1 /*
2  * SPU file system -- file contents
3  *
4  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5  *
6  * Author: Arnd Bergmann <arndb@de.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #undef DEBUG
24 
25 #include <linux/fs.h>
26 #include <linux/ioctl.h>
27 #include <linux/module.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/seq_file.h>
32 
33 #include <asm/io.h>
34 #include <asm/time.h>
35 #include <asm/spu.h>
36 #include <asm/spu_info.h>
37 #include <asm/uaccess.h>
38 
39 #include "spufs.h"
40 #include "sputrace.h"
41 
42 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
43 
44 /* Simple attribute files */
45 struct spufs_attr {
46 	int (*get)(void *, u64 *);
47 	int (*set)(void *, u64);
48 	char get_buf[24];       /* enough to store a u64 and "\n\0" */
49 	char set_buf[24];
50 	void *data;
51 	const char *fmt;        /* format for read operation */
52 	struct mutex mutex;     /* protects access to these buffers */
53 };
54 
55 static int spufs_attr_open(struct inode *inode, struct file *file,
56 		int (*get)(void *, u64 *), int (*set)(void *, u64),
57 		const char *fmt)
58 {
59 	struct spufs_attr *attr;
60 
61 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
62 	if (!attr)
63 		return -ENOMEM;
64 
65 	attr->get = get;
66 	attr->set = set;
67 	attr->data = inode->i_private;
68 	attr->fmt = fmt;
69 	mutex_init(&attr->mutex);
70 	file->private_data = attr;
71 
72 	return nonseekable_open(inode, file);
73 }
74 
75 static int spufs_attr_release(struct inode *inode, struct file *file)
76 {
77        kfree(file->private_data);
78 	return 0;
79 }
80 
81 static ssize_t spufs_attr_read(struct file *file, char __user *buf,
82 		size_t len, loff_t *ppos)
83 {
84 	struct spufs_attr *attr;
85 	size_t size;
86 	ssize_t ret;
87 
88 	attr = file->private_data;
89 	if (!attr->get)
90 		return -EACCES;
91 
92 	ret = mutex_lock_interruptible(&attr->mutex);
93 	if (ret)
94 		return ret;
95 
96 	if (*ppos) {		/* continued read */
97 		size = strlen(attr->get_buf);
98 	} else {		/* first read */
99 		u64 val;
100 		ret = attr->get(attr->data, &val);
101 		if (ret)
102 			goto out;
103 
104 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
105 				 attr->fmt, (unsigned long long)val);
106 	}
107 
108 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
109 out:
110 	mutex_unlock(&attr->mutex);
111 	return ret;
112 }
113 
114 static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
115 		size_t len, loff_t *ppos)
116 {
117 	struct spufs_attr *attr;
118 	u64 val;
119 	size_t size;
120 	ssize_t ret;
121 
122 	attr = file->private_data;
123 	if (!attr->set)
124 		return -EACCES;
125 
126 	ret = mutex_lock_interruptible(&attr->mutex);
127 	if (ret)
128 		return ret;
129 
130 	ret = -EFAULT;
131 	size = min(sizeof(attr->set_buf) - 1, len);
132 	if (copy_from_user(attr->set_buf, buf, size))
133 		goto out;
134 
135 	ret = len; /* claim we got the whole input */
136 	attr->set_buf[size] = '\0';
137 	val = simple_strtol(attr->set_buf, NULL, 0);
138 	attr->set(attr->data, val);
139 out:
140 	mutex_unlock(&attr->mutex);
141 	return ret;
142 }
143 
144 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)	\
145 static int __fops ## _open(struct inode *inode, struct file *file)	\
146 {									\
147 	__simple_attr_check_format(__fmt, 0ull);			\
148 	return spufs_attr_open(inode, file, __get, __set, __fmt);	\
149 }									\
150 static const struct file_operations __fops = {				\
151 	.owner	 = THIS_MODULE,						\
152 	.open	 = __fops ## _open,					\
153 	.release = spufs_attr_release,					\
154 	.read	 = spufs_attr_read,					\
155 	.write	 = spufs_attr_write,					\
156 };
157 
158 
159 static int
160 spufs_mem_open(struct inode *inode, struct file *file)
161 {
162 	struct spufs_inode_info *i = SPUFS_I(inode);
163 	struct spu_context *ctx = i->i_ctx;
164 
165 	mutex_lock(&ctx->mapping_lock);
166 	file->private_data = ctx;
167 	if (!i->i_openers++)
168 		ctx->local_store = inode->i_mapping;
169 	mutex_unlock(&ctx->mapping_lock);
170 	return 0;
171 }
172 
173 static int
174 spufs_mem_release(struct inode *inode, struct file *file)
175 {
176 	struct spufs_inode_info *i = SPUFS_I(inode);
177 	struct spu_context *ctx = i->i_ctx;
178 
179 	mutex_lock(&ctx->mapping_lock);
180 	if (!--i->i_openers)
181 		ctx->local_store = NULL;
182 	mutex_unlock(&ctx->mapping_lock);
183 	return 0;
184 }
185 
186 static ssize_t
187 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
188 			size_t size, loff_t *pos)
189 {
190 	char *local_store = ctx->ops->get_ls(ctx);
191 	return simple_read_from_buffer(buffer, size, pos, local_store,
192 					LS_SIZE);
193 }
194 
195 static ssize_t
196 spufs_mem_read(struct file *file, char __user *buffer,
197 				size_t size, loff_t *pos)
198 {
199 	struct spu_context *ctx = file->private_data;
200 	ssize_t ret;
201 
202 	ret = spu_acquire(ctx);
203 	if (ret)
204 		return ret;
205 	ret = __spufs_mem_read(ctx, buffer, size, pos);
206 	spu_release(ctx);
207 
208 	return ret;
209 }
210 
211 static ssize_t
212 spufs_mem_write(struct file *file, const char __user *buffer,
213 					size_t size, loff_t *ppos)
214 {
215 	struct spu_context *ctx = file->private_data;
216 	char *local_store;
217 	loff_t pos = *ppos;
218 	int ret;
219 
220 	if (pos < 0)
221 		return -EINVAL;
222 	if (pos > LS_SIZE)
223 		return -EFBIG;
224 	if (size > LS_SIZE - pos)
225 		size = LS_SIZE - pos;
226 
227 	ret = spu_acquire(ctx);
228 	if (ret)
229 		return ret;
230 
231 	local_store = ctx->ops->get_ls(ctx);
232 	ret = copy_from_user(local_store + pos, buffer, size);
233 	spu_release(ctx);
234 
235 	if (ret)
236 		return -EFAULT;
237 	*ppos = pos + size;
238 	return size;
239 }
240 
241 static int
242 spufs_mem_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
243 {
244 	struct spu_context *ctx	= vma->vm_file->private_data;
245 	unsigned long address = (unsigned long)vmf->virtual_address;
246 	unsigned long pfn, offset;
247 
248 #ifdef CONFIG_SPU_FS_64K_LS
249 	struct spu_state *csa = &ctx->csa;
250 	int psize;
251 
252 	/* Check what page size we are using */
253 	psize = get_slice_psize(vma->vm_mm, address);
254 
255 	/* Some sanity checking */
256 	BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));
257 
258 	/* Wow, 64K, cool, we need to align the address though */
259 	if (csa->use_big_pages) {
260 		BUG_ON(vma->vm_start & 0xffff);
261 		address &= ~0xfffful;
262 	}
263 #endif /* CONFIG_SPU_FS_64K_LS */
264 
265 	offset = vmf->pgoff << PAGE_SHIFT;
266 	if (offset >= LS_SIZE)
267 		return VM_FAULT_SIGBUS;
268 
269 	pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
270 			address, offset);
271 
272 	if (spu_acquire(ctx))
273 		return VM_FAULT_NOPAGE;
274 
275 	if (ctx->state == SPU_STATE_SAVED) {
276 		vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
277 		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
278 	} else {
279 		vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
280 		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
281 	}
282 	vm_insert_pfn(vma, address, pfn);
283 
284 	spu_release(ctx);
285 
286 	return VM_FAULT_NOPAGE;
287 }
288 
289 static int spufs_mem_mmap_access(struct vm_area_struct *vma,
290 				unsigned long address,
291 				void *buf, int len, int write)
292 {
293 	struct spu_context *ctx = vma->vm_file->private_data;
294 	unsigned long offset = address - vma->vm_start;
295 	char *local_store;
296 
297 	if (write && !(vma->vm_flags & VM_WRITE))
298 		return -EACCES;
299 	if (spu_acquire(ctx))
300 		return -EINTR;
301 	if ((offset + len) > vma->vm_end)
302 		len = vma->vm_end - offset;
303 	local_store = ctx->ops->get_ls(ctx);
304 	if (write)
305 		memcpy_toio(local_store + offset, buf, len);
306 	else
307 		memcpy_fromio(buf, local_store + offset, len);
308 	spu_release(ctx);
309 	return len;
310 }
311 
312 static const struct vm_operations_struct spufs_mem_mmap_vmops = {
313 	.fault = spufs_mem_mmap_fault,
314 	.access = spufs_mem_mmap_access,
315 };
316 
317 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
318 {
319 #ifdef CONFIG_SPU_FS_64K_LS
320 	struct spu_context	*ctx = file->private_data;
321 	struct spu_state	*csa = &ctx->csa;
322 
323 	/* Sanity check VMA alignment */
324 	if (csa->use_big_pages) {
325 		pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
326 			 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
327 			 vma->vm_pgoff);
328 		if (vma->vm_start & 0xffff)
329 			return -EINVAL;
330 		if (vma->vm_pgoff & 0xf)
331 			return -EINVAL;
332 	}
333 #endif /* CONFIG_SPU_FS_64K_LS */
334 
335 	if (!(vma->vm_flags & VM_SHARED))
336 		return -EINVAL;
337 
338 	vma->vm_flags |= VM_IO | VM_PFNMAP;
339 	vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
340 
341 	vma->vm_ops = &spufs_mem_mmap_vmops;
342 	return 0;
343 }
344 
345 #ifdef CONFIG_SPU_FS_64K_LS
346 static unsigned long spufs_get_unmapped_area(struct file *file,
347 		unsigned long addr, unsigned long len, unsigned long pgoff,
348 		unsigned long flags)
349 {
350 	struct spu_context	*ctx = file->private_data;
351 	struct spu_state	*csa = &ctx->csa;
352 
353 	/* If not using big pages, fallback to normal MM g_u_a */
354 	if (!csa->use_big_pages)
355 		return current->mm->get_unmapped_area(file, addr, len,
356 						      pgoff, flags);
357 
358 	/* Else, try to obtain a 64K pages slice */
359 	return slice_get_unmapped_area(addr, len, flags,
360 				       MMU_PAGE_64K, 1, 0);
361 }
362 #endif /* CONFIG_SPU_FS_64K_LS */
363 
364 static const struct file_operations spufs_mem_fops = {
365 	.open			= spufs_mem_open,
366 	.release		= spufs_mem_release,
367 	.read			= spufs_mem_read,
368 	.write			= spufs_mem_write,
369 	.llseek			= generic_file_llseek,
370 	.mmap			= spufs_mem_mmap,
371 #ifdef CONFIG_SPU_FS_64K_LS
372 	.get_unmapped_area	= spufs_get_unmapped_area,
373 #endif
374 };
375 
376 static int spufs_ps_fault(struct vm_area_struct *vma,
377 				    struct vm_fault *vmf,
378 				    unsigned long ps_offs,
379 				    unsigned long ps_size)
380 {
381 	struct spu_context *ctx = vma->vm_file->private_data;
382 	unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
383 	int ret = 0;
384 
385 	spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
386 
387 	if (offset >= ps_size)
388 		return VM_FAULT_SIGBUS;
389 
390 	if (fatal_signal_pending(current))
391 		return VM_FAULT_SIGBUS;
392 
393 	/*
394 	 * Because we release the mmap_sem, the context may be destroyed while
395 	 * we're in spu_wait. Grab an extra reference so it isn't destroyed
396 	 * in the meantime.
