xref: /openbmc/linux/arch/powerpc/platforms/cell/spufs/file.c (revision 9977a8c3497a8f7f7f951994f298a8e4d961234f)
1 /*
2  * SPU file system -- file contents
3  *
4  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5  *
6  * Author: Arnd Bergmann <arndb@de.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #undef DEBUG
24 
25 #include <linux/fs.h>
26 #include <linux/ioctl.h>
27 #include <linux/export.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/seq_file.h>
32 #include <linux/slab.h>
33 
34 #include <asm/io.h>
35 #include <asm/time.h>
36 #include <asm/spu.h>
37 #include <asm/spu_info.h>
38 #include <linux/uaccess.h>
39 
40 #include "spufs.h"
41 #include "sputrace.h"
42 
43 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
44 
45 /* Simple attribute files */
46 struct spufs_attr {
47 	int (*get)(void *, u64 *);
48 	int (*set)(void *, u64);
49 	char get_buf[24];       /* enough to store a u64 and "\n\0" */
50 	char set_buf[24];
51 	void *data;
52 	const char *fmt;        /* format for read operation */
53 	struct mutex mutex;     /* protects access to these buffers */
54 };
55 
56 static int spufs_attr_open(struct inode *inode, struct file *file,
57 		int (*get)(void *, u64 *), int (*set)(void *, u64),
58 		const char *fmt)
59 {
60 	struct spufs_attr *attr;
61 
62 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
63 	if (!attr)
64 		return -ENOMEM;
65 
66 	attr->get = get;
67 	attr->set = set;
68 	attr->data = inode->i_private;
69 	attr->fmt = fmt;
70 	mutex_init(&attr->mutex);
71 	file->private_data = attr;
72 
73 	return nonseekable_open(inode, file);
74 }
75 
76 static int spufs_attr_release(struct inode *inode, struct file *file)
77 {
78        kfree(file->private_data);
79 	return 0;
80 }
81 
82 static ssize_t spufs_attr_read(struct file *file, char __user *buf,
83 		size_t len, loff_t *ppos)
84 {
85 	struct spufs_attr *attr;
86 	size_t size;
87 	ssize_t ret;
88 
89 	attr = file->private_data;
90 	if (!attr->get)
91 		return -EACCES;
92 
93 	ret = mutex_lock_interruptible(&attr->mutex);
94 	if (ret)
95 		return ret;
96 
97 	if (*ppos) {		/* continued read */
98 		size = strlen(attr->get_buf);
99 	} else {		/* first read */
100 		u64 val;
101 		ret = attr->get(attr->data, &val);
102 		if (ret)
103 			goto out;
104 
105 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
106 				 attr->fmt, (unsigned long long)val);
107 	}
108 
109 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
110 out:
111 	mutex_unlock(&attr->mutex);
112 	return ret;
113 }
114 
115 static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
116 		size_t len, loff_t *ppos)
117 {
118 	struct spufs_attr *attr;
119 	u64 val;
120 	size_t size;
121 	ssize_t ret;
122 
123 	attr = file->private_data;
124 	if (!attr->set)
125 		return -EACCES;
126 
127 	ret = mutex_lock_interruptible(&attr->mutex);
128 	if (ret)
129 		return ret;
130 
131 	ret = -EFAULT;
132 	size = min(sizeof(attr->set_buf) - 1, len);
133 	if (copy_from_user(attr->set_buf, buf, size))
134 		goto out;
135 
136 	ret = len; /* claim we got the whole input */
137 	attr->set_buf[size] = '\0';
138 	val = simple_strtol(attr->set_buf, NULL, 0);
139 	attr->set(attr->data, val);
140 out:
141 	mutex_unlock(&attr->mutex);
142 	return ret;
143 }
144 
145 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)	\
146 static int __fops ## _open(struct inode *inode, struct file *file)	\
147 {									\
148 	__simple_attr_check_format(__fmt, 0ull);			\
149 	return spufs_attr_open(inode, file, __get, __set, __fmt);	\
150 }									\
151 static const struct file_operations __fops = {				\
152 	.open	 = __fops ## _open,					\
153 	.release = spufs_attr_release,					\
154 	.read	 = spufs_attr_read,					\
155 	.write	 = spufs_attr_write,					\
156 	.llseek  = generic_file_llseek,					\
157 };
158 
159 
160 static int
161 spufs_mem_open(struct inode *inode, struct file *file)
162 {
163 	struct spufs_inode_info *i = SPUFS_I(inode);
164 	struct spu_context *ctx = i->i_ctx;
165 
166 	mutex_lock(&ctx->mapping_lock);
167 	file->private_data = ctx;
168 	if (!i->i_openers++)
169 		ctx->local_store = inode->i_mapping;
170 	mutex_unlock(&ctx->mapping_lock);
171 	return 0;
172 }
173 
174 static int
175 spufs_mem_release(struct inode *inode, struct file *file)
176 {
177 	struct spufs_inode_info *i = SPUFS_I(inode);
178 	struct spu_context *ctx = i->i_ctx;
179 
180 	mutex_lock(&ctx->mapping_lock);
181 	if (!--i->i_openers)
182 		ctx->local_store = NULL;
183 	mutex_unlock(&ctx->mapping_lock);
184 	return 0;
185 }
186 
187 static ssize_t
188 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
189 			size_t size, loff_t *pos)
190 {
191 	char *local_store = ctx->ops->get_ls(ctx);
192 	return simple_read_from_buffer(buffer, size, pos, local_store,
193 					LS_SIZE);
194 }
195 
196 static ssize_t
197 spufs_mem_read(struct file *file, char __user *buffer,
198 				size_t size, loff_t *pos)
199 {
200 	struct spu_context *ctx = file->private_data;
201 	ssize_t ret;
202 
203 	ret = spu_acquire(ctx);
204 	if (ret)
205 		return ret;
206 	ret = __spufs_mem_read(ctx, buffer, size, pos);
207 	spu_release(ctx);
208 
209 	return ret;
210 }
211 
212 static ssize_t
213 spufs_mem_write(struct file *file, const char __user *buffer,
214 					size_t size, loff_t *ppos)
215 {
216 	struct spu_context *ctx = file->private_data;
217 	char *local_store;
218 	loff_t pos = *ppos;
219 	int ret;
220 
221 	if (pos > LS_SIZE)
222 		return -EFBIG;
223 
224 	ret = spu_acquire(ctx);
225 	if (ret)
226 		return ret;
227 
228 	local_store = ctx->ops->get_ls(ctx);
229 	size = simple_write_to_buffer(local_store, LS_SIZE, ppos, buffer, size);
230 	spu_release(ctx);
231 
232 	return size;
233 }
234 
235 static int
236 spufs_mem_mmap_fault(struct vm_fault *vmf)
237 {
238 	struct vm_area_struct *vma = vmf->vma;
239 	struct spu_context *ctx	= vma->vm_file->private_data;
240 	unsigned long pfn, offset;
241 
242 	offset = vmf->pgoff << PAGE_SHIFT;
243 	if (offset >= LS_SIZE)
244 		return VM_FAULT_SIGBUS;
245 
246 	pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
247 			vmf->address, offset);
248 
249 	if (spu_acquire(ctx))
250 		return VM_FAULT_NOPAGE;
251 
252 	if (ctx->state == SPU_STATE_SAVED) {
253 		vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
254 		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
255 	} else {
256 		vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
257 		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
258 	}
259 	vm_insert_pfn(vma, vmf->address, pfn);
260 
261 	spu_release(ctx);
262 
263 	return VM_FAULT_NOPAGE;
264 }
265 
266 static int spufs_mem_mmap_access(struct vm_area_struct *vma,
267 				unsigned long address,
268 				void *buf, int len, int write)
269 {
270 	struct spu_context *ctx = vma->vm_file->private_data;
271 	unsigned long offset = address - vma->vm_start;
272 	char *local_store;
273 
274 	if (write && !(vma->vm_flags & VM_WRITE))
275 		return -EACCES;
276 	if (spu_acquire(ctx))
277 		return -EINTR;
278 	if ((offset + len) > vma->vm_end)
279 		len = vma->vm_end - offset;
280 	local_store = ctx->ops->get_ls(ctx);
281 	if (write)
282 		memcpy_toio(local_store + offset, buf, len);
283 	else
284 		memcpy_fromio(buf, local_store + offset, len);
285 	spu_release(ctx);
286 	return len;
287 }
288 
289 static const struct vm_operations_struct spufs_mem_mmap_vmops = {
290 	.fault = spufs_mem_mmap_fault,
291 	.access = spufs_mem_mmap_access,
292 };
293 
294 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
295 {
296 	if (!(vma->vm_flags & VM_SHARED))
297 		return -EINVAL;
298 
299 	vma->vm_flags |= VM_IO | VM_PFNMAP;
300 	vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
301 
302 	vma->vm_ops = &spufs_mem_mmap_vmops;
303 	return 0;
304 }
305 
306 static const struct file_operations spufs_mem_fops = {
307 	.open			= spufs_mem_open,
308 	.release		= spufs_mem_release,
309 	.read			= spufs_mem_read,
310 	.write			= spufs_mem_write,
311 	.llseek			= generic_file_llseek,
312 	.mmap			= spufs_mem_mmap,
313 };
314 
315 static int spufs_ps_fault(struct vm_fault *vmf,
316 				    unsigned long ps_offs,
317 				    unsigned long ps_size)
318 {
319 	struct spu_context *ctx = vmf->vma->vm_file->private_data;
320 	unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
321 	int ret = 0;
322 
323 	spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
324 
325 	if (offset >= ps_size)
326 		return VM_FAULT_SIGBUS;
327 
328 	if (fatal_signal_pending(current))
329 		return VM_FAULT_SIGBUS;
330 
331 	/*
332 	 * Because we release the mmap_sem, the context may be destroyed while
333 	 * we're in spu_wait. Grab an extra reference so it isn't destroyed
334 	 * in the meantime.
335 	 */
336 	get_spu_context(ctx);
337 
338 	/*
339 	 * We have to wait for context to be loaded before we have
340 	 * pages to hand out to the user, but we don't want to wait
341 	 * with the mmap_sem held.
342 	 * It is possible to drop the mmap_sem here, but then we need
343 	 * to return VM_FAULT_NOPAGE because the mappings may have
344 	 * hanged.
