xref: /openbmc/linux/arch/powerpc/platforms/cell/spufs/file.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * SPU file system -- file contents
3  *
4  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5  *
6  * Author: Arnd Bergmann <arndb@de.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #undef DEBUG
24 
25 #include <linux/fs.h>
26 #include <linux/ioctl.h>
27 #include <linux/module.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/seq_file.h>
32 #include <linux/slab.h>
33 
34 #include <asm/io.h>
35 #include <asm/time.h>
36 #include <asm/spu.h>
37 #include <asm/spu_info.h>
38 #include <asm/uaccess.h>
39 
40 #include "spufs.h"
41 #include "sputrace.h"
42 
43 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
44 
45 /* Simple attribute files */
46 struct spufs_attr {
47 	int (*get)(void *, u64 *);
48 	int (*set)(void *, u64);
49 	char get_buf[24];       /* enough to store a u64 and "\n\0" */
50 	char set_buf[24];
51 	void *data;
52 	const char *fmt;        /* format for read operation */
53 	struct mutex mutex;     /* protects access to these buffers */
54 };
55 
56 static int spufs_attr_open(struct inode *inode, struct file *file,
57 		int (*get)(void *, u64 *), int (*set)(void *, u64),
58 		const char *fmt)
59 {
60 	struct spufs_attr *attr;
61 
62 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
63 	if (!attr)
64 		return -ENOMEM;
65 
66 	attr->get = get;
67 	attr->set = set;
68 	attr->data = inode->i_private;
69 	attr->fmt = fmt;
70 	mutex_init(&attr->mutex);
71 	file->private_data = attr;
72 
73 	return nonseekable_open(inode, file);
74 }
75 
76 static int spufs_attr_release(struct inode *inode, struct file *file)
77 {
78        kfree(file->private_data);
79 	return 0;
80 }
81 
82 static ssize_t spufs_attr_read(struct file *file, char __user *buf,
83 		size_t len, loff_t *ppos)
84 {
85 	struct spufs_attr *attr;
86 	size_t size;
87 	ssize_t ret;
88 
89 	attr = file->private_data;
90 	if (!attr->get)
91 		return -EACCES;
92 
93 	ret = mutex_lock_interruptible(&attr->mutex);
94 	if (ret)
95 		return ret;
96 
97 	if (*ppos) {		/* continued read */
98 		size = strlen(attr->get_buf);
99 	} else {		/* first read */
100 		u64 val;
101 		ret = attr->get(attr->data, &val);
102 		if (ret)
103 			goto out;
104 
105 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
106 				 attr->fmt, (unsigned long long)val);
107 	}
108 
109 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
110 out:
111 	mutex_unlock(&attr->mutex);
112 	return ret;
113 }
114 
115 static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
116 		size_t len, loff_t *ppos)
117 {
118 	struct spufs_attr *attr;
119 	u64 val;
120 	size_t size;
121 	ssize_t ret;
122 
123 	attr = file->private_data;
124 	if (!attr->set)
125 		return -EACCES;
126 
127 	ret = mutex_lock_interruptible(&attr->mutex);
128 	if (ret)
129 		return ret;
130 
131 	ret = -EFAULT;
132 	size = min(sizeof(attr->set_buf) - 1, len);
133 	if (copy_from_user(attr->set_buf, buf, size))
134 		goto out;
135 
136 	ret = len; /* claim we got the whole input */
137 	attr->set_buf[size] = '\0';
138 	val = simple_strtol(attr->set_buf, NULL, 0);
139 	attr->set(attr->data, val);
140 out:
141 	mutex_unlock(&attr->mutex);
142 	return ret;
143 }
144 
145 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)	\
146 static int __fops ## _open(struct inode *inode, struct file *file)	\
147 {									\
148 	__simple_attr_check_format(__fmt, 0ull);			\
149 	return spufs_attr_open(inode, file, __get, __set, __fmt);	\
150 }									\
151 static const struct file_operations __fops = {				\
152 	.owner	 = THIS_MODULE,						\
153 	.open	 = __fops ## _open,					\
154 	.release = spufs_attr_release,					\
155 	.read	 = spufs_attr_read,					\
156 	.write	 = spufs_attr_write,					\
157 	.llseek  = generic_file_llseek,					\
158 };
159 
160 
161 static int
162 spufs_mem_open(struct inode *inode, struct file *file)
163 {
164 	struct spufs_inode_info *i = SPUFS_I(inode);
165 	struct spu_context *ctx = i->i_ctx;
166 
167 	mutex_lock(&ctx->mapping_lock);
168 	file->private_data = ctx;
169 	if (!i->i_openers++)
170 		ctx->local_store = inode->i_mapping;
171 	mutex_unlock(&ctx->mapping_lock);
172 	return 0;
173 }
174 
175 static int
176 spufs_mem_release(struct inode *inode, struct file *file)
177 {
178 	struct spufs_inode_info *i = SPUFS_I(inode);
179 	struct spu_context *ctx = i->i_ctx;
180 
181 	mutex_lock(&ctx->mapping_lock);
182 	if (!--i->i_openers)
183 		ctx->local_store = NULL;
184 	mutex_unlock(&ctx->mapping_lock);
185 	return 0;
186 }
187 
188 static ssize_t
189 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
190 			size_t size, loff_t *pos)
191 {
192 	char *local_store = ctx->ops->get_ls(ctx);
193 	return simple_read_from_buffer(buffer, size, pos, local_store,
194 					LS_SIZE);
195 }
196 
197 static ssize_t
198 spufs_mem_read(struct file *file, char __user *buffer,
199 				size_t size, loff_t *pos)
200 {
201 	struct spu_context *ctx = file->private_data;
202 	ssize_t ret;
203 
204 	ret = spu_acquire(ctx);
205 	if (ret)
206 		return ret;
207 	ret = __spufs_mem_read(ctx, buffer, size, pos);
208 	spu_release(ctx);
209 
210 	return ret;
211 }
212 
213 static ssize_t
214 spufs_mem_write(struct file *file, const char __user *buffer,
215 					size_t size, loff_t *ppos)
216 {
217 	struct spu_context *ctx = file->private_data;
218 	char *local_store;
219 	loff_t pos = *ppos;
220 	int ret;
221 
222 	if (pos < 0)
223 		return -EINVAL;
224 	if (pos > LS_SIZE)
225 		return -EFBIG;
226 	if (size > LS_SIZE - pos)
227 		size = LS_SIZE - pos;
228 
229 	ret = spu_acquire(ctx);
230 	if (ret)
231 		return ret;
232 
233 	local_store = ctx->ops->get_ls(ctx);
234 	ret = copy_from_user(local_store + pos, buffer, size);
235 	spu_release(ctx);
236 
237 	if (ret)
238 		return -EFAULT;
239 	*ppos = pos + size;
240 	return size;
241 }
242 
243 static int
244 spufs_mem_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
245 {
246 	struct spu_context *ctx	= vma->vm_file->private_data;
247 	unsigned long address = (unsigned long)vmf->virtual_address;
248 	unsigned long pfn, offset;
249 
250 #ifdef CONFIG_SPU_FS_64K_LS
251 	struct spu_state *csa = &ctx->csa;
252 	int psize;
253 
254 	/* Check what page size we are using */
255 	psize = get_slice_psize(vma->vm_mm, address);
256 
257 	/* Some sanity checking */
258 	BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));
259 
260 	/* Wow, 64K, cool, we need to align the address though */
261 	if (csa->use_big_pages) {
262 		BUG_ON(vma->vm_start & 0xffff);
263 		address &= ~0xfffful;
264 	}
265 #endif /* CONFIG_SPU_FS_64K_LS */
266 
267 	offset = vmf->pgoff << PAGE_SHIFT;
268 	if (offset >= LS_SIZE)
269 		return VM_FAULT_SIGBUS;
270 
271 	pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
272 			address, offset);
273 
274 	if (spu_acquire(ctx))
275 		return VM_FAULT_NOPAGE;
276 
277 	if (ctx->state == SPU_STATE_SAVED) {
278 		vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
279 		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
280 	} else {
281 		vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
282 		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
283 	}
284 	vm_insert_pfn(vma, address, pfn);
285 
286 	spu_release(ctx);
287 
288 	return VM_FAULT_NOPAGE;
289 }
290 
291 static int spufs_mem_mmap_access(struct vm_area_struct *vma,
292 				unsigned long address,
293 				void *buf, int len, int write)
294 {
295 	struct spu_context *ctx = vma->vm_file->private_data;
296 	unsigned long offset = address - vma->vm_start;
297 	char *local_store;
298 
299 	if (write && !(vma->vm_flags & VM_WRITE))
300 		return -EACCES;
301 	if (spu_acquire(ctx))
302 		return -EINTR;
303 	if ((offset + len) > vma->vm_end)
304 		len = vma->vm_end - offset;
305 	local_store = ctx->ops->get_ls(ctx);
306 	if (write)
307 		memcpy_toio(local_store + offset, buf, len);
308 	else
309 		memcpy_fromio(buf, local_store + offset, len);
310 	spu_release(ctx);
311 	return len;
312 }
313 
314 static const struct vm_operations_struct spufs_mem_mmap_vmops = {
315 	.fault = spufs_mem_mmap_fault,
316 	.access = spufs_mem_mmap_access,
317 };
318 
319 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
320 {
321 #ifdef CONFIG_SPU_FS_64K_LS
322 	struct spu_context	*ctx = file->private_data;
323 	struct spu_state	*csa = &ctx->csa;
324 
325 	/* Sanity check VMA alignment */
326 	if (csa->use_big_pages) {
327 		pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
328 			 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
329 			 vma->vm_pgoff);
330 		if (vma->vm_start & 0xffff)
331 			return -EINVAL;
332 		if (vma->vm_pgoff & 0xf)
333 			return -EINVAL;
334 	}
335 #endif /* CONFIG_SPU_FS_64K_LS */
336 
337 	if (!(vma->vm_flags & VM_SHARED))
338 		return -EINVAL;
339 
340 	vma->vm_flags |= VM_IO | VM_PFNMAP;
341 	vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
342 
343 	vma->vm_ops = &spufs_mem_mmap_vmops;
344 	return 0;
345 }
346 
347 #ifdef CONFIG_SPU_FS_64K_LS
348 static unsigned long spufs_get_unmapped_area(struct file *file,
349 		unsigned long addr, unsigned long len, unsigned long pgoff,
350 		unsigned long flags)
351 {
352 	struct spu_context	*ctx = file->private_data;
353 	struct spu_state	*csa = &ctx->csa;
354 
355 	/* If not using big pages, fallback to normal MM g_u_a */
356 	if (!csa->use_big_pages)
357 		return current->mm->get_unmapped_area(file, addr, len,
358 						      pgoff, flags);
359 
360 	/* Else, try to obtain a 64K pages slice */
361 	return slice_get_unmapped_area(addr, len, flags,
362 				       MMU_PAGE_64K, 1, 0);
363 }
364 #endif /* CONFIG_SPU_FS_64K_LS */
365 
366 static const struct file_operations spufs_mem_fops = {
367 	.open			= spufs_mem_open,
368 	.release		= spufs_mem_release,
369 	.read			= spufs_mem_read,
370 	.write			= spufs_mem_write,
371 	.llseek			= generic_file_llseek,
372 	.mmap			= spufs_mem_mmap,
373 #ifdef CONFIG_SPU_FS_64K_LS
374 	.get_unmapped_area	= spufs_get_unmapped_area,
375 #endif
376 };
377 
378 static int spufs_ps_fault(struct vm_area_struct *vma,
379 				    struct vm_fault *vmf,
380 				    unsigned long ps_offs,
381 				    unsigned long ps_size)
382 {
383 	struct spu_context *ctx = vma->vm_file->private_data;
384 	unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
385 	int ret = 0;
386 
387 	spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
388 
389 	if (offset >= ps_size)
390 		return VM_FAULT_SIGBUS;
391 
392 	if (fatal_signal_pending(current))
393 		return VM_FAULT_SIGBUS;
394 
395 	/*
396 	 * Because we release the mmap_sem, the context may be destroyed while
397 	 * we're in spu_wait. Grab an extra reference so it isn't destroyed
398 	 * in the meantime.