397 	 */
398 	get_spu_context(ctx);
399 
400 	/*
401 	 * We have to wait for context to be loaded before we have
402 	 * pages to hand out to the user, but we don't want to wait
403 	 * with the mmap_sem held.
404 	 * It is possible to drop the mmap_sem here, but then we need
405 	 * to return VM_FAULT_NOPAGE because the mappings may have
406 	 * hanged.
407 	 */
408 	if (spu_acquire(ctx))
409 		goto refault;
410 
411 	if (ctx->state == SPU_STATE_SAVED) {
412 		up_read(&current->mm->mmap_sem);
413 		spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
414 		ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
415 		spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
416 		down_read(&current->mm->mmap_sem);
417 	} else {
418 		area = ctx->spu->problem_phys + ps_offs;
419 		vm_insert_pfn(vma, (unsigned long)vmf->virtual_address,
420 					(area + offset) >> PAGE_SHIFT);
421 		spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
422 	}
423 
424 	if (!ret)
425 		spu_release(ctx);
426 
427 refault:
428 	put_spu_context(ctx);
429 	return VM_FAULT_NOPAGE;
430 }
431 
432 #if SPUFS_MMAP_4K
433 static int spufs_cntl_mmap_fault(struct vm_area_struct *vma,
434 					   struct vm_fault *vmf)
435 {
436 	return spufs_ps_fault(vma, vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
437 }
438 
439 static const struct vm_operations_struct spufs_cntl_mmap_vmops = {
440 	.fault = spufs_cntl_mmap_fault,
441 };
442 
443 /*
444  * mmap support for problem state control area [0x4000 - 0x4fff].
445  */
446 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
447 {
448 	if (!(vma->vm_flags & VM_SHARED))
449 		return -EINVAL;
450 
451 	vma->vm_flags |= VM_IO | VM_PFNMAP;
452 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
453 
454 	vma->vm_ops = &spufs_cntl_mmap_vmops;
455 	return 0;
456 }
457 #else /* SPUFS_MMAP_4K */
458 #define spufs_cntl_mmap NULL
459 #endif /* !SPUFS_MMAP_4K */
460 
461 static int spufs_cntl_get(void *data, u64 *val)
462 {
463 	struct spu_context *ctx = data;
464 	int ret;
465 
466 	ret = spu_acquire(ctx);
467 	if (ret)
468 		return ret;
469 	*val = ctx->ops->status_read(ctx);
470 	spu_release(ctx);
471 
472 	return 0;
473 }
474 
475 static int spufs_cntl_set(void *data, u64 val)
476 {
477 	struct spu_context *ctx = data;
478 	int ret;
479 
480 	ret = spu_acquire(ctx);
481 	if (ret)
482 		return ret;
483 	ctx->ops->runcntl_write(ctx, val);
484 	spu_release(ctx);
485 
486 	return 0;
487 }
488 
489 static int spufs_cntl_open(struct inode *inode, struct file *file)
490 {
491 	struct spufs_inode_info *i = SPUFS_I(inode);
492 	struct spu_context *ctx = i->i_ctx;
493 
494 	mutex_lock(&ctx->mapping_lock);
495 	file->private_data = ctx;
496 	if (!i->i_openers++)
497 		ctx->cntl = inode->i_mapping;
498 	mutex_unlock(&ctx->mapping_lock);
499 	return simple_attr_open(inode, file, spufs_cntl_get,
500 					spufs_cntl_set, "0x%08lx");
501 }
502 
503 static int
504 spufs_cntl_release(struct inode *inode, struct file *file)
505 {
506 	struct spufs_inode_info *i = SPUFS_I(inode);
507 	struct spu_context *ctx = i->i_ctx;
508 
509 	simple_attr_release(inode, file);
510 
511 	mutex_lock(&ctx->mapping_lock);
512 	if (!--i->i_openers)
513 		ctx->cntl = NULL;
514 	mutex_unlock(&ctx->mapping_lock);
515 	return 0;
516 }
517 
518 static const struct file_operations spufs_cntl_fops = {
519 	.open = spufs_cntl_open,
520 	.release = spufs_cntl_release,
521 	.read = simple_attr_read,
522 	.write = simple_attr_write,
523 	.mmap = spufs_cntl_mmap,
524 };
525 
526 static int
527 spufs_regs_open(struct inode *inode, struct file *file)
528 {
529 	struct spufs_inode_info *i = SPUFS_I(inode);
530 	file->private_data = i->i_ctx;
531 	return 0;
532 }
533 
534 static ssize_t
535 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
536 			size_t size, loff_t *pos)
537 {
538 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
539 	return simple_read_from_buffer(buffer, size, pos,
540 				      lscsa->gprs, sizeof lscsa->gprs);
541 }
542 
543 static ssize_t
544 spufs_regs_read(struct file *file, char __user *buffer,
545 		size_t size, loff_t *pos)
546 {
547 	int ret;
548 	struct spu_context *ctx = file->private_data;
549 
550 	/* pre-check for file position: if we'd return EOF, there's no point
551 	 * causing a deschedule */
552 	if (*pos >= sizeof(ctx->csa.lscsa->gprs))
553 		return 0;
554 
555 	ret = spu_acquire_saved(ctx);
556 	if (ret)
557 		return ret;
558 	ret = __spufs_regs_read(ctx, buffer, size, pos);
559 	spu_release_saved(ctx);
560 	return ret;
561 }
562 
563 static ssize_t
564 spufs_regs_write(struct file *file, const char __user *buffer,
565 		 size_t size, loff_t *pos)
566 {
567 	struct spu_context *ctx = file->private_data;
568 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
569 	int ret;
570 
571 	if (*pos >= sizeof(lscsa->gprs))
572 		return -EFBIG;
573 
574 	size = min_t(ssize_t, sizeof(lscsa->gprs) - *pos, size);
575 	*pos += size;
576 
577 	ret = spu_acquire_saved(ctx);
578 	if (ret)
579 		return ret;
580 
581 	ret = copy_from_user((char *)lscsa->gprs + *pos - size,
582 			     buffer, size) ? -EFAULT : size;
583 
584 	spu_release_saved(ctx);
585 	return ret;
586 }
587 
588 static const struct file_operations spufs_regs_fops = {
589 	.open	 = spufs_regs_open,
590 	.read    = spufs_regs_read,
591 	.write   = spufs_regs_write,
592 	.llseek  = generic_file_llseek,
593 };
594 
595 static ssize_t
596 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
597 			size_t size, loff_t * pos)
598 {
599 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
600 	return simple_read_from_buffer(buffer, size, pos,
601 				      &lscsa->fpcr, sizeof(lscsa->fpcr));
602 }
603 
604 static ssize_t
605 spufs_fpcr_read(struct file *file, char __user * buffer,
606 		size_t size, loff_t * pos)
607 {
608 	int ret;
609 	struct spu_context *ctx = file->private_data;
610 
611 	ret = spu_acquire_saved(ctx);
612 	if (ret)
613 		return ret;
614 	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
615 	spu_release_saved(ctx);
616 	return ret;
617 }
618 
619 static ssize_t
620 spufs_fpcr_write(struct file *file, const char __user * buffer,
621 		 size_t size, loff_t * pos)
622 {
623 	struct spu_context *ctx = file->private_data;
624 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
625 	int ret;
626 
627 	if (*pos >= sizeof(lscsa->fpcr))
628 		return -EFBIG;
629 
630 	size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
631 
632 	ret = spu_acquire_saved(ctx);
633 	if (ret)
634 		return ret;
635 
636 	*pos += size;
637 	ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
638 			     buffer, size) ? -EFAULT : size;
639 
640 	spu_release_saved(ctx);
641 	return ret;
642 }
643 
644 static const struct file_operations spufs_fpcr_fops = {
645 	.open = spufs_regs_open,
646 	.read = spufs_fpcr_read,
647 	.write = spufs_fpcr_write,
648 	.llseek = generic_file_llseek,
649 };
650 
651 /* generic open function for all pipe-like files */
652 static int spufs_pipe_open(struct inode *inode, struct file *file)
653 {
654 	struct spufs_inode_info *i = SPUFS_I(inode);
655 	file->private_data = i->i_ctx;
656 
657 	return nonseekable_open(inode, file);
658 }
659 
660 /*
661  * Read as many bytes from the mailbox as possible, until
662  * one of the conditions becomes true:
663  *
664  * - no more data available in the mailbox
665  * - end of the user provided buffer
666  * - end of the mapped area
667  */
668 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
669 			size_t len, loff_t *pos)
670 {
671 	struct spu_context *ctx = file->private_data;
672 	u32 mbox_data, __user *udata;
673 	ssize_t count;
674 
675 	if (len < 4)
676 		return -EINVAL;
677 
678 	if (!access_ok(VERIFY_WRITE, buf, len))
679 		return -EFAULT;
680 
681 	udata = (void __user *)buf;
682 
683 	count = spu_acquire(ctx);
684 	if (count)
685 		return count;
686 
687 	for (count = 0; (count + 4) <= len; count += 4, udata++) {
688 		int ret;
689 		ret = ctx->ops->mbox_read(ctx, &mbox_data);
690 		if (ret == 0)
691 			break;
692 
693 		/*
694 		 * at the end of the mapped area, we can fault
695 		 * but still need to return the data we have
696 		 * read successfully so far.
