lock); 1909 spu_release_saved(ctx); 1910 1911 return ret; 1912 } 1913 1914 static const struct file_operations spufs_ibox_info_fops = { 1915 .open = spufs_info_open, 1916 .read = spufs_ibox_info_read, 1917 .llseek = generic_file_llseek, 1918 }; 1919 1920 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx, 1921 char __user *buf, size_t len, loff_t *pos) 1922 { 1923 int i, cnt; 1924 u32 data[4]; 1925 u32 wbox_stat; 1926 1927 wbox_stat = ctx->csa.prob.mb_stat_R; 1928 cnt = 4 - ((wbox_stat & 0x00ff00) >> 8); 1929 for (i = 0; i < cnt; i++) { 1930 data[i] = ctx->csa.spu_mailbox_data[i]; 1931 } 1932 1933 return simple_read_from_buffer(buf, len, pos, &data, 1934 cnt * sizeof(u32)); 1935 } 1936 1937 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf, 1938 size_t len, loff_t *pos) 1939 { 1940 struct spu_context *ctx = file->private_data; 1941 int ret; 1942 1943 if (!access_ok(VERIFY_WRITE, buf, len)) 1944 return -EFAULT; 1945 1946 spu_acquire_saved(ctx); 1947 spin_lock(&ctx->csa.register_lock); 1948 ret = __spufs_wbox_info_read(ctx, buf, len, pos); 1949 spin_unlock(&ctx->csa.register_lock); 1950 spu_release_saved(ctx); 1951 1952 return ret; 1953 } 1954 1955 static const struct file_operations spufs_wbox_info_fops = { 1956 .open = spufs_info_open, 1957 .read = spufs_wbox_info_read, 1958 .llseek = generic_file_llseek, 1959 }; 1960 1961 static ssize_t __spufs_dma_info_read(struct spu_context *ctx, 1962 char __user *buf, size_t len, loff_t *pos) 1963 { 1964 struct spu_dma_info info; 1965 struct mfc_cq_sr *qp, *spuqp; 1966 int i; 1967 1968 info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW; 1969 info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0]; 1970 info.dma_info_status = ctx->csa.spu_chnldata_RW[24]; 1971 info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25]; 1972 info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27]; 1973 for (i = 0; i < 16; i++) { 1974 qp = &info.dma_info_command_data[i]; 1975 spuqp = &ctx->csa.priv2.spuq[i]; 1976 1977 qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW; 1978 qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW; 1979 qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW; 1980 qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW; 1981 } 1982 1983 return simple_read_from_buffer(buf, len, pos, &info, 1984 sizeof info); 1985 } 1986 1987 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf, 1988 size_t len, loff_t *pos) 1989 { 1990 struct spu_context *ctx = file->private_data; 1991 int ret; 1992 1993 if (!access_ok(VERIFY_WRITE, buf, len)) 1994 return -EFAULT; 1995 1996 spu_acquire_saved(ctx); 1997 spin_lock(&ctx->csa.register_lock); 1998 ret = __spufs_dma_info_read(ctx, buf, len, pos); 1999 spin_unlock(&ctx->csa.register_lock); 2000 spu_release_saved(ctx); 2001 2002 return ret; 2003 } 2004 2005 static const struct file_operations spufs_dma_info_fops = { 2006 .open = spufs_info_open, 2007 .read = spufs_dma_info_read, 2008 }; 2009 2010 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx, 2011 char __user *buf, size_t len, loff_t *pos) 2012 { 2013 struct spu_proxydma_info info; 2014 struct mfc_cq_sr *qp, *puqp; 2015 int ret = sizeof info; 2016 int i; 2017 2018 if (len < ret) 2019 return -EINVAL; 2020 2021 if (!access_ok(VERIFY_WRITE, buf, len)) 2022 return -EFAULT; 2023 2024 info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW; 2025 info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW; 2026 info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R; 2027 for (i = 0; i < 8; i++) { 2028 qp = &info.proxydma_info_command_data[i]; 2029 puqp = &ctx->csa.priv2.puq[i]; 2030 2031 qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW; 2032 qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW; 2033 qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW; 2034 qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW; 2035 } 2036 