345 	 */
346 	if (spu_acquire(ctx))
347 		goto refault;
348 
349 	if (ctx->state == SPU_STATE_SAVED) {
350 		up_read(&current->mm->mmap_sem);
351 		spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
352 		ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
353 		spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
354 		down_read(&current->mm->mmap_sem);
355 	} else {
356 		area = ctx->spu->problem_phys + ps_offs;
357 		vm_insert_pfn(vmf->vma, vmf->address, (area + offset) >> PAGE_SHIFT);
358 		spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
359 	}
360 
361 	if (!ret)
362 		spu_release(ctx);
363 
364 refault:
365 	put_spu_context(ctx);
366 	return VM_FAULT_NOPAGE;
367 }
368 
369 #if SPUFS_MMAP_4K
370 static int spufs_cntl_mmap_fault(struct vm_fault *vmf)
371 {
372 	return spufs_ps_fault(vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
373 }
374 
375 static const struct vm_operations_struct spufs_cntl_mmap_vmops = {
376 	.fault = spufs_cntl_mmap_fault,
377 };
378 
379 /*
380  * mmap support for problem state control area [0x4000 - 0x4fff].
381  */
382 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
383 {
384 	if (!(vma->vm_flags & VM_SHARED))
385 		return -EINVAL;
386 
387 	vma->vm_flags |= VM_IO | VM_PFNMAP;
388 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
389 
390 	vma->vm_ops = &spufs_cntl_mmap_vmops;
391 	return 0;
392 }
393 #else /* SPUFS_MMAP_4K */
394 #define spufs_cntl_mmap NULL
395 #endif /* !SPUFS_MMAP_4K */
396 
397 static int spufs_cntl_get(void *data, u64 *val)
398 {
399 	struct spu_context *ctx = data;
400 	int ret;
401 
402 	ret = spu_acquire(ctx);
403 	if (ret)
404 		return ret;
405 	*val = ctx->ops->status_read(ctx);
406 	spu_release(ctx);
407 
408 	return 0;
409 }
410 
411 static int spufs_cntl_set(void *data, u64 val)
412 {
413 	struct spu_context *ctx = data;
414 	int ret;
415 
416 	ret = spu_acquire(ctx);
417 	if (ret)
418 		return ret;
419 	ctx->ops->runcntl_write(ctx, val);
420 	spu_release(ctx);
421 
422 	return 0;
423 }
424 
425 static int spufs_cntl_open(struct inode *inode, struct file *file)
426 {
427 	struct spufs_inode_info *i = SPUFS_I(inode);
428 	struct spu_context *ctx = i->i_ctx;
429 
430 	mutex_lock(&ctx->mapping_lock);
431 	file->private_data = ctx;
432 	if (!i->i_openers++)
433 		ctx->cntl = inode->i_mapping;
434 	mutex_unlock(&ctx->mapping_lock);
435 	return simple_attr_open(inode, file, spufs_cntl_get,
436 					spufs_cntl_set, "0x%08lx");
437 }
438 
439 static int
440 spufs_cntl_release(struct inode *inode, struct file *file)
441 {
442 	struct spufs_inode_info *i = SPUFS_I(inode);
443 	struct spu_context *ctx = i->i_ctx;
444 
445 	simple_attr_release(inode, file);
446 
447 	mutex_lock(&ctx->mapping_lock);
448 	if (!--i->i_openers)
449 		ctx->cntl = NULL;
450 	mutex_unlock(&ctx->mapping_lock);
451 	return 0;
452 }
453 
454 static const struct file_operations spufs_cntl_fops = {
455 	.open = spufs_cntl_open,
456 	.release = spufs_cntl_release,
457 	.read = simple_attr_read,
458 	.write = simple_attr_write,
459 	.llseek	= generic_file_llseek,
460 	.mmap = spufs_cntl_mmap,
461 };
462 
463 static int
464 spufs_regs_open(struct inode *inode, struct file *file)
465 {
466 	struct spufs_inode_info *i = SPUFS_I(inode);
467 	file->private_data = i->i_ctx;
468 	return 0;
469 }
470 
471 static ssize_t
472 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
473 			size_t size, loff_t *pos)
474 {
475 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
476 	return simple_read_from_buffer(buffer, size, pos,
477 				      lscsa->gprs, sizeof lscsa->gprs);
478 }
479 
480 static ssize_t
481 spufs_regs_read(struct file *file, char __user *buffer,
482 		size_t size, loff_t *pos)
483 {
484 	int ret;
485 	struct spu_context *ctx = file->private_data;
486 
487 	/* pre-check for file position: if we'd return EOF, there's no point
488 	 * causing a deschedule */
489 	if (*pos >= sizeof(ctx->csa.lscsa->gprs))
490 		return 0;
491 
492 	ret = spu_acquire_saved(ctx);
493 	if (ret)
494 		return ret;
495 	ret = __spufs_regs_read(ctx, buffer, size, pos);
496 	spu_release_saved(ctx);
497 	return ret;
498 }
499 
500 static ssize_t
501 spufs_regs_write(struct file *file, const char __user *buffer,
502 		 size_t size, loff_t *pos)
503 {
504 	struct spu_context *ctx = file->private_data;
505 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
506 	int ret;
507 
508 	if (*pos >= sizeof(lscsa->gprs))
509 		return -EFBIG;
510 
511 	ret = spu_acquire_saved(ctx);
512 	if (ret)
513 		return ret;
514 
515 	size = simple_write_to_buffer(lscsa->gprs, sizeof(lscsa->gprs), pos,
516 					buffer, size);
517 
518 	spu_release_saved(ctx);
519 	return size;
520 }
521 
522 static const struct file_operations spufs_regs_fops = {
523 	.open	 = spufs_regs_open,
524 	.read    = spufs_regs_read,
525 	.write   = spufs_regs_write,
526 	.llseek  = generic_file_llseek,
527 };
528 
529 static ssize_t
530 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
531 			size_t size, loff_t * pos)
532 {
533 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
534 	return simple_read_from_buffer(buffer, size, pos,
535 				      &lscsa->fpcr, sizeof(lscsa->fpcr));
536 }
537 
538 static ssize_t
539 spufs_fpcr_read(struct file *file, char __user * buffer,
540 		size_t size, loff_t * pos)
541 {
542 	int ret;
543 	struct spu_context *ctx = file->private_data;
544 
545 	ret = spu_acquire_saved(ctx);
546 	if (ret)
547 		return ret;
548 	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
549 	spu_release_saved(ctx);
550 	return ret;
551 }
552 
553 static ssize_t
554 spufs_fpcr_write(struct file *file, const char __user * buffer,
555 		 size_t size, loff_t * pos)
556 {
557 	struct spu_context *ctx = file->private_data;
558 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
559 	int ret;
560 
561 	if (*pos >= sizeof(lscsa->fpcr))
562 		return -EFBIG;
563 
564 	ret = spu_acquire_saved(ctx);
565 	if (ret)
566 		return ret;
567 
568 	size = simple_write_to_buffer(&lscsa->fpcr, sizeof(lscsa->fpcr), pos,
569 					buffer, size);
570 
571 	spu_release_saved(ctx);
572 	return size;
573 }
574 
575 static const struct file_operations spufs_fpcr_fops = {
576 	.open = spufs_regs_open,
577 	.read = spufs_fpcr_read,
578 	.write = spufs_fpcr_write,
579 	.llseek = generic_file_llseek,
580 };
581 
582 /* generic open function for all pipe-like files */
583 static int spufs_pipe_open(struct inode *inode, struct file *file)
584 {
585 	struct spufs_inode_info *i = SPUFS_I(inode);
586 	file->private_data = i->i_ctx;
587 
588 	return nonseekable_open(inode, file);
589 }
590 
591 /*
592  * Read as many bytes from the mailbox as possible, until
593  * one of the conditions becomes true:
594  *
595  * - no more data available in the mailbox
596  * - end of the user provided buffer
597  * - end of the mapped area
598  */
599 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
600 			size_t len, loff_t *pos)
601 {
602 	struct spu_context *ctx = file->private_data;
603 	u32 mbox_data, __user *udata;
604 	ssize_t count;
605 
606 	if (len < 4)
607 		return -EINVAL;
608 
609 	if (!access_ok(VERIFY_WRITE, buf, len))
610 		return -EFAULT;
611 
612 	udata = (void __user *)buf;
613 
614 	count = spu_acquire(ctx);
615 	if (count)
616 		return count;
617 
618 	for (count = 0; (count + 4) <= len; count += 4, udata++) {
619 		int ret;
620 		ret = ctx->ops->mbox_read(ctx, &mbox_data);
621 		if (ret == 0)
622 			break;
623 
624 		/*
625 		 * at the end of the mapped area, we can fault
626 		 * but still need to return the data we have
627 		 * read successfully so far.
628 		 */
629 		ret = __put_user(mbox_data, udata);
630 		if (ret) {
631 			if (!count)
632 				count = -EFAULT;
633 			break;
634 		}
635 	}
636 	spu_release(ctx);
637 
638 	if (!count)
639 		count = -EAGAIN;
640 
641 	return count;
642 }
643 
644 static const struct file_operations spufs_mbox_fops = {
645 	.open	= spufs_pipe_open,
646 	.read	= spufs_mbox_read,
647 	.llseek	= no_llseek,
648 };
649 
650 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
651 			size_t len, loff_t *pos)
652 {
653 	struct spu_context *ctx = file->private_data;
654 	ssize_t ret;
655 	u32 mbox_stat;
656 
657 	if (len < 4)
658 		return -EINVAL;
659 
660 	ret = spu_acquire(ctx);
661 	if (ret)
662 		return ret;
663 
664 	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
665 
666 	spu_release(ctx);
667 
668 	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
669 		return -EFAULT;
670 
671 	return 4;
672 }
673 
674 static const struct file_operations spufs_mbox_stat_fops = {
675 	.open	= spufs_pipe_open,
676 	.read	= spufs_mbox_stat_read,
677 	.llseek = no_llseek,
678 };
679 
680 /* low-level ibox access function */
681 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
682 {
683 	return ctx->ops->ibox_read(ctx, data);
684 }
685 
686 /* interrupt-level ibox callback function. */
687 void spufs_ibox_callback(struct spu *spu)
688 {
689 	struct spu_context *ctx = spu->ctx;
690 
691 	if (ctx)
692 		wake_up_all(&ctx->ibox_wq);
693 }
694 
695 /*
696  * Read as many bytes from the interrupt mailbox as possible, until
697  * one of the conditions becomes true:
698  *
699  * - no more data available in the mailbox
700  * - end of the user provided buffer
701  * - end of the mapped area
702  *
703  * If the file is opened without O_NONBLOCK, we wait here until
704  * any data is available, but return when we have been able to
705  * read something.
