xref: /openbmc/linux/arch/powerpc/platforms/cell/spufs/file.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * SPU file system -- file contents
3  *
4  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5  *
6  * Author: Arnd Bergmann <arndb@de.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #undef DEBUG
24 
25 #include <linux/fs.h>
26 #include <linux/ioctl.h>
27 #include <linux/module.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/seq_file.h>
32 #include <linux/marker.h>
33 
34 #include <asm/io.h>
35 #include <asm/time.h>
36 #include <asm/spu.h>
37 #include <asm/spu_info.h>
38 #include <asm/uaccess.h>
39 
40 #include "spufs.h"
41 
42 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
43 
44 /* Simple attribute files */
45 struct spufs_attr {
46 	int (*get)(void *, u64 *);
47 	int (*set)(void *, u64);
48 	char get_buf[24];       /* enough to store a u64 and "\n\0" */
49 	char set_buf[24];
50 	void *data;
51 	const char *fmt;        /* format for read operation */
52 	struct mutex mutex;     /* protects access to these buffers */
53 };
54 
55 static int spufs_attr_open(struct inode *inode, struct file *file,
56 		int (*get)(void *, u64 *), int (*set)(void *, u64),
57 		const char *fmt)
58 {
59 	struct spufs_attr *attr;
60 
61 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
62 	if (!attr)
63 		return -ENOMEM;
64 
65 	attr->get = get;
66 	attr->set = set;
67 	attr->data = inode->i_private;
68 	attr->fmt = fmt;
69 	mutex_init(&attr->mutex);
70 	file->private_data = attr;
71 
72 	return nonseekable_open(inode, file);
73 }
74 
75 static int spufs_attr_release(struct inode *inode, struct file *file)
76 {
77        kfree(file->private_data);
78 	return 0;
79 }
80 
81 static ssize_t spufs_attr_read(struct file *file, char __user *buf,
82 		size_t len, loff_t *ppos)
83 {
84 	struct spufs_attr *attr;
85 	size_t size;
86 	ssize_t ret;
87 
88 	attr = file->private_data;
89 	if (!attr->get)
90 		return -EACCES;
91 
92 	ret = mutex_lock_interruptible(&attr->mutex);
93 	if (ret)
94 		return ret;
95 
96 	if (*ppos) {		/* continued read */
97 		size = strlen(attr->get_buf);
98 	} else {		/* first read */
99 		u64 val;
100 		ret = attr->get(attr->data, &val);
101 		if (ret)
102 			goto out;
103 
104 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
105 				 attr->fmt, (unsigned long long)val);
106 	}
107 
108 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
109 out:
110 	mutex_unlock(&attr->mutex);
111 	return ret;
112 }
113 
114 static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
115 		size_t len, loff_t *ppos)
116 {
117 	struct spufs_attr *attr;
118 	u64 val;
119 	size_t size;
120 	ssize_t ret;
121 
122 	attr = file->private_data;
123 	if (!attr->set)
124 		return -EACCES;
125 
126 	ret = mutex_lock_interruptible(&attr->mutex);
127 	if (ret)
128 		return ret;
129 
130 	ret = -EFAULT;
131 	size = min(sizeof(attr->set_buf) - 1, len);
132 	if (copy_from_user(attr->set_buf, buf, size))
133 		goto out;
134 
135 	ret = len; /* claim we got the whole input */
136 	attr->set_buf[size] = '\0';
137 	val = simple_strtol(attr->set_buf, NULL, 0);
138 	attr->set(attr->data, val);
139 out:
140 	mutex_unlock(&attr->mutex);
141 	return ret;
142 }
143 
144 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)	\
145 static int __fops ## _open(struct inode *inode, struct file *file)	\
146 {									\
147 	__simple_attr_check_format(__fmt, 0ull);			\
148 	return spufs_attr_open(inode, file, __get, __set, __fmt);	\
149 }									\
150 static struct file_operations __fops = {				\
151 	.owner	 = THIS_MODULE,						\
152 	.open	 = __fops ## _open,					\
153 	.release = spufs_attr_release,					\
154 	.read	 = spufs_attr_read,					\
155 	.write	 = spufs_attr_write,					\
156 };
157 
158 
159 static int
160 spufs_mem_open(struct inode *inode, struct file *file)
161 {
162 	struct spufs_inode_info *i = SPUFS_I(inode);
163 	struct spu_context *ctx = i->i_ctx;
164 
165 	mutex_lock(&ctx->mapping_lock);
166 	file->private_data = ctx;
167 	if (!i->i_openers++)
168 		ctx->local_store = inode->i_mapping;
169 	mutex_unlock(&ctx->mapping_lock);
170 	return 0;
171 }
172 
173 static int
174 spufs_mem_release(struct inode *inode, struct file *file)
175 {
176 	struct spufs_inode_info *i = SPUFS_I(inode);
177 	struct spu_context *ctx = i->i_ctx;
178 
179 	mutex_lock(&ctx->mapping_lock);
180 	if (!--i->i_openers)
181 		ctx->local_store = NULL;
182 	mutex_unlock(&ctx->mapping_lock);
183 	return 0;
184 }
185 
186 static ssize_t
187 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
188 			size_t size, loff_t *pos)
189 {
190 	char *local_store = ctx->ops->get_ls(ctx);
191 	return simple_read_from_buffer(buffer, size, pos, local_store,
192 					LS_SIZE);
193 }
194 
195 static ssize_t
196 spufs_mem_read(struct file *file, char __user *buffer,
197 				size_t size, loff_t *pos)
198 {
199 	struct spu_context *ctx = file->private_data;
200 	ssize_t ret;
201 
202 	ret = spu_acquire(ctx);
203 	if (ret)
204 		return ret;
205 	ret = __spufs_mem_read(ctx, buffer, size, pos);
206 	spu_release(ctx);
207 
208 	return ret;
209 }
210 
211 static ssize_t
212 spufs_mem_write(struct file *file, const char __user *buffer,
213 					size_t size, loff_t *ppos)
214 {
215 	struct spu_context *ctx = file->private_data;
216 	char *local_store;
217 	loff_t pos = *ppos;
218 	int ret;
219 
220 	if (pos < 0)
221 		return -EINVAL;
222 	if (pos > LS_SIZE)
223 		return -EFBIG;
224 	if (size > LS_SIZE - pos)
225 		size = LS_SIZE - pos;
226 
227 	ret = spu_acquire(ctx);
228 	if (ret)
229 		return ret;
230 
231 	local_store = ctx->ops->get_ls(ctx);
232 	ret = copy_from_user(local_store + pos, buffer, size);
233 	spu_release(ctx);
234 
235 	if (ret)
236 		return -EFAULT;
237 	*ppos = pos + size;
238 	return size;
239 }
240 
241 static int
242 spufs_mem_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
243 {
244 	struct spu_context *ctx	= vma->vm_file->private_data;
245 	unsigned long address = (unsigned long)vmf->virtual_address;
246 	unsigned long pfn, offset;
247 
248 #ifdef CONFIG_SPU_FS_64K_LS