2037 return simple_read_from_buffer(buf, len, pos, &info, 2038 sizeof info); 2039 } 2040 2041 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf, 2042 size_t len, loff_t *pos) 2043 { 2044 struct spu_context *ctx = file->private_data; 2045 int ret; 2046 2047 spu_acquire_saved(ctx); 2048 spin_lock(&ctx->csa.register_lock); 2049 ret = __spufs_proxydma_info_read(ctx, buf, len, pos); 2050 spin_unlock(&ctx->csa.register_lock); 2051 spu_release_saved(ctx); 2052 2053 return ret; 2054 } 2055 2056 static const struct file_operations spufs_proxydma_info_fops = { 2057 .open = spufs_info_open, 2058 .read = spufs_proxydma_info_read, 2059 }; 2060 2061 static int spufs_show_tid(struct seq_file *s, void *private) 2062 { 2063 struct spu_context *ctx = s->private; 2064 2065 seq_printf(s, "%d\n", ctx->tid); 2066 return 0; 2067 } 2068 2069 static int spufs_tid_open(struct inode *inode, struct file *file) 2070 { 2071 return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx); 2072 } 2073 2074 static const struct file_operations spufs_tid_fops = { 2075 .open = spufs_tid_open, 2076 .read = seq_read, 2077 .llseek = seq_lseek, 2078 .release = single_release, 2079 }; 2080 2081 static const char *ctx_state_names[] = { 2082 "user", "system", "iowait", "loaded" 2083 }; 2084 2085 static unsigned long long spufs_acct_time(struct spu_context *ctx, 2086 enum spu_utilization_state state) 2087 { 2088 struct timespec ts; 2089 unsigned long long time = ctx->stats.times[state]; 2090 2091 /* 2092 * In general, utilization statistics are updated by the controlling 2093 * thread as the spu context moves through various well defined 2094 * state transitions, but if the context is lazily loaded its 2095 * utilization statistics are not updated as the controlling thread 2096 * is not tightly coupled with the execution of the spu context. We 2097 * calculate and apply the time delta from the last recorded state 2098 * of the spu context. 2099 */ 2100 if (ctx->spu && ctx->stats.util_state == state) { 2101 ktime_get_ts(&ts); 2102 time += timespec_to_ns(&ts) - ctx->stats.tstamp; 2103 } 2104 2105 return time / NSEC_PER_MSEC; 2106 } 2107 2108 static unsigned long long spufs_slb_flts(struct spu_context *ctx) 2109 { 2110 unsigned long long slb_flts = ctx->stats.slb_flt; 2111 2112 if (ctx->state == SPU_STATE_RUNNABLE) { 2113 slb_flts += (ctx->spu->stats.slb_flt - 2114 ctx->stats.slb_flt_base); 2115 } 2116 2117 return slb_flts; 2118 } 2119 2120 static unsigned long long spufs_class2_intrs(struct spu_context *ctx) 2121 { 2122 unsigned long long class2_intrs = ctx->stats.class2_intr; 2123 2124 if (ctx->state == SPU_STATE_RUNNABLE) { 2125 class2_intrs += (ctx->spu->stats.class2_intr - 2126 ctx->stats.class2_intr_base); 2127 } 2128 2129 return class2_intrs; 2130 } 2131 2132 2133 static int spufs_show_stat(struct seq_file *s, void *private) 2134 { 2135 struct spu_context *ctx = s->private; 2136 2137 spu_acquire(ctx); 2138 seq_printf(s, "%s %llu %llu %llu %llu " 2139 "%llu %llu %llu %llu %llu %llu %llu %llu\n", 2140 ctx_state_names[ctx->stats.util_state], 2141 spufs_acct_time(ctx, SPU_UTIL_USER), 2142 spufs_acct_time(ctx, SPU_UTIL_SYSTEM), 2143 spufs_acct_time(ctx, SPU_UTIL_IOWAIT), 2144 spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED), 2145 ctx->stats.vol_ctx_switch, 2146 ctx->stats.invol_ctx_switch, 2147 spufs_slb_flts(ctx), 2148 ctx->stats.hash_flt, 2149 ctx->stats.min_flt, 2150 ctx->stats.maj_flt, 2151 spufs_class2_intrs(ctx), 2152 ctx->stats.libassist); 2153 spu_release(ctx); 2154 return 0; 2155 } 2156 2157 static int spufs_stat_open(struct inode *inode, struct file *file) 2158 { 2159 return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx); 2160 } 2161 2162 static const struct file_operations spufs_stat_fops = { 2163 .open = spufs_stat_open, 2164 .read = seq_read, 2165 .llseek = seq_lseek, 2166 .release = single_release, 2167 }; 2168 