706  */
707 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
708 			size_t len, loff_t *pos)
709 {
710 	struct spu_context *ctx = file->private_data;
711 	u32 ibox_data, __user *udata;
712 	ssize_t count;
713 
714 	if (len < 4)
715 		return -EINVAL;
716 
717 	if (!access_ok(VERIFY_WRITE, buf, len))
718 		return -EFAULT;
719 
720 	udata = (void __user *)buf;
721 
722 	count = spu_acquire(ctx);
723 	if (count)
724 		goto out;
725 
726 	/* wait only for the first element */
727 	count = 0;
728 	if (file->f_flags & O_NONBLOCK) {
729 		if (!spu_ibox_read(ctx, &ibox_data)) {
730 			count = -EAGAIN;
731 			goto out_unlock;
732 		}
733 	} else {
734 		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
735 		if (count)
736 			goto out;
737 	}
738 
739 	/* if we can't write at all, return -EFAULT */
740 	count = __put_user(ibox_data, udata);
741 	if (count)
742 		goto out_unlock;
743 
744 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
745 		int ret;
746 		ret = ctx->ops->ibox_read(ctx, &ibox_data);
747 		if (ret == 0)
748 			break;
749 		/*
750 		 * at the end of the mapped area, we can fault
751 		 * but still need to return the data we have
752 		 * read successfully so far.
753 		 */
754 		ret = __put_user(ibox_data, udata);
755 		if (ret)
756 			break;
757 	}
758 
759 out_unlock:
760 	spu_release(ctx);
761 out:
762 	return count;
763 }
764 
765 static __poll_t spufs_ibox_poll(struct file *file, poll_table *wait)
766 {
767 	struct spu_context *ctx = file->private_data;
768 	__poll_t mask;
769 
770 	poll_wait(file, &ctx->ibox_wq, wait);
771 
772 	/*
773 	 * For now keep this uninterruptible and also ignore the rule
774 	 * that poll should not sleep.  Will be fixed later.
775 	 */
776 	mutex_lock(&ctx->state_mutex);
777 	mask = ctx->ops->mbox_stat_poll(ctx, EPOLLIN | EPOLLRDNORM);
778 	spu_release(ctx);
779 
780 	return mask;
781 }
782 
783 static const struct file_operations spufs_ibox_fops = {
784 	.open	= spufs_pipe_open,
785 	.read	= spufs_ibox_read,
786 	.poll	= spufs_ibox_poll,
787 	.llseek = no_llseek,
788 };
789 
790 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
791 			size_t len, loff_t *pos)
792 {
793 	struct spu_context *ctx = file->private_data;
794 	ssize_t ret;
795 	u32 ibox_stat;
796 
797 	if (len < 4)
798 		return -EINVAL;
799 
800 	ret = spu_acquire(ctx);
801 	if (ret)
802 		return ret;
803 	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
804 	spu_release(ctx);
805 
806 	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
807 		return -EFAULT;
808 
809 	return 4;
810 }
811 
812 static const struct file_operations spufs_ibox_stat_fops = {
813 	.open	= spufs_pipe_open,
814 	.read	= spufs_ibox_stat_read,
815 	.llseek = no_llseek,
816 };
817 
818 /* low-level mailbox write */
819 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
820 {
821 	return ctx->ops->wbox_write(ctx, data);
822 }
823 
824 /* interrupt-level wbox callback function. */
825 void spufs_wbox_callback(struct spu *spu)
826 {
827 	struct spu_context *ctx = spu->ctx;
828 
829 	if (ctx)
830 		wake_up_all(&ctx->wbox_wq);
831 }
832 
833 /*
834  * Write as many bytes to the interrupt mailbox as possible, until
835  * one of the conditions becomes true:
836  *
837  * - the mailbox is full
838  * - end of the user provided buffer
839  * - end of the mapped area
840  *
841  * If the file is opened without O_NONBLOCK, we wait here until
842  * space is available, but return when we have been able to
843  * write something.
844  */
845 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
846 			size_t len, loff_t *pos)
847 {
848 	struct spu_context *ctx = file->private_data;
849 	u32 wbox_data, __user *udata;
850 	ssize_t count;
851 
852 	if (len < 4)
853 		return -EINVAL;
854 
855 	udata = (void __user *)buf;
856 	if (!access_ok(VERIFY_READ, buf, len))
857 		return -EFAULT;
858 
859 	if (__get_user(wbox_data, udata))
860 		return -EFAULT;
861 
862 	count = spu_acquire(ctx);
863 	if (count)
864 		goto out;
865 
866 	/*
867 	 * make sure we can at least write one element, by waiting
868 	 * in case of !O_NONBLOCK
869 	 */
870 	count = 0;
871 	if (file->f_flags & O_NONBLOCK) {
872 		if (!spu_wbox_write(ctx, wbox_data)) {
873 			count = -EAGAIN;
874 			goto out_unlock;
875 		}
876 	} else {
877 		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
878 		if (count)
879 			goto out;
880 	}
881 
882 
883 	/* write as much as possible */
884 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
885 		int ret;
886 		ret = __get_user(wbox_data, udata);
887 		if (ret)
888 			break;
889 
890 		ret = spu_wbox_write(ctx, wbox_data);
891 		if (ret == 0)
892 			break;
893 	}
894 
895 out_unlock:
896 	spu_release(ctx);
897 out:
898 	return count;
899 }
900 
901 static __poll_t spufs_wbox_poll(struct file *file, poll_table *wait)
902 {
903 	struct spu_context *ctx = file->private_data;
904 	__poll_t mask;
905 
906 	poll_wait(file, &ctx->wbox_wq, wait);
907 
908 	/*
909 	 * For now keep this uninterruptible and also ignore the rule
910 	 * that poll should not sleep.  Will be fixed later.
911 	 */
912 	mutex_lock(&ctx->state_mutex);
913 	mask = ctx->ops->mbox_stat_poll(ctx, EPOLLOUT | EPOLLWRNORM);
914 	spu_release(ctx);
915 
916 	return mask;
917 }
918 
919 static const struct file_operations spufs_wbox_fops = {
920 	.open	= spufs_pipe_open,
921 	.write	= spufs_wbox_write,
922 	.poll	= spufs_wbox_poll,
923 	.llseek = no_llseek,
924 };
925 
926 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
927 			size_t len, loff_t *pos)
928 {
929 	struct spu_context *ctx = file->private_data;
930 	ssize_t ret;
931 	u32 wbox_stat;
932 
933 	if (len < 4)
934 		return -EINVAL;
935 
936 	ret = spu_acquire(ctx);
937 	if (ret)
938 		return ret;
939 	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
940 	spu_release(ctx);
941 
942 	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
943 		return -EFAULT;
944 
945 	return 4;
946 }
947 
948 static const struct file_operations spufs_wbox_stat_fops = {
949 	.open	= spufs_pipe_open,
950 	.read	= spufs_wbox_stat_read,
951 	.llseek = no_llseek,
952 };
953 
954 static int spufs_signal1_open(struct inode *inode, struct file *file)
955 {
956 	struct spufs_inode_info *i = SPUFS_I(inode);
957 	struct spu_context *ctx = i->i_ctx;
958 
959 	mutex_lock(&ctx->mapping_lock);
960 	file->private_data = ctx;
961 	if (!i->i_openers++)
962 		ctx->signal1 = inode->i_mapping;
963 	mutex_unlock(&ctx->mapping_lock);
964 	return nonseekable_open(inode, file);
965 }
966 
967 static int
968 spufs_signal1_release(struct inode *inode, struct file *file)
969 {
970 	struct spufs_inode_info *i = SPUFS_I(inode);
971 	struct spu_context *ctx = i->i_ctx;
972 
973 	mutex_lock(&ctx->mapping_lock);
974 	if (!--i->i_openers)
975 		ctx->signal1 = NULL;
976 	mutex_unlock(&ctx->mapping_lock);
977 	return 0;
978 }
979 
980 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
981 			size_t len, loff_t *pos)
982 {
983 	int ret = 0;
984 	u32 data;
985 
986 	if (len < 4)
987 		return -EINVAL;
988 
989 	if (ctx->csa.spu_chnlcnt_RW[3]) {
990 		data = ctx->csa.spu_chnldata_RW[3];
991 		ret = 4;
992 	}
993 
994 	if (!ret)
995 		goto out;
996 
997 	if (copy_to_user(buf, &data, 4))
998 		return -EFAULT;
999 
1000 out:
1001 	return ret;
1002 }
1003 
1004 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
1005 			size_t len, loff_t *pos)
1006 {
1007 	int ret;
1008 	struct spu_context *ctx = file->private_data;
1009 
1010 	ret = spu_acquire_saved(ctx);
1011 	if (ret)
1012 		return ret;
1013 	ret = __spufs_signal1_read(ctx, buf, len, pos);
1014 	spu_release_saved(ctx);
1015 
1016 	return ret;
1017 }
1018 
1019 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
1020 			size_t len, loff_t *pos)
1021 {
1022 	struct spu_context *ctx;
1023 	ssize_t ret;
1024 	u32 data;
1025 
1026 	ctx = file->private_data;
1027 
1028 	if (len < 4)
1029 		return -EINVAL;
1030 
1031 	if (copy_from_user(&data, buf, 4))
1032 		return -EFAULT;
1033 
1034 	ret = spu_acquire(ctx);
1035 	if (ret)
1036 		return ret;
1037 	ctx->ops->signal1_write(ctx, data);
1038 	spu_release(ctx);
1039 
1040 	return 4;
1041 }
1042 
1043 static int
1044 spufs_signal1_mmap_fault(struct vm_fault *vmf)
1045 {
1046 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1047 	return spufs_ps_fault(vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
1048 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1049 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1050 	 * signal 1 and 2 area
1051 	 */
1052 	return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1053 #else
1054 #error unsupported page size
1055 #endif
1056 }
1057 
1058 static const struct vm_operations_struct spufs_signal1_mmap_vmops = {
1059 	.fault = spufs_signal1_mmap_fault,
1060 };
1061 
1062 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1063 {
1064 	if (!(vma->vm_flags & VM_SHARED))