399 	 */
400 	get_spu_context(ctx);
401 
402 	/*
403 	 * We have to wait for context to be loaded before we have
404 	 * pages to hand out to the user, but we don't want to wait
405 	 * with the mmap_sem held.
406 	 * It is possible to drop the mmap_sem here, but then we need
407 	 * to return VM_FAULT_NOPAGE because the mappings may have
408 	 * hanged.
409 	 */
410 	if (spu_acquire(ctx))
411 		goto refault;
412 
413 	if (ctx->state == SPU_STATE_SAVED) {
414 		up_read(&current->mm->mmap_sem);
415 		spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
416 		ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
417 		spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
418 		down_read(&current->mm->mmap_sem);
419 	} else {
420 		area = ctx->spu->problem_phys + ps_offs;
421 		vm_insert_pfn(vma, (unsigned long)vmf->virtual_address,
422 					(area + offset) >> PAGE_SHIFT);
423 		spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
424 	}
425 
426 	if (!ret)
427 		spu_release(ctx);
428 
429 refault:
430 	put_spu_context(ctx);
431 	return VM_FAULT_NOPAGE;
432 }
433 
434 #if SPUFS_MMAP_4K
435 static int spufs_cntl_mmap_fault(struct vm_area_struct *vma,
436 					   struct vm_fault *vmf)
437 {
438 	return spufs_ps_fault(vma, vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
439 }
440 
441 static const struct vm_operations_struct spufs_cntl_mmap_vmops = {
442 	.fault = spufs_cntl_mmap_fault,
443 };
444 
445 /*
446  * mmap support for problem state control area [0x4000 - 0x4fff].
447  */
448 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
449 {
450 	if (!(vma->vm_flags & VM_SHARED))
451 		return -EINVAL;
452 
453 	vma->vm_flags |= VM_IO | VM_PFNMAP;
454 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
455 
456 	vma->vm_ops = &spufs_cntl_mmap_vmops;
457 	return 0;
458 }
459 #else /* SPUFS_MMAP_4K */
460 #define spufs_cntl_mmap NULL
461 #endif /* !SPUFS_MMAP_4K */
462 
463 static int spufs_cntl_get(void *data, u64 *val)
464 {
465 	struct spu_context *ctx = data;
466 	int ret;
467 
468 	ret = spu_acquire(ctx);
469 	if (ret)
470 		return ret;
471 	*val = ctx->ops->status_read(ctx);
472 	spu_release(ctx);
473 
474 	return 0;
475 }
476 
477 static int spufs_cntl_set(void *data, u64 val)
478 {
479 	struct spu_context *ctx = data;
480 	int ret;
481 
482 	ret = spu_acquire(ctx);
483 	if (ret)
484 		return ret;
485 	ctx->ops->runcntl_write(ctx, val);
486 	spu_release(ctx);
487 
488 	return 0;
489 }
490 
491 static int spufs_cntl_open(struct inode *inode, struct file *file)
492 {
493 	struct spufs_inode_info *i = SPUFS_I(inode);
494 	struct spu_context *ctx = i->i_ctx;
495 
496 	mutex_lock(&ctx->mapping_lock);
497 	file->private_data = ctx;
498 	if (!i->i_openers++)
499 		ctx->cntl = inode->i_mapping;
500 	mutex_unlock(&ctx->mapping_lock);
501 	return simple_attr_open(inode, file, spufs_cntl_get,
502 					spufs_cntl_set, "0x%08lx");
503 }
504 
505 static int
506 spufs_cntl_release(struct inode *inode, struct file *file)
507 {
508 	struct spufs_inode_info *i = SPUFS_I(inode);
509 	struct spu_context *ctx = i->i_ctx;
510 
511 	simple_attr_release(inode, file);
512 
513 	mutex_lock(&ctx->mapping_lock);
514 	if (!--i->i_openers)
515 		ctx->cntl = NULL;
516 	mutex_unlock(&ctx->mapping_lock);
517 	return 0;
518 }
519 
520 static const struct file_operations spufs_cntl_fops = {
521 	.open = spufs_cntl_open,
522 	.release = spufs_cntl_release,
523 	.read = simple_attr_read,
524 	.write = simple_attr_write,
525 	.llseek	= generic_file_llseek,
526 	.mmap = spufs_cntl_mmap,
527 };
528 
529 static int
530 spufs_regs_open(struct inode *inode, struct file *file)
531 {
532 	struct spufs_inode_info *i = SPUFS_I(inode);
533 	file->private_data = i->i_ctx;
534 	return 0;
535 }
536 
537 static ssize_t
538 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
539 			size_t size, loff_t *pos)
540 {
541 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
542 	return simple_read_from_buffer(buffer, size, pos,
543 				      lscsa->gprs, sizeof lscsa->gprs);
544 }
545 
546 static ssize_t
547 spufs_regs_read(struct file *file, char __user *buffer,
548 		size_t size, loff_t *pos)
549 {
550 	int ret;
551 	struct spu_context *ctx = file->private_data;
552 
553 	/* pre-check for file position: if we'd return EOF, there's no point
554 	 * causing a deschedule */
555 	if (*pos >= sizeof(ctx->csa.lscsa->gprs))
556 		return 0;
557 
558 	ret = spu_acquire_saved(ctx);
559 	if (ret)
560 		return ret;
561 	ret = __spufs_regs_read(ctx, buffer, size, pos);
562 	spu_release_saved(ctx);
563 	return ret;
564 }
565 
566 static ssize_t
567 spufs_regs_write(struct file *file, const char __user *buffer,
568 		 size_t size, loff_t *pos)
569 {
570 	struct spu_context *ctx = file->private_data;
571 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
572 	int ret;
573 
574 	if (*pos >= sizeof(lscsa->gprs))
575 		return -EFBIG;
576 
577 	size = min_t(ssize_t, sizeof(lscsa->gprs) - *pos, size);
578 	*pos += size;
579 
580 	ret = spu_acquire_saved(ctx);
581 	if (ret)
582 		return ret;
583 
584 	ret = copy_from_user((char *)lscsa->gprs + *pos - size,
585 			     buffer, size) ? -EFAULT : size;
586 
587 	spu_release_saved(ctx);
588 	return ret;
589 }
590 
591 static const struct file_operations spufs_regs_fops = {
592 	.open	 = spufs_regs_open,
593 	.read    = spufs_regs_read,
594 	.write   = spufs_regs_write,
595 	.llseek  = generic_file_llseek,
596 };
597 
598 static ssize_t
599 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
600 			size_t size, loff_t * pos)
601 {
602 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
603 	return simple_read_from_buffer(buffer, size, pos,
604 				      &lscsa->fpcr, sizeof(lscsa->fpcr));
605 }
606 
607 static ssize_t
608 spufs_fpcr_read(struct file *file, char __user * buffer,
609 		size_t size, loff_t * pos)
610 {
611 	int ret;
612 	struct spu_context *ctx = file->private_data;
613 
614 	ret = spu_acquire_saved(ctx);
615 	if (ret)
616 		return ret;
617 	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
618 	spu_release_saved(ctx);
619 	return ret;
620 }
621 
622 static ssize_t
623 spufs_fpcr_write(struct file *file, const char __user * buffer,
624 		 size_t size, loff_t * pos)
625 {
626 	struct spu_context *ctx = file->private_data;
627 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
628 	int ret;
629 
630 	if (*pos >= sizeof(lscsa->fpcr))
631 		return -EFBIG;
632 
633 	size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
634 
635 	ret = spu_acquire_saved(ctx);
636 	if (ret)
637 		return ret;
638 
639 	*pos += size;
640 	ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
641 			     buffer, size) ? -EFAULT : size;
642 
643 	spu_release_saved(ctx);
644 	return ret;
645 }
646 
647 static const struct file_operations spufs_fpcr_fops = {
648 	.open = spufs_regs_open,
649 	.read = spufs_fpcr_read,
650 	.write = spufs_fpcr_write,
651 	.llseek = generic_file_llseek,
652 };
653 
654 /* generic open function for all pipe-like files */
655 static int spufs_pipe_open(struct inode *inode, struct file *file)
656 {
657 	struct spufs_inode_info *i = SPUFS_I(inode);
658 	file->private_data = i->i_ctx;
659 
660 	return nonseekable_open(inode, file);
661 }
662 
663 /*
664  * Read as many bytes from the mailbox as possible, until
665  * one of the conditions becomes true:
666  *
667  * - no more data available in the mailbox
668  * - end of the user provided buffer
669  * - end of the mapped area
670  */
671 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
672 			size_t len, loff_t *pos)
673 {
674 	struct spu_context *ctx = file->private_data;
675 	u32 mbox_data, __user *udata;
676 	ssize_t count;
677 
678 	if (len < 4)
679 		return -EINVAL;
680 
681 	if (!access_ok(VERIFY_WRITE, buf, len))
682 		return -EFAULT;
683 
684 	udata = (void __user *)buf;
685 
686 	count = spu_acquire(ctx);
687 	if (count)
688 		return count;
689 
690 	for (count = 0; (count + 4) <= len; count += 4, udata++) {
691 		int ret;
692 		ret = ctx->ops->mbox_read(ctx, &mbox_data);
693 		if (ret == 0)
694 			break;
695 
696 		/*
697 		 * at the end of the mapped area, we can fault
698 		 * but still need to return the data we have
699 		 * read successfully so far.