697 		 */
698 		ret = __put_user(mbox_data, udata);
699 		if (ret) {
700 			if (!count)
701 				count = -EFAULT;
702 			break;
703 		}
704 	}
705 	spu_release(ctx);
706 
707 	if (!count)
708 		count = -EAGAIN;
709 
710 	return count;
711 }
712 
713 static const struct file_operations spufs_mbox_fops = {
714 	.open	= spufs_pipe_open,
715 	.read	= spufs_mbox_read,
716 };
717 
718 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
719 			size_t len, loff_t *pos)
720 {
721 	struct spu_context *ctx = file->private_data;
722 	ssize_t ret;
723 	u32 mbox_stat;
724 
725 	if (len < 4)
726 		return -EINVAL;
727 
728 	ret = spu_acquire(ctx);
729 	if (ret)
730 		return ret;
731 
732 	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
733 
734 	spu_release(ctx);
735 
736 	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
737 		return -EFAULT;
738 
739 	return 4;
740 }
741 
742 static const struct file_operations spufs_mbox_stat_fops = {
743 	.open	= spufs_pipe_open,
744 	.read	= spufs_mbox_stat_read,
745 };
746 
747 /* low-level ibox access function */
748 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
749 {
750 	return ctx->ops->ibox_read(ctx, data);
751 }
752 
753 static int spufs_ibox_fasync(int fd, struct file *file, int on)
754 {
755 	struct spu_context *ctx = file->private_data;
756 
757 	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
758 }
759 
760 /* interrupt-level ibox callback function. */
761 void spufs_ibox_callback(struct spu *spu)
762 {
763 	struct spu_context *ctx = spu->ctx;
764 
765 	if (!ctx)
766 		return;
767 
768 	wake_up_all(&ctx->ibox_wq);
769 	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
770 }
771 
772 /*
773  * Read as many bytes from the interrupt mailbox as possible, until
774  * one of the conditions becomes true:
775  *
776  * - no more data available in the mailbox
777  * - end of the user provided buffer
778  * - end of the mapped area
779  *
780  * If the file is opened without O_NONBLOCK, we wait here until
781  * any data is available, but return when we have been able to
782  * read something.
783  */
784 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
785 			size_t len, loff_t *pos)
786 {
787 	struct spu_context *ctx = file->private_data;
788 	u32 ibox_data, __user *udata;
789 	ssize_t count;
790 
791 	if (len < 4)
792 		return -EINVAL;
793 
794 	if (!access_ok(VERIFY_WRITE, buf, len))
795 		return -EFAULT;
796 
797 	udata = (void __user *)buf;
798 
799 	count = spu_acquire(ctx);
800 	if (count)
801 		goto out;
802 
803 	/* wait only for the first element */
804 	count = 0;
805 	if (file->f_flags & O_NONBLOCK) {
806 		if (!spu_ibox_read(ctx, &ibox_data)) {
807 			count = -EAGAIN;
808 			goto out_unlock;
809 		}
810 	} else {
811 		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
812 		if (count)
813 			goto out;
814 	}
815 
816 	/* if we can't write at all, return -EFAULT */
817 	count = __put_user(ibox_data, udata);
818 	if (count)
819 		goto out_unlock;
820 
821 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
822 		int ret;
823 		ret = ctx->ops->ibox_read(ctx, &ibox_data);
824 		if (ret == 0)
825 			break;
826 		/*
827 		 * at the end of the mapped area, we can fault
828 		 * but still need to return the data we have
829 		 * read successfully so far.
830 		 */
831 		ret = __put_user(ibox_data, udata);
832 		if (ret)
833 			break;
834 	}
835 
836 out_unlock:
837 	spu_release(ctx);
838 out:
839 	return count;
840 }
841 
842 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
843 {
844 	struct spu_context *ctx = file->private_data;
845 	unsigned int mask;
846 
847 	poll_wait(file, &ctx->ibox_wq, wait);
848 
849 	/*
850 	 * For now keep this uninterruptible and also ignore the rule
851 	 * that poll should not sleep.  Will be fixed later.
852 	 */
853 	mutex_lock(&ctx->state_mutex);
854 	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
855 	spu_release(ctx);
856 
857 	return mask;
858 }
859 
860 static const struct file_operations spufs_ibox_fops = {
861 	.open	= spufs_pipe_open,
862 	.read	= spufs_ibox_read,
863 	.poll	= spufs_ibox_poll,
864 	.fasync	= spufs_ibox_fasync,
865 };
866 
867 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
868 			size_t len, loff_t *pos)
869 {
870 	struct spu_context *ctx = file->private_data;
871 	ssize_t ret;
872 	u32 ibox_stat;
873 
874 	if (len < 4)
875 		return -EINVAL;
876 
877 	ret = spu_acquire(ctx);
878 	if (ret)
879 		return ret;
880 	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
881 	spu_release(ctx);
882 
883 	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
884 		return -EFAULT;
885 
886 	return 4;
887 }
888 
889 static const struct file_operations spufs_ibox_stat_fops = {
890 	.open	= spufs_pipe_open,
891 	.read	= spufs_ibox_stat_read,
892 };
893 
894 /* low-level mailbox write */
895 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
896 {
897 	return ctx->ops->wbox_write(ctx, data);
898 }
899 
900 static int spufs_wbox_fasync(int fd, struct file *file, int on)
901 {
902 	struct spu_context *ctx = file->private_data;
903 	int ret;
904 
905 	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
906 
907 	return ret;
908 }
909 
910 /* interrupt-level wbox callback function. */
911 void spufs_wbox_callback(struct spu *spu)
912 {
913 	struct spu_context *ctx = spu->ctx;
914 
915 	if (!ctx)
916 		return;
917 
918 	wake_up_all(&ctx->wbox_wq);
919 	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
920 }
921 
922 /*
923  * Write as many bytes to the interrupt mailbox as possible, until
924  * one of the conditions becomes true:
925  *
926  * - the mailbox is full
927  * - end of the user provided buffer
928  * - end of the mapped area
929  *
930  * If the file is opened without O_NONBLOCK, we wait here until
931  * space is availabyl, but return when we have been able to
932  * write something.
933  */
934 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
935 			size_t len, loff_t *pos)
936 {
937 	struct spu_context *ctx = file->private_data;
938 	u32 wbox_data, __user *udata;
939 	ssize_t count;
940 
941 	if (len < 4)
942 		return -EINVAL;
943 
944 	udata = (void __user *)buf;
945 	if (!access_ok(VERIFY_READ, buf, len))
946 		return -EFAULT;
947 
948 	if (__get_user(wbox_data, udata))
949 		return -EFAULT;
950 
951 	count = spu_acquire(ctx);
952 	if (count)
953 		goto out;
954 
955 	/*
956 	 * make sure we can at least write one element, by waiting
957 	 * in case of !O_NONBLOCK
958 	 */
959 	count = 0;
960 	if (file->f_flags & O_NONBLOCK) {
961 		if (!spu_wbox_write(ctx, wbox_data)) {
962 			count = -EAGAIN;
963 			goto out_unlock;
964 		}
965 	} else {
966 		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
967 		if (count)
968 			goto out;
969 	}
970 
971 
972 	/* write as much as possible */
973 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
974 		int ret;
975 		ret = __get_user(wbox_data, udata);
976 		if (ret)
977 			break;
978 
979 		ret = spu_wbox_write(ctx, wbox_data);
980 		if (ret == 0)
981 			break;
982 	}
983 
984 out_unlock:
985 	spu_release(ctx);
986 out:
987 	return count;
988 }
989 
990 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
991 {
992 	struct spu_context *ctx = file->private_data;
993 	unsigned int mask;
994 
995 	poll_wait(file, &ctx->wbox_wq, wait);
996 
997 	/*
998 	 * For now keep this uninterruptible and also ignore the rule
999 	 * that poll should not sleep.  Will be fixed later.