249 	struct spu_state *csa = &ctx->csa;
250 	int psize;
251 
252 	/* Check what page size we are using */
253 	psize = get_slice_psize(vma->vm_mm, address);
254 
255 	/* Some sanity checking */
256 	BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));
257 
258 	/* Wow, 64K, cool, we need to align the address though */
259 	if (csa->use_big_pages) {
260 		BUG_ON(vma->vm_start & 0xffff);
261 		address &= ~0xfffful;
262 	}
263 #endif /* CONFIG_SPU_FS_64K_LS */
264 
265 	offset = vmf->pgoff << PAGE_SHIFT;
266 	if (offset >= LS_SIZE)
267 		return VM_FAULT_SIGBUS;
268 
269 	pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
270 			address, offset);
271 
272 	if (spu_acquire(ctx))
273 		return VM_FAULT_NOPAGE;
274 
275 	if (ctx->state == SPU_STATE_SAVED) {
276 		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
277 							& ~_PAGE_NO_CACHE);
278 		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
279 	} else {
280 		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
281 					     | _PAGE_NO_CACHE);
282 		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
283 	}
284 	vm_insert_pfn(vma, address, pfn);
285 
286 	spu_release(ctx);
287 
288 	return VM_FAULT_NOPAGE;
289 }
290 
291 static int spufs_mem_mmap_access(struct vm_area_struct *vma,
292 				unsigned long address,
293 				void *buf, int len, int write)
294 {
295 	struct spu_context *ctx = vma->vm_file->private_data;
296 	unsigned long offset = address - vma->vm_start;
297 	char *local_store;
298 
299 	if (write && !(vma->vm_flags & VM_WRITE))
300 		return -EACCES;
301 	if (spu_acquire(ctx))
302 		return -EINTR;
303 	if ((offset + len) > vma->vm_end)
304 		len = vma->vm_end - offset;
305 	local_store = ctx->ops->get_ls(ctx);
306 	if (write)
307 		memcpy_toio(local_store + offset, buf, len);
308 	else
309 		memcpy_fromio(buf, local_store + offset, len);
310 	spu_release(ctx);
311 	return len;
312 }
313 
314 static struct vm_operations_struct spufs_mem_mmap_vmops = {
315 	.fault = spufs_mem_mmap_fault,
316 	.access = spufs_mem_mmap_access,
317 };
318 
319 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
320 {
321 #ifdef CONFIG_SPU_FS_64K_LS
322 	struct spu_context	*ctx = file->private_data;
323 	struct spu_state	*csa = &ctx->csa;
324 
325 	/* Sanity check VMA alignment */
326 	if (csa->use_big_pages) {
327 		pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
328 			 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
329 			 vma->vm_pgoff);
330 		if (vma->vm_start & 0xffff)
331 			return -EINVAL;
332 		if (vma->vm_pgoff & 0xf)
333 			return -EINVAL;
334 	}
335 #endif /* CONFIG_SPU_FS_64K_LS */
336 
337 	if (!(vma->vm_flags & VM_SHARED))
338 		return -EINVAL;
339 
340 	vma->vm_flags |= VM_IO | VM_PFNMAP;
341 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
342 				     | _PAGE_NO_CACHE);
343 
344 	vma->vm_ops = &spufs_mem_mmap_vmops;
345 	return 0;
346 }
347 
348 #ifdef CONFIG_SPU_FS_64K_LS
349 static unsigned long spufs_get_unmapped_area(struct file *file,
350 		unsigned long addr, unsigned long len, unsigned long pgoff,
351 		unsigned long flags)
352 {
353 	struct spu_context	*ctx = file->private_data;
354 	struct spu_state	*csa = &ctx->csa;
355 
356 	/* If not using big pages, fallback to normal MM g_u_a */
357 	if (!csa->use_big_pages)
358 		return current->mm->get_unmapped_area(file, addr, len,
359 						      pgoff, flags);
360 
361 	/* Else, try to obtain a 64K pages slice */
362 	return slice_get_unmapped_area(addr, len, flags,
363 				       MMU_PAGE_64K, 1, 0);
364 }
365 #endif /* CONFIG_SPU_FS_64K_LS */
366 
367 static const struct file_operations spufs_mem_fops = {
368 	.open			= spufs_mem_open,
369 	.release		= spufs_mem_release,
370 	.read			= spufs_mem_read,
371 	.write			= spufs_mem_write,
372 	.llseek			= generic_file_llseek,
373 	.mmap			= spufs_mem_mmap,
374 #ifdef CONFIG_SPU_FS_64K_LS
375 	.get_unmapped_area	= spufs_get_unmapped_area,
376 #endif
377 };
378 
379 static int spufs_ps_fault(struct vm_area_struct *vma,
380 				    struct vm_fault *vmf,
381 				    unsigned long ps_offs,
382 				    unsigned long ps_size)
383 {
384 	struct spu_context *ctx = vma->vm_file->private_data;
385 	unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
386 	int ret = 0;
387 
388 	spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
389 
390 	if (offset >= ps_size)
391 		return VM_FAULT_SIGBUS;
392 
393 	/*
394 	 * Because we release the mmap_sem, the context may be destroyed while
395 	 * we're in spu_wait. Grab an extra reference so it isn't destroyed
396 	 * in the meantime.
397 	 */
398 	get_spu_context(ctx);
399 
400 	/*
401 	 * We have to wait for context to be loaded before we have
402 	 * pages to hand out to the user, but we don't want to wait
403 	 * with the mmap_sem held.
404 	 * It is possible to drop the mmap_sem here, but then we need
405 	 * to return VM_FAULT_NOPAGE because the mappings may have
406 	 * hanged.
407 	 */
408 	if (spu_acquire(ctx))
409 		goto refault;
410 
411 	if (ctx->state == SPU_STATE_SAVED) {
412 		up_read(&current->mm->mmap_sem);
413 		spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
414 		ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
415 		spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
416 		down_read(&current->mm->mmap_sem);
417 	} else {
418 		area = ctx->spu->problem_phys + ps_offs;
419 		vm_insert_pfn(vma, (unsigned long)vmf->virtual_address,
420 					(area + offset) >> PAGE_SHIFT);
421 		spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
422 	}
423 
424 	if (!ret)
425 		spu_release(ctx);
426 
427 refault:
428 	put_spu_context(ctx);
429 	return VM_FAULT_NOPAGE;
430 }
431 
432 #if SPUFS_MMAP_4K
433 static int spufs_cntl_mmap_fault(struct vm_area_struct *vma,
434 					   struct vm_fault *vmf)
435 {
436 	return spufs_ps_fault(vma, vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
437 }
438 
439 static struct vm_operations_struct spufs_cntl_mmap_vmops = {
440 	.fault = spufs_cntl_mmap_fault,
441 };
442 
443 /*
444  * mmap support for problem state control area [0x4000 - 0x4fff].