700 		 */
701 		ret = __put_user(mbox_data, udata);
702 		if (ret) {
703 			if (!count)
704 				count = -EFAULT;
705 			break;
706 		}
707 	}
708 	spu_release(ctx);
709 
710 	if (!count)
711 		count = -EAGAIN;
712 
713 	return count;
714 }
715 
716 static const struct file_operations spufs_mbox_fops = {
717 	.open	= spufs_pipe_open,
718 	.read	= spufs_mbox_read,
719 	.llseek	= no_llseek,
720 };
721 
722 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
723 			size_t len, loff_t *pos)
724 {
725 	struct spu_context *ctx = file->private_data;
726 	ssize_t ret;
727 	u32 mbox_stat;
728 
729 	if (len < 4)
730 		return -EINVAL;
731 
732 	ret = spu_acquire(ctx);
733 	if (ret)
734 		return ret;
735 
736 	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
737 
738 	spu_release(ctx);
739 
740 	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
741 		return -EFAULT;
742 
743 	return 4;
744 }
745 
746 static const struct file_operations spufs_mbox_stat_fops = {
747 	.open	= spufs_pipe_open,
748 	.read	= spufs_mbox_stat_read,
749 	.llseek = no_llseek,
750 };
751 
752 /* low-level ibox access function */
753 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
754 {
755 	return ctx->ops->ibox_read(ctx, data);
756 }
757 
758 static int spufs_ibox_fasync(int fd, struct file *file, int on)
759 {
760 	struct spu_context *ctx = file->private_data;
761 
762 	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
763 }
764 
765 /* interrupt-level ibox callback function. */
766 void spufs_ibox_callback(struct spu *spu)
767 {
768 	struct spu_context *ctx = spu->ctx;
769 
770 	if (!ctx)
771 		return;
772 
773 	wake_up_all(&ctx->ibox_wq);
774 	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
775 }
776 
777 /*
778  * Read as many bytes from the interrupt mailbox as possible, until
779  * one of the conditions becomes true:
780  *
781  * - no more data available in the mailbox
782  * - end of the user provided buffer
783  * - end of the mapped area
784  *
785  * If the file is opened without O_NONBLOCK, we wait here until
786  * any data is available, but return when we have been able to
787  * read something.
788  */
789 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
790 			size_t len, loff_t *pos)
791 {
792 	struct spu_context *ctx = file->private_data;
793 	u32 ibox_data, __user *udata;
794 	ssize_t count;
795 
796 	if (len < 4)
797 		return -EINVAL;
798 
799 	if (!access_ok(VERIFY_WRITE, buf, len))
800 		return -EFAULT;
801 
802 	udata = (void __user *)buf;
803 
804 	count = spu_acquire(ctx);
805 	if (count)
806 		goto out;
807 
808 	/* wait only for the first element */
809 	count = 0;
810 	if (file->f_flags & O_NONBLOCK) {
811 		if (!spu_ibox_read(ctx, &ibox_data)) {
812 			count = -EAGAIN;
813 			goto out_unlock;
814 		}
815 	} else {
816 		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
817 		if (count)
818 			goto out;
819 	}
820 
821 	/* if we can't write at all, return -EFAULT */
822 	count = __put_user(ibox_data, udata);
823 	if (count)
824 		goto out_unlock;
825 
826 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
827 		int ret;
828 		ret = ctx->ops->ibox_read(ctx, &ibox_data);
829 		if (ret == 0)
830 			break;
831 		/*
832 		 * at the end of the mapped area, we can fault
833 		 * but still need to return the data we have
834 		 * read successfully so far.
835 		 */
836 		ret = __put_user(ibox_data, udata);
837 		if (ret)
838 			break;
839 	}
840 
841 out_unlock:
842 	spu_release(ctx);
843 out:
844 	return count;
845 }
846 
847 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
848 {
849 	struct spu_context *ctx = file->private_data;
850 	unsigned int mask;
851 
852 	poll_wait(file, &ctx->ibox_wq, wait);
853 
854 	/*
855 	 * For now keep this uninterruptible and also ignore the rule
856 	 * that poll should not sleep.  Will be fixed later.
857 	 */
858 	mutex_lock(&ctx->state_mutex);
859 	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
860 	spu_release(ctx);
861 
862 	return mask;
863 }
864 
865 static const struct file_operations spufs_ibox_fops = {
866 	.open	= spufs_pipe_open,
867 	.read	= spufs_ibox_read,
868 	.poll	= spufs_ibox_poll,
869 	.fasync	= spufs_ibox_fasync,
870 	.llseek = no_llseek,
871 };
872 
873 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
874 			size_t len, loff_t *pos)
875 {
876 	struct spu_context *ctx = file->private_data;
877 	ssize_t ret;
878 	u32 ibox_stat;
879 
880 	if (len < 4)
881 		return -EINVAL;
882 
883 	ret = spu_acquire(ctx);
884 	if (ret)
885 		return ret;
886 	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
887 	spu_release(ctx);
888 
889 	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
890 		return -EFAULT;
891 
892 	return 4;
893 }
894 
895 static const struct file_operations spufs_ibox_stat_fops = {
896 	.open	= spufs_pipe_open,
897 	.read	= spufs_ibox_stat_read,
898 	.llseek = no_llseek,
899 };
900 
901 /* low-level mailbox write */
902 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
903 {
904 	return ctx->ops->wbox_write(ctx, data);
905 }
906 
907 static int spufs_wbox_fasync(int fd, struct file *file, int on)
908 {
909 	struct spu_context *ctx = file->private_data;
910 	int ret;
911 
912 	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
913 
914 	return ret;
915 }
916 
917 /* interrupt-level wbox callback function. */
918 void spufs_wbox_callback(struct spu *spu)
919 {
920 	struct spu_context *ctx = spu->ctx;
921 
922 	if (!ctx)
923 		return;
924 
925 	wake_up_all(&ctx->wbox_wq);
926 	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
927 }
928 
929 /*
930  * Write as many bytes to the interrupt mailbox as possible, until
931  * one of the conditions becomes true:
932  *
933  * - the mailbox is full
934  * - end of the user provided buffer
935  * - end of the mapped area
936  *
937  * If the file is opened without O_NONBLOCK, we wait here until
938  * space is availabyl, but return when we have been able to
939  * write something.
940  */
941 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
942 			size_t len, loff_t *pos)
943 {
944 	struct spu_context *ctx = file->private_data;
945 	u32 wbox_data, __user *udata;
946 	ssize_t count;
947 
948 	if (len < 4)
949 		return -EINVAL;
950 
951 	udata = (void __user *)buf;
952 	if (!access_ok(VERIFY_READ, buf, len))
953 		return -EFAULT;
954 
955 	if (__get_user(wbox_data, udata))
956 		return -EFAULT;
957 
958 	count = spu_acquire(ctx);
959 	if (count)
960 		goto out;
961 
962 	/*
963 	 * make sure we can at least write one element, by waiting
964 	 * in case of !O_NONBLOCK
965 	 */
966 	count = 0;
967 	if (file->f_flags & O_NONBLOCK) {
968 		if (!spu_wbox_write(ctx, wbox_data)) {
969 			count = -EAGAIN;
970 			goto out_unlock;
971 		}
972 	} else {
973 		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
974 		if (count)
975 			goto out;
976 	}
977 
978 
979 	/* write as much as possible */
980 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
981 		int ret;
982 		ret = __get_user(wbox_data, udata);
983 		if (ret)
984 			break;
985 
986 		ret = spu_wbox_write(ctx, wbox_data);
987 		if (ret == 0)
988 			break;
989 	}
990 
991 out_unlock:
992 	spu_release(ctx);
993 out:
994 	return count;
995 }
996 
997 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
998 {
999 	struct spu_context *ctx = file->private_data;
1000 	unsigned int mask;
1001 
1002 	poll_wait(file, &ctx->wbox_wq, wait);
1003 
1004 	/*
1005 	 * For now keep this uninterruptible and also ignore the rule
1006 	 * that poll should not sleep.  Will be fixed later.