1000 	 */
1001 	mutex_lock(&ctx->state_mutex);
1002 	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
1003 	spu_release(ctx);
1004 
1005 	return mask;
1006 }
1007 
1008 static const struct file_operations spufs_wbox_fops = {
1009 	.open	= spufs_pipe_open,
1010 	.write	= spufs_wbox_write,
1011 	.poll	= spufs_wbox_poll,
1012 	.fasync	= spufs_wbox_fasync,
1013 };
1014 
1015 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
1016 			size_t len, loff_t *pos)
1017 {
1018 	struct spu_context *ctx = file->private_data;
1019 	ssize_t ret;
1020 	u32 wbox_stat;
1021 
1022 	if (len < 4)
1023 		return -EINVAL;
1024 
1025 	ret = spu_acquire(ctx);
1026 	if (ret)
1027 		return ret;
1028 	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
1029 	spu_release(ctx);
1030 
1031 	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
1032 		return -EFAULT;
1033 
1034 	return 4;
1035 }
1036 
1037 static const struct file_operations spufs_wbox_stat_fops = {
1038 	.open	= spufs_pipe_open,
1039 	.read	= spufs_wbox_stat_read,
1040 };
1041 
1042 static int spufs_signal1_open(struct inode *inode, struct file *file)
1043 {
1044 	struct spufs_inode_info *i = SPUFS_I(inode);
1045 	struct spu_context *ctx = i->i_ctx;
1046 
1047 	mutex_lock(&ctx->mapping_lock);
1048 	file->private_data = ctx;
1049 	if (!i->i_openers++)
1050 		ctx->signal1 = inode->i_mapping;
1051 	mutex_unlock(&ctx->mapping_lock);
1052 	return nonseekable_open(inode, file);
1053 }
1054 
1055 static int
1056 spufs_signal1_release(struct inode *inode, struct file *file)
1057 {
1058 	struct spufs_inode_info *i = SPUFS_I(inode);
1059 	struct spu_context *ctx = i->i_ctx;
1060 
1061 	mutex_lock(&ctx->mapping_lock);
1062 	if (!--i->i_openers)
1063 		ctx->signal1 = NULL;
1064 	mutex_unlock(&ctx->mapping_lock);
1065 	return 0;
1066 }
1067 
1068 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1069 			size_t len, loff_t *pos)
1070 {
1071 	int ret = 0;
1072 	u32 data;
1073 
1074 	if (len < 4)
1075 		return -EINVAL;
1076 
1077 	if (ctx->csa.spu_chnlcnt_RW[3]) {
1078 		data = ctx->csa.spu_chnldata_RW[3];
1079 		ret = 4;
1080 	}
1081 
1082 	if (!ret)
1083 		goto out;
1084 
1085 	if (copy_to_user(buf, &data, 4))
1086 		return -EFAULT;
1087 
1088 out:
1089 	return ret;
1090 }
1091 
1092 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
1093 			size_t len, loff_t *pos)
1094 {
1095 	int ret;
1096 	struct spu_context *ctx = file->private_data;
1097 
1098 	ret = spu_acquire_saved(ctx);
1099 	if (ret)
1100 		return ret;
1101 	ret = __spufs_signal1_read(ctx, buf, len, pos);
1102 	spu_release_saved(ctx);
1103 
1104 	return ret;
1105 }
1106 
1107 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
1108 			size_t len, loff_t *pos)
1109 {
1110 	struct spu_context *ctx;
1111 	ssize_t ret;
1112 	u32 data;
1113 
1114 	ctx = file->private_data;
1115 
1116 	if (len < 4)
1117 		return -EINVAL;
1118 
1119 	if (copy_from_user(&data, buf, 4))
1120 		return -EFAULT;
1121 
1122 	ret = spu_acquire(ctx);
1123 	if (ret)
1124 		return ret;
1125 	ctx->ops->signal1_write(ctx, data);
1126 	spu_release(ctx);
1127 
1128 	return 4;
1129 }
1130 
1131 static int
1132 spufs_signal1_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1133 {
1134 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1135 	return spufs_ps_fault(vma, vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
1136 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1137 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1138 	 * signal 1 and 2 area
1139 	 */
1140 	return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1141 #else
1142 #error unsupported page size
1143 #endif
1144 }
1145 
1146 static const struct vm_operations_struct spufs_signal1_mmap_vmops = {
1147 	.fault = spufs_signal1_mmap_fault,
1148 };
1149 
1150 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1151 {
1152 	if (!(vma->vm_flags & VM_SHARED))
1153 		return -EINVAL;
1154 
1155 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1156 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1157 
1158 	vma->vm_ops = &spufs_signal1_mmap_vmops;
1159 	return 0;
1160 }
1161 
1162 static const struct file_operations spufs_signal1_fops = {
1163 	.open = spufs_signal1_open,
1164 	.release = spufs_signal1_release,
1165 	.read = spufs_signal1_read,
1166 	.write = spufs_signal1_write,
1167 	.mmap = spufs_signal1_mmap,
1168 };
1169 
1170 static const struct file_operations spufs_signal1_nosched_fops = {
1171 	.open = spufs_signal1_open,
1172 	.release = spufs_signal1_release,
1173 	.write = spufs_signal1_write,
1174 	.mmap = spufs_signal1_mmap,
1175 };
1176 
1177 static int spufs_signal2_open(struct inode *inode, struct file *file)
1178 {
1179 	struct spufs_inode_info *i = SPUFS_I(inode);
1180 	struct spu_context *ctx = i->i_ctx;
1181 
1182 	mutex_lock(&ctx->mapping_lock);
1183 	file->private_data = ctx;
1184 	if (!i->i_openers++)
1185 		ctx->signal2 = inode->i_mapping;
1186 	mutex_unlock(&ctx->mapping_lock);
1187 	return nonseekable_open(inode, file);
1188 }
1189 
1190 static int
1191 spufs_signal2_release(struct inode *inode, struct file *file)
1192 {
1193 	struct spufs_inode_info *i = SPUFS_I(inode);
1194 	struct spu_context *ctx = i->i_ctx;
1195 
1196 	mutex_lock(&ctx->mapping_lock);
1197 	if (!--i->i_openers)
1198 		ctx->signal2 = NULL;
1199 	mutex_unlock(&ctx->mapping_lock);
1200 	return 0;
1201 }
1202 
1203 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1204 			size_t len, loff_t *pos)
1205 {
1206 	int ret = 0;
1207 	u32 data;
1208 
1209 	if (len < 4)
1210 		return -EINVAL;
1211 
1212 	if (ctx->csa.spu_chnlcnt_RW[4]) {
1213 		data =  ctx->csa.spu_chnldata_RW[4];
1214 		ret = 4;
1215 	}
1216 
1217 	if (!ret)
1218 		goto out;
1219 
1220 	if (copy_to_user(buf, &data, 4))
1221 		return -EFAULT;
1222 
1223 out:
1224 	return ret;
1225 }
1226 
1227 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1228 			size_t len, loff_t *pos)
1229 {
1230 	struct spu_context *ctx = file->private_data;
1231 	int ret;
1232 
1233 	ret = spu_acquire_saved(ctx);
1234 	if (ret)
1235 		return ret;
1236 	ret = __spufs_signal2_read(ctx, buf, len, pos);
1237 	spu_release_saved(ctx);
1238 
1239 	return ret;
1240 }
1241 
1242 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1243 			size_t len, loff_t *pos)
1244 {
1245 	struct spu_context *ctx;
1246 	ssize_t ret;
1247 	u32 data;
1248 
1249 	ctx = file->private_data;
1250 
1251 	if (len < 4)
1252 		return -EINVAL;
1253 
1254 	if (copy_from_user(&data, buf, 4))
1255 		return -EFAULT;
1256 
1257 	ret = spu_acquire(ctx);
1258 	if (ret)
1259 		return ret;
1260 	ctx->ops->signal2_write(ctx, data);
1261 	spu_release(ctx);
1262 
1263 	return 4;
1264 }
1265 
1266 #if SPUFS_MMAP_4K
1267 static int
1268 spufs_signal2_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1269 {
1270 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1271 	return spufs_ps_fault(vma, vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
1272 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1273 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1274 	 * signal 1 and 2 area
1275 	 */
1276 	return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1277 #else
1278 #error unsupported page size
1279 #endif
1280 }
1281 
1282 static const struct vm_operations_struct spufs_signal2_mmap_vmops = {
1283 	.fault = spufs_signal2_mmap_fault,
1284 };
1285 
1286 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1287 {
1288 	if (!(vma->vm_flags & VM_SHARED))
1289 		return -EINVAL;
1290 
1291 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1292 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1293 
1294 	vma->vm_ops = &spufs_signal2_mmap_vmops;
1295 	return 0;
1296 }
1297 #else /* SPUFS_MMAP_4K */
1298 #define spufs_signal2_mmap NULL
1299 #endif /* !SPUFS_MMAP_4K */
1300 
1301 static const struct file_operations spufs_signal2_fops = {
1302 	.open = spufs_signal2_open,
1303 	.release = spufs_signal2_release,
1304 	.read = spufs_signal2_read,
1305 	.write = spufs_signal2_write,
1306 	.mmap = spufs_signal2_mmap,
1307 };
1308 
1309 static const struct file_operations spufs_signal2_nosched_fops = {
1310 	.open = spufs_signal2_open,
1311 	.release = spufs_signal2_release,
1312 	.write = spufs_signal2_write,
1313 	.mmap = spufs_signal2_mmap,
1314 };
1315 
1316 /*
1317  * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1318  * work of acquiring (or not) the SPU context before calling through
1319  * to the actual get routine. The set routine is called directly.
1320  */
1321 #define SPU_ATTR_NOACQUIRE	0
1322 #define SPU_ATTR_ACQUIRE	1
1323 #define SPU_ATTR_ACQUIRE_SAVED	2
1324 
1325 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)	\
1326 static int __##__get(void *data, u64 *val)				\
1327 {									\
1328 	struct spu_context *ctx = data;					\
1329 	int ret = 0;							\
1330 									\
1331 	if (__acquire == SPU_ATTR_ACQUIRE) {				\
1332 		ret = spu_acquire(ctx);					\
1333 		if (ret)						\
1334 			return ret;					\
1335 		*val = __get(ctx);					\
1336 		spu_release(ctx);					\
1337 	} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED)	{		\
1338 		ret = spu_acquire_saved(ctx);				\
1339 		if (ret)						\
1340 			return ret;					\
1341 		*val = __get(ctx);					\
1342 		spu_release_saved(ctx);					\
1343 	} else								\
1344 		*val = __get(ctx);					\
1345 									\
1346 	return 0;							\
1347 }									\
1348 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1349 
1350 static int spufs_signal1_type_set(void *data, u64 val)
1351 {
1352 	struct spu_context *ctx = data;
1353 	int ret;
1354 
1355 	ret = spu_acquire(ctx);
1356 	if (ret)
1357 		return ret;
1358 	ctx->ops->signal1_type_set(ctx, val);
1359 	spu_release(ctx);
1360 
1361 	return 0;
1362 }
1363 
1364 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1365 {
1366 	return ctx->ops->signal1_type_get(ctx);
1367 }
1368 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1369 		       spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1370 
1371 
1372 static int spufs_signal2_type_set(void *data, u64 val)
1373 {
1374 	struct spu_context *ctx = data;
1375 	int ret;
1376 
1377 	ret = spu_acquire(ctx);
1378 	if (ret)
1379 		return ret;
1380 	ctx->ops->signal2_type_set(ctx, val);
1381 	spu_release(ctx);
1382 
1383 	return 0;
1384 }
1385 
1386 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1387 {
1388 	return ctx->ops->signal2_type_get(ctx);
1389 }
1390 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1391 		       spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1392 
1393 #if SPUFS_MMAP_4K
1394 static int
1395 spufs_mss_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1396 {
1397 	return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1398 }
1399 
1400 static const struct vm_operations_struct spufs_mss_mmap_vmops = {
1401 	.fault = spufs_mss_mmap_fault,
1402 };
1403 
1404 /*
1405  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1406  */
1407 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1408 {
1409 	if (!(vma->vm_flags & VM_SHARED))
1410 		return -EINVAL;
1411 
1412 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1413 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1414 
1415 	vma->vm_ops = &spufs_mss_mmap_vmops;
1416 	return 0;
1417 }
1418 #else /* SPUFS_MMAP_4K */
1419 #define spufs_mss_mmap NULL
1420 #endif /* !SPUFS_MMAP_4K */
1421 
1422 static int spufs_mss_open(struct inode *inode, struct file *file)
1423 {
1424 	struct spufs_inode_info *i = SPUFS_I(inode);
1425 	struct spu_context *ctx = i->i_ctx;
1426 
1427 	file->private_data = i->i_ctx;
1428 
1429 	mutex_lock(&ctx->mapping_lock);
1430 	if (!i->i_openers++)
1431 		ctx->mss = inode->i_mapping;
1432 	mutex_unlock(&ctx->mapping_lock);
1433 	return nonseekable_open(inode, file);
1434 }
1435 
1436 static int
1437 spufs_mss_release(struct inode *inode, struct file *file)
1438 {
1439 	struct spufs_inode_info *i = SPUFS_I(inode);
1440 	struct spu_context *ctx = i->i_ctx;
1441 
1442 	mutex_lock(&ctx->mapping_lock);
1443 	if (!--i->i_openers)
1444 		ctx->mss = NULL;
1445 	mutex_unlock(&ctx->mapping_lock);
1446 	return 0;
1447 }
1448 
1449 static const struct file_operations spufs_mss_fops = {
1450 	.open	 = spufs_mss_open,
1451 	.release = spufs_mss_release,
1452 	.mmap	 = spufs_mss_mmap,
1453 };
1454 
1455 static int
1456 spufs_psmap_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1457 {
1458 	return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1459 }
1460 
1461 static const struct vm_operations_struct spufs_psmap_mmap_vmops = {
1462 	.fault = spufs_psmap_mmap_fault,
1463 };
1464 
1465 /*
1466  * mmap support for full problem state area [0x00000 - 0x1ffff].