1065 		return -EINVAL;
1066 
1067 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1068 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1069 
1070 	vma->vm_ops = &spufs_signal1_mmap_vmops;
1071 	return 0;
1072 }
1073 
1074 static const struct file_operations spufs_signal1_fops = {
1075 	.open = spufs_signal1_open,
1076 	.release = spufs_signal1_release,
1077 	.read = spufs_signal1_read,
1078 	.write = spufs_signal1_write,
1079 	.mmap = spufs_signal1_mmap,
1080 	.llseek = no_llseek,
1081 };
1082 
1083 static const struct file_operations spufs_signal1_nosched_fops = {
1084 	.open = spufs_signal1_open,
1085 	.release = spufs_signal1_release,
1086 	.write = spufs_signal1_write,
1087 	.mmap = spufs_signal1_mmap,
1088 	.llseek = no_llseek,
1089 };
1090 
1091 static int spufs_signal2_open(struct inode *inode, struct file *file)
1092 {
1093 	struct spufs_inode_info *i = SPUFS_I(inode);
1094 	struct spu_context *ctx = i->i_ctx;
1095 
1096 	mutex_lock(&ctx->mapping_lock);
1097 	file->private_data = ctx;
1098 	if (!i->i_openers++)
1099 		ctx->signal2 = inode->i_mapping;
1100 	mutex_unlock(&ctx->mapping_lock);
1101 	return nonseekable_open(inode, file);
1102 }
1103 
1104 static int
1105 spufs_signal2_release(struct inode *inode, struct file *file)
1106 {
1107 	struct spufs_inode_info *i = SPUFS_I(inode);
1108 	struct spu_context *ctx = i->i_ctx;
1109 
1110 	mutex_lock(&ctx->mapping_lock);
1111 	if (!--i->i_openers)
1112 		ctx->signal2 = NULL;
1113 	mutex_unlock(&ctx->mapping_lock);
1114 	return 0;
1115 }
1116 
1117 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1118 			size_t len, loff_t *pos)
1119 {
1120 	int ret = 0;
1121 	u32 data;
1122 
1123 	if (len < 4)
1124 		return -EINVAL;
1125 
1126 	if (ctx->csa.spu_chnlcnt_RW[4]) {
1127 		data =  ctx->csa.spu_chnldata_RW[4];
1128 		ret = 4;
1129 	}
1130 
1131 	if (!ret)
1132 		goto out;
1133 
1134 	if (copy_to_user(buf, &data, 4))
1135 		return -EFAULT;
1136 
1137 out:
1138 	return ret;
1139 }
1140 
1141 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1142 			size_t len, loff_t *pos)
1143 {
1144 	struct spu_context *ctx = file->private_data;
1145 	int ret;
1146 
1147 	ret = spu_acquire_saved(ctx);
1148 	if (ret)
1149 		return ret;
1150 	ret = __spufs_signal2_read(ctx, buf, len, pos);
1151 	spu_release_saved(ctx);
1152 
1153 	return ret;
1154 }
1155 
1156 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1157 			size_t len, loff_t *pos)
1158 {
1159 	struct spu_context *ctx;
1160 	ssize_t ret;
1161 	u32 data;
1162 
1163 	ctx = file->private_data;
1164 
1165 	if (len < 4)
1166 		return -EINVAL;
1167 
1168 	if (copy_from_user(&data, buf, 4))
1169 		return -EFAULT;
1170 
1171 	ret = spu_acquire(ctx);
1172 	if (ret)
1173 		return ret;
1174 	ctx->ops->signal2_write(ctx, data);
1175 	spu_release(ctx);
1176 
1177 	return 4;
1178 }
1179 
1180 #if SPUFS_MMAP_4K
1181 static int
1182 spufs_signal2_mmap_fault(struct vm_fault *vmf)
1183 {
1184 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1185 	return spufs_ps_fault(vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
1186 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1187 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1188 	 * signal 1 and 2 area
1189 	 */
1190 	return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1191 #else
1192 #error unsupported page size
1193 #endif
1194 }
1195 
1196 static const struct vm_operations_struct spufs_signal2_mmap_vmops = {
1197 	.fault = spufs_signal2_mmap_fault,
1198 };
1199 
1200 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1201 {
1202 	if (!(vma->vm_flags & VM_SHARED))
1203 		return -EINVAL;
1204 
1205 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1206 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1207 
1208 	vma->vm_ops = &spufs_signal2_mmap_vmops;
1209 	return 0;
1210 }
1211 #else /* SPUFS_MMAP_4K */
1212 #define spufs_signal2_mmap NULL
1213 #endif /* !SPUFS_MMAP_4K */
1214 
1215 static const struct file_operations spufs_signal2_fops = {
1216 	.open = spufs_signal2_open,
1217 	.release = spufs_signal2_release,
1218 	.read = spufs_signal2_read,
1219 	.write = spufs_signal2_write,
1220 	.mmap = spufs_signal2_mmap,
1221 	.llseek = no_llseek,
1222 };
1223 
1224 static const struct file_operations spufs_signal2_nosched_fops = {
1225 	.open = spufs_signal2_open,
1226 	.release = spufs_signal2_release,
1227 	.write = spufs_signal2_write,
1228 	.mmap = spufs_signal2_mmap,
1229 	.llseek = no_llseek,
1230 };
1231 
1232 /*
1233  * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1234  * work of acquiring (or not) the SPU context before calling through
1235  * to the actual get routine. The set routine is called directly.
1236  */
1237 #define SPU_ATTR_NOACQUIRE	0
1238 #define SPU_ATTR_ACQUIRE	1
1239 #define SPU_ATTR_ACQUIRE_SAVED	2
1240 
1241 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)	\
1242 static int __##__get(void *data, u64 *val)				\
1243 {									\
1244 	struct spu_context *ctx = data;					\
1245 	int ret = 0;							\
1246 									\
1247 	if (__acquire == SPU_ATTR_ACQUIRE) {				\
1248 		ret = spu_acquire(ctx);					\
1249 		if (ret)						\
1250 			return ret;					\
1251 		*val = __get(ctx);					\
1252 		spu_release(ctx);					\
1253 	} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED)	{		\
1254 		ret = spu_acquire_saved(ctx);				\
1255 		if (ret)						\
1256 			return ret;					\
1257 		*val = __get(ctx);					\
1258 		spu_release_saved(ctx);					\
1259 	} else								\
1260 		*val = __get(ctx);					\
1261 									\
1262 	return 0;							\
1263 }									\
1264 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1265 
1266 static int spufs_signal1_type_set(void *data, u64 val)
1267 {
1268 	struct spu_context *ctx = data;
1269 	int ret;
1270 
1271 	ret = spu_acquire(ctx);
1272 	if (ret)
1273 		return ret;
1274 	ctx->ops->signal1_type_set(ctx, val);
1275 	spu_release(ctx);
1276 
1277 	return 0;
1278 }
1279 
1280 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1281 {
1282 	return ctx->ops->signal1_type_get(ctx);
1283 }
1284 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1285 		       spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1286 
1287 
1288 static int spufs_signal2_type_set(void *data, u64 val)
1289 {
1290 	struct spu_context *ctx = data;
1291 	int ret;
1292 
1293 	ret = spu_acquire(ctx);
1294 	if (ret)
1295 		return ret;
1296 	ctx->ops->signal2_type_set(ctx, val);
1297 	spu_release(ctx);
1298 
1299 	return 0;
1300 }
1301 
1302 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1303 {
1304 	return ctx->ops->signal2_type_get(ctx);
1305 }
1306 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1307 		       spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1308 
1309 #if SPUFS_MMAP_4K
1310 static int
1311 spufs_mss_mmap_fault(struct vm_fault *vmf)
1312 {
1313 	return spufs_ps_fault(vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1314 }
1315 
1316 static const struct vm_operations_struct spufs_mss_mmap_vmops = {
1317 	.fault = spufs_mss_mmap_fault,
1318 };
1319 
1320 /*
1321  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1322  */
1323 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1324 {
1325 	if (!(vma->vm_flags & VM_SHARED))
1326 		return -EINVAL;
1327 
1328 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1329 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1330 
1331 	vma->vm_ops = &spufs_mss_mmap_vmops;
1332 	return 0;
1333 }
1334 #else /* SPUFS_MMAP_4K */
1335 #define spufs_mss_mmap NULL
1336 #endif /* !SPUFS_MMAP_4K */
1337 
1338 static int spufs_mss_open(struct inode *inode, struct file *file)
1339 {
1340 	struct spufs_inode_info *i = SPUFS_I(inode);
1341 	struct spu_context *ctx = i->i_ctx;
1342 
1343 	file->private_data = i->i_ctx;
1344 
1345 	mutex_lock(&ctx->mapping_lock);
1346 	if (!i->i_openers++)
1347 		ctx->mss = inode->i_mapping;
1348 	mutex_unlock(&ctx->mapping_lock);
1349 	return nonseekable_open(inode, file);
1350 }
1351 
1352 static int
1353 spufs_mss_release(struct inode *inode, struct file *file)
1354 {
1355 	struct spufs_inode_info *i = SPUFS_I(inode);
1356 	struct spu_context *ctx = i->i_ctx;
1357 
1358 	mutex_lock(&ctx->mapping_lock);
1359 	if (!--i->i_openers)
1360 		ctx->mss = NULL;
1361 	mutex_unlock(&ctx->mapping_lock);
1362 	return 0;
1363 }
1364 
1365 static const struct file_operations spufs_mss_fops = {
1366 	.open	 = spufs_mss_open,
1367 	.release = spufs_mss_release,
1368 	.mmap	 = spufs_mss_mmap,
1369 	.llseek  = no_llseek,
1370 };
1371 
1372 static int
1373 spufs_psmap_mmap_fault(struct vm_fault *vmf)
1374 {
1375 	return spufs_ps_fault(vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1376 }
1377 
1378 static const struct vm_operations_struct spufs_psmap_mmap_vmops = {
1379 	.fault = spufs_psmap_mmap_fault,
1380 };
1381 
1382 /*
1383  * mmap support for full problem state area [0x00000 - 0x1ffff].