1007 	 */
1008 	mutex_lock(&ctx->state_mutex);
1009 	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
1010 	spu_release(ctx);
1011 
1012 	return mask;
1013 }
1014 
1015 static const struct file_operations spufs_wbox_fops = {
1016 	.open	= spufs_pipe_open,
1017 	.write	= spufs_wbox_write,
1018 	.poll	= spufs_wbox_poll,
1019 	.fasync	= spufs_wbox_fasync,
1020 	.llseek = no_llseek,
1021 };
1022 
1023 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
1024 			size_t len, loff_t *pos)
1025 {
1026 	struct spu_context *ctx = file->private_data;
1027 	ssize_t ret;
1028 	u32 wbox_stat;
1029 
1030 	if (len < 4)
1031 		return -EINVAL;
1032 
1033 	ret = spu_acquire(ctx);
1034 	if (ret)
1035 		return ret;
1036 	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
1037 	spu_release(ctx);
1038 
1039 	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
1040 		return -EFAULT;
1041 
1042 	return 4;
1043 }
1044 
1045 static const struct file_operations spufs_wbox_stat_fops = {
1046 	.open	= spufs_pipe_open,
1047 	.read	= spufs_wbox_stat_read,
1048 	.llseek = no_llseek,
1049 };
1050 
1051 static int spufs_signal1_open(struct inode *inode, struct file *file)
1052 {
1053 	struct spufs_inode_info *i = SPUFS_I(inode);
1054 	struct spu_context *ctx = i->i_ctx;
1055 
1056 	mutex_lock(&ctx->mapping_lock);
1057 	file->private_data = ctx;
1058 	if (!i->i_openers++)
1059 		ctx->signal1 = inode->i_mapping;
1060 	mutex_unlock(&ctx->mapping_lock);
1061 	return nonseekable_open(inode, file);
1062 }
1063 
1064 static int
1065 spufs_signal1_release(struct inode *inode, struct file *file)
1066 {
1067 	struct spufs_inode_info *i = SPUFS_I(inode);
1068 	struct spu_context *ctx = i->i_ctx;
1069 
1070 	mutex_lock(&ctx->mapping_lock);
1071 	if (!--i->i_openers)
1072 		ctx->signal1 = NULL;
1073 	mutex_unlock(&ctx->mapping_lock);
1074 	return 0;
1075 }
1076 
1077 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1078 			size_t len, loff_t *pos)
1079 {
1080 	int ret = 0;
1081 	u32 data;
1082 
1083 	if (len < 4)
1084 		return -EINVAL;
1085 
1086 	if (ctx->csa.spu_chnlcnt_RW[3]) {
1087 		data = ctx->csa.spu_chnldata_RW[3];
1088 		ret = 4;
1089 	}
1090 
1091 	if (!ret)
1092 		goto out;
1093 
1094 	if (copy_to_user(buf, &data, 4))
1095 		return -EFAULT;
1096 
1097 out:
1098 	return ret;
1099 }
1100 
1101 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
1102 			size_t len, loff_t *pos)
1103 {
1104 	int ret;
1105 	struct spu_context *ctx = file->private_data;
1106 
1107 	ret = spu_acquire_saved(ctx);
1108 	if (ret)
1109 		return ret;
1110 	ret = __spufs_signal1_read(ctx, buf, len, pos);
1111 	spu_release_saved(ctx);
1112 
1113 	return ret;
1114 }
1115 
1116 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
1117 			size_t len, loff_t *pos)
1118 {
1119 	struct spu_context *ctx;
1120 	ssize_t ret;
1121 	u32 data;
1122 
1123 	ctx = file->private_data;
1124 
1125 	if (len < 4)
1126 		return -EINVAL;
1127 
1128 	if (copy_from_user(&data, buf, 4))
1129 		return -EFAULT;
1130 
1131 	ret = spu_acquire(ctx);
1132 	if (ret)
1133 		return ret;
1134 	ctx->ops->signal1_write(ctx, data);
1135 	spu_release(ctx);
1136 
1137 	return 4;
1138 }
1139 
1140 static int
1141 spufs_signal1_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1142 {
1143 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1144 	return spufs_ps_fault(vma, vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
1145 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1146 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1147 	 * signal 1 and 2 area
1148 	 */
1149 	return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1150 #else
1151 #error unsupported page size
1152 #endif
1153 }
1154 
1155 static const struct vm_operations_struct spufs_signal1_mmap_vmops = {
1156 	.fault = spufs_signal1_mmap_fault,
1157 };
1158 
1159 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1160 {
1161 	if (!(vma->vm_flags & VM_SHARED))
1162 		return -EINVAL;
1163 
1164 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1165 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1166 
1167 	vma->vm_ops = &spufs_signal1_mmap_vmops;
1168 	return 0;
1169 }
1170 
1171 static const struct file_operations spufs_signal1_fops = {
1172 	.open = spufs_signal1_open,
1173 	.release = spufs_signal1_release,
1174 	.read = spufs_signal1_read,
1175 	.write = spufs_signal1_write,
1176 	.mmap = spufs_signal1_mmap,
1177 	.llseek = no_llseek,
1178 };
1179 
1180 static const struct file_operations spufs_signal1_nosched_fops = {
1181 	.open = spufs_signal1_open,
1182 	.release = spufs_signal1_release,
1183 	.write = spufs_signal1_write,
1184 	.mmap = spufs_signal1_mmap,
1185 	.llseek = no_llseek,
1186 };
1187 
1188 static int spufs_signal2_open(struct inode *inode, struct file *file)
1189 {
1190 	struct spufs_inode_info *i = SPUFS_I(inode);
1191 	struct spu_context *ctx = i->i_ctx;
1192 
1193 	mutex_lock(&ctx->mapping_lock);
1194 	file->private_data = ctx;
1195 	if (!i->i_openers++)
1196 		ctx->signal2 = inode->i_mapping;
1197 	mutex_unlock(&ctx->mapping_lock);
1198 	return nonseekable_open(inode, file);
1199 }
1200 
1201 static int
1202 spufs_signal2_release(struct inode *inode, struct file *file)
1203 {
1204 	struct spufs_inode_info *i = SPUFS_I(inode);
1205 	struct spu_context *ctx = i->i_ctx;
1206 
1207 	mutex_lock(&ctx->mapping_lock);
1208 	if (!--i->i_openers)
1209 		ctx->signal2 = NULL;
1210 	mutex_unlock(&ctx->mapping_lock);
1211 	return 0;
1212 }
1213 
1214 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1215 			size_t len, loff_t *pos)
1216 {
1217 	int ret = 0;
1218 	u32 data;
1219 
1220 	if (len < 4)
1221 		return -EINVAL;
1222 
1223 	if (ctx->csa.spu_chnlcnt_RW[4]) {
1224 		data =  ctx->csa.spu_chnldata_RW[4];
1225 		ret = 4;
1226 	}
1227 
1228 	if (!ret)
1229 		goto out;
1230 
1231 	if (copy_to_user(buf, &data, 4))
1232 		return -EFAULT;
1233 
1234 out:
1235 	return ret;
1236 }
1237 
1238 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1239 			size_t len, loff_t *pos)
1240 {
1241 	struct spu_context *ctx = file->private_data;
1242 	int ret;
1243 
1244 	ret = spu_acquire_saved(ctx);
1245 	if (ret)
1246 		return ret;
1247 	ret = __spufs_signal2_read(ctx, buf, len, pos);
1248 	spu_release_saved(ctx);
1249 
1250 	return ret;
1251 }
1252 
1253 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1254 			size_t len, loff_t *pos)
1255 {
1256 	struct spu_context *ctx;
1257 	ssize_t ret;
1258 	u32 data;
1259 
1260 	ctx = file->private_data;
1261 
1262 	if (len < 4)
1263 		return -EINVAL;
1264 
1265 	if (copy_from_user(&data, buf, 4))
1266 		return -EFAULT;
1267 
1268 	ret = spu_acquire(ctx);
1269 	if (ret)
1270 		return ret;
1271 	ctx->ops->signal2_write(ctx, data);
1272 	spu_release(ctx);
1273 
1274 	return 4;
1275 }
1276 
1277 #if SPUFS_MMAP_4K
1278 static int
1279 spufs_signal2_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1280 {
1281 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1282 	return spufs_ps_fault(vma, vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
1283 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1284 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1285 	 * signal 1 and 2 area
1286 	 */
1287 	return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1288 #else
1289 #error unsupported page size
1290 #endif
1291 }
1292 
1293 static const struct vm_operations_struct spufs_signal2_mmap_vmops = {
1294 	.fault = spufs_signal2_mmap_fault,
1295 };
1296 
1297 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1298 {
1299 	if (!(vma->vm_flags & VM_SHARED))
1300 		return -EINVAL;
1301 
1302 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1303 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1304 
1305 	vma->vm_ops = &spufs_signal2_mmap_vmops;
1306 	return 0;
1307 }
1308 #else /* SPUFS_MMAP_4K */
1309 #define spufs_signal2_mmap NULL
1310 #endif /* !SPUFS_MMAP_4K */
1311 
1312 static const struct file_operations spufs_signal2_fops = {
1313 	.open = spufs_signal2_open,
1314 	.release = spufs_signal2_release,
1315 	.read = spufs_signal2_read,
1316 	.write = spufs_signal2_write,
1317 	.mmap = spufs_signal2_mmap,
1318 	.llseek = no_llseek,
1319 };
1320 
1321 static const struct file_operations spufs_signal2_nosched_fops = {
1322 	.open = spufs_signal2_open,
1323 	.release = spufs_signal2_release,
1324 	.write = spufs_signal2_write,
1325 	.mmap = spufs_signal2_mmap,
1326 	.llseek = no_llseek,
1327 };
1328 
1329 /*
1330  * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1331  * work of acquiring (or not) the SPU context before calling through
1332  * to the actual get routine. The set routine is called directly.
1333  */
1334 #define SPU_ATTR_NOACQUIRE	0
1335 #define SPU_ATTR_ACQUIRE	1
1336 #define SPU_ATTR_ACQUIRE_SAVED	2
1337 
1338 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)	\
1339 static int __##__get(void *data, u64 *val)				\
1340 {									\
1341 	struct spu_context *ctx = data;					\
1342 	int ret = 0;							\
1343 									\
1344 	if (__acquire == SPU_ATTR_ACQUIRE) {				\
1345 		ret = spu_acquire(ctx);					\
1346 		if (ret)						\
1347 			return ret;					\
1348 		*val = __get(ctx);					\
1349 		spu_release(ctx);					\
1350 	} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED)	{		\
1351 		ret = spu_acquire_saved(ctx);				\
1352 		if (ret)						\
1353 			return ret;					\
1354 		*val = __get(ctx);					\
1355 		spu_release_saved(ctx);					\
1356 	} else								\
1357 		*val = __get(ctx);					\
1358 									\
1359 	return 0;							\
1360 }									\
1361 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1362 
1363 static int spufs_signal1_type_set(void *data, u64 val)
1364 {
1365 	struct spu_context *ctx = data;
1366 	int ret;
1367 
1368 	ret = spu_acquire(ctx);
1369 	if (ret)
1370 		return ret;
1371 	ctx->ops->signal1_type_set(ctx, val);
1372 	spu_release(ctx);
1373 
1374 	return 0;
1375 }
1376 
1377 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1378 {
1379 	return ctx->ops->signal1_type_get(ctx);
1380 }
1381 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1382 		       spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1383 
1384 
1385 static int spufs_signal2_type_set(void *data, u64 val)
1386 {
1387 	struct spu_context *ctx = data;
1388 	int ret;
1389 
1390 	ret = spu_acquire(ctx);
1391 	if (ret)
1392 		return ret;
1393 	ctx->ops->signal2_type_set(ctx, val);
1394 	spu_release(ctx);
1395 
1396 	return 0;
1397 }
1398 
1399 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1400 {
1401 	return ctx->ops->signal2_type_get(ctx);
1402 }
1403 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1404 		       spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1405 
1406 #if SPUFS_MMAP_4K
1407 static int
1408 spufs_mss_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1409 {
1410 	return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1411 }
1412 
1413 static const struct vm_operations_struct spufs_mss_mmap_vmops = {
1414 	.fault = spufs_mss_mmap_fault,
1415 };
1416 
1417 /*
1418  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1419  */
1420 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1421 {
1422 	if (!(vma->vm_flags & VM_SHARED))
1423 		return -EINVAL;
1424 
1425 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1426 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1427 
1428 	vma->vm_ops = &spufs_mss_mmap_vmops;
1429 	return 0;
1430 }
1431 #else /* SPUFS_MMAP_4K */
1432 #define spufs_mss_mmap NULL
1433 #endif /* !SPUFS_MMAP_4K */
1434 
1435 static int spufs_mss_open(struct inode *inode, struct file *file)
1436 {
1437 	struct spufs_inode_info *i = SPUFS_I(inode);
1438 	struct spu_context *ctx = i->i_ctx;
1439 
1440 	file->private_data = i->i_ctx;
1441 
1442 	mutex_lock(&ctx->mapping_lock);
1443 	if (!i->i_openers++)
1444 		ctx->mss = inode->i_mapping;
1445 	mutex_unlock(&ctx->mapping_lock);
1446 	return nonseekable_open(inode, file);
1447 }
1448 
1449 static int
1450 spufs_mss_release(struct inode *inode, struct file *file)
1451 {
1452 	struct spufs_inode_info *i = SPUFS_I(inode);
1453 	struct spu_context *ctx = i->i_ctx;
1454 
1455 	mutex_lock(&ctx->mapping_lock);
1456 	if (!--i->i_openers)
1457 		ctx->mss = NULL;
1458 	mutex_unlock(&ctx->mapping_lock);
1459 	return 0;
1460 }
1461 
1462 static const struct file_operations spufs_mss_fops = {
1463 	.open	 = spufs_mss_open,
1464 	.release = spufs_mss_release,
1465 	.mmap	 = spufs_mss_mmap,
1466 	.llseek  = no_llseek,
1467 };
1468 
1469 static int
1470 spufs_psmap_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1471 {
1472 	return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1473 }
1474 
1475 static const struct vm_operations_struct spufs_psmap_mmap_vmops = {
1476 	.fault = spufs_psmap_mmap_fault,
1477 };
1478 
1479 /*
1480  * mmap support for full problem state area [0x00000 - 0x1ffff].