1467  */
1468 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1469 {
1470 	if (!(vma->vm_flags & VM_SHARED))
1471 		return -EINVAL;
1472 
1473 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1474 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1475 
1476 	vma->vm_ops = &spufs_psmap_mmap_vmops;
1477 	return 0;
1478 }
1479 
1480 static int spufs_psmap_open(struct inode *inode, struct file *file)
1481 {
1482 	struct spufs_inode_info *i = SPUFS_I(inode);
1483 	struct spu_context *ctx = i->i_ctx;
1484 
1485 	mutex_lock(&ctx->mapping_lock);
1486 	file->private_data = i->i_ctx;
1487 	if (!i->i_openers++)
1488 		ctx->psmap = inode->i_mapping;
1489 	mutex_unlock(&ctx->mapping_lock);
1490 	return nonseekable_open(inode, file);
1491 }
1492 
1493 static int
1494 spufs_psmap_release(struct inode *inode, struct file *file)
1495 {
1496 	struct spufs_inode_info *i = SPUFS_I(inode);
1497 	struct spu_context *ctx = i->i_ctx;
1498 
1499 	mutex_lock(&ctx->mapping_lock);
1500 	if (!--i->i_openers)
1501 		ctx->psmap = NULL;
1502 	mutex_unlock(&ctx->mapping_lock);
1503 	return 0;
1504 }
1505 
1506 static const struct file_operations spufs_psmap_fops = {
1507 	.open	 = spufs_psmap_open,
1508 	.release = spufs_psmap_release,
1509 	.mmap	 = spufs_psmap_mmap,
1510 };
1511 
1512 
1513 #if SPUFS_MMAP_4K
1514 static int
1515 spufs_mfc_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1516 {
1517 	return spufs_ps_fault(vma, vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1518 }
1519 
1520 static const struct vm_operations_struct spufs_mfc_mmap_vmops = {
1521 	.fault = spufs_mfc_mmap_fault,
1522 };
1523 
1524 /*
1525  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1526  */
1527 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1528 {
1529 	if (!(vma->vm_flags & VM_SHARED))
1530 		return -EINVAL;
1531 
1532 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1533 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1534 
1535 	vma->vm_ops = &spufs_mfc_mmap_vmops;
1536 	return 0;
1537 }
1538 #else /* SPUFS_MMAP_4K */
1539 #define spufs_mfc_mmap NULL
1540 #endif /* !SPUFS_MMAP_4K */
1541 
1542 static int spufs_mfc_open(struct inode *inode, struct file *file)
1543 {
1544 	struct spufs_inode_info *i = SPUFS_I(inode);
1545 	struct spu_context *ctx = i->i_ctx;
1546 
1547 	/* we don't want to deal with DMA into other processes */
1548 	if (ctx->owner != current->mm)
1549 		return -EINVAL;
1550 
1551 	if (atomic_read(&inode->i_count) != 1)
1552 		return -EBUSY;
1553 
1554 	mutex_lock(&ctx->mapping_lock);
1555 	file->private_data = ctx;
1556 	if (!i->i_openers++)
1557 		ctx->mfc = inode->i_mapping;
1558 	mutex_unlock(&ctx->mapping_lock);
1559 	return nonseekable_open(inode, file);
1560 }
1561 
1562 static int
1563 spufs_mfc_release(struct inode *inode, struct file *file)
1564 {
1565 	struct spufs_inode_info *i = SPUFS_I(inode);
1566 	struct spu_context *ctx = i->i_ctx;
1567 
1568 	mutex_lock(&ctx->mapping_lock);
1569 	if (!--i->i_openers)
1570 		ctx->mfc = NULL;
1571 	mutex_unlock(&ctx->mapping_lock);
1572 	return 0;
1573 }
1574 
1575 /* interrupt-level mfc callback function. */
1576 void spufs_mfc_callback(struct spu *spu)
1577 {
1578 	struct spu_context *ctx = spu->ctx;
1579 
1580 	if (!ctx)
1581 		return;
1582 
1583 	wake_up_all(&ctx->mfc_wq);
1584 
1585 	pr_debug("%s %s\n", __func__, spu->name);
1586 	if (ctx->mfc_fasync) {
1587 		u32 free_elements, tagstatus;
1588 		unsigned int mask;
1589 
1590 		/* no need for spu_acquire in interrupt context */
1591 		free_elements = ctx->ops->get_mfc_free_elements(ctx);
1592 		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1593 
1594 		mask = 0;
1595 		if (free_elements & 0xffff)
1596 			mask |= POLLOUT;
1597 		if (tagstatus & ctx->tagwait)
1598 			mask |= POLLIN;
1599 
1600 		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
1601 	}
1602 }
1603 
1604 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1605 {
1606 	/* See if there is one tag group is complete */
1607 	/* FIXME we need locking around tagwait */
1608 	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1609 	ctx->tagwait &= ~*status;
1610 	if (*status)
1611 		return 1;
1612 
1613 	/* enable interrupt waiting for any tag group,
1614 	   may silently fail if interrupts are already enabled */
1615 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1616 	return 0;
1617 }
1618 
1619 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1620 			size_t size, loff_t *pos)
1621 {
1622 	struct spu_context *ctx = file->private_data;
1623 	int ret = -EINVAL;
1624 	u32 status;
1625 
1626 	if (size != 4)
1627 		goto out;
1628 
1629 	ret = spu_acquire(ctx);
1630 	if (ret)
1631 		return ret;
1632 
1633 	ret = -EINVAL;
1634 	if (file->f_flags & O_NONBLOCK) {
1635 		status = ctx->ops->read_mfc_tagstatus(ctx);
1636 		if (!(status & ctx->tagwait))
1637 			ret = -EAGAIN;
1638 		else
1639 			/* XXX(hch): shouldn't we clear ret here? */
1640 			ctx->tagwait &= ~status;
1641 	} else {
1642 		ret = spufs_wait(ctx->mfc_wq,
1643 			   spufs_read_mfc_tagstatus(ctx, &status));
1644 		if (ret)
1645 			goto out;
1646 	}
1647 	spu_release(ctx);
1648 
1649 	ret = 4;
1650 	if (copy_to_user(buffer, &status, 4))
1651 		ret = -EFAULT;
1652 
1653 out:
1654 	return ret;
1655 }
1656 
1657 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1658 {
1659 	pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa,
1660 		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1661 
1662 	switch (cmd->cmd) {
1663 	case MFC_PUT_CMD:
1664 	case MFC_PUTF_CMD:
1665 	case MFC_PUTB_CMD:
1666 	case MFC_GET_CMD:
1667 	case MFC_GETF_CMD:
1668 	case MFC_GETB_CMD:
1669 		break;
1670 	default:
1671 		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1672 		return -EIO;
1673 	}
1674 
1675 	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1676 		pr_debug("invalid DMA alignment, ea %llx lsa %x\n",
1677 				cmd->ea, cmd->lsa);
1678 		return -EIO;
1679 	}
1680 
1681 	switch (cmd->size & 0xf) {
1682 	case 1:
1683 		break;
1684 	case 2:
1685 		if (cmd->lsa & 1)
1686 			goto error;
1687 		break;
1688 	case 4:
1689 		if (cmd->lsa & 3)
1690 			goto error;
1691 		break;
1692 	case 8:
1693 		if (cmd->lsa & 7)
1694 			goto error;
1695 		break;
1696 	case 0:
1697 		if (cmd->lsa & 15)
1698 			goto error;
1699 		break;
1700 	error:
1701 	default:
1702 		pr_debug("invalid DMA alignment %x for size %x\n",
1703 			cmd->lsa & 0xf, cmd->size);
1704 		return -EIO;
1705 	}
1706 
1707 	if (cmd->size > 16 * 1024) {
1708 		pr_debug("invalid DMA size %x\n", cmd->size);
1709 		return -EIO;
1710 	}
1711 
1712 	if (cmd->tag & 0xfff0) {
1713 		/* we reserve the higher tag numbers for kernel use */
1714 		pr_debug("invalid DMA tag\n");
1715 		return -EIO;
1716 	}
1717 
1718 	if (cmd->class) {
1719 		/* not supported in this version */
1720 		pr_debug("invalid DMA class\n");
1721 		return -EIO;
1722 	}
1723 
1724 	return 0;
1725 }
1726 
1727 static int spu_send_mfc_command(struct spu_context *ctx,
1728 				struct mfc_dma_command cmd,
1729 				int *error)
1730 {
1731 	*error = ctx->ops->send_mfc_command(ctx, &cmd);
1732 	if (*error == -EAGAIN) {
1733 		/* wait for any tag group to complete
1734 		   so we have space for the new command */
1735 		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1736 		/* try again, because the queue might be
1737 		   empty again */
1738 		*error = ctx->ops->send_mfc_command(ctx, &cmd);
1739 		if (*error == -EAGAIN)
1740 			return 0;
1741 	}
1742 	return 1;
1743 }
1744 
1745 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1746 			size_t size, loff_t *pos)
1747 {
1748 	struct spu_context *ctx = file->private_data;
1749 	struct mfc_dma_command cmd;
1750 	int ret = -EINVAL;
1751 
1752 	if (size != sizeof cmd)
1753 		goto out;
1754 
1755 	ret = -EFAULT;
1756 	if (copy_from_user(&cmd, buffer, sizeof cmd))
1757 		goto out;
1758 
1759 	ret = spufs_check_valid_dma(&cmd);
1760 	if (ret)
1761 		goto out;
1762 
1763 	ret = spu_acquire(ctx);
1764 	if (ret)
1765 		goto out;
1766 
1767 	ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1768 	if (ret)
1769 		goto out;
1770 
1771 	if (file->f_flags & O_NONBLOCK) {
1772 		ret = ctx->ops->send_mfc_command(ctx, &cmd);
1773 	} else {
1774 		int status;
1775 		ret = spufs_wait(ctx->mfc_wq,
1776 				 spu_send_mfc_command(ctx, cmd, &status));
1777 		if (ret)
1778 			goto out;
1779 		if (status)
1780 			ret = status;
1781 	}
1782 
1783 	if (ret)
1784 		goto out_unlock;
1785 
1786 	ctx->tagwait |= 1 << cmd.tag;
1787 	ret = size;
1788 
1789 out_unlock:
1790 	spu_release(ctx);
1791 out:
1792 	return ret;
1793 }
1794 
1795 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
1796 {
1797 	struct spu_context *ctx = file->private_data;
1798 	u32 free_elements, tagstatus;
1799 	unsigned int mask;
1800 
1801 	poll_wait(file, &ctx->mfc_wq, wait);
1802 
1803 	/*
1804 	 * For now keep this uninterruptible and also ignore the rule
1805 	 * that poll should not sleep.  Will be fixed later.