1384  */
1385 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1386 {
1387 	if (!(vma->vm_flags & VM_SHARED))
1388 		return -EINVAL;
1389 
1390 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1391 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1392 
1393 	vma->vm_ops = &spufs_psmap_mmap_vmops;
1394 	return 0;
1395 }
1396 
1397 static int spufs_psmap_open(struct inode *inode, struct file *file)
1398 {
1399 	struct spufs_inode_info *i = SPUFS_I(inode);
1400 	struct spu_context *ctx = i->i_ctx;
1401 
1402 	mutex_lock(&ctx->mapping_lock);
1403 	file->private_data = i->i_ctx;
1404 	if (!i->i_openers++)
1405 		ctx->psmap = inode->i_mapping;
1406 	mutex_unlock(&ctx->mapping_lock);
1407 	return nonseekable_open(inode, file);
1408 }
1409 
1410 static int
1411 spufs_psmap_release(struct inode *inode, struct file *file)
1412 {
1413 	struct spufs_inode_info *i = SPUFS_I(inode);
1414 	struct spu_context *ctx = i->i_ctx;
1415 
1416 	mutex_lock(&ctx->mapping_lock);
1417 	if (!--i->i_openers)
1418 		ctx->psmap = NULL;
1419 	mutex_unlock(&ctx->mapping_lock);
1420 	return 0;
1421 }
1422 
1423 static const struct file_operations spufs_psmap_fops = {
1424 	.open	 = spufs_psmap_open,
1425 	.release = spufs_psmap_release,
1426 	.mmap	 = spufs_psmap_mmap,
1427 	.llseek  = no_llseek,
1428 };
1429 
1430 
1431 #if SPUFS_MMAP_4K
1432 static int
1433 spufs_mfc_mmap_fault(struct vm_fault *vmf)
1434 {
1435 	return spufs_ps_fault(vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1436 }
1437 
1438 static const struct vm_operations_struct spufs_mfc_mmap_vmops = {
1439 	.fault = spufs_mfc_mmap_fault,
1440 };
1441 
1442 /*
1443  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1444  */
1445 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1446 {
1447 	if (!(vma->vm_flags & VM_SHARED))
1448 		return -EINVAL;
1449 
1450 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1451 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1452 
1453 	vma->vm_ops = &spufs_mfc_mmap_vmops;
1454 	return 0;
1455 }
1456 #else /* SPUFS_MMAP_4K */
1457 #define spufs_mfc_mmap NULL
1458 #endif /* !SPUFS_MMAP_4K */
1459 
1460 static int spufs_mfc_open(struct inode *inode, struct file *file)
1461 {
1462 	struct spufs_inode_info *i = SPUFS_I(inode);
1463 	struct spu_context *ctx = i->i_ctx;
1464 
1465 	/* we don't want to deal with DMA into other processes */
1466 	if (ctx->owner != current->mm)
1467 		return -EINVAL;
1468 
1469 	if (atomic_read(&inode->i_count) != 1)
1470 		return -EBUSY;
1471 
1472 	mutex_lock(&ctx->mapping_lock);
1473 	file->private_data = ctx;
1474 	if (!i->i_openers++)
1475 		ctx->mfc = inode->i_mapping;
1476 	mutex_unlock(&ctx->mapping_lock);
1477 	return nonseekable_open(inode, file);
1478 }
1479 
1480 static int
1481 spufs_mfc_release(struct inode *inode, struct file *file)
1482 {
1483 	struct spufs_inode_info *i = SPUFS_I(inode);
1484 	struct spu_context *ctx = i->i_ctx;
1485 
1486 	mutex_lock(&ctx->mapping_lock);
1487 	if (!--i->i_openers)
1488 		ctx->mfc = NULL;
1489 	mutex_unlock(&ctx->mapping_lock);
1490 	return 0;
1491 }
1492 
1493 /* interrupt-level mfc callback function. */
1494 void spufs_mfc_callback(struct spu *spu)
1495 {
1496 	struct spu_context *ctx = spu->ctx;
1497 
1498 	if (ctx)
1499 		wake_up_all(&ctx->mfc_wq);
1500 }
1501 
1502 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1503 {
1504 	/* See if there is one tag group is complete */
1505 	/* FIXME we need locking around tagwait */
1506 	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1507 	ctx->tagwait &= ~*status;
1508 	if (*status)
1509 		return 1;
1510 
1511 	/* enable interrupt waiting for any tag group,
1512 	   may silently fail if interrupts are already enabled */
1513 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1514 	return 0;
1515 }
1516 
1517 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1518 			size_t size, loff_t *pos)
1519 {
1520 	struct spu_context *ctx = file->private_data;
1521 	int ret = -EINVAL;
1522 	u32 status;
1523 
1524 	if (size != 4)
1525 		goto out;
1526 
1527 	ret = spu_acquire(ctx);
1528 	if (ret)
1529 		return ret;
1530 
1531 	ret = -EINVAL;
1532 	if (file->f_flags & O_NONBLOCK) {
1533 		status = ctx->ops->read_mfc_tagstatus(ctx);
1534 		if (!(status & ctx->tagwait))
1535 			ret = -EAGAIN;
1536 		else
1537 			/* XXX(hch): shouldn't we clear ret here? */
1538 			ctx->tagwait &= ~status;
1539 	} else {
1540 		ret = spufs_wait(ctx->mfc_wq,
1541 			   spufs_read_mfc_tagstatus(ctx, &status));
1542 		if (ret)
1543 			goto out;
1544 	}
1545 	spu_release(ctx);
1546 
1547 	ret = 4;
1548 	if (copy_to_user(buffer, &status, 4))
1549 		ret = -EFAULT;
1550 
1551 out:
1552 	return ret;
1553 }
1554 
1555 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1556 {
1557 	pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa,
1558 		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1559 
1560 	switch (cmd->cmd) {
1561 	case MFC_PUT_CMD:
1562 	case MFC_PUTF_CMD:
1563 	case MFC_PUTB_CMD:
1564 	case MFC_GET_CMD:
1565 	case MFC_GETF_CMD:
1566 	case MFC_GETB_CMD:
1567 		break;
1568 	default:
1569 		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1570 		return -EIO;
1571 	}
1572 
1573 	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1574 		pr_debug("invalid DMA alignment, ea %llx lsa %x\n",
1575 				cmd->ea, cmd->lsa);
1576 		return -EIO;
1577 	}
1578 
1579 	switch (cmd->size & 0xf) {
1580 	case 1:
1581 		break;
1582 	case 2:
1583 		if (cmd->lsa & 1)
1584 			goto error;
1585 		break;
1586 	case 4:
1587 		if (cmd->lsa & 3)
1588 			goto error;
1589 		break;
1590 	case 8:
1591 		if (cmd->lsa & 7)
1592 			goto error;
1593 		break;
1594 	case 0:
1595 		if (cmd->lsa & 15)
1596 			goto error;
1597 		break;
1598 	error:
1599 	default:
1600 		pr_debug("invalid DMA alignment %x for size %x\n",
1601 			cmd->lsa & 0xf, cmd->size);
1602 		return -EIO;
1603 	}
1604 
1605 	if (cmd->size > 16 * 1024) {
1606 		pr_debug("invalid DMA size %x\n", cmd->size);
1607 		return -EIO;
1608 	}
1609 
1610 	if (cmd->tag & 0xfff0) {
1611 		/* we reserve the higher tag numbers for kernel use */
1612 		pr_debug("invalid DMA tag\n");
1613 		return -EIO;
1614 	}
1615 
1616 	if (cmd->class) {
1617 		/* not supported in this version */
1618 		pr_debug("invalid DMA class\n");
1619 		return -EIO;
1620 	}
1621 
1622 	return 0;
1623 }
1624 
1625 static int spu_send_mfc_command(struct spu_context *ctx,
1626 				struct mfc_dma_command cmd,
1627 				int *error)
1628 {
1629 	*error = ctx->ops->send_mfc_command(ctx, &cmd);
1630 	if (*error == -EAGAIN) {
1631 		/* wait for any tag group to complete
1632 		   so we have space for the new command */
1633 		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1634 		/* try again, because the queue might be
1635 		   empty again */
1636 		*error = ctx->ops->send_mfc_command(ctx, &cmd);
1637 		if (*error == -EAGAIN)
1638 			return 0;
1639 	}
1640 	return 1;
1641 }
1642 
1643 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1644 			size_t size, loff_t *pos)
1645 {
1646 	struct spu_context *ctx = file->private_data;
1647 	struct mfc_dma_command cmd;
1648 	int ret = -EINVAL;
1649 
1650 	if (size != sizeof cmd)
1651 		goto out;
1652 
1653 	ret = -EFAULT;
1654 	if (copy_from_user(&cmd, buffer, sizeof cmd))
1655 		goto out;
1656 
1657 	ret = spufs_check_valid_dma(&cmd);
1658 	if (ret)
1659 		goto out;
1660 
1661 	ret = spu_acquire(ctx);
1662 	if (ret)
1663 		goto out;
1664 
1665 	ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1666 	if (ret)
1667 		goto out;
1668 
1669 	if (file->f_flags & O_NONBLOCK) {
1670 		ret = ctx->ops->send_mfc_command(ctx, &cmd);
1671 	} else {
1672 		int status;
1673 		ret = spufs_wait(ctx->mfc_wq,
1674 				 spu_send_mfc_command(ctx, cmd, &status));
1675 		if (ret)
1676 			goto out;
1677 		if (status)
1678 			ret = status;
1679 	}
1680 
1681 	if (ret)
1682 		goto out_unlock;
1683 
1684 	ctx->tagwait |= 1 << cmd.tag;
1685 	ret = size;
1686 
1687 out_unlock:
1688 	spu_release(ctx);
1689 out:
1690 	return ret;
1691 }
1692 
1693 static __poll_t spufs_mfc_poll(struct file *file,poll_table *wait)
1694 {
1695 	struct spu_context *ctx = file->private_data;
1696 	u32 free_elements, tagstatus;
1697 	__poll_t mask;
1698 
1699 	poll_wait(file, &ctx->mfc_wq, wait);
1700 
1701 	/*
1702 	 * For now keep this uninterruptible and also ignore the rule
1703 	 * that poll should not sleep.  Will be fixed later.