1481  */
1482 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1483 {
1484 	if (!(vma->vm_flags & VM_SHARED))
1485 		return -EINVAL;
1486 
1487 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1488 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1489 
1490 	vma->vm_ops = &spufs_psmap_mmap_vmops;
1491 	return 0;
1492 }
1493 
1494 static int spufs_psmap_open(struct inode *inode, struct file *file)
1495 {
1496 	struct spufs_inode_info *i = SPUFS_I(inode);
1497 	struct spu_context *ctx = i->i_ctx;
1498 
1499 	mutex_lock(&ctx->mapping_lock);
1500 	file->private_data = i->i_ctx;
1501 	if (!i->i_openers++)
1502 		ctx->psmap = inode->i_mapping;
1503 	mutex_unlock(&ctx->mapping_lock);
1504 	return nonseekable_open(inode, file);
1505 }
1506 
1507 static int
1508 spufs_psmap_release(struct inode *inode, struct file *file)
1509 {
1510 	struct spufs_inode_info *i = SPUFS_I(inode);
1511 	struct spu_context *ctx = i->i_ctx;
1512 
1513 	mutex_lock(&ctx->mapping_lock);
1514 	if (!--i->i_openers)
1515 		ctx->psmap = NULL;
1516 	mutex_unlock(&ctx->mapping_lock);
1517 	return 0;
1518 }
1519 
1520 static const struct file_operations spufs_psmap_fops = {
1521 	.open	 = spufs_psmap_open,
1522 	.release = spufs_psmap_release,
1523 	.mmap	 = spufs_psmap_mmap,
1524 	.llseek  = no_llseek,
1525 };
1526 
1527 
1528 #if SPUFS_MMAP_4K
1529 static int
1530 spufs_mfc_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1531 {
1532 	return spufs_ps_fault(vma, vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1533 }
1534 
1535 static const struct vm_operations_struct spufs_mfc_mmap_vmops = {
1536 	.fault = spufs_mfc_mmap_fault,
1537 };
1538 
1539 /*
1540  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1541  */
1542 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1543 {
1544 	if (!(vma->vm_flags & VM_SHARED))
1545 		return -EINVAL;
1546 
1547 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1548 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1549 
1550 	vma->vm_ops = &spufs_mfc_mmap_vmops;
1551 	return 0;
1552 }
1553 #else /* SPUFS_MMAP_4K */
1554 #define spufs_mfc_mmap NULL
1555 #endif /* !SPUFS_MMAP_4K */
1556 
1557 static int spufs_mfc_open(struct inode *inode, struct file *file)
1558 {
1559 	struct spufs_inode_info *i = SPUFS_I(inode);
1560 	struct spu_context *ctx = i->i_ctx;
1561 
1562 	/* we don't want to deal with DMA into other processes */
1563 	if (ctx->owner != current->mm)
1564 		return -EINVAL;
1565 
1566 	if (atomic_read(&inode->i_count) != 1)
1567 		return -EBUSY;
1568 
1569 	mutex_lock(&ctx->mapping_lock);
1570 	file->private_data = ctx;
1571 	if (!i->i_openers++)
1572 		ctx->mfc = inode->i_mapping;
1573 	mutex_unlock(&ctx->mapping_lock);
1574 	return nonseekable_open(inode, file);
1575 }
1576 
1577 static int
1578 spufs_mfc_release(struct inode *inode, struct file *file)
1579 {
1580 	struct spufs_inode_info *i = SPUFS_I(inode);
1581 	struct spu_context *ctx = i->i_ctx;
1582 
1583 	mutex_lock(&ctx->mapping_lock);
1584 	if (!--i->i_openers)
1585 		ctx->mfc = NULL;
1586 	mutex_unlock(&ctx->mapping_lock);
1587 	return 0;
1588 }
1589 
1590 /* interrupt-level mfc callback function. */
1591 void spufs_mfc_callback(struct spu *spu)
1592 {
1593 	struct spu_context *ctx = spu->ctx;
1594 
1595 	if (!ctx)
1596 		return;
1597 
1598 	wake_up_all(&ctx->mfc_wq);
1599 
1600 	pr_debug("%s %s\n", __func__, spu->name);
1601 	if (ctx->mfc_fasync) {
1602 		u32 free_elements, tagstatus;
1603 		unsigned int mask;
1604 
1605 		/* no need for spu_acquire in interrupt context */
1606 		free_elements = ctx->ops->get_mfc_free_elements(ctx);
1607 		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1608 
1609 		mask = 0;
1610 		if (free_elements & 0xffff)
1611 			mask |= POLLOUT;
1612 		if (tagstatus & ctx->tagwait)
1613 			mask |= POLLIN;
1614 
1615 		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
1616 	}
1617 }
1618 
1619 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1620 {
1621 	/* See if there is one tag group is complete */
1622 	/* FIXME we need locking around tagwait */
1623 	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1624 	ctx->tagwait &= ~*status;
1625 	if (*status)
1626 		return 1;
1627 
1628 	/* enable interrupt waiting for any tag group,
1629 	   may silently fail if interrupts are already enabled */
1630 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1631 	return 0;
1632 }
1633 
1634 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1635 			size_t size, loff_t *pos)
1636 {
1637 	struct spu_context *ctx = file->private_data;
1638 	int ret = -EINVAL;
1639 	u32 status;
1640 
1641 	if (size != 4)
1642 		goto out;
1643 
1644 	ret = spu_acquire(ctx);
1645 	if (ret)
1646 		return ret;
1647 
1648 	ret = -EINVAL;
1649 	if (file->f_flags & O_NONBLOCK) {
1650 		status = ctx->ops->read_mfc_tagstatus(ctx);
1651 		if (!(status & ctx->tagwait))
1652 			ret = -EAGAIN;
1653 		else
1654 			/* XXX(hch): shouldn't we clear ret here? */
1655 			ctx->tagwait &= ~status;
1656 	} else {
1657 		ret = spufs_wait(ctx->mfc_wq,
1658 			   spufs_read_mfc_tagstatus(ctx, &status));
1659 		if (ret)
1660 			goto out;
1661 	}
1662 	spu_release(ctx);
1663 
1664 	ret = 4;
1665 	if (copy_to_user(buffer, &status, 4))
1666 		ret = -EFAULT;
1667 
1668 out:
1669 	return ret;
1670 }
1671 
1672 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1673 {
1674 	pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa,
1675 		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1676 
1677 	switch (cmd->cmd) {
1678 	case MFC_PUT_CMD:
1679 	case MFC_PUTF_CMD:
1680 	case MFC_PUTB_CMD:
1681 	case MFC_GET_CMD:
1682 	case MFC_GETF_CMD:
1683 	case MFC_GETB_CMD:
1684 		break;
1685 	default:
1686 		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1687 		return -EIO;
1688 	}
1689 
1690 	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1691 		pr_debug("invalid DMA alignment, ea %llx lsa %x\n",
1692 				cmd->ea, cmd->lsa);
1693 		return -EIO;
1694 	}
1695 
1696 	switch (cmd->size & 0xf) {
1697 	case 1:
1698 		break;
1699 	case 2:
1700 		if (cmd->lsa & 1)
1701 			goto error;
1702 		break;
1703 	case 4:
1704 		if (cmd->lsa & 3)
1705 			goto error;
1706 		break;
1707 	case 8:
1708 		if (cmd->lsa & 7)
1709 			goto error;
1710 		break;
1711 	case 0:
1712 		if (cmd->lsa & 15)
1713 			goto error;
1714 		break;
1715 	error:
1716 	default:
1717 		pr_debug("invalid DMA alignment %x for size %x\n",
1718 			cmd->lsa & 0xf, cmd->size);
1719 		return -EIO;
1720 	}
1721 
1722 	if (cmd->size > 16 * 1024) {
1723 		pr_debug("invalid DMA size %x\n", cmd->size);
1724 		return -EIO;
1725 	}
1726 
1727 	if (cmd->tag & 0xfff0) {
1728 		/* we reserve the higher tag numbers for kernel use */
1729 		pr_debug("invalid DMA tag\n");
1730 		return -EIO;
1731 	}
1732 
1733 	if (cmd->class) {
1734 		/* not supported in this version */
1735 		pr_debug("invalid DMA class\n");
1736 		return -EIO;
1737 	}
1738 
1739 	return 0;
1740 }
1741 
1742 static int spu_send_mfc_command(struct spu_context *ctx,
1743 				struct mfc_dma_command cmd,
1744 				int *error)
1745 {
1746 	*error = ctx->ops->send_mfc_command(ctx, &cmd);
1747 	if (*error == -EAGAIN) {
1748 		/* wait for any tag group to complete
1749 		   so we have space for the new command */
1750 		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1751 		/* try again, because the queue might be
1752 		   empty again */
1753 		*error = ctx->ops->send_mfc_command(ctx, &cmd);
1754 		if (*error == -EAGAIN)
1755 			return 0;
1756 	}
1757 	return 1;
1758 }
1759 
1760 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1761 			size_t size, loff_t *pos)
1762 {
1763 	struct spu_context *ctx = file->private_data;
1764 	struct mfc_dma_command cmd;
1765 	int ret = -EINVAL;
1766 
1767 	if (size != sizeof cmd)
1768 		goto out;
1769 
1770 	ret = -EFAULT;
1771 	if (copy_from_user(&cmd, buffer, sizeof cmd))
1772 		goto out;
1773 
1774 	ret = spufs_check_valid_dma(&cmd);
1775 	if (ret)
1776 		goto out;
1777 
1778 	ret = spu_acquire(ctx);
1779 	if (ret)
1780 		goto out;
1781 
1782 	ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1783 	if (ret)
1784 		goto out;
1785 
1786 	if (file->f_flags & O_NONBLOCK) {
1787 		ret = ctx->ops->send_mfc_command(ctx, &cmd);
1788 	} else {
1789 		int status;
1790 		ret = spufs_wait(ctx->mfc_wq,
1791 				 spu_send_mfc_command(ctx, cmd, &status));
1792 		if (ret)
1793 			goto out;
1794 		if (status)
1795 			ret = status;
1796 	}
1797 
1798 	if (ret)
1799 		goto out_unlock;
1800 
1801 	ctx->tagwait |= 1 << cmd.tag;
1802 	ret = size;
1803 
1804 out_unlock:
1805 	spu_release(ctx);
1806 out:
1807 	return ret;
1808 }
1809 
1810 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
1811 {
1812 	struct spu_context *ctx = file->private_data;
1813 	u32 free_elements, tagstatus;
1814 	unsigned int mask;
1815 
1816 	poll_wait(file, &ctx->mfc_wq, wait);
1817 
1818 	/*
1819 	 * For now keep this uninterruptible and also ignore the rule
1820 	 * that poll should not sleep.  Will be fixed later.