1806 	 */
1807 	mutex_lock(&ctx->state_mutex);
1808 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1809 	free_elements = ctx->ops->get_mfc_free_elements(ctx);
1810 	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1811 	spu_release(ctx);
1812 
1813 	mask = 0;
1814 	if (free_elements & 0xffff)
1815 		mask |= POLLOUT | POLLWRNORM;
1816 	if (tagstatus & ctx->tagwait)
1817 		mask |= POLLIN | POLLRDNORM;
1818 
1819 	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1820 		free_elements, tagstatus, ctx->tagwait);
1821 
1822 	return mask;
1823 }
1824 
1825 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1826 {
1827 	struct spu_context *ctx = file->private_data;
1828 	int ret;
1829 
1830 	ret = spu_acquire(ctx);
1831 	if (ret)
1832 		goto out;
1833 #if 0
1834 /* this currently hangs */
1835 	ret = spufs_wait(ctx->mfc_wq,
1836 			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1837 	if (ret)
1838 		goto out;
1839 	ret = spufs_wait(ctx->mfc_wq,
1840 			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1841 	if (ret)
1842 		goto out;
1843 #else
1844 	ret = 0;
1845 #endif
1846 	spu_release(ctx);
1847 out:
1848 	return ret;
1849 }
1850 
1851 static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
1852 			   int datasync)
1853 {
1854 	return spufs_mfc_flush(file, NULL);
1855 }
1856 
1857 static int spufs_mfc_fasync(int fd, struct file *file, int on)
1858 {
1859 	struct spu_context *ctx = file->private_data;
1860 
1861 	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
1862 }
1863 
1864 static const struct file_operations spufs_mfc_fops = {
1865 	.open	 = spufs_mfc_open,
1866 	.release = spufs_mfc_release,
1867 	.read	 = spufs_mfc_read,
1868 	.write	 = spufs_mfc_write,
1869 	.poll	 = spufs_mfc_poll,
1870 	.flush	 = spufs_mfc_flush,
1871 	.fsync	 = spufs_mfc_fsync,
1872 	.fasync	 = spufs_mfc_fasync,
1873 	.mmap	 = spufs_mfc_mmap,
1874 };
1875 
1876 static int spufs_npc_set(void *data, u64 val)
1877 {
1878 	struct spu_context *ctx = data;
1879 	int ret;
1880 
1881 	ret = spu_acquire(ctx);
1882 	if (ret)
1883 		return ret;
1884 	ctx->ops->npc_write(ctx, val);
1885 	spu_release(ctx);
1886 
1887 	return 0;
1888 }
1889 
1890 static u64 spufs_npc_get(struct spu_context *ctx)
1891 {
1892 	return ctx->ops->npc_read(ctx);
1893 }
1894 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1895 		       "0x%llx\n", SPU_ATTR_ACQUIRE);
1896 
1897 static int spufs_decr_set(void *data, u64 val)
1898 {
1899 	struct spu_context *ctx = data;
1900 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1901 	int ret;
1902 
1903 	ret = spu_acquire_saved(ctx);
1904 	if (ret)
1905 		return ret;
1906 	lscsa->decr.slot[0] = (u32) val;
1907 	spu_release_saved(ctx);
1908 
1909 	return 0;
1910 }
1911 
1912 static u64 spufs_decr_get(struct spu_context *ctx)
1913 {
1914 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1915 	return lscsa->decr.slot[0];
1916 }
1917 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1918 		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1919 
1920 static int spufs_decr_status_set(void *data, u64 val)
1921 {
1922 	struct spu_context *ctx = data;
1923 	int ret;
1924 
1925 	ret = spu_acquire_saved(ctx);
1926 	if (ret)
1927 		return ret;
1928 	if (val)
1929 		ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1930 	else
1931 		ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1932 	spu_release_saved(ctx);
1933 
1934 	return 0;
1935 }
1936 
1937 static u64 spufs_decr_status_get(struct spu_context *ctx)
1938 {
1939 	if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1940 		return SPU_DECR_STATUS_RUNNING;
1941 	else
1942 		return 0;
1943 }
1944 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1945 		       spufs_decr_status_set, "0x%llx\n",
1946 		       SPU_ATTR_ACQUIRE_SAVED);
1947 
1948 static int spufs_event_mask_set(void *data, u64 val)
1949 {
1950 	struct spu_context *ctx = data;
1951 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1952 	int ret;
1953 
1954 	ret = spu_acquire_saved(ctx);
1955 	if (ret)
1956 		return ret;
1957 	lscsa->event_mask.slot[0] = (u32) val;
1958 	spu_release_saved(ctx);
1959 
1960 	return 0;
1961 }
1962 
1963 static u64 spufs_event_mask_get(struct spu_context *ctx)
1964 {
1965 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1966 	return lscsa->event_mask.slot[0];
1967 }
1968 
1969 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1970 		       spufs_event_mask_set, "0x%llx\n",
1971 		       SPU_ATTR_ACQUIRE_SAVED);
1972 
1973 static u64 spufs_event_status_get(struct spu_context *ctx)
1974 {
1975 	struct spu_state *state = &ctx->csa;
1976 	u64 stat;
1977 	stat = state->spu_chnlcnt_RW[0];
1978 	if (stat)
1979 		return state->spu_chnldata_RW[0];
1980 	return 0;
1981 }
1982 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1983 		       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1984 
1985 static int spufs_srr0_set(void *data, u64 val)
1986 {
1987 	struct spu_context *ctx = data;
1988 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1989 	int ret;
1990 
1991 	ret = spu_acquire_saved(ctx);
1992 	if (ret)
1993 		return ret;
1994 	lscsa->srr0.slot[0] = (u32) val;
1995 	spu_release_saved(ctx);
1996 
1997 	return 0;
1998 }
1999 
2000 static u64 spufs_srr0_get(struct spu_context *ctx)
2001 {
2002 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
2003 	return lscsa->srr0.slot[0];
2004 }
2005 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
2006 		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
2007 
2008 static u64 spufs_id_get(struct spu_context *ctx)
2009 {
2010 	u64 num;
2011 
2012 	if (ctx->state == SPU_STATE_RUNNABLE)
2013 		num = ctx->spu->number;
2014 	else
2015 		num = (unsigned int)-1;
2016 
2017 	return num;
2018 }
2019 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
2020 		       SPU_ATTR_ACQUIRE)
2021 
2022 static u64 spufs_object_id_get(struct spu_context *ctx)
2023 {
2024 	/* FIXME: Should there really be no locking here? */
2025 	return ctx->object_id;
2026 }
2027 
2028 static int spufs_object_id_set(void *data, u64 id)
2029 {
2030 	struct spu_context *ctx = data;
2031 	ctx->object_id = id;
2032 
2033 	return 0;
2034 }
2035 
2036 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
2037 		       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
2038 
2039 static u64 spufs_lslr_get(struct spu_context *ctx)
2040 {
2041 	return ctx->csa.priv2.spu_lslr_RW;
2042 }
2043 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
2044 		       SPU_ATTR_ACQUIRE_SAVED);
2045 
2046 static int spufs_info_open(struct inode *inode, struct file *file)
2047 {
2048 	struct spufs_inode_info *i = SPUFS_I(inode);
2049 	struct spu_context *ctx = i->i_ctx;
2050 	file->private_data = ctx;
2051 	return 0;
2052 }
2053 
2054 static int spufs_caps_show(struct seq_file *s, void *private)
2055 {
2056 	struct spu_context *ctx = s->private;
2057 
2058 	if (!(ctx->flags & SPU_CREATE_NOSCHED))
2059 		seq_puts(s, "sched\n");
2060 	if (!(ctx->flags & SPU_CREATE_ISOLATE))
2061 		seq_puts(s, "step\n");
2062 	return 0;
2063 }
2064 
2065 static int spufs_caps_open(struct inode *inode, struct file *file)
2066 {
2067 	return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
2068 }
2069 
2070 static const struct file_operations spufs_caps_fops = {
2071 	.open		= spufs_caps_open,
2072 	.read		= seq_read,
2073 	.llseek		= seq_lseek,
2074 	.release	= single_release,
2075 };
2076 
2077 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
2078 			char __user *buf, size_t len, loff_t *pos)
2079 {
2080 	u32 data;
2081 
2082 	/* EOF if there's no entry in the mbox */
2083 	if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
2084 		return 0;
2085 
2086 	data = ctx->csa.prob.pu_mb_R;
2087 
2088 	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2089 }
2090 
2091 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
2092 				   size_t len, loff_t *pos)
2093 {
2094 	int ret;
2095 	struct spu_context *ctx = file->private_data;
2096 
2097 	if (!access_ok(VERIFY_WRITE, buf, len))
2098 		return -EFAULT;
2099 
2100 	ret = spu_acquire_saved(ctx);
2101 	if (ret)
2102 		return ret;
2103 	spin_lock(&ctx->csa.register_lock);
2104 	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2105 	spin_unlock(&ctx->csa.register_lock);
2106 	spu_release_saved(ctx);
2107 
2108 	return ret;
2109 }
2110 
2111 static const struct file_operations spufs_mbox_info_fops = {
2112 	.open = spufs_info_open,
2113 	.read = spufs_mbox_info_read,
2114 	.llseek  = generic_file_llseek,
2115 };
2116 
2117 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
2118 				char __user *buf, size_t len, loff_t *pos)
2119 {
2120 	u32 data;
2121 
2122 	/* EOF if there's no entry in the ibox */
2123 	if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
2124 		return 0;
2125 
2126 	data = ctx->csa.priv2.puint_mb_R;
2127 
2128 	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2129 }
2130 
2131 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
2132 				   size_t len, loff_t *pos)
2133 {
2134 	struct spu_context *ctx = file->private_data;
2135 	int ret;
2136 
2137 	if (!access_ok(VERIFY_WRITE, buf, len))
2138 		return -EFAULT;
2139 
2140 	ret = spu_acquire_saved(ctx);
2141 	if (ret)
2142 		return ret;
2143 	spin_lock(&ctx->csa.register_lock);
2144 	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2145 	spin_unlock(&ctx->csa.register_lock);
2146 	spu_release_saved(ctx);
2147 
2148 	return ret;
2149 }
2150 
2151 static const struct file_operations spufs_ibox_info_fops = {
2152 	.open = spufs_info_open,
2153 	.read = spufs_ibox_info_read,
2154 	.llseek  = generic_file_llseek,
2155 };
2156 
2157 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
2158 			char __user *buf, size_t len, loff_t *pos)
2159 {
2160 	int i, cnt;
2161 	u32 data[4];
2162 	u32 wbox_stat;
2163 
2164 	wbox_stat = ctx->csa.prob.mb_stat_R;
2165 	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
2166 	for (i = 0; i < cnt; i++) {
2167 		data[i] = ctx->csa.spu_mailbox_data[i];
2168 	}
2169 
2170 	return simple_read_from_buffer(buf, len, pos, &data,
2171 				cnt * sizeof(u32));
2172 }
2173 
2174 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2175 				   size_t len, loff_t *pos)