1704 	 */
1705 	mutex_lock(&ctx->state_mutex);
1706 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1707 	free_elements = ctx->ops->get_mfc_free_elements(ctx);
1708 	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1709 	spu_release(ctx);
1710 
1711 	mask = 0;
1712 	if (free_elements & 0xffff)
1713 		mask |= EPOLLOUT | EPOLLWRNORM;
1714 	if (tagstatus & ctx->tagwait)
1715 		mask |= EPOLLIN | EPOLLRDNORM;
1716 
1717 	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1718 		free_elements, tagstatus, ctx->tagwait);
1719 
1720 	return mask;
1721 }
1722 
1723 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1724 {
1725 	struct spu_context *ctx = file->private_data;
1726 	int ret;
1727 
1728 	ret = spu_acquire(ctx);
1729 	if (ret)
1730 		goto out;
1731 #if 0
1732 /* this currently hangs */
1733 	ret = spufs_wait(ctx->mfc_wq,
1734 			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1735 	if (ret)
1736 		goto out;
1737 	ret = spufs_wait(ctx->mfc_wq,
1738 			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1739 	if (ret)
1740 		goto out;
1741 #else
1742 	ret = 0;
1743 #endif
1744 	spu_release(ctx);
1745 out:
1746 	return ret;
1747 }
1748 
1749 static int spufs_mfc_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1750 {
1751 	struct inode *inode = file_inode(file);
1752 	int err = file_write_and_wait_range(file, start, end);
1753 	if (!err) {
1754 		inode_lock(inode);
1755 		err = spufs_mfc_flush(file, NULL);
1756 		inode_unlock(inode);
1757 	}
1758 	return err;
1759 }
1760 
1761 static const struct file_operations spufs_mfc_fops = {
1762 	.open	 = spufs_mfc_open,
1763 	.release = spufs_mfc_release,
1764 	.read	 = spufs_mfc_read,
1765 	.write	 = spufs_mfc_write,
1766 	.poll	 = spufs_mfc_poll,
1767 	.flush	 = spufs_mfc_flush,
1768 	.fsync	 = spufs_mfc_fsync,
1769 	.mmap	 = spufs_mfc_mmap,
1770 	.llseek  = no_llseek,
1771 };
1772 
1773 static int spufs_npc_set(void *data, u64 val)
1774 {
1775 	struct spu_context *ctx = data;
1776 	int ret;
1777 
1778 	ret = spu_acquire(ctx);
1779 	if (ret)
1780 		return ret;
1781 	ctx->ops->npc_write(ctx, val);
1782 	spu_release(ctx);
1783 
1784 	return 0;
1785 }
1786 
1787 static u64 spufs_npc_get(struct spu_context *ctx)
1788 {
1789 	return ctx->ops->npc_read(ctx);
1790 }
1791 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1792 		       "0x%llx\n", SPU_ATTR_ACQUIRE);
1793 
1794 static int spufs_decr_set(void *data, u64 val)
1795 {
1796 	struct spu_context *ctx = data;
1797 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1798 	int ret;
1799 
1800 	ret = spu_acquire_saved(ctx);
1801 	if (ret)
1802 		return ret;
1803 	lscsa->decr.slot[0] = (u32) val;
1804 	spu_release_saved(ctx);
1805 
1806 	return 0;
1807 }
1808 
1809 static u64 spufs_decr_get(struct spu_context *ctx)
1810 {
1811 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1812 	return lscsa->decr.slot[0];
1813 }
1814 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1815 		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1816 
1817 static int spufs_decr_status_set(void *data, u64 val)
1818 {
1819 	struct spu_context *ctx = data;
1820 	int ret;
1821 
1822 	ret = spu_acquire_saved(ctx);
1823 	if (ret)
1824 		return ret;
1825 	if (val)
1826 		ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1827 	else
1828 		ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1829 	spu_release_saved(ctx);
1830 
1831 	return 0;
1832 }
1833 
1834 static u64 spufs_decr_status_get(struct spu_context *ctx)
1835 {
1836 	if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1837 		return SPU_DECR_STATUS_RUNNING;
1838 	else
1839 		return 0;
1840 }
1841 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1842 		       spufs_decr_status_set, "0x%llx\n",
1843 		       SPU_ATTR_ACQUIRE_SAVED);
1844 
1845 static int spufs_event_mask_set(void *data, u64 val)
1846 {
1847 	struct spu_context *ctx = data;
1848 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1849 	int ret;
1850 
1851 	ret = spu_acquire_saved(ctx);
1852 	if (ret)
1853 		return ret;
1854 	lscsa->event_mask.slot[0] = (u32) val;
1855 	spu_release_saved(ctx);
1856 
1857 	return 0;
1858 }
1859 
1860 static u64 spufs_event_mask_get(struct spu_context *ctx)
1861 {
1862 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1863 	return lscsa->event_mask.slot[0];
1864 }
1865 
1866 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1867 		       spufs_event_mask_set, "0x%llx\n",
1868 		       SPU_ATTR_ACQUIRE_SAVED);
1869 
1870 static u64 spufs_event_status_get(struct spu_context *ctx)
1871 {
1872 	struct spu_state *state = &ctx->csa;
1873 	u64 stat;
1874 	stat = state->spu_chnlcnt_RW[0];
1875 	if (stat)
1876 		return state->spu_chnldata_RW[0];
1877 	return 0;
1878 }
1879 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1880 		       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1881 
1882 static int spufs_srr0_set(void *data, u64 val)
1883 {
1884 	struct spu_context *ctx = data;
1885 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1886 	int ret;
1887 
1888 	ret = spu_acquire_saved(ctx);
1889 	if (ret)
1890 		return ret;
1891 	lscsa->srr0.slot[0] = (u32) val;
1892 	spu_release_saved(ctx);
1893 
1894 	return 0;
1895 }
1896 
1897 static u64 spufs_srr0_get(struct spu_context *ctx)
1898 {
1899 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1900 	return lscsa->srr0.slot[0];
1901 }
1902 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1903 		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1904 
1905 static u64 spufs_id_get(struct spu_context *ctx)
1906 {
1907 	u64 num;
1908 
1909 	if (ctx->state == SPU_STATE_RUNNABLE)
1910 		num = ctx->spu->number;
1911 	else
1912 		num = (unsigned int)-1;
1913 
1914 	return num;
1915 }
1916 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
1917 		       SPU_ATTR_ACQUIRE)
1918 
1919 static u64 spufs_object_id_get(struct spu_context *ctx)
1920 {
1921 	/* FIXME: Should there really be no locking here? */
1922 	return ctx->object_id;
1923 }
1924 
1925 static int spufs_object_id_set(void *data, u64 id)
1926 {
1927 	struct spu_context *ctx = data;
1928 	ctx->object_id = id;
1929 
1930 	return 0;
1931 }
1932 
1933 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
1934 		       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
1935 
1936 static u64 spufs_lslr_get(struct spu_context *ctx)
1937 {
1938 	return ctx->csa.priv2.spu_lslr_RW;
1939 }
1940 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
1941 		       SPU_ATTR_ACQUIRE_SAVED);
1942 
1943 static int spufs_info_open(struct inode *inode, struct file *file)
1944 {
1945 	struct spufs_inode_info *i = SPUFS_I(inode);
1946 	struct spu_context *ctx = i->i_ctx;
1947 	file->private_data = ctx;
1948 	return 0;
1949 }
1950 
1951 static int spufs_caps_show(struct seq_file *s, void *private)
1952 {
1953 	struct spu_context *ctx = s->private;
1954 
1955 	if (!(ctx->flags & SPU_CREATE_NOSCHED))
1956 		seq_puts(s, "sched\n");
1957 	if (!(ctx->flags & SPU_CREATE_ISOLATE))
1958 		seq_puts(s, "step\n");
1959 	return 0;
1960 }
1961 
1962 static int spufs_caps_open(struct inode *inode, struct file *file)
1963 {
1964 	return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
1965 }
1966 
1967 static const struct file_operations spufs_caps_fops = {
1968 	.open		= spufs_caps_open,
1969 	.read		= seq_read,
1970 	.llseek		= seq_lseek,
1971 	.release	= single_release,
1972 };
1973 
1974 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
1975 			char __user *buf, size_t len, loff_t *pos)
1976 {
1977 	u32 data;
1978 
1979 	/* EOF if there's no entry in the mbox */
1980 	if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
1981 		return 0;
1982 
1983 	data = ctx->csa.prob.pu_mb_R;
1984 
1985 	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
1986 }
1987 
1988 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
1989 				   size_t len, loff_t *pos)
1990 {
1991 	int ret;
1992 	struct spu_context *ctx = file->private_data;
1993 
1994 	if (!access_ok(VERIFY_WRITE, buf, len))
1995 		return -EFAULT;
1996 
1997 	ret = spu_acquire_saved(ctx);
1998 	if (ret)
1999 		return ret;
2000 	spin_lock(&ctx->csa.register_lock);
2001 	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2002 	spin_unlock(&ctx->csa.register_lock);
2003 	spu_release_saved(ctx);
2004 
2005 	return ret;
2006 }
2007 
2008 static const struct file_operations spufs_mbox_info_fops = {
2009 	.open = spufs_info_open,
2010 	.read = spufs_mbox_info_read,
2011 	.llseek  = generic_file_llseek,
2012 };
2013 
2014 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
2015 				char __user *buf, size_t len, loff_t *pos)
2016 {
2017 	u32 data;
2018 
2019 	/* EOF if there's no entry in the ibox */
2020 	if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
2021 		return 0;
2022 
2023 	data = ctx->csa.priv2.puint_mb_R;
2024 
2025 	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2026 }
2027 
2028 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
2029 				   size_t len, loff_t *pos)
2030 {
2031 	struct spu_context *ctx = file->private_data;
2032 	int ret;
2033 
2034 	if (!access_ok(VERIFY_WRITE, buf, len))
2035 		return -EFAULT;
2036 
2037 	ret = spu_acquire_saved(ctx);
2038 	if (ret)
2039 		return ret;
2040 	spin_lock(&ctx->csa.register_lock);
2041 	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2042 	spin_unlock(&ctx->csa.register_lock);
2043 	spu_release_saved(ctx);
2044 
2045 	return ret;
2046 }
2047 
2048 static const struct file_operations spufs_ibox_info_fops = {
2049 	.open = spufs_info_open,
2050 	.read = spufs_ibox_info_read,
2051 	.llseek  = generic_file_llseek,
2052 };
2053 
2054 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
2055 			char __user *buf, size_t len, loff_t *pos)
2056 {
2057 	int i, cnt;
2058 	u32 data[4];
2059 	u32 wbox_stat;
2060 
2061 	wbox_stat = ctx->csa.prob.mb_stat_R;
2062 	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
2063 	for (i = 0; i < cnt; i++) {
2064 		data[i] = ctx->csa.spu_mailbox_data[i];
2065 	}
2066 
2067 	return simple_read_from_buffer(buf, len, pos, &data,
2068 				cnt * sizeof(u32));
2069 }
2070 
2071 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2072 				   size_t len, loff_t *pos)