445  */
446 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
447 {
448 	if (!(vma->vm_flags & VM_SHARED))
449 		return -EINVAL;
450 
451 	vma->vm_flags |= VM_IO | VM_PFNMAP;
452 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
453 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
454 
455 	vma->vm_ops = &spufs_cntl_mmap_vmops;
456 	return 0;
457 }
458 #else /* SPUFS_MMAP_4K */
459 #define spufs_cntl_mmap NULL
460 #endif /* !SPUFS_MMAP_4K */
461 
462 static int spufs_cntl_get(void *data, u64 *val)
463 {
464 	struct spu_context *ctx = data;
465 	int ret;
466 
467 	ret = spu_acquire(ctx);
468 	if (ret)
469 		return ret;
470 	*val = ctx->ops->status_read(ctx);
471 	spu_release(ctx);
472 
473 	return 0;
474 }
475 
476 static int spufs_cntl_set(void *data, u64 val)
477 {
478 	struct spu_context *ctx = data;
479 	int ret;
480 
481 	ret = spu_acquire(ctx);
482 	if (ret)
483 		return ret;
484 	ctx->ops->runcntl_write(ctx, val);
485 	spu_release(ctx);
486 
487 	return 0;
488 }
489 
490 static int spufs_cntl_open(struct inode *inode, struct file *file)
491 {
492 	struct spufs_inode_info *i = SPUFS_I(inode);
493 	struct spu_context *ctx = i->i_ctx;
494 
495 	mutex_lock(&ctx->mapping_lock);
496 	file->private_data = ctx;
497 	if (!i->i_openers++)
498 		ctx->cntl = inode->i_mapping;
499 	mutex_unlock(&ctx->mapping_lock);
500 	return simple_attr_open(inode, file, spufs_cntl_get,
501 					spufs_cntl_set, "0x%08lx");
502 }
503 
504 static int
505 spufs_cntl_release(struct inode *inode, struct file *file)
506 {
507 	struct spufs_inode_info *i = SPUFS_I(inode);
508 	struct spu_context *ctx = i->i_ctx;
509 
510 	simple_attr_release(inode, file);
511 
512 	mutex_lock(&ctx->mapping_lock);
513 	if (!--i->i_openers)
514 		ctx->cntl = NULL;
515 	mutex_unlock(&ctx->mapping_lock);
516 	return 0;
517 }
518 
519 static const struct file_operations spufs_cntl_fops = {
520 	.open = spufs_cntl_open,
521 	.release = spufs_cntl_release,
522 	.read = simple_attr_read,
523 	.write = simple_attr_write,
524 	.mmap = spufs_cntl_mmap,
525 };
526 
527 static int
528 spufs_regs_open(struct inode *inode, struct file *file)
529 {
530 	struct spufs_inode_info *i = SPUFS_I(inode);
531 	file->private_data = i->i_ctx;
532 	return 0;
533 }
534 
535 static ssize_t
536 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
537 			size_t size, loff_t *pos)
538 {
539 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
540 	return simple_read_from_buffer(buffer, size, pos,
541 				      lscsa->gprs, sizeof lscsa->gprs);
542 }
543 
544 static ssize_t
545 spufs_regs_read(struct file *file, char __user *buffer,
546 		size_t size, loff_t *pos)
547 {
548 	int ret;
549 	struct spu_context *ctx = file->private_data;
550 
551 	/* pre-check for file position: if we'd return EOF, there's no point
552 	 * causing a deschedule */
553 	if (*pos >= sizeof(ctx->csa.lscsa->gprs))
554 		return 0;
555 
556 	ret = spu_acquire_saved(ctx);
557 	if (ret)
558 		return ret;
559 	ret = __spufs_regs_read(ctx, buffer, size, pos);
560 	spu_release_saved(ctx);
561 	return ret;
562 }
563 
564 static ssize_t
565 spufs_regs_write(struct file *file, const char __user *buffer,
566 		 size_t size, loff_t *pos)
567 {
568 	struct spu_context *ctx = file->private_data;
569 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
570 	int ret;
571 
572 	size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
573 	if (size <= 0)
574 		return -EFBIG;
575 	*pos += size;
576 
577 	ret = spu_acquire_saved(ctx);
578 	if (ret)
579 		return ret;
580 
581 	ret = copy_from_user(lscsa->gprs + *pos - size,
582 			     buffer, size) ? -EFAULT : size;
583 
584 	spu_release_saved(ctx);
585 	return ret;
586 }
587 
588 static const struct file_operations spufs_regs_fops = {
589 	.open	 = spufs_regs_open,
590 	.read    = spufs_regs_read,
591 	.write   = spufs_regs_write,
592 	.llseek  = generic_file_llseek,
593 };
594 
595 static ssize_t
596 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
597 			size_t size, loff_t * pos)
598 {
599 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
600 	return simple_read_from_buffer(buffer, size, pos,
601 				      &lscsa->fpcr, sizeof(lscsa->fpcr));
602 }
603 
604 static ssize_t
605 spufs_fpcr_read(struct file *file, char __user * buffer,
606 		size_t size, loff_t * pos)
607 {
608 	int ret;
609 	struct spu_context *ctx = file->private_data;
610 
611 	ret = spu_acquire_saved(ctx);
612 	if (ret)
613 		return ret;
614 	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
615 	spu_release_saved(ctx);
616 	return ret;
617 }
618 
619 static ssize_t
620 spufs_fpcr_write(struct file *file, const char __user * buffer,
621 		 size_t size, loff_t * pos)
622 {
623 	struct spu_context *ctx = file->private_data;
624 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
625 	int ret;
626 
627 	size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
628 	if (size <= 0)
629 		return -EFBIG;
630 
631 	ret = spu_acquire_saved(ctx);
632 	if (ret)
633 		return ret;
634 
635 	*pos += size;
636 	ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
637 			     buffer, size) ? -EFAULT : size;
638 
639 	spu_release_saved(ctx);
640 	return ret;
641 }
642 
643 static const struct file_operations spufs_fpcr_fops = {
644 	.open = spufs_regs_open,
645 	.read = spufs_fpcr_read,
646 	.write = spufs_fpcr_write,
647 	.llseek = generic_file_llseek,
648 };
649 
650 /* generic open function for all pipe-like files */
651 static int spufs_pipe_open(struct inode *inode, struct file *file)
652 {
653 	struct spufs_inode_info *i = SPUFS_I(inode);
654 	file->private_data = i->i_ctx;
655 
656 	return nonseekable_open(inode, file);
657 }
658 
659 /*
660  * Read as many bytes from the mailbox as possible, until
661  * one of the conditions becomes true:
662  *
663  * - no more data available in the mailbox
664  * - end of the user provided buffer
665  * - end of the mapped area
666  */
667 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
668 			size_t len, loff_t *pos)
669 {
670 	struct spu_context *ctx = file->private_data;
671 	u32 mbox_data, __user *udata;
672 	ssize_t count;
673 
674 	if (len < 4)
675 		return -EINVAL;
676 
677 	if (!access_ok(VERIFY_WRITE, buf, len))
678 		return -EFAULT;
679 
680 	udata = (void __user *)buf;
681 
682 	count = spu_acquire(ctx);
683 	if (count)
684 		return count;
685 
686 	for (count = 0; (count + 4) <= len; count += 4, udata++) {
687 		int ret;
688 		ret = ctx->ops->mbox_read(ctx, &mbox_data);
689 		if (ret == 0)
690 			break;
691 
692 		/*
693 		 * at the end of the mapped area, we can fault
694 		 * but still need to return the data we have
695 		 * read successfully so far.