1821 	 */
1822 	mutex_lock(&ctx->state_mutex);
1823 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1824 	free_elements = ctx->ops->get_mfc_free_elements(ctx);
1825 	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1826 	spu_release(ctx);
1827 
1828 	mask = 0;
1829 	if (free_elements & 0xffff)
1830 		mask |= POLLOUT | POLLWRNORM;
1831 	if (tagstatus & ctx->tagwait)
1832 		mask |= POLLIN | POLLRDNORM;
1833 
1834 	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1835 		free_elements, tagstatus, ctx->tagwait);
1836 
1837 	return mask;
1838 }
1839 
1840 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1841 {
1842 	struct spu_context *ctx = file->private_data;
1843 	int ret;
1844 
1845 	ret = spu_acquire(ctx);
1846 	if (ret)
1847 		goto out;
1848 #if 0
1849 /* this currently hangs */
1850 	ret = spufs_wait(ctx->mfc_wq,
1851 			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1852 	if (ret)
1853 		goto out;
1854 	ret = spufs_wait(ctx->mfc_wq,
1855 			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1856 	if (ret)
1857 		goto out;
1858 #else
1859 	ret = 0;
1860 #endif
1861 	spu_release(ctx);
1862 out:
1863 	return ret;
1864 }
1865 
1866 static int spufs_mfc_fsync(struct file *file, int datasync)
1867 {
1868 	return spufs_mfc_flush(file, NULL);
1869 }
1870 
1871 static int spufs_mfc_fasync(int fd, struct file *file, int on)
1872 {
1873 	struct spu_context *ctx = file->private_data;
1874 
1875 	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
1876 }
1877 
1878 static const struct file_operations spufs_mfc_fops = {
1879 	.open	 = spufs_mfc_open,
1880 	.release = spufs_mfc_release,
1881 	.read	 = spufs_mfc_read,
1882 	.write	 = spufs_mfc_write,
1883 	.poll	 = spufs_mfc_poll,
1884 	.flush	 = spufs_mfc_flush,
1885 	.fsync	 = spufs_mfc_fsync,
1886 	.fasync	 = spufs_mfc_fasync,
1887 	.mmap	 = spufs_mfc_mmap,
1888 	.llseek  = no_llseek,
1889 };
1890 
1891 static int spufs_npc_set(void *data, u64 val)
1892 {
1893 	struct spu_context *ctx = data;
1894 	int ret;
1895 
1896 	ret = spu_acquire(ctx);
1897 	if (ret)
1898 		return ret;
1899 	ctx->ops->npc_write(ctx, val);
1900 	spu_release(ctx);
1901 
1902 	return 0;
1903 }
1904 
1905 static u64 spufs_npc_get(struct spu_context *ctx)
1906 {
1907 	return ctx->ops->npc_read(ctx);
1908 }
1909 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1910 		       "0x%llx\n", SPU_ATTR_ACQUIRE);
1911 
1912 static int spufs_decr_set(void *data, u64 val)
1913 {
1914 	struct spu_context *ctx = data;
1915 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1916 	int ret;
1917 
1918 	ret = spu_acquire_saved(ctx);
1919 	if (ret)
1920 		return ret;
1921 	lscsa->decr.slot[0] = (u32) val;
1922 	spu_release_saved(ctx);
1923 
1924 	return 0;
1925 }
1926 
1927 static u64 spufs_decr_get(struct spu_context *ctx)
1928 {
1929 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1930 	return lscsa->decr.slot[0];
1931 }
1932 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1933 		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1934 
1935 static int spufs_decr_status_set(void *data, u64 val)
1936 {
1937 	struct spu_context *ctx = data;
1938 	int ret;
1939 
1940 	ret = spu_acquire_saved(ctx);
1941 	if (ret)
1942 		return ret;
1943 	if (val)
1944 		ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1945 	else
1946 		ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1947 	spu_release_saved(ctx);
1948 
1949 	return 0;
1950 }
1951 
1952 static u64 spufs_decr_status_get(struct spu_context *ctx)
1953 {
1954 	if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1955 		return SPU_DECR_STATUS_RUNNING;
1956 	else
1957 		return 0;
1958 }
1959 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1960 		       spufs_decr_status_set, "0x%llx\n",
1961 		       SPU_ATTR_ACQUIRE_SAVED);
1962 
1963 static int spufs_event_mask_set(void *data, u64 val)
1964 {
1965 	struct spu_context *ctx = data;
1966 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1967 	int ret;
1968 
1969 	ret = spu_acquire_saved(ctx);
1970 	if (ret)
1971 		return ret;
1972 	lscsa->event_mask.slot[0] = (u32) val;
1973 	spu_release_saved(ctx);
1974 
1975 	return 0;
1976 }
1977 
1978 static u64 spufs_event_mask_get(struct spu_context *ctx)
1979 {
1980 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1981 	return lscsa->event_mask.slot[0];
1982 }
1983 
1984 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1985 		       spufs_event_mask_set, "0x%llx\n",
1986 		       SPU_ATTR_ACQUIRE_SAVED);
1987 
1988 static u64 spufs_event_status_get(struct spu_context *ctx)
1989 {
1990 	struct spu_state *state = &ctx->csa;
1991 	u64 stat;
1992 	stat = state->spu_chnlcnt_RW[0];
1993 	if (stat)
1994 		return state->spu_chnldata_RW[0];
1995 	return 0;
1996 }
1997 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1998 		       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1999 
2000 static int spufs_srr0_set(void *data, u64 val)
2001 {
2002 	struct spu_context *ctx = data;
2003 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
2004 	int ret;
2005 
2006 	ret = spu_acquire_saved(ctx);
2007 	if (ret)
2008 		return ret;
2009 	lscsa->srr0.slot[0] = (u32) val;
2010 	spu_release_saved(ctx);
2011 
2012 	return 0;
2013 }
2014 
2015 static u64 spufs_srr0_get(struct spu_context *ctx)
2016 {
2017 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
2018 	return lscsa->srr0.slot[0];
2019 }
2020 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
2021 		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
2022 
2023 static u64 spufs_id_get(struct spu_context *ctx)
2024 {
2025 	u64 num;
2026 
2027 	if (ctx->state == SPU_STATE_RUNNABLE)
2028 		num = ctx->spu->number;
2029 	else
2030 		num = (unsigned int)-1;
2031 
2032 	return num;
2033 }
2034 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
2035 		       SPU_ATTR_ACQUIRE)
2036 
2037 static u64 spufs_object_id_get(struct spu_context *ctx)
2038 {
2039 	/* FIXME: Should there really be no locking here? */
2040 	return ctx->object_id;
2041 }
2042 
2043 static int spufs_object_id_set(void *data, u64 id)
2044 {
2045 	struct spu_context *ctx = data;
2046 	ctx->object_id = id;
2047 
2048 	return 0;
2049 }
2050 
2051 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
2052 		       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
2053 
2054 static u64 spufs_lslr_get(struct spu_context *ctx)
2055 {
2056 	return ctx->csa.priv2.spu_lslr_RW;
2057 }
2058 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
2059 		       SPU_ATTR_ACQUIRE_SAVED);
2060 
2061 static int spufs_info_open(struct inode *inode, struct file *file)
2062 {
2063 	struct spufs_inode_info *i = SPUFS_I(inode);
2064 	struct spu_context *ctx = i->i_ctx;
2065 	file->private_data = ctx;
2066 	return 0;
2067 }
2068 
2069 static int spufs_caps_show(struct seq_file *s, void *private)
2070 {
2071 	struct spu_context *ctx = s->private;
2072 
2073 	if (!(ctx->flags & SPU_CREATE_NOSCHED))
2074 		seq_puts(s, "sched\n");
2075 	if (!(ctx->flags & SPU_CREATE_ISOLATE))
2076 		seq_puts(s, "step\n");
2077 	return 0;
2078 }
2079 
2080 static int spufs_caps_open(struct inode *inode, struct file *file)
2081 {
2082 	return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
2083 }
2084 
2085 static const struct file_operations spufs_caps_fops = {
2086 	.open		= spufs_caps_open,
2087 	.read		= seq_read,
2088 	.llseek		= seq_lseek,
2089 	.release	= single_release,
2090 };
2091 
2092 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
2093 			char __user *buf, size_t len, loff_t *pos)
2094 {
2095 	u32 data;
2096 
2097 	/* EOF if there's no entry in the mbox */
2098 	if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
2099 		return 0;
2100 
2101 	data = ctx->csa.prob.pu_mb_R;
2102 
2103 	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2104 }
2105 
2106 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
2107 				   size_t len, loff_t *pos)
2108 {
2109 	int ret;
2110 	struct spu_context *ctx = file->private_data;
2111 
2112 	if (!access_ok(VERIFY_WRITE, buf, len))
2113 		return -EFAULT;
2114 
2115 	ret = spu_acquire_saved(ctx);
2116 	if (ret)
2117 		return ret;
2118 	spin_lock(&ctx->csa.register_lock);
2119 	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2120 	spin_unlock(&ctx->csa.register_lock);
2121 	spu_release_saved(ctx);
2122 
2123 	return ret;
2124 }
2125 
2126 static const struct file_operations spufs_mbox_info_fops = {
2127 	.open = spufs_info_open,
2128 	.read = spufs_mbox_info_read,
2129 	.llseek  = generic_file_llseek,
2130 };
2131 
2132 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
2133 				char __user *buf, size_t len, loff_t *pos)
2134 {
2135 	u32 data;
2136 
2137 	/* EOF if there's no entry in the ibox */
2138 	if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
2139 		return 0;
2140 
2141 	data = ctx->csa.priv2.puint_mb_R;
2142 
2143 	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2144 }
2145 
2146 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
2147 				   size_t len, loff_t *pos)
2148 {
2149 	struct spu_context *ctx = file->private_data;
2150 	int ret;
2151 
2152 	if (!access_ok(VERIFY_WRITE, buf, len))
2153 		return -EFAULT;
2154 
2155 	ret = spu_acquire_saved(ctx);
2156 	if (ret)
2157 		return ret;
2158 	spin_lock(&ctx->csa.register_lock);
2159 	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2160 	spin_unlock(&ctx->csa.register_lock);
2161 	spu_release_saved(ctx);
2162 
2163 	return ret;
2164 }
2165 
2166 static const struct file_operations spufs_ibox_info_fops = {
2167 	.open = spufs_info_open,
2168 	.read = spufs_ibox_info_read,
2169 	.llseek  = generic_file_llseek,
2170 };
2171 
2172 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
2173 			char __user *buf, size_t len, loff_t *pos)
2174 {
2175 	int i, cnt;
2176 	u32 data[4];
2177 	u32 wbox_stat;
2178 
2179 	wbox_stat = ctx->csa.prob.mb_stat_R;
2180 	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
2181 	for (i = 0; i < cnt; i++) {
2182 		data[i] = ctx->csa.spu_mailbox_data[i];
2183 	}
2184 
2185 	return simple_read_from_buffer(buf, len, pos, &data,
2186 				cnt * sizeof(u32));
2187 }
2188 
2189 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2190 				   size_t len, loff_t *pos)