2073 {
2074 	struct spu_context *ctx = file->private_data;
2075 	int ret;
2076 
2077 	if (!access_ok(VERIFY_WRITE, buf, len))
2078 		return -EFAULT;
2079 
2080 	ret = spu_acquire_saved(ctx);
2081 	if (ret)
2082 		return ret;
2083 	spin_lock(&ctx->csa.register_lock);
2084 	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2085 	spin_unlock(&ctx->csa.register_lock);
2086 	spu_release_saved(ctx);
2087 
2088 	return ret;
2089 }
2090 
2091 static const struct file_operations spufs_wbox_info_fops = {
2092 	.open = spufs_info_open,
2093 	.read = spufs_wbox_info_read,
2094 	.llseek  = generic_file_llseek,
2095 };
2096 
2097 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
2098 			char __user *buf, size_t len, loff_t *pos)
2099 {
2100 	struct spu_dma_info info;
2101 	struct mfc_cq_sr *qp, *spuqp;
2102 	int i;
2103 
2104 	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2105 	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2106 	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
2107 	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2108 	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2109 	for (i = 0; i < 16; i++) {
2110 		qp = &info.dma_info_command_data[i];
2111 		spuqp = &ctx->csa.priv2.spuq[i];
2112 
2113 		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2114 		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2115 		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2116 		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2117 	}
2118 
2119 	return simple_read_from_buffer(buf, len, pos, &info,
2120 				sizeof info);
2121 }
2122 
2123 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2124 			      size_t len, loff_t *pos)
2125 {
2126 	struct spu_context *ctx = file->private_data;
2127 	int ret;
2128 
2129 	if (!access_ok(VERIFY_WRITE, buf, len))
2130 		return -EFAULT;
2131 
2132 	ret = spu_acquire_saved(ctx);
2133 	if (ret)
2134 		return ret;
2135 	spin_lock(&ctx->csa.register_lock);
2136 	ret = __spufs_dma_info_read(ctx, buf, len, pos);
2137 	spin_unlock(&ctx->csa.register_lock);
2138 	spu_release_saved(ctx);
2139 
2140 	return ret;
2141 }
2142 
2143 static const struct file_operations spufs_dma_info_fops = {
2144 	.open = spufs_info_open,
2145 	.read = spufs_dma_info_read,
2146 	.llseek = no_llseek,
2147 };
2148 
2149 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
2150 			char __user *buf, size_t len, loff_t *pos)
2151 {
2152 	struct spu_proxydma_info info;
2153 	struct mfc_cq_sr *qp, *puqp;
2154 	int ret = sizeof info;
2155 	int i;
2156 
2157 	if (len < ret)
2158 		return -EINVAL;
2159 
2160 	if (!access_ok(VERIFY_WRITE, buf, len))
2161 		return -EFAULT;
2162 
2163 	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2164 	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2165 	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2166 	for (i = 0; i < 8; i++) {
2167 		qp = &info.proxydma_info_command_data[i];
2168 		puqp = &ctx->csa.priv2.puq[i];
2169 
2170 		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2171 		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2172 		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2173 		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2174 	}
2175 
2176 	return simple_read_from_buffer(buf, len, pos, &info,
2177 				sizeof info);
2178 }
2179 
2180 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2181 				   size_t len, loff_t *pos)
2182 {
2183 	struct spu_context *ctx = file->private_data;
2184 	int ret;
2185 
2186 	ret = spu_acquire_saved(ctx);
2187 	if (ret)
2188 		return ret;
2189 	spin_lock(&ctx->csa.register_lock);
2190 	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2191 	spin_unlock(&ctx->csa.register_lock);
2192 	spu_release_saved(ctx);
2193 
2194 	return ret;
2195 }
2196 
2197 static const struct file_operations spufs_proxydma_info_fops = {
2198 	.open = spufs_info_open,
2199 	.read = spufs_proxydma_info_read,
2200 	.llseek = no_llseek,
2201 };
2202 
2203 static int spufs_show_tid(struct seq_file *s, void *private)
2204 {
2205 	struct spu_context *ctx = s->private;
2206 
2207 	seq_printf(s, "%d\n", ctx->tid);
2208 	return 0;
2209 }
2210 
2211 static int spufs_tid_open(struct inode *inode, struct file *file)
2212 {
2213 	return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2214 }
2215 
2216 static const struct file_operations spufs_tid_fops = {
2217 	.open		= spufs_tid_open,
2218 	.read		= seq_read,
2219 	.llseek		= seq_lseek,
2220 	.release	= single_release,
2221 };
2222 
2223 static const char *ctx_state_names[] = {
2224 	"user", "system", "iowait", "loaded"
2225 };
2226 
2227 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2228 		enum spu_utilization_state state)
2229 {
2230 	unsigned long long time = ctx->stats.times[state];
2231 
2232 	/*
2233 	 * In general, utilization statistics are updated by the controlling
2234 	 * thread as the spu context moves through various well defined
2235 	 * state transitions, but if the context is lazily loaded its
2236 	 * utilization statistics are not updated as the controlling thread
2237 	 * is not tightly coupled with the execution of the spu context.  We
2238 	 * calculate and apply the time delta from the last recorded state
2239 	 * of the spu context.
2240 	 */
2241 	if (ctx->spu && ctx->stats.util_state == state) {
2242 		time += ktime_get_ns() - ctx->stats.tstamp;
2243 	}
2244 
2245 	return time / NSEC_PER_MSEC;
2246 }
2247 
2248 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2249 {
2250 	unsigned long long slb_flts = ctx->stats.slb_flt;
2251 
2252 	if (ctx->state == SPU_STATE_RUNNABLE) {
2253 		slb_flts += (ctx->spu->stats.slb_flt -
2254 			     ctx->stats.slb_flt_base);
2255 	}
2256 
2257 	return slb_flts;
2258 }
2259 
2260 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2261 {
2262 	unsigned long long class2_intrs = ctx->stats.class2_intr;
2263 
2264 	if (ctx->state == SPU_STATE_RUNNABLE) {
2265 		class2_intrs += (ctx->spu->stats.class2_intr -
2266 				 ctx->stats.class2_intr_base);
2267 	}
2268 
2269 	return class2_intrs;
2270 }
2271 
2272 
2273 static int spufs_show_stat(struct seq_file *s, void *private)
2274 {
2275 	struct spu_context *ctx = s->private;
2276 	int ret;
2277 
2278 	ret = spu_acquire(ctx);
2279 	if (ret)
2280 		return ret;
2281 
2282 	seq_printf(s, "%s %llu %llu %llu %llu "
2283 		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2284 		ctx_state_names[ctx->stats.util_state],
2285 		spufs_acct_time(ctx, SPU_UTIL_USER),
2286 		spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2287 		spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2288 		spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2289 		ctx->stats.vol_ctx_switch,
2290 		ctx->stats.invol_ctx_switch,
2291 		spufs_slb_flts(ctx),
2292 		ctx->stats.hash_flt,
2293 		ctx->stats.min_flt,
2294 		ctx->stats.maj_flt,
2295 		spufs_class2_intrs(ctx),
2296 		ctx->stats.libassist);
2297 	spu_release(ctx);
2298 	return 0;
2299 }
2300 
2301 static int spufs_stat_open(struct inode *inode, struct file *file)
2302 {
2303 	return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2304 }
2305 
2306 static const struct file_operations spufs_stat_fops = {
2307 	.open		= spufs_stat_open,
2308 	.read		= seq_read,
2309 	.llseek		= seq_lseek,
2310 	.release	= single_release,
2311 };
2312 
2313 static inline int spufs_switch_log_used(struct spu_context *ctx)
2314 {
2315 	return (ctx->switch_log->head - ctx->switch_log->tail) %
2316 		SWITCH_LOG_BUFSIZE;
2317 }
2318 
2319 static inline int spufs_switch_log_avail(struct spu_context *ctx)
2320 {
2321 	return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
2322 }
2323 
2324 static int spufs_switch_log_open(struct inode *inode, struct file *file)
2325 {
2326 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2327 	int rc;
2328 
2329 	rc = spu_acquire(ctx);
2330 	if (rc)
2331 		return rc;
2332 
2333 	if (ctx->switch_log) {
2334 		rc = -EBUSY;
2335 		goto out;
2336 	}
2337 
2338 	ctx->switch_log = kmalloc(sizeof(struct switch_log) +
2339 		SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry),
2340 		GFP_KERNEL);
2341 
2342 	if (!ctx->switch_log) {
2343 		rc = -ENOMEM;
2344 		goto out;
2345 	}
2346 
2347 	ctx->switch_log->head = ctx->switch_log->tail = 0;
2348 	init_waitqueue_head(&ctx->switch_log->wait);
2349 	rc = 0;
2350 
2351 out:
2352 	spu_release(ctx);
2353 	return rc;
2354 }
2355 
2356 static int spufs_switch_log_release(struct inode *inode, struct file *file)
2357 {
2358 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2359 	int rc;
2360 
2361 	rc = spu_acquire(ctx);
2362 	if (rc)
2363 		return rc;
2364 
2365 	kfree(ctx->switch_log);
2366 	ctx->switch_log = NULL;
2367 	spu_release(ctx);
2368 
2369 	return 0;
2370 }
2371 
2372 static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
2373 {
2374 	struct switch_log_entry *p;
2375 
2376 	p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;
2377 
2378 	return snprintf(tbuf, n, "%llu.%09u %d %u %u %llu\n",
2379 			(unsigned long long) p->tstamp.tv_sec,
2380 			(unsigned int) p->tstamp.tv_nsec,
2381 			p->spu_id,
2382 			(unsigned int) p->type,
2383 			(unsigned int) p->val,
2384 			(unsigned long long) p->timebase);
2385 }
2386 
2387 static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
2388 			     size_t len, loff_t *ppos)
2389 {
2390 	struct inode *inode = file_inode(file);
2391 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2392 	int error = 0, cnt = 0;
2393 
2394 	if (!buf)
2395 		return -EINVAL;
2396 
2397 	error = spu_acquire(ctx);
2398 	if (error)
2399 		return error;
2400 
2401 	while (cnt < len) {
2402 		char tbuf[128];
2403 		int width;
2404 
2405 		if (spufs_switch_log_used(ctx) == 0) {
2406 			if (cnt > 0) {
2407 				/* If there's data ready to go, we can
2408 				 * just return straight away */
2409 				break;
2410 
2411 			} else if (file->f_flags & O_NONBLOCK) {
2412 				error = -EAGAIN;
2413 				break;
2414 
2415 			} else {
2416 				/* spufs_wait will drop the mutex and
2417 				 * re-acquire, but since we're in read(), the
2418 				 * file cannot be _released (and so
2419 				 * ctx->switch_log is stable).