696 		 */
697 		ret = __put_user(mbox_data, udata);
698 		if (ret) {
699 			if (!count)
700 				count = -EFAULT;
701 			break;
702 		}
703 	}
704 	spu_release(ctx);
705 
706 	if (!count)
707 		count = -EAGAIN;
708 
709 	return count;
710 }
711 
712 static const struct file_operations spufs_mbox_fops = {
713 	.open	= spufs_pipe_open,
714 	.read	= spufs_mbox_read,
715 };
716 
717 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
718 			size_t len, loff_t *pos)
719 {
720 	struct spu_context *ctx = file->private_data;
721 	ssize_t ret;
722 	u32 mbox_stat;
723 
724 	if (len < 4)
725 		return -EINVAL;
726 
727 	ret = spu_acquire(ctx);
728 	if (ret)
729 		return ret;
730 
731 	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
732 
733 	spu_release(ctx);
734 
735 	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
736 		return -EFAULT;
737 
738 	return 4;
739 }
740 
741 static const struct file_operations spufs_mbox_stat_fops = {
742 	.open	= spufs_pipe_open,
743 	.read	= spufs_mbox_stat_read,
744 };
745 
746 /* low-level ibox access function */
747 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
748 {
749 	return ctx->ops->ibox_read(ctx, data);
750 }
751 
752 static int spufs_ibox_fasync(int fd, struct file *file, int on)
753 {
754 	struct spu_context *ctx = file->private_data;
755 
756 	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
757 }
758 
759 /* interrupt-level ibox callback function. */
760 void spufs_ibox_callback(struct spu *spu)
761 {
762 	struct spu_context *ctx = spu->ctx;
763 
764 	if (!ctx)
765 		return;
766 
767 	wake_up_all(&ctx->ibox_wq);
768 	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
769 }
770 
771 /*
772  * Read as many bytes from the interrupt mailbox as possible, until
773  * one of the conditions becomes true:
774  *
775  * - no more data available in the mailbox
776  * - end of the user provided buffer
777  * - end of the mapped area
778  *
779  * If the file is opened without O_NONBLOCK, we wait here until
780  * any data is available, but return when we have been able to
781  * read something.
782  */
783 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
784 			size_t len, loff_t *pos)
785 {
786 	struct spu_context *ctx = file->private_data;
787 	u32 ibox_data, __user *udata;
788 	ssize_t count;
789 
790 	if (len < 4)
791 		return -EINVAL;
792 
793 	if (!access_ok(VERIFY_WRITE, buf, len))
794 		return -EFAULT;
795 
796 	udata = (void __user *)buf;
797 
798 	count = spu_acquire(ctx);
799 	if (count)
800 		goto out;
801 
802 	/* wait only for the first element */
803 	count = 0;
804 	if (file->f_flags & O_NONBLOCK) {
805 		if (!spu_ibox_read(ctx, &ibox_data)) {
806 			count = -EAGAIN;
807 			goto out_unlock;
808 		}
809 	} else {
810 		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
811 		if (count)
812 			goto out;
813 	}
814 
815 	/* if we can't write at all, return -EFAULT */
816 	count = __put_user(ibox_data, udata);
817 	if (count)
818 		goto out_unlock;
819 
820 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
821 		int ret;
822 		ret = ctx->ops->ibox_read(ctx, &ibox_data);
823 		if (ret == 0)
824 			break;
825 		/*
826 		 * at the end of the mapped area, we can fault
827 		 * but still need to return the data we have
828 		 * read successfully so far.
829 		 */
830 		ret = __put_user(ibox_data, udata);
831 		if (ret)
832 			break;
833 	}
834 
835 out_unlock:
836 	spu_release(ctx);
837 out:
838 	return count;
839 }
840 
841 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
842 {
843 	struct spu_context *ctx = file->private_data;
844 	unsigned int mask;
845 
846 	poll_wait(file, &ctx->ibox_wq, wait);
847 
848 	/*
849 	 * For now keep this uninterruptible and also ignore the rule
850 	 * that poll should not sleep.  Will be fixed later.
851 	 */
852 	mutex_lock(&ctx->state_mutex);
853 	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
854 	spu_release(ctx);
855 
856 	return mask;
857 }
858 
859 static const struct file_operations spufs_ibox_fops = {
860 	.open	= spufs_pipe_open,
861 	.read	= spufs_ibox_read,
862 	.poll	= spufs_ibox_poll,
863 	.fasync	= spufs_ibox_fasync,
864 };
865 
866 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
867 			size_t len, loff_t *pos)
868 {
869 	struct spu_context *ctx = file->private_data;
870 	ssize_t ret;
871 	u32 ibox_stat;
872 
873 	if (len < 4)
874 		return -EINVAL;
875 
876 	ret = spu_acquire(ctx);
877 	if (ret)
878 		return ret;
879 	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
880 	spu_release(ctx);
881 
882 	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
883 		return -EFAULT;
884 
885 	return 4;
886 }
887 
888 static const struct file_operations spufs_ibox_stat_fops = {
889 	.open	= spufs_pipe_open,
890 	.read	= spufs_ibox_stat_read,
891 };
892 
893 /* low-level mailbox write */
894 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
895 {
896 	return ctx->ops->wbox_write(ctx, data);
897 }
898 
899 static int spufs_wbox_fasync(int fd, struct file *file, int on)
900 {
901 	struct spu_context *ctx = file->private_data;
902 	int ret;
903 
904 	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
905 
906 	return ret;
907 }
908 
909 /* interrupt-level wbox callback function. */
910 void spufs_wbox_callback(struct spu *spu)
911 {
912 	struct spu_context *ctx = spu->ctx;
913 
914 	if (!ctx)
915 		return;
916 
917 	wake_up_all(&ctx->wbox_wq);
918 	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
919 }
920 
921 /*
922  * Write as many bytes to the interrupt mailbox as possible, until
923  * one of the conditions becomes true:
924  *
925  * - the mailbox is full
926  * - end of the user provided buffer
927  * - end of the mapped area
928  *
929  * If the file is opened without O_NONBLOCK, we wait here until
930  * space is availabyl, but return when we have been able to
931  * write something.
932  */
933 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
934 			size_t len, loff_t *pos)
935 {
936 	struct spu_context *ctx = file->private_data;
937 	u32 wbox_data, __user *udata;
938 	ssize_t count;
939 
940 	if (len < 4)
941 		return -EINVAL;
942 
943 	udata = (void __user *)buf;
944 	if (!access_ok(VERIFY_READ, buf, len))
945 		return -EFAULT;
946 
947 	if (__get_user(wbox_data, udata))
948 		return -EFAULT;
949 
950 	count = spu_acquire(ctx);
951 	if (count)
952 		goto out;
953 
954 	/*
955 	 * make sure we can at least write one element, by waiting
956 	 * in case of !O_NONBLOCK
957 	 */
958 	count = 0;
959 	if (file->f_flags & O_NONBLOCK) {
960 		if (!spu_wbox_write(ctx, wbox_data)) {
961 			count = -EAGAIN;
962 			goto out_unlock;
963 		}
964 	} else {
965 		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
966 		if (count)
967 			goto out;
968 	}
969 
970 
971 	/* write as much as possible */
972 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
973 		int ret;
974 		ret = __get_user(wbox_data, udata);
975 		if (ret)
976 			break;
977 
978 		ret = spu_wbox_write(ctx, wbox_data);
979 		if (ret == 0)
980 			break;
981 	}
982 
983 out_unlock:
984 	spu_release(ctx);
985 out:
986 	return count;
987 }
988 
989 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
990 {
991 	struct spu_context *ctx = file->private_data;
992 	unsigned int mask;
993 
994 	poll_wait(file, &ctx->wbox_wq, wait);
995 
996 	/*
997 	 * For now keep this uninterruptible and also ignore the rule
998 	 * that poll should not sleep.  Will be fixed later.
999 	 */
1000 	mutex_lock(&ctx->state_mutex);
1001 	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
1002 	spu_release(ctx);
1003 
1004 	return mask;
1005 }
1006 
1007 static const struct file_operations spufs_wbox_fops = {
1008 	.open	= spufs_pipe_open,
1009 	.write	= spufs_wbox_write,
1010 	.poll	= spufs_wbox_poll,
1011 	.fasync	= spufs_wbox_fasync,
1012 };
1013 
1014 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
1015 			size_t len, loff_t *pos)
1016 {
1017 	struct spu_context *ctx = file->private_data;
1018 	ssize_t ret;
1019 	u32 wbox_stat;
1020 
1021 	if (len < 4)
1022 		return -EINVAL;
1023 
1024 	ret = spu_acquire(ctx);
1025 	if (ret)
1026 		return ret;
1027 	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
1028 	spu_release(ctx);
1029 
1030 	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
1031 		return -EFAULT;
1032 
1033 	return 4;
1034 }
1035 
1036 static const struct file_operations spufs_wbox_stat_fops = {
1037 	.open	= spufs_pipe_open,
1038 	.read	= spufs_wbox_stat_read,
1039 };
1040 
1041 static int spufs_signal1_open(struct inode *inode, struct file *file)
1042 {
1043 	struct spufs_inode_info *i = SPUFS_I(inode);
1044 	struct spu_context *ctx = i->i_ctx;
1045 
1046 	mutex_lock(&ctx->mapping_lock);
1047 	file->private_data = ctx;
1048 	if (!i->i_openers++)
1049 		ctx->signal1 = inode->i_mapping;
1050 	mutex_unlock(&ctx->mapping_lock);
1051 	return nonseekable_open(inode, file);
1052 }
1053 
1054 static int
1055 spufs_signal1_release(struct inode *inode, struct file *file)
1056 {
1057 	struct spufs_inode_info *i = SPUFS_I(inode);
1058 	struct spu_context *ctx = i->i_ctx;
1059 
1060 	mutex_lock(&ctx->mapping_lock);
1061 	if (!--i->i_openers)
1062 		ctx->signal1 = NULL;
1063 	mutex_unlock(&ctx->mapping_lock);
1064 	return 0;
1065 }
1066 
1067 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1068 			size_t len, loff_t *pos)
1069 {
1070 	int ret = 0;
1071 	u32 data;
1072 
1073 	if (len < 4)
1074 		return -EINVAL;
1075 
1076 	if (ctx->csa.spu_chnlcnt_RW[3]) {
1077 		data = ctx->csa.spu_chnldata_RW[3];
1078 		ret = 4;
1079 	}
1080 
1081 	if (!ret)
1082 		goto out;
1083 
1084 	if (copy_to_user(buf, &data, 4))
1085 		return -EFAULT;
1086 
1087 out:
1088 	return ret;
1089 }
1090 
1091 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
1092 			size_t len, loff_t *pos)
1093 {
1094 	int ret;
1095 	struct spu_context *ctx = file->private_data;
1096 
1097 	ret = spu_acquire_saved(ctx);
1098 	if (ret)
1099 		return ret;
1100 	ret = __spufs_signal1_read(ctx, buf, len, pos);
1101 	spu_release_saved(ctx);
1102 
1103 	return ret;
1104 }
1105 
1106 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
1107 			size_t len, loff_t *pos)
1108 {
1109 	struct spu_context *ctx;
1110 	ssize_t ret;
1111 	u32 data;
1112 
1113 	ctx = file->private_data;
1114 
1115 	if (len < 4)
1116 		return -EINVAL;
1117 
1118 	if (copy_from_user(&data, buf, 4))
1119 		return -EFAULT;
1120 
1121 	ret = spu_acquire(ctx);
1122 	if (ret)
1123 		return ret;
1124 	ctx->ops->signal1_write(ctx, data);
1125 	spu_release(ctx);
1126 
1127 	return 4;
1128 }
1129 
1130 static int
1131 spufs_signal1_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1132 {
1133 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1134 	return spufs_ps_fault(vma, vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
1135 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1136 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1137 	 * signal 1 and 2 area
1138 	 */
1139 	return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1140 #else
1141 #error unsupported page size
1142 #endif
1143 }
1144 
1145 static struct vm_operations_struct spufs_signal1_mmap_vmops = {
1146 	.fault = spufs_signal1_mmap_fault,
1147 };
1148 
1149 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1150 {
1151 	if (!(vma->vm_flags & VM_SHARED))
1152 		return -EINVAL;
1153 
1154 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1155 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1156 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1157 
1158 	vma->vm_ops = &spufs_signal1_mmap_vmops;
1159 	return 0;
1160 }
1161 
1162 static const struct file_operations spufs_signal1_fops = {
1163 	.open = spufs_signal1_open,
1164 	.release = spufs_signal1_release,
1165 	.read = spufs_signal1_read,
1166 	.write = spufs_signal1_write,
1167 	.mmap = spufs_signal1_mmap,
1168 };
1169 
1170 static const struct file_operations spufs_signal1_nosched_fops = {
1171 	.open = spufs_signal1_open,
1172 	.release = spufs_signal1_release,
1173 	.write = spufs_signal1_write,
1174 	.mmap = spufs_signal1_mmap,
1175 };
1176 
1177 static int spufs_signal2_open(struct inode *inode, struct file *file)
1178 {
1179 	struct spufs_inode_info *i = SPUFS_I(inode);
1180 	struct spu_context *ctx = i->i_ctx;
1181 
1182 	mutex_lock(&ctx->mapping_lock);
1183 	file->private_data = ctx;
1184 	if (!i->i_openers++)
1185 		ctx->signal2 = inode->i_mapping;
1186 	mutex_unlock(&ctx->mapping_lock);
1187 	return nonseekable_open(inode, file);
1188 }
1189 
1190 static int
1191 spufs_signal2_release(struct inode *inode, struct file *file)
1192 {
1193 	struct spufs_inode_info *i = SPUFS_I(inode);
1194 	struct spu_context *ctx = i->i_ctx;
1195 
1196 	mutex_lock(&ctx->mapping_lock);
1197 	if (!--i->i_openers)
1198 		ctx->signal2 = NULL;
1199 	mutex_unlock(&ctx->mapping_lock);
1200 	return 0;
1201 }
1202 
1203 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1204 			size_t len, loff_t *pos)
1205 {
1206 	int ret = 0;
1207 	u32 data;
1208 
1209 	if (len < 4)
1210 		return -EINVAL;
1211 
1212 	if (ctx->csa.spu_chnlcnt_RW[4]) {
1213 		data =  ctx->csa.spu_chnldata_RW[4];
1214 		ret = 4;
1215 	}
1216 
1217 	if (!ret)
1218 		goto out;
1219 
1220 	if (copy_to_user(buf, &data, 4))
1221 		return -EFAULT;
1222 
1223 out:
1224 	return ret;
1225 }
1226 
1227 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1228 			size_t len, loff_t *pos)
1229 {
1230 	struct spu_context *ctx = file->private_data;
1231 	int ret;
1232 
1233 	ret = spu_acquire_saved(ctx);
1234 	if (ret)
1235 		return ret;
1236 	ret = __spufs_signal2_read(ctx, buf, len, pos);
1237 	spu_release_saved(ctx);
1238 
1239 	return ret;
1240 }
1241 
1242 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1243 			size_t len, loff_t *pos)
1244 {
1245 	struct spu_context *ctx;
1246 	ssize_t ret;
1247 	u32 data;
1248 
1249 	ctx = file->private_data;
1250 
1251 	if (len < 4)
1252 		return -EINVAL;
1253 
1254 	if (copy_from_user(&data, buf, 4))
1255 		return -EFAULT;
1256 
1257 	ret = spu_acquire(ctx);
1258 	if (ret)
1259 		return ret;
1260 	ctx->ops->signal2_write(ctx, data);
1261 	spu_release(ctx);
1262 
1263 	return 4;
1264 }
1265 
1266 #if SPUFS_MMAP_4K
1267 static int
1268 spufs_signal2_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1269 {
1270 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1271 	return spufs_ps_fault(vma, vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
1272 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1273 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1274 	 * signal 1 and 2 area
1275 	 */
1276 	return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1277 #else
1278 #error unsupported page size
1279 #endif
1280 }
1281 
1282 static struct vm_operations_struct spufs_signal2_mmap_vmops = {
1283 	.fault = spufs_signal2_mmap_fault,
1284 };
1285 
1286 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1287 {
1288 	if (!(vma->vm_flags & VM_SHARED))
1289 		return -EINVAL;
1290 
1291 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1292 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1293 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1294 
1295 	vma->vm_ops = &spufs_signal2_mmap_vmops;
1296 	return 0;
1297 }
1298 #else /* SPUFS_MMAP_4K */
1299 #define spufs_signal2_mmap NULL
1300 #endif /* !SPUFS_MMAP_4K */
1301 
1302 static const struct file_operations spufs_signal2_fops = {
1303 	.open = spufs_signal2_open,
1304 	.release = spufs_signal2_release,
1305 	.read = spufs_signal2_read,
1306 	.write = spufs_signal2_write,
1307 	.mmap = spufs_signal2_mmap,
1308 };
1309 
1310 static const struct file_operations spufs_signal2_nosched_fops = {
1311 	.open = spufs_signal2_open,
1312 	.release = spufs_signal2_release,
1313 	.write = spufs_signal2_write,
1314 	.mmap = spufs_signal2_mmap,
1315 };
1316 
1317 /*
1318  * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1319  * work of acquiring (or not) the SPU context before calling through
1320  * to the actual get routine. The set routine is called directly.
1321  */
1322 #define SPU_ATTR_NOACQUIRE	0
1323 #define SPU_ATTR_ACQUIRE	1
1324 #define SPU_ATTR_ACQUIRE_SAVED	2
1325 
1326 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)	\
1327 static int __##__get(void *data, u64 *val)				\
1328 {									\
1329 	struct spu_context *ctx = data;					\
1330 	int ret = 0;							\
1331 									\
1332 	if (__acquire == SPU_ATTR_ACQUIRE) {				\
1333 		ret = spu_acquire(ctx);					\
1334 		if (ret)						\
1335 			return ret;					\
1336 		*val = __get(ctx);					\
1337 		spu_release(ctx);					\
1338 	} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED)	{		\
1339 		ret = spu_acquire_saved(ctx);				\
1340 		if (ret)						\
1341 			return ret;					\
1342 		*val = __get(ctx);					\
1343 		spu_release_saved(ctx);					\
1344 	} else								\
1345 		*val = __get(ctx);					\
1346 									\
1347 	return 0;							\
1348 }									\
1349 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1350 
1351 static int spufs_signal1_type_set(void *data, u64 val)
1352 {
1353 	struct spu_context *ctx = data;
1354 	int ret;
1355 
1356 	ret = spu_acquire(ctx);
1357 	if (ret)
1358 		return ret;
1359 	ctx->ops->signal1_type_set(ctx, val);
1360 	spu_release(ctx);
1361 
1362 	return 0;
1363 }
1364 
1365 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1366 {
1367 	return ctx->ops->signal1_type_get(ctx);
1368 }
1369 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1370 		       spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1371 
1372 
1373 static int spufs_signal2_type_set(void *data, u64 val)
1374 {
1375 	struct spu_context *ctx = data;
1376 	int ret;
1377 
1378 	ret = spu_acquire(ctx);
1379 	if (ret)
1380 		return ret;
1381 	ctx->ops->signal2_type_set(ctx, val);
1382 	spu_release(ctx);
1383 
1384 	return 0;
1385 }
1386 
1387 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1388 {
1389 	return ctx->ops->signal2_type_get(ctx);
1390 }
1391 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1392 		       spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1393 
1394 #if SPUFS_MMAP_4K
1395 static int
1396 spufs_mss_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1397 {
1398 	return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1399 }
1400 
1401 static struct vm_operations_struct spufs_mss_mmap_vmops = {
1402 	.fault = spufs_mss_mmap_fault,
1403 };
1404 
1405 /*
1406  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1407  */
1408 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1409 {
1410 	if (!(vma->vm_flags & VM_SHARED))
1411 		return -EINVAL;
1412 
1413 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1414 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1415 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1416 
1417 	vma->vm_ops = &spufs_mss_mmap_vmops;
1418 	return 0;
1419 }
1420 #else /* SPUFS_MMAP_4K */
1421 #define spufs_mss_mmap NULL
1422 #endif /* !SPUFS_MMAP_4K */
1423 
1424 static int spufs_mss_open(struct inode *inode, struct file *file)
1425 {
1426 	struct spufs_inode_info *i = SPUFS_I(inode);
1427 	struct spu_context *ctx = i->i_ctx;
1428 
1429 	file->private_data = i->i_ctx;
1430 
1431 	mutex_lock(&ctx->mapping_lock);
1432 	if (!i->i_openers++)
1433 		ctx->mss = inode->i_mapping;
1434 	mutex_unlock(&ctx->mapping_lock);
1435 	return nonseekable_open(inode, file);
1436 }
1437 
1438 static int
1439 spufs_mss_release(struct inode *inode, struct file *file)
1440 {
1441 	struct spufs_inode_info *i = SPUFS_I(inode);
1442 	struct spu_context *ctx = i->i_ctx;
1443 
1444 	mutex_lock(&ctx->mapping_lock);
1445 	if (!--i->i_openers)
1446 		ctx->mss = NULL;
1447 	mutex_unlock(&ctx->mapping_lock);
1448 	return 0;
1449 }
1450 
1451 static const struct file_operations spufs_mss_fops = {
1452 	.open	 = spufs_mss_open,
1453 	.release = spufs_mss_release,
1454 	.mmap	 = spufs_mss_mmap,
1455 };
1456 
1457 static int
1458 spufs_psmap_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1459 {
1460 	return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1461 }
1462 
1463 static struct vm_operations_struct spufs_psmap_mmap_vmops = {
1464 	.fault = spufs_psmap_mmap_fault,
1465 };
1466 
1467 /*
1468  * mmap support for full problem state area [0x00000 - 0x1ffff].
1469  */
1470 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1471 {
1472 	if (!(vma->vm_flags & VM_SHARED))
1473 		return -EINVAL;
1474 
1475 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1476 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1477 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1478 
1479 	vma->vm_ops = &spufs_psmap_mmap_vmops;
1480 	return 0;
1481 }
1482 
1483 static int spufs_psmap_open(struct inode *inode, struct file *file)
1484 {
1485 	struct spufs_inode_info *i = SPUFS_I(inode);
1486 	struct spu_context *ctx = i->i_ctx;
1487 
1488 	mutex_lock(&ctx->mapping_lock);
1489 	file->private_data = i->i_ctx;
1490 	if (!i->i_openers++)
1491 		ctx->psmap = inode->i_mapping;
1492 	mutex_unlock(&ctx->mapping_lock);
1493 	return nonseekable_open(inode, file);
1494 }
1495 
1496 static int
1497 spufs_psmap_release(struct inode *inode, struct file *file)
1498 {
1499 	struct spufs_inode_info *i = SPUFS_I(inode);
1500 	struct spu_context *ctx = i->i_ctx;
1501 
1502 	mutex_lock(&ctx->mapping_lock);
1503 	if (!--i->i_openers)
1504 		ctx->psmap = NULL;
1505 	mutex_unlock(&ctx->mapping_lock);
1506 	return 0;
1507 }
1508 
1509 static const struct file_operations spufs_psmap_fops = {
1510 	.open	 = spufs_psmap_open,
1511 	.release = spufs_psmap_release,
1512 	.mmap	 = spufs_psmap_mmap,
1513 };
1514 
1515 
1516 #if SPUFS_MMAP_4K
1517 static int
1518 spufs_mfc_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1519 {
1520 	return spufs_ps_fault(vma, vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1521 }
1522 
1523 static struct vm_operations_struct spufs_mfc_mmap_vmops = {
1524 	.fault = spufs_mfc_mmap_fault,
1525 };
1526 
1527 /*
1528  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1529  */
1530 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1531 {
1532 	if (!(vma->vm_flags & VM_SHARED))
1533 		return -EINVAL;
1534 
1535 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1536 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1537 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1538 
1539 	vma->vm_ops = &spufs_mfc_mmap_vmops;
1540 	return 0;
1541 }
1542 #else /* SPUFS_MMAP_4K */
1543 #define spufs_mfc_mmap NULL
1544 #endif /* !SPUFS_MMAP_4K */
1545 
1546 static int spufs_mfc_open(struct inode *inode, struct file *file)
1547 {
1548 	struct spufs_inode_info *i = SPUFS_I(inode);
1549 	struct spu_context *ctx = i->i_ctx;
1550 
1551 	/* we don't want to deal with DMA into other processes */
1552 	if (ctx->owner != current->mm)
1553 		return -EINVAL;
1554 
1555 	if (atomic_read(&inode->i_count) != 1)
1556 		return -EBUSY;
1557 
1558 	mutex_lock(&ctx->mapping_lock);
1559 	file->private_data = ctx;
1560 	if (!i->i_openers++)
1561 		ctx->mfc = inode->i_mapping;
1562 	mutex_unlock(&ctx->mapping_lock);
1563 	return nonseekable_open(inode, file);
1564 }
1565 
1566 static int
1567 spufs_mfc_release(struct inode *inode, struct file *file)
1568 {
1569 	struct spufs_inode_info *i = SPUFS_I(inode);
1570 	struct spu_context *ctx = i->i_ctx;
1571 
1572 	mutex_lock(&ctx->mapping_lock);
1573 	if (!--i->i_openers)
1574 		ctx->mfc = NULL;
1575 	mutex_unlock(&ctx->mapping_lock);
1576 	return 0;
1577 }
1578 
1579 /* interrupt-level mfc callback function. */
1580 void spufs_mfc_callback(struct spu *spu)
1581 {
1582 	struct spu_context *ctx = spu->ctx;
1583 
1584 	if (!ctx)
1585 		return;
1586 
1587 	wake_up_all(&ctx->mfc_wq);
1588 
1589 	pr_debug("%s %s\n", __func__, spu->name);
1590 	if (ctx->mfc_fasync) {
1591 		u32 free_elements, tagstatus;
1592 		unsigned int mask;
1593 
1594 		/* no need for spu_acquire in interrupt context */
1595 		free_elements = ctx->ops->get_mfc_free_elements(ctx);
1596 		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1597 
1598 		mask = 0;
1599 		if (free_elements & 0xffff)
1600 			mask |= POLLOUT;
1601 		if (tagstatus & ctx->tagwait)
1602 			mask |= POLLIN;
1603 
1604 		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
1605 	}
1606 }
1607 
1608 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1609 {
1610 	/* See if there is one tag group is complete */
1611 	/* FIXME we need locking around tagwait */
1612 	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1613 	ctx->tagwait &= ~*status;
1614 	if (*status)
1615 		return 1;
1616 
1617 	/* enable interrupt waiting for any tag group,
1618 	   may silently fail if interrupts are already enabled */
1619 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1620 	return 0;
1621 }
1622 
1623 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1624 			size_t size, loff_t *pos)
1625 {
1626 	struct spu_context *ctx = file->private_data;
1627 	int ret = -EINVAL;
1628 	u32 status;
1629 
1630 	if (size != 4)
1631 		goto out;
1632 
1633 	ret = spu_acquire(ctx);
1634 	if (ret)
1635 		return ret;
1636 
1637 	ret = -EINVAL;
1638 	if (file->f_flags & O_NONBLOCK) {
1639 		status = ctx->ops->read_mfc_tagstatus(ctx);
1640 		if (!(status & ctx->tagwait))
1641 			ret = -EAGAIN;
1642 		else
1643 			/* XXX(hch): shouldn't we clear ret here? */
1644 			ctx->tagwait &= ~status;
1645 	} else {
1646 		ret = spufs_wait(ctx->mfc_wq,
1647 			   spufs_read_mfc_tagstatus(ctx, &status));
1648 		if (ret)
1649 			goto out;
1650 	}
1651 	spu_release(ctx);
1652 
1653 	ret = 4;
1654 	if (copy_to_user(buffer, &status, 4))
1655 		ret = -EFAULT;
1656 
1657 out:
1658 	return ret;
1659 }
1660 
1661 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1662 {
1663 	pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
1664 		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1665 
1666 	switch (cmd->cmd) {
1667 	case MFC_PUT_CMD:
1668 	case MFC_PUTF_CMD:
1669 	case MFC_PUTB_CMD:
1670 	case MFC_GET_CMD:
1671 	case MFC_GETF_CMD:
1672 	case MFC_GETB_CMD:
1673 		break;
1674 	default:
1675 		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1676 		return -EIO;
1677 	}
1678 
1679 	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1680 		pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
1681 				cmd->ea, cmd->lsa);
1682 		return -EIO;
1683 	}
1684 
1685 	switch (cmd->size & 0xf) {
1686 	case 1:
1687 		break;
1688 	case 2:
1689 		if (cmd->lsa & 1)
1690 			goto error;
1691 		break;
1692 	case 4:
1693 		if (cmd->lsa & 3)
1694 			goto error;
1695 		break;
1696 	case 8:
1697 		if (cmd->lsa & 7)
1698 			goto error;
1699 		break;
1700 	case 0:
1701 		if (cmd->lsa & 15)
1702 			goto error;
1703 		break;
1704 	error:
1705 	default:
1706 		pr_debug("invalid DMA alignment %x for size %x\n",
1707 			cmd->lsa & 0xf, cmd->size);
1708 		return -EIO;
1709 	}
1710 
1711 	if (cmd->size > 16 * 1024) {
1712 		pr_debug("invalid DMA size %x\n", cmd->size);
1713 		return -EIO;
1714 	}
1715 
1716 	if (cmd->tag & 0xfff0) {
1717 		/* we reserve the higher tag numbers for kernel use */
1718 		pr_debug("invalid DMA tag\n");
1719 		return -EIO;
1720 	}
1721 
1722 	if (cmd->class) {
1723 		/* not supported in this version */
1724 		pr_debug("invalid DMA class\n");
1725 		return -EIO;
1726 	}
1727 
1728 	return 0;
1729 }
1730 
1731 static int spu_send_mfc_command(struct spu_context *ctx,
1732 				struct mfc_dma_command cmd,
1733 				int *error)
1734 {
1735 	*error = ctx->ops->send_mfc_command(ctx, &cmd);
1736 	if (*error == -EAGAIN) {
1737 		/* wait for any tag group to complete
1738 		   so we have space for the new command */
1739 		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1740 		/* try again, because the queue might be
1741 		   empty again */
1742 		*error = ctx->ops->send_mfc_command(ctx, &cmd);
1743 		if (*error == -EAGAIN)
1744 			return 0;
1745 	}
1746 	return 1;
1747 }
1748 
1749 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1750 			size_t size, loff_t *pos)
1751 {
1752 	struct spu_context *ctx = file->private_data;
1753 	struct mfc_dma_command cmd;
1754 	int ret = -EINVAL;
1755 
1756 	if (size != sizeof cmd)
1757 		goto out;
1758 
1759 	ret = -EFAULT;
1760 	if (copy_from_user(&cmd, buffer, sizeof cmd))
1761 		goto out;
1762 
1763 	ret = spufs_check_valid_dma(&cmd);
1764 	if (ret)
1765 		goto out;
1766 
1767 	ret = spu_acquire(ctx);
1768 	if (ret)
1769 		goto out;
1770 
1771 	ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1772 	if (ret)
1773 		goto out;
1774 
1775 	if (file->f_flags & O_NONBLOCK) {
1776 		ret = ctx->ops->send_mfc_command(ctx, &cmd);
1777 	} else {
1778 		int status;
1779 		ret = spufs_wait(ctx->mfc_wq,
1780 				 spu_send_mfc_command(ctx, cmd, &status));
1781 		if (ret)
1782 			goto out;
1783 		if (status)
1784 			ret = status;
1785 	}
1786 
1787 	if (ret)
1788 		goto out_unlock;
1789 
1790 	ctx->tagwait |= 1 << cmd.tag;
1791 	ret = size;
1792 
1793 out_unlock:
1794 	spu_release(ctx);
1795 out:
1796 	return ret;
1797 }
1798 
1799 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
1800 {
1801 	struct spu_context *ctx = file->private_data;
1802 	u32 free_elements, tagstatus;
1803 	unsigned int mask;
1804 
1805 	poll_wait(file, &ctx->mfc_wq, wait);
1806 
1807 	/*
1808 	 * For now keep this uninterruptible and also ignore the rule
1809 	 * that poll should not sleep.  Will be fixed later.
1810 	 */
1811 	mutex_lock(&ctx->state_mutex);
1812 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1813 	free_elements = ctx->ops->get_mfc_free_elements(ctx);
1814 	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1815 	spu_release(ctx);
1816 
1817 	mask = 0;
1818 	if (free_elements & 0xffff)
1819 		mask |= POLLOUT | POLLWRNORM;
1820 	if (tagstatus & ctx->tagwait)
1821