2191 {
2192 	struct spu_context *ctx = file->private_data;
2193 	int ret;
2194 
2195 	if (!access_ok(VERIFY_WRITE, buf, len))
2196 		return -EFAULT;
2197 
2198 	ret = spu_acquire_saved(ctx);
2199 	if (ret)
2200 		return ret;
2201 	spin_lock(&ctx->csa.register_lock);
2202 	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2203 	spin_unlock(&ctx->csa.register_lock);
2204 	spu_release_saved(ctx);
2205 
2206 	return ret;
2207 }
2208 
2209 static const struct file_operations spufs_wbox_info_fops = {
2210 	.open = spufs_info_open,
2211 	.read = spufs_wbox_info_read,
2212 	.llseek  = generic_file_llseek,
2213 };
2214 
2215 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
2216 			char __user *buf, size_t len, loff_t *pos)
2217 {
2218 	struct spu_dma_info info;
2219 	struct mfc_cq_sr *qp, *spuqp;
2220 	int i;
2221 
2222 	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2223 	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2224 	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
2225 	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2226 	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2227 	for (i = 0; i < 16; i++) {
2228 		qp = &info.dma_info_command_data[i];
2229 		spuqp = &ctx->csa.priv2.spuq[i];
2230 
2231 		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2232 		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2233 		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2234 		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2235 	}
2236 
2237 	return simple_read_from_buffer(buf, len, pos, &info,
2238 				sizeof info);
2239 }
2240 
2241 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2242 			      size_t len, loff_t *pos)
2243 {
2244 	struct spu_context *ctx = file->private_data;
2245 	int ret;
2246 
2247 	if (!access_ok(VERIFY_WRITE, buf, len))
2248 		return -EFAULT;
2249 
2250 	ret = spu_acquire_saved(ctx);
2251 	if (ret)
2252 		return ret;
2253 	spin_lock(&ctx->csa.register_lock);
2254 	ret = __spufs_dma_info_read(ctx, buf, len, pos);
2255 	spin_unlock(&ctx->csa.register_lock);
2256 	spu_release_saved(ctx);
2257 
2258 	return ret;
2259 }
2260 
2261 static const struct file_operations spufs_dma_info_fops = {
2262 	.open = spufs_info_open,
2263 	.read = spufs_dma_info_read,
2264 	.llseek = no_llseek,
2265 };
2266 
2267 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
2268 			char __user *buf, size_t len, loff_t *pos)
2269 {
2270 	struct spu_proxydma_info info;
2271 	struct mfc_cq_sr *qp, *puqp;
2272 	int ret = sizeof info;
2273 	int i;
2274 
2275 	if (len < ret)
2276 		return -EINVAL;
2277 
2278 	if (!access_ok(VERIFY_WRITE, buf, len))
2279 		return -EFAULT;
2280 
2281 	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2282 	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2283 	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2284 	for (i = 0; i < 8; i++) {
2285 		qp = &info.proxydma_info_command_data[i];
2286 		puqp = &ctx->csa.priv2.puq[i];
2287 
2288 		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2289 		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2290 		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2291 		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2292 	}
2293 
2294 	return simple_read_from_buffer(buf, len, pos, &info,
2295 				sizeof info);
2296 }
2297 
2298 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2299 				   size_t len, loff_t *pos)
2300 {
2301 	struct spu_context *ctx = file->private_data;
2302 	int ret;
2303 
2304 	ret = spu_acquire_saved(ctx);
2305 	if (ret)
2306 		return ret;
2307 	spin_lock(&ctx->csa.register_lock);
2308 	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2309 	spin_unlock(&ctx->csa.register_lock);
2310 	spu_release_saved(ctx);
2311 
2312 	return ret;
2313 }
2314 
2315 static const struct file_operations spufs_proxydma_info_fops = {
2316 	.open = spufs_info_open,
2317 	.read = spufs_proxydma_info_read,
2318 	.llseek = no_llseek,
2319 };
2320 
2321 static int spufs_show_tid(struct seq_file *s, void *private)
2322 {
2323 	struct spu_context *ctx = s->private;
2324 
2325 	seq_printf(s, "%d\n", ctx->tid);
2326 	return 0;
2327 }
2328 
2329 static int spufs_tid_open(struct inode *inode, struct file *file)
2330 {
2331 	return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2332 }
2333 
2334 static const struct file_operations spufs_tid_fops = {
2335 	.open		= spufs_tid_open,
2336 	.read		= seq_read,
2337 	.llseek		= seq_lseek,
2338 	.release	= single_release,
2339 };
2340 
2341 static const char *ctx_state_names[] = {
2342 	"user", "system", "iowait", "loaded"
2343 };
2344 
2345 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2346 		enum spu_utilization_state state)
2347 {
2348 	struct timespec ts;
2349 	unsigned long long time = ctx->stats.times[state];
2350 
2351 	/*
2352 	 * In general, utilization statistics are updated by the controlling
2353 	 * thread as the spu context moves through various well defined
2354 	 * state transitions, but if the context is lazily loaded its
2355 	 * utilization statistics are not updated as the controlling thread
2356 	 * is not tightly coupled with the execution of the spu context.  We
2357 	 * calculate and apply the time delta from the last recorded state
2358 	 * of the spu context.
2359 	 */
2360 	if (ctx->spu && ctx->stats.util_state == state) {
2361 		ktime_get_ts(&ts);
2362 		time += timespec_to_ns(&ts) - ctx->stats.tstamp;
2363 	}
2364 
2365 	return time / NSEC_PER_MSEC;
2366 }
2367 
2368 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2369 {
2370 	unsigned long long slb_flts = ctx->stats.slb_flt;
2371 
2372 	if (ctx->state == SPU_STATE_RUNNABLE) {
2373 		slb_flts += (ctx->spu->stats.slb_flt -
2374 			     ctx->stats.slb_flt_base);
2375 	}
2376 
2377 	return slb_flts;
2378 }
2379 
2380 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2381 {
2382 	unsigned long long class2_intrs = ctx->stats.class2_intr;
2383 
2384 	if (ctx->state == SPU_STATE_RUNNABLE) {
2385 		class2_intrs += (ctx->spu->stats.class2_intr -
2386 				 ctx->stats.class2_intr_base);
2387 	}
2388 
2389 	return class2_intrs;
2390 }
2391 
2392 
2393 static int spufs_show_stat(struct seq_file *s, void *private)
2394 {
2395 	struct spu_context *ctx = s->private;
2396 	int ret;
2397 
2398 	ret = spu_acquire(ctx);
2399 	if (ret)
2400 		return ret;
2401 
2402 	seq_printf(s, "%s %llu %llu %llu %llu "
2403 		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2404 		ctx_state_names[ctx->stats.util_state],
2405 		spufs_acct_time(ctx, SPU_UTIL_USER),
2406 		spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2407 		spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2408 		spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2409 		ctx->stats.vol_ctx_switch,
2410 		ctx->stats.invol_ctx_switch,
2411 		spufs_slb_flts(ctx),
2412 		ctx->stats.hash_flt,
2413 		ctx->stats.min_flt,
2414 		ctx->stats.maj_flt,
2415 		spufs_class2_intrs(ctx),
2416 		ctx->stats.libassist);
2417 	spu_release(ctx);
2418 	return 0;
2419 }
2420 
2421 static int spufs_stat_open(struct inode *inode, struct file *file)
2422 {
2423 	return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2424 }
2425 
2426 static const struct file_operations spufs_stat_fops = {
2427 	.open		= spufs_stat_open,
2428 	.read		= seq_read,
2429 	.llseek		= seq_lseek,
2430 	.release	= single_release,
2431 };
2432 
2433 static inline int spufs_switch_log_used(struct spu_context *ctx)
2434 {
2435 	return (ctx->switch_log->head - ctx->switch_log->tail) %
2436 		SWITCH_LOG_BUFSIZE;
2437 }
2438 
2439 static inline int spufs_switch_log_avail(struct spu_context *ctx)
2440 {
2441 	return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
2442 }
2443 
2444 static int spufs_switch_log_open(struct inode *inode, struct file *file)
2445 {
2446 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2447 	int rc;
2448 
2449 	rc = spu_acquire(ctx);
2450 	if (rc)
2451 		return rc;
2452 
2453 	if (ctx->switch_log) {
2454 		rc = -EBUSY;
2455 		goto out;
2456 	}
2457 
2458 	ctx->switch_log = kmalloc(sizeof(struct switch_log) +
2459 		SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry),
2460 		GFP_KERNEL);
2461 
2462 	if (!ctx->switch_log) {
2463 		rc = -ENOMEM;
2464 		goto out;
2465 	}
2466 
2467 	ctx->switch_log->head = ctx->switch_log->tail = 0;
2468 	init_waitqueue_head(&ctx->switch_log->wait);
2469 	rc = 0;
2470 
2471 out:
2472 	spu_release(ctx);
2473 	return rc;
2474 }
2475 
2476 static int spufs_switch_log_release(struct inode *inode, struct file *file)
2477 {
2478 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2479 	int rc;
2480 
2481 	rc = spu_acquire(ctx);
2482 	if (rc)
2483 		return rc;
2484 
2485 	kfree(ctx->switch_log);
2486 	ctx->switch_log = NULL;
2487 	spu_release(ctx);
2488 
2489 	return 0;
2490 }
2491 
2492 static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
2493 {
2494 	struct switch_log_entry *p;
2495 
2496 	p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;
2497 
2498 	return snprintf(tbuf, n, "%u.%09u %d %u %u %llu\n",
2499 			(unsigned int) p->tstamp.tv_sec,
2500 			(unsigned int) p->tstamp.tv_nsec,
2501 			p->spu_id,
2502 			(unsigned int) p->type,
2503 			(unsigned int) p->val,
2504 			(unsigned long long) p->timebase);
2505 }
2506 
2507 static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
2508 			     size_t len, loff_t *ppos)
2509 {
2510 	struct inode *inode = file->f_path.dentry->d_inode;
2511 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2512 	int error = 0, cnt = 0;
2513 
2514 	if (!buf)
2515 		return -EINVAL;
2516 
2517 	error = spu_acquire(ctx);
2518 	if (error)
2519 		return error;
2520 
2521 	while (cnt < len) {
2522 		char tbuf[128];
2523 		int width;
2524 
2525 		if (spufs_switch_log_used(ctx) == 0) {
2526 			if (cnt > 0) {
2527 				/* If there's data ready to go, we can
2528 				 * just return straight away */
2529 				break;
2530 
2531 			} else if (file->f_flags & O_NONBLOCK) {
2532 				error = -EAGAIN;
2533 				break;
2534 
2535 			} else {
2536 				/* spufs_wait will drop the mutex and
2537 				 * re-acquire, but since we're in read(), the
2538 				 * file cannot be _released (and so
2539 				 * ctx->switch_log is stable).