2420 				 */
2421 				error = spufs_wait(ctx->switch_log->wait,
2422 						spufs_switch_log_used(ctx) > 0);
2423 
2424 				/* On error, spufs_wait returns without the
2425 				 * state mutex held */
2426 				if (error)
2427 					return error;
2428 
2429 				/* We may have had entries read from underneath
2430 				 * us while we dropped the mutex in spufs_wait,
2431 				 * so re-check */
2432 				if (spufs_switch_log_used(ctx) == 0)
2433 					continue;
2434 			}
2435 		}
2436 
2437 		width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2438 		if (width < len)
2439 			ctx->switch_log->tail =
2440 				(ctx->switch_log->tail + 1) %
2441 				 SWITCH_LOG_BUFSIZE;
2442 		else
2443 			/* If the record is greater than space available return
2444 			 * partial buffer (so far) */
2445 			break;
2446 
2447 		error = copy_to_user(buf + cnt, tbuf, width);
2448 		if (error)
2449 			break;
2450 		cnt += width;
2451 	}
2452 
2453 	spu_release(ctx);
2454 
2455 	return cnt == 0 ? error : cnt;
2456 }
2457 
2458 static __poll_t spufs_switch_log_poll(struct file *file, poll_table *wait)
2459 {
2460 	struct inode *inode = file_inode(file);
2461 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2462 	__poll_t mask = 0;
2463 	int rc;
2464 
2465 	poll_wait(file, &ctx->switch_log->wait, wait);
2466 
2467 	rc = spu_acquire(ctx);
2468 	if (rc)
2469 		return rc;
2470 
2471 	if (spufs_switch_log_used(ctx) > 0)
2472 		mask |= EPOLLIN;
2473 
2474 	spu_release(ctx);
2475 
2476 	return mask;
2477 }
2478 
2479 static const struct file_operations spufs_switch_log_fops = {
2480 	.open		= spufs_switch_log_open,
2481 	.read		= spufs_switch_log_read,
2482 	.poll		= spufs_switch_log_poll,
2483 	.release	= spufs_switch_log_release,
2484 	.llseek		= no_llseek,
2485 };
2486 
2487 /**
2488  * Log a context switch event to a switch log reader.
2489  *
2490  * Must be called with ctx->state_mutex held.
2491  */
2492 void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
2493 		u32 type, u32 val)
2494 {
2495 	if (!ctx->switch_log)
2496 		return;
2497 
2498 	if (spufs_switch_log_avail(ctx) > 1) {
2499 		struct switch_log_entry *p;
2500 
2501 		p = ctx->switch_log->log + ctx->switch_log->head;
2502 		ktime_get_ts64(&p->tstamp);
2503 		p->timebase = get_tb();
2504 		p->spu_id = spu ? spu->number : -1;
2505 		p->type = type;
2506 		p->val = val;
2507 
2508 		ctx->switch_log->head =
2509 			(ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
2510 	}
2511 
2512 	wake_up(&ctx->switch_log->wait);
2513 }
2514 
2515 static int spufs_show_ctx(struct seq_file *s, void *private)
2516 {
2517 	struct spu_context *ctx = s->private;
2518 	u64 mfc_control_RW;
2519 
2520 	mutex_lock(&ctx->state_mutex);
2521 	if (ctx->spu) {
2522 		struct spu *spu = ctx->spu;
2523 		struct spu_priv2 __iomem *priv2 = spu->priv2;
2524 
2525 		spin_lock_irq(&spu->register_lock);
2526 		mfc_control_RW = in_be64(&priv2->mfc_control_RW);
2527 		spin_unlock_irq(&spu->register_lock);
2528 	} else {
2529 		struct spu_state *csa = &ctx->csa;
2530 
2531 		mfc_control_RW = csa->priv2.mfc_control_RW;
2532 	}
2533 
2534 	seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
2535 		" %c %llx %llx %llx %llx %x %x\n",
2536 		ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
2537 		ctx->flags,
2538 		ctx->sched_flags,
2539 		ctx->prio,
2540 		ctx->time_slice,
2541 		ctx->spu ? ctx->spu->number : -1,
2542 		!list_empty(&ctx->rq) ? 'q' : ' ',
2543 		ctx->csa.class_0_pending,
2544 		ctx->csa.class_0_dar,
2545 		ctx->csa.class_1_dsisr,
2546 		mfc_control_RW,
2547 		ctx->ops->runcntl_read(ctx),
2548 		ctx->ops->status_read(ctx));
2549 
2550 	mutex_unlock(&ctx->state_mutex);
2551 
2552 	return 0;
2553 }
2554 
2555 static int spufs_ctx_open(struct inode *inode, struct file *file)
2556 {
2557 	return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
2558 }
2559 
2560 static const struct file_operations spufs_ctx_fops = {
2561 	.open           = spufs_ctx_open,
2562 	.read           = seq_read,
2563 	.llseek         = seq_lseek,
2564 	.release        = single_release,
2565 };
2566 
2567 const struct spufs_tree_descr spufs_dir_contents[] = {
2568 	{ "capabilities", &spufs_caps_fops, 0444, },
2569 	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2570 	{ "regs", &spufs_regs_fops,  0666, sizeof(struct spu_reg128[128]), },
2571 	{ "mbox", &spufs_mbox_fops, 0444, },
2572 	{ "ibox", &spufs_ibox_fops, 0444, },
2573 	{ "wbox", &spufs_wbox_fops, 0222, },
2574 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2575 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2576 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2577 	{ "signal1", &spufs_signal1_fops, 0666, },
2578 	{ "signal2", &spufs_signal2_fops, 0666, },
2579 	{ "signal1_type", &spufs_signal1_type, 0666, },
2580 	{ "signal2_type", &spufs_signal2_type, 0666, },
2581 	{ "cntl", &spufs_cntl_fops,  0666, },
2582 	{ "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2583 	{ "lslr", &spufs_lslr_ops, 0444, },
2584 	{ "mfc", &spufs_mfc_fops, 0666, },
2585 	{ "mss", &spufs_mss_fops, 0666, },
2586 	{ "npc", &spufs_npc_ops, 0666, },
2587 	{ "srr0", &spufs_srr0_ops, 0666, },
2588 	{ "decr", &spufs_decr_ops, 0666, },
2589 	{ "decr_status", &spufs_decr_status_ops, 0666, },
2590 	{ "event_mask", &spufs_event_mask_ops, 0666, },
2591 	{ "event_status", &spufs_event_status_ops, 0444, },
2592 	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2593 	{ "phys-id", &spufs_id_ops, 0666, },
2594 	{ "object-id", &spufs_object_id_ops, 0666, },
2595 	{ "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
2596 	{ "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
2597 	{ "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
2598 	{ "dma_info", &spufs_dma_info_fops, 0444,
2599 		sizeof(struct spu_dma_info), },
2600 	{ "proxydma_info", &spufs_proxydma_info_fops, 0444,
2601 		sizeof(struct spu_proxydma_info)},
2602 	{ "tid", &spufs_tid_fops, 0444, },
2603 	{ "stat", &spufs_stat_fops, 0444, },
2604 	{ "switch_log", &spufs_switch_log_fops, 0444 },
2605 	{},
2606 };
2607 
2608 const struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2609 	{ "capabilities", &spufs_caps_fops, 0444, },
2610 	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2611 	{ "mbox", &spufs_mbox_fops, 0444, },
2612 	{ "ibox", &spufs_ibox_fops, 0444, },
2613 	{ "wbox", &spufs_wbox_fops, 0222, },
2614 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2615 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2616 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2617 	{ "signal1", &spufs_signal1_nosched_fops, 0222, },
2618 	{ "signal2", &spufs_signal2_nosched_fops, 0222, },
2619 	{ "signal1_type", &spufs_signal1_type, 0666, },
2620 	{ "signal2_type", &spufs_signal2_type, 0666, },
2621 	{ "mss", &spufs_mss_fops, 0666, },
2622 	{ "mfc", &spufs_mfc_fops, 0666, },
2623 	{ "cntl", &spufs_cntl_fops,  0666, },
2624 	{ "npc", &spufs_npc_ops, 0666, },
2625 	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2626 	{ "phys-id", &spufs_id_ops, 0666, },
2627 	{ "object-id", &spufs_object_id_ops, 0666, },
2628 	{ "tid", &spufs_tid_fops, 0444, },
2629 	{ "stat", &spufs_stat_fops, 0444, },
2630 	{},
2631 };
2632 
2633 const struct spufs_tree_descr spufs_dir_debug_contents[] = {
2634 	{ ".ctx", &spufs_ctx_fops, 0444, },
2635 	{},
2636 };
2637 
2638 const struct spufs_coredump_reader spufs_coredump_read[] = {
2639 	{ "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
2640 	{ "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2641 	{ "lslr", NULL, spufs_lslr_get, 19 },
2642 	{ "decr", NULL, spufs_decr_get, 19 },
2643 	{ "decr_status", NULL, spufs_decr_status_get, 19 },
2644 	{ "mem", __spufs_mem_read, NULL, LS_SIZE, },
2645 	{ "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2646 	{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
2647 	{ "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2648 	{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
2649 	{ "event_mask", NULL, spufs_event_mask_get, 19 },
2650 	{ "event_status", NULL, spufs_event_status_get, 19 },
2651 	{ "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
2652 	{ "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
2653 	{ "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
2654 	{ "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
2655 	{ "proxydma_info", __spufs_proxydma_info_read,
2656 			   NULL, sizeof(struct spu_proxydma_info)},
2657 	{ "object-id", NULL, spufs_object_id_get, 19 },
2658 	{ "npc", NULL, spufs_npc_get, 19 },
2659 	{ NULL },
2660 };
2661