2176 {
2177 	struct spu_context *ctx = file->private_data;
2178 	int ret;
2179 
2180 	if (!access_ok(VERIFY_WRITE, buf, len))
2181 		return -EFAULT;
2182 
2183 	ret = spu_acquire_saved(ctx);
2184 	if (ret)
2185 		return ret;
2186 	spin_lock(&ctx->csa.register_lock);
2187 	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2188 	spin_unlock(&ctx->csa.register_lock);
2189 	spu_release_saved(ctx);
2190 
2191 	return ret;
2192 }
2193 
2194 static const struct file_operations spufs_wbox_info_fops = {
2195 	.open = spufs_info_open,
2196 	.read = spufs_wbox_info_read,
2197 	.llseek  = generic_file_llseek,
2198 };
2199 
2200 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
2201 			char __user *buf, size_t len, loff_t *pos)
2202 {
2203 	struct spu_dma_info info;
2204 	struct mfc_cq_sr *qp, *spuqp;
2205 	int i;
2206 
2207 	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2208 	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2209 	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
2210 	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2211 	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2212 	for (i = 0; i < 16; i++) {
2213 		qp = &info.dma_info_command_data[i];
2214 		spuqp = &ctx->csa.priv2.spuq[i];
2215 
2216 		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2217 		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2218 		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2219 		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2220 	}
2221 
2222 	return simple_read_from_buffer(buf, len, pos, &info,
2223 				sizeof info);
2224 }
2225 
2226 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2227 			      size_t len, loff_t *pos)
2228 {
2229 	struct spu_context *ctx = file->private_data;
2230 	int ret;
2231 
2232 	if (!access_ok(VERIFY_WRITE, buf, len))
2233 		return -EFAULT;
2234 
2235 	ret = spu_acquire_saved(ctx);
2236 	if (ret)
2237 		return ret;
2238 	spin_lock(&ctx->csa.register_lock);
2239 	ret = __spufs_dma_info_read(ctx, buf, len, pos);
2240 	spin_unlock(&ctx->csa.register_lock);
2241 	spu_release_saved(ctx);
2242 
2243 	return ret;
2244 }
2245 
2246 static const struct file_operations spufs_dma_info_fops = {
2247 	.open = spufs_info_open,
2248 	.read = spufs_dma_info_read,
2249 };
2250 
2251 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
2252 			char __user *buf, size_t len, loff_t *pos)
2253 {
2254 	struct spu_proxydma_info info;
2255 	struct mfc_cq_sr *qp, *puqp;
2256 	int ret = sizeof info;
2257 	int i;
2258 
2259 	if (len < ret)
2260 		return -EINVAL;
2261 
2262 	if (!access_ok(VERIFY_WRITE, buf, len))
2263 		return -EFAULT;
2264 
2265 	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2266 	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2267 	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2268 	for (i = 0; i < 8; i++) {
2269 		qp = &info.proxydma_info_command_data[i];
2270 		puqp = &ctx->csa.priv2.puq[i];
2271 
2272 		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2273 		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2274 		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2275 		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2276 	}
2277 
2278 	return simple_read_from_buffer(buf, len, pos, &info,
2279 				sizeof info);
2280 }
2281 
2282 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2283 				   size_t len, loff_t *pos)
2284 {
2285 	struct spu_context *ctx = file->private_data;
2286 	int ret;
2287 
2288 	ret = spu_acquire_saved(ctx);
2289 	if (ret)
2290 		return ret;
2291 	spin_lock(&ctx->csa.register_lock);
2292 	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2293 	spin_unlock(&ctx->csa.register_lock);
2294 	spu_release_saved(ctx);
2295 
2296 	return ret;
2297 }
2298 
2299 static const struct file_operations spufs_proxydma_info_fops = {
2300 	.open = spufs_info_open,
2301 	.read = spufs_proxydma_info_read,
2302 };
2303 
2304 static int spufs_show_tid(struct seq_file *s, void *private)
2305 {
2306 	struct spu_context *ctx = s->private;
2307 
2308 	seq_printf(s, "%d\n", ctx->tid);
2309 	return 0;
2310 }
2311 
2312 static int spufs_tid_open(struct inode *inode, struct file *file)
2313 {
2314 	return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2315 }
2316 
2317 static const struct file_operations spufs_tid_fops = {
2318 	.open		= spufs_tid_open,
2319 	.read		= seq_read,
2320 	.llseek		= seq_lseek,
2321 	.release	= single_release,
2322 };
2323 
2324 static const char *ctx_state_names[] = {
2325 	"user", "system", "iowait", "loaded"
2326 };
2327 
2328 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2329 		enum spu_utilization_state state)
2330 {
2331 	struct timespec ts;
2332 	unsigned long long time = ctx->stats.times[state];
2333 
2334 	/*
2335 	 * In general, utilization statistics are updated by the controlling
2336 	 * thread as the spu context moves through various well defined
2337 	 * state transitions, but if the context is lazily loaded its
2338 	 * utilization statistics are not updated as the controlling thread
2339 	 * is not tightly coupled with the execution of the spu context.  We
2340 	 * calculate and apply the time delta from the last recorded state
2341 	 * of the spu context.
2342 	 */
2343 	if (ctx->spu && ctx->stats.util_state == state) {
2344 		ktime_get_ts(&ts);
2345 		time += timespec_to_ns(&ts) - ctx->stats.tstamp;
2346 	}
2347 
2348 	return time / NSEC_PER_MSEC;
2349 }
2350 
2351 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2352 {
2353 	unsigned long long slb_flts = ctx->stats.slb_flt;
2354 
2355 	if (ctx->state == SPU_STATE_RUNNABLE) {
2356 		slb_flts += (ctx->spu->stats.slb_flt -
2357 			     ctx->stats.slb_flt_base);
2358 	}
2359 
2360 	return slb_flts;
2361 }
2362 
2363 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2364 {
2365 	unsigned long long class2_intrs = ctx->stats.class2_intr;
2366 
2367 	if (ctx->state == SPU_STATE_RUNNABLE) {
2368 		class2_intrs += (ctx->spu->stats.class2_intr -
2369 				 ctx->stats.class2_intr_base);
2370 	}
2371 
2372 	return class2_intrs;
2373 }
2374 
2375 
2376 static int spufs_show_stat(struct seq_file *s, void *private)
2377 {
2378 	struct spu_context *ctx = s->private;
2379 	int ret;
2380 
2381 	ret = spu_acquire(ctx);
2382 	if (ret)
2383 		return ret;
2384 
2385 	seq_printf(s, "%s %llu %llu %llu %llu "
2386 		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2387 		ctx_state_names[ctx->stats.util_state],
2388 		spufs_acct_time(ctx, SPU_UTIL_USER),
2389 		spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2390 		spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2391 		spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2392 		ctx->stats.vol_ctx_switch,
2393 		ctx->stats.invol_ctx_switch,
2394 		spufs_slb_flts(ctx),
2395 		ctx->stats.hash_flt,
2396 		ctx->stats.min_flt,
2397 		ctx->stats.maj_flt,
2398 		spufs_class2_intrs(ctx),
2399 		ctx->stats.libassist);
2400 	spu_release(ctx);
2401 	return 0;
2402 }
2403 
2404 static int spufs_stat_open(struct inode *inode, struct file *file)
2405 {
2406 	return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2407 }
2408 
2409 static const struct file_operations spufs_stat_fops = {
2410 	.open		= spufs_stat_open,
2411 	.read		= seq_read,
2412 	.llseek		= seq_lseek,
2413 	.release	= single_release,
2414 };
2415 
2416 static inline int spufs_switch_log_used(struct spu_context *ctx)
2417 {
2418 	return (ctx->switch_log->head - ctx->switch_log->tail) %
2419 		SWITCH_LOG_BUFSIZE;
2420 }
2421 
2422 static inline int spufs_switch_log_avail(struct spu_context *ctx)
2423 {
2424 	return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
2425 }
2426 
2427 static int spufs_switch_log_open(struct inode *inode, struct file *file)
2428 {
2429 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2430 	int rc;
2431 
2432 	rc = spu_acquire(ctx);
2433 	if (rc)
2434 		return rc;
2435 
2436 	if (ctx->switch_log) {
2437 		rc = -EBUSY;
2438 		goto out;
2439 	}
2440 
2441 	ctx->switch_log = kmalloc(sizeof(struct switch_log) +
2442 		SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry),
2443 		GFP_KERNEL);
2444 
2445 	if (!ctx->switch_log) {
2446 		rc = -ENOMEM;
2447 		goto out;
2448 	}
2449 
2450 	ctx->switch_log->head = ctx->switch_log->tail = 0;
2451 	init_waitqueue_head(&ctx->switch_log->wait);
2452 	rc = 0;
2453 
2454 out:
2455 	spu_release(ctx);
2456 	return rc;
2457 }
2458 
2459 static int spufs_switch_log_release(struct inode *inode, struct file *file)
2460 {
2461 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2462 	int rc;
2463 
2464 	rc = spu_acquire(ctx);
2465 	if (rc)
2466 		return rc;
2467 
2468 	kfree(ctx->switch_log);
2469 	ctx->switch_log = NULL;
2470 	spu_release(ctx);
2471 
2472 	return 0;
2473 }
2474 
2475 static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
2476 {
2477 	struct switch_log_entry *p;
2478 
2479 	p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;
2480 
2481 	return snprintf(tbuf, n, "%u.%09u %d %u %u %llu\n",
2482 			(unsigned int) p->tstamp.tv_sec,
2483 			(unsigned int) p->tstamp.tv_nsec,
2484 			p->spu_id,
2485 			(unsigned int) p->type,
2486 			(unsigned int) p->val,
2487 			(unsigned long long) p->timebase);
2488 }
2489 
2490 static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
2491 			     size_t len, loff_t *ppos)
2492 {
2493 	struct inode *inode = file->f_path.dentry->d_inode;
2494 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2495 	int error = 0, cnt = 0;
2496 
2497 	if (!buf)
2498 		return -EINVAL;
2499 
2500 	error = spu_acquire(ctx);
2501 	if (error)
2502 		return error;
2503 
2504 	while (cnt < len) {
2505 		char tbuf[128];
2506 		int width;
2507 
2508 		if (spufs_switch_log_used(ctx) == 0) {
2509 			if (cnt > 0) {
2510 				/* If there's data ready to go, we can
2511 				 * just return straight away */
2512 				break;
2513 
2514 			} else if (file->f_flags & O_NONBLOCK) {
2515 				error = -EAGAIN;
2516 				break;
2517 
2518 			} else {
2519 				/* spufs_wait will drop the mutex and
2520 				 * re-acquire, but since we're in read(), the
2521 				 * file cannot be _released (and so
2522 				 * ctx->switch_log is stable).