2540 				 */
2541 				error = spufs_wait(ctx->switch_log->wait,
2542 						spufs_switch_log_used(ctx) > 0);
2543 
2544 				/* On error, spufs_wait returns without the
2545 				 * state mutex held */
2546 				if (error)
2547 					return error;
2548 
2549 				/* We may have had entries read from underneath
2550 				 * us while we dropped the mutex in spufs_wait,
2551 				 * so re-check */
2552 				if (spufs_switch_log_used(ctx) == 0)
2553 					continue;
2554 			}
2555 		}
2556 
2557 		width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2558 		if (width < len)
2559 			ctx->switch_log->tail =
2560 				(ctx->switch_log->tail + 1) %
2561 				 SWITCH_LOG_BUFSIZE;
2562 		else
2563 			/* If the record is greater than space available return
2564 			 * partial buffer (so far) */
2565 			break;
2566 
2567 		error = copy_to_user(buf + cnt, tbuf, width);
2568 		if (error)
2569 			break;
2570 		cnt += width;
2571 	}
2572 
2573 	spu_release(ctx);
2574 
2575 	return cnt == 0 ? error : cnt;
2576 }
2577 
2578 static unsigned int spufs_switch_log_poll(struct file *file, poll_table *wait)
2579 {
2580 	struct inode *inode = file->f_path.dentry->d_inode;
2581 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2582 	unsigned int mask = 0;
2583 	int rc;
2584 
2585 	poll_wait(file, &ctx->switch_log->wait, wait);
2586 
2587 	rc = spu_acquire(ctx);
2588 	if (rc)
2589 		return rc;
2590 
2591 	if (spufs_switch_log_used(ctx) > 0)
2592 		mask |= POLLIN;
2593 
2594 	spu_release(ctx);
2595 
2596 	return mask;
2597 }
2598 
2599 static const struct file_operations spufs_switch_log_fops = {
2600 	.owner		= THIS_MODULE,
2601 	.open		= spufs_switch_log_open,
2602 	.read		= spufs_switch_log_read,
2603 	.poll		= spufs_switch_log_poll,
2604 	.release	= spufs_switch_log_release,
2605 	.llseek		= no_llseek,
2606 };
2607 
2608 /**
2609  * Log a context switch event to a switch log reader.
2610  *
2611  * Must be called with ctx->state_mutex held.
2612  */
2613 void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
2614 		u32 type, u32 val)
2615 {
2616 	if (!ctx->switch_log)
2617 		return;
2618 
2619 	if (spufs_switch_log_avail(ctx) > 1) {
2620 		struct switch_log_entry *p;
2621 
2622 		p = ctx->switch_log->log + ctx->switch_log->head;
2623 		ktime_get_ts(&p->tstamp);
2624 		p->timebase = get_tb();
2625 		p->spu_id = spu ? spu->number : -1;
2626 		p->type = type;
2627 		p->val = val;
2628 
2629 		ctx->switch_log->head =
2630 			(ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
2631 	}
2632 
2633 	wake_up(&ctx->switch_log->wait);
2634 }
2635 
2636 static int spufs_show_ctx(struct seq_file *s, void *private)
2637 {
2638 	struct spu_context *ctx = s->private;
2639 	u64 mfc_control_RW;
2640 
2641 	mutex_lock(&ctx->state_mutex);
2642 	if (ctx->spu) {
2643 		struct spu *spu = ctx->spu;
2644 		struct spu_priv2 __iomem *priv2 = spu->priv2;
2645 
2646 		spin_lock_irq(&spu->register_lock);
2647 		mfc_control_RW = in_be64(&priv2->mfc_control_RW);
2648 		spin_unlock_irq(&spu->register_lock);
2649 	} else {
2650 		struct spu_state *csa = &ctx->csa;
2651 
2652 		mfc_control_RW = csa->priv2.mfc_control_RW;
2653 	}
2654 
2655 	seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
2656 		" %c %llx %llx %llx %llx %x %x\n",
2657 		ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
2658 		ctx->flags,
2659 		ctx->sched_flags,
2660 		ctx->prio,
2661 		ctx->time_slice,
2662 		ctx->spu ? ctx->spu->number : -1,
2663 		!list_empty(&ctx->rq) ? 'q' : ' ',
2664 		ctx->csa.class_0_pending,
2665 		ctx->csa.class_0_dar,
2666 		ctx->csa.class_1_dsisr,
2667 		mfc_control_RW,
2668 		ctx->ops->runcntl_read(ctx),
2669 		ctx->ops->status_read(ctx));
2670 
2671 	mutex_unlock(&ctx->state_mutex);
2672 
2673 	return 0;
2674 }
2675 
2676 static int spufs_ctx_open(struct inode *inode, struct file *file)
2677 {
2678 	return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
2679 }
2680 
2681 static const struct file_operations spufs_ctx_fops = {
2682 	.open           = spufs_ctx_open,
2683 	.read           = seq_read,
2684 	.llseek         = seq_lseek,
2685 	.release        = single_release,
2686 };
2687 
2688 const struct spufs_tree_descr spufs_dir_contents[] = {
2689 	{ "capabilities", &spufs_caps_fops, 0444, },
2690 	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2691 	{ "regs", &spufs_regs_fops,  0666, sizeof(struct spu_reg128[128]), },
2692 	{ "mbox", &spufs_mbox_fops, 0444, },
2693 	{ "ibox", &spufs_ibox_fops, 0444, },
2694 	{ "wbox", &spufs_wbox_fops, 0222, },
2695 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2696 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2697 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2698 	{ "signal1", &spufs_signal1_fops, 0666, },
2699 	{ "signal2", &spufs_signal2_fops, 0666, },
2700 	{ "signal1_type", &spufs_signal1_type, 0666, },
2701 	{ "signal2_type", &spufs_signal2_type, 0666, },
2702 	{ "cntl", &spufs_cntl_fops,  0666, },
2703 	{ "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2704 	{ "lslr", &spufs_lslr_ops, 0444, },
2705 	{ "mfc", &spufs_mfc_fops, 0666, },
2706 	{ "mss", &spufs_mss_fops, 0666, },
2707 	{ "npc", &spufs_npc_ops, 0666, },
2708 	{ "srr0", &spufs_srr0_ops, 0666, },
2709 	{ "decr", &spufs_decr_ops, 0666, },
2710 	{ "decr_status", &spufs_decr_status_ops, 0666, },
2711 	{ "event_mask", &spufs_event_mask_ops, 0666, },
2712 	{ "event_status", &spufs_event_status_ops, 0444, },
2713 	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2714 	{ "phys-id", &spufs_id_ops, 0666, },
2715 	{ "object-id", &spufs_object_id_ops, 0666, },
2716 	{ "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
2717 	{ "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
2718 	{ "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
2719 	{ "dma_info", &spufs_dma_info_fops, 0444,
2720 		sizeof(struct spu_dma_info), },
2721 	{ "proxydma_info", &spufs_proxydma_info_fops, 0444,
2722 		sizeof(struct spu_proxydma_info)},
2723 	{ "tid", &spufs_tid_fops, 0444, },
2724 	{ "stat", &spufs_stat_fops, 0444, },
2725 	{ "switch_log", &spufs_switch_log_fops, 0444 },
2726 	{},
2727 };
2728 
2729 const struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2730 	{ "capabilities", &spufs_caps_fops, 0444, },
2731 	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2732 	{ "mbox", &spufs_mbox_fops, 0444, },
2733 	{ "ibox", &spufs_ibox_fops, 0444, },
2734 	{ "wbox", &spufs_wbox_fops, 0222, },
2735 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2736 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2737 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2738 	{ "signal1", &spufs_signal1_nosched_fops, 0222, },
2739 	{ "signal2", &spufs_signal2_nosched_fops, 0222, },
2740 	{ "signal1_type", &spufs_signal1_type, 0666, },
2741 	{ "signal2_type", &spufs_signal2_type, 0666, },
2742 	{ "mss", &spufs_mss_fops, 0666, },
2743 	{ "mfc", &spufs_mfc_fops, 0666, },
2744 	{ "cntl", &spufs_cntl_fops,  0666, },
2745 	{ "npc", &spufs_npc_ops, 0666, },
2746 	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2747 	{ "phys-id", &spufs_id_ops, 0666, },
2748 	{ "object-id", &spufs_object_id_ops, 0666, },
2749 	{ "tid", &spufs_tid_fops, 0444, },
2750 	{ "stat", &spufs_stat_fops, 0444, },
2751 	{},
2752 };
2753 
2754 const struct spufs_tree_descr spufs_dir_debug_contents[] = {
2755 	{ ".ctx", &spufs_ctx_fops, 0444, },
2756 	{},
2757 };
2758 
2759 const struct spufs_coredump_reader spufs_coredump_read[] = {
2760 	{ "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
2761 	{ "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2762 	{ "lslr", NULL, spufs_lslr_get, 19 },
2763 	{ "decr", NULL, spufs_decr_get, 19 },
2764 	{ "decr_status", NULL, spufs_decr_status_get, 19 },
2765 	{ "mem", __spufs_mem_read, NULL, LS_SIZE, },
2766 	{ "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2767 	{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
2768 	{ "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2769 	{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
2770 	{ "event_mask", NULL, spufs_event_mask_get, 19 },
2771 	{ "event_status", NULL, spufs_event_status_get, 19 },
2772 	{ "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
2773 	{ "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
2774 	{ "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
2775 	{ "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
2776 	{ "proxydma_info", __spufs_proxydma_info_read,
2777 			   NULL, sizeof(struct spu_proxydma_info)},
2778 	{ "object-id", NULL, spufs_object_id_get, 19 },
2779 	{ "npc", NULL, spufs_npc_get, 19 },
2780 	{ NULL },
2781 };
2782