2169 2170 struct tree_descr spufs_dir_contents[] = { 2171 { "capabilities", &spufs_caps_fops, 0444, }, 2172 { "mem", &spufs_mem_fops, 0666, }, 2173 { "regs", &spufs_regs_fops, 0666, }, 2174 { "mbox", &spufs_mbox_fops, 0444, }, 2175 { "ibox", &spufs_ibox_fops, 0444, }, 2176 { "wbox", &spufs_wbox_fops, 0222, }, 2177 { "mbox_stat", &spufs_mbox_stat_fops, 0444, }, 2178 { "ibox_stat", &spufs_ibox_stat_fops, 0444, }, 2179 { "wbox_stat", &spufs_wbox_stat_fops, 0444, }, 2180 { "signal1", &spufs_signal1_nosched_fops, 0222, }, 2181 { "signal2", &spufs_signal2_nosched_fops, 0222, }, 2182 { "signal1_type", &spufs_signal1_type, 0666, }, 2183 { "signal2_type", &spufs_signal2_type, 0666, }, 2184 { "cntl", &spufs_cntl_fops, 0666, }, 2185 { "fpcr", &spufs_fpcr_fops, 0666, }, 2186 { "lslr", &spufs_lslr_ops, 0444, }, 2187 { "mfc", &spufs_mfc_fops, 0666, }, 2188 { "mss", &spufs_mss_fops, 0666, }, 2189 { "npc", &spufs_npc_ops, 0666, }, 2190 { "srr0", &spufs_srr0_ops, 0666, }, 2191 { "decr", &spufs_decr_ops, 0666, }, 2192 { "decr_status", &spufs_decr_status_ops, 0666, }, 2193 { "event_mask", &spufs_event_mask_ops, 0666, }, 2194 { "event_status", &spufs_event_status_ops, 0444, }, 2195 { "psmap", &spufs_psmap_fops, 0666, }, 2196 { "phys-id", &spufs_id_ops, 0666, }, 2197 { "object-id", &spufs_object_id_ops, 0666, }, 2198 { "mbox_info", &spufs_mbox_info_fops, 0444, }, 2199 { "ibox_info", &spufs_ibox_info_fops, 0444, }, 2200 { "wbox_info", &spufs_wbox_info_fops, 0444, }, 2201 { "dma_info", &spufs_dma_info_fops, 0444, }, 2202 { "proxydma_info", &spufs_proxydma_info_fops, 0444, }, 2203 { "tid", &spufs_tid_fops, 0444, }, 2204 { "stat", &spufs_stat_fops, 0444, }, 2205 {}, 2206 }; 2207 2208 struct tree_descr spufs_dir_nosched_contents[] = { 2209 { "capabilities", &spufs_caps_fops, 0444, }, 2210 { "mem", &spufs_mem_fops, 0666, }, 2211 { "mbox", &spufs_mbox_fops, 0444, }, 2212 { "ibox", &spufs_ibox_fops, 0444, }, 2213 { "wbox", &spufs_wbox_fops, 0222, }, 2214 { "mbox_stat", &spufs_mbox_stat_fops, 0444, }, 2215 { "ibox_stat", &spufs_ibox_stat_fops, 0444, }, 2216 { "wbox_stat", &spufs_wbox_stat_fops, 0444, }, 2217 { "signal1", &spufs_signal1_nosched_fops, 0222, }, 2218 { "signal2", &spufs_signal2_nosched_fops, 0222, }, 2219 { "signal1_type", &spufs_signal1_type, 0666, }, 2220 { "signal2_type", &spufs_signal2_type, 0666, }, 2221 { "mss", &spufs_mss_fops, 0666, }, 2222 { "mfc", &spufs_mfc_fops, 0666, }, 2223 { "cntl", &spufs_cntl_fops, 0666, }, 2224 { "npc", &spufs_npc_ops, 0666, }, 2225 { "psmap", &spufs_psmap_fops, 0666, }, 2226 { "phys-id", &spufs_id_ops, 0666, }, 2227 { "object-id", &spufs_object_id_ops, 0666, }, 2228 { "tid", &spufs_tid_fops, 0444, }, 2229 { "stat", &spufs_stat_fops, 0444, }, 2230 {}, 2231 }; 2232 2233 struct spufs_coredump_reader spufs_coredump_read[] = { 2234 { "regs", __spufs_regs_read, NULL, 128 * 16 }, 2235 { "fpcr", __spufs_fpcr_read, NULL, 16 }, 2236 { "lslr", NULL, __spufs_lslr_get, 11 }, 2237 { "decr", NULL, __spufs_decr_get, 11 }, 2238 { "decr_status", NULL, __spufs_decr_status_get, 11 }, 2239 { "mem", __spufs_mem_read, NULL, 256 * 1024, }, 2240 { "signal1", __spufs_signal1_read, NULL, 4 }, 2241 { "signal1_type", NULL, __spufs_signal1_type_get, 2 }, 2242 { "signal2", __spufs_signal2_read, NULL, 4 }, 2243 { "signal2_type", NULL, __spufs_signal2_type_get, 2 }, 2244 { "event_mask", NULL, __spufs_event_mask_get, 8 }, 2245 { "event_status", NULL, __spufs_event_status_get, 8 }, 2246 { "mbox_info", __spufs_mbox_info_read, NULL, 4 }, 2247 { "ibox_info", __spufs_ibox_info_read, NULL, 4 }, 2248 { "wbox_info", __spufs_wbox_info_read, NULL, 16 }, 2249 { "dma_info", __spufs_dma_info_read, NULL, 69 * 8 }, 2250 { "proxydma_info", __spufs_proxydma_info_read, NULL, 35 * 8 }, 2251 { "object-id", NULL, __spufs_object_id_get, 19 }, 2252 { }, 2253 }; 2254 int spufs_coredump_num_notes = ARRAY_SIZE(spufs_coredump_read) - 1; 2255 2256