2523 				 */
2524 				error = spufs_wait(ctx->switch_log->wait,
2525 						spufs_switch_log_used(ctx) > 0);
2526 
2527 				/* On error, spufs_wait returns without the
2528 				 * state mutex held */
2529 				if (error)
2530 					return error;
2531 
2532 				/* We may have had entries read from underneath
2533 				 * us while we dropped the mutex in spufs_wait,
2534 				 * so re-check */
2535 				if (spufs_switch_log_used(ctx) == 0)
2536 					continue;
2537 			}
2538 		}
2539 
2540 		width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2541 		if (width < len)
2542 			ctx->switch_log->tail =
2543 				(ctx->switch_log->tail + 1) %
2544 				 SWITCH_LOG_BUFSIZE;
2545 		else
2546 			/* If the record is greater than space available return
2547 			 * partial buffer (so far) */
2548 			break;
2549 
2550 		error = copy_to_user(buf + cnt, tbuf, width);
2551 		if (error)
2552 			break;
2553 		cnt += width;
2554 	}
2555 
2556 	spu_release(ctx);
2557 
2558 	return cnt == 0 ? error : cnt;
2559 }
2560 
2561 static unsigned int spufs_switch_log_poll(struct file *file, poll_table *wait)
2562 {
2563 	struct inode *inode = file->f_path.dentry->d_inode;
2564 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2565 	unsigned int mask = 0;
2566 	int rc;
2567 
2568 	poll_wait(file, &ctx->switch_log->wait, wait);
2569 
2570 	rc = spu_acquire(ctx);
2571 	if (rc)
2572 		return rc;
2573 
2574 	if (spufs_switch_log_used(ctx) > 0)
2575 		mask |= POLLIN;
2576 
2577 	spu_release(ctx);
2578 
2579 	return mask;
2580 }
2581 
2582 static const struct file_operations spufs_switch_log_fops = {
2583 	.owner		= THIS_MODULE,
2584 	.open		= spufs_switch_log_open,
2585 	.read		= spufs_switch_log_read,
2586 	.poll		= spufs_switch_log_poll,
2587 	.release	= spufs_switch_log_release,
2588 };
2589 
2590 /**
2591  * Log a context switch event to a switch log reader.
2592  *
2593  * Must be called with ctx->state_mutex held.
2594  */
2595 void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
2596 		u32 type, u32 val)
2597 {
2598 	if (!ctx->switch_log)
2599 		return;
2600 
2601 	if (spufs_switch_log_avail(ctx) > 1) {
2602 		struct switch_log_entry *p;
2603 
2604 		p = ctx->switch_log->log + ctx->switch_log->head;
2605 		ktime_get_ts(&p->tstamp);
2606 		p->timebase = get_tb();
2607 		p->spu_id = spu ? spu->number : -1;
2608 		p->type = type;
2609 		p->val = val;
2610 
2611 		ctx->switch_log->head =
2612 			(ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
2613 	}
2614 
2615 	wake_up(&ctx->switch_log->wait);
2616 }
2617 
2618 static int spufs_show_ctx(struct seq_file *s, void *private)
2619 {
2620 	struct spu_context *ctx = s->private;
2621 	u64 mfc_control_RW;
2622 
2623 	mutex_lock(&ctx->state_mutex);
2624 	if (ctx->spu) {
2625 		struct spu *spu = ctx->spu;
2626 		struct spu_priv2 __iomem *priv2 = spu->priv2;
2627 
2628 		spin_lock_irq(&spu->register_lock);
2629 		mfc_control_RW = in_be64(&priv2->mfc_control_RW);
2630 		spin_unlock_irq(&spu->register_lock);
2631 	} else {
2632 		struct spu_state *csa = &ctx->csa;
2633 
2634 		mfc_control_RW = csa->priv2.mfc_control_RW;
2635 	}
2636 
2637 	seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
2638 		" %c %llx %llx %llx %llx %x %x\n",
2639 		ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
2640 		ctx->flags,
2641 		ctx->sched_flags,
2642 		ctx->prio,
2643 		ctx->time_slice,
2644 		ctx->spu ? ctx->spu->number : -1,
2645 		!list_empty(&ctx->rq) ? 'q' : ' ',
2646 		ctx->csa.class_0_pending,
2647 		ctx->csa.class_0_dar,
2648 		ctx->csa.class_1_dsisr,
2649 		mfc_control_RW,
2650 		ctx->ops->runcntl_read(ctx),
2651 		ctx->ops->status_read(ctx));
2652 
2653 	mutex_unlock(&ctx->state_mutex);
2654 
2655 	return 0;
2656 }
2657 
2658 static int spufs_ctx_open(struct inode *inode, struct file *file)
2659 {
2660 	return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
2661 }
2662 
2663 static const struct file_operations spufs_ctx_fops = {
2664 	.open           = spufs_ctx_open,
2665 	.read           = seq_read,
2666 	.llseek         = seq_lseek,
2667 	.release        = single_release,
2668 };
2669 
2670 const struct spufs_tree_descr spufs_dir_contents[] = {
2671 	{ "capabilities", &spufs_caps_fops, 0444, },
2672 	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2673 	{ "regs", &spufs_regs_fops,  0666, sizeof(struct spu_reg128[128]), },
2674 	{ "mbox", &spufs_mbox_fops, 0444, },
2675 	{ "ibox", &spufs_ibox_fops, 0444, },
2676 	{ "wbox", &spufs_wbox_fops, 0222, },
2677 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2678 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2679 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2680 	{ "signal1", &spufs_signal1_fops, 0666, },
2681 	{ "signal2", &spufs_signal2_fops, 0666, },
2682 	{ "signal1_type", &spufs_signal1_type, 0666, },
2683 	{ "signal2_type", &spufs_signal2_type, 0666, },
2684 	{ "cntl", &spufs_cntl_fops,  0666, },
2685 	{ "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2686 	{ "lslr", &spufs_lslr_ops, 0444, },
2687 	{ "mfc", &spufs_mfc_fops, 0666, },
2688 	{ "mss", &spufs_mss_fops, 0666, },
2689 	{ "npc", &spufs_npc_ops, 0666, },
2690 	{ "srr0", &spufs_srr0_ops, 0666, },
2691 	{ "decr", &spufs_decr_ops, 0666, },
2692 	{ "decr_status", &spufs_decr_status_ops, 0666, },
2693 	{ "event_mask", &spufs_event_mask_ops, 0666, },
2694 	{ "event_status", &spufs_event_status_ops, 0444, },
2695 	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2696 	{ "phys-id", &spufs_id_ops, 0666, },
2697 	{ "object-id", &spufs_object_id_ops, 0666, },
2698 	{ "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
2699 	{ "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
2700 	{ "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
2701 	{ "dma_info", &spufs_dma_info_fops, 0444,
2702 		sizeof(struct spu_dma_info), },
2703 	{ "proxydma_info", &spufs_proxydma_info_fops, 0444,
2704 		sizeof(struct spu_proxydma_info)},
2705 	{ "tid", &spufs_tid_fops, 0444, },
2706 	{ "stat", &spufs_stat_fops, 0444, },
2707 	{ "switch_log", &spufs_switch_log_fops, 0444 },
2708 	{},
2709 };
2710 
2711 const struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2712 	{ "capabilities", &spufs_caps_fops, 0444, },
2713 	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2714 	{ "mbox", &spufs_mbox_fops, 0444, },
2715 	{ "ibox", &spufs_ibox_fops, 0444, },
2716 	{ "wbox", &spufs_wbox_fops, 0222, },
2717 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2718 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2719 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2720 	{ "signal1", &spufs_signal1_nosched_fops, 0222, },
2721 	{ "signal2", &spufs_signal2_nosched_fops, 0222, },
2722 	{ "signal1_type", &spufs_signal1_type, 0666, },
2723 	{ "signal2_type", &spufs_signal2_type, 0666, },
2724 	{ "mss", &spufs_mss_fops, 0666, },
2725 	{ "mfc", &spufs_mfc_fops, 0666, },
2726 	{ "cntl", &spufs_cntl_fops,  0666, },
2727 	{ "npc", &spufs_npc_ops, 0666, },
2728 	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2729 	{ "phys-id", &spufs_id_ops, 0666, },
2730 	{ "object-id", &spufs_object_id_ops, 0666, },
2731 	{ "tid", &spufs_tid_fops, 0444, },
2732 	{ "stat", &spufs_stat_fops, 0444, },
2733 	{},
2734 };
2735 
2736 const struct spufs_tree_descr spufs_dir_debug_contents[] = {
2737 	{ ".ctx", &spufs_ctx_fops, 0444, },
2738 	{},
2739 };
2740 
2741 const struct spufs_coredump_reader spufs_coredump_read[] = {
2742 	{ "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
2743 	{ "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2744 	{ "lslr", NULL, spufs_lslr_get, 19 },
2745 	{ "decr", NULL, spufs_decr_get, 19 },
2746 	{ "decr_status", NULL, spufs_decr_status_get, 19 },
2747 	{ "mem", __spufs_mem_read, NULL, LS_SIZE, },
2748 	{ "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2749 	{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
2750 	{ "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2751 	{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
2752 	{ "event_mask", NULL, spufs_event_mask_get, 19 },
2753 	{ "event_status", NULL, spufs_event_status_get, 19 },
2754 	{ "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
2755 	{ "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
2756 	{ "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
2757 	{ "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
2758 	{ "proxydma_info", __spufs_proxydma_info_read,
2759 			   NULL, sizeof(struct spu_proxydma_info)},
2760 	{ "object-id", NULL, spufs_object_id_get, 19 },
2761 	{ "npc", NULL, spufs_npc_get, 19 },
2762 	{ NULL },
2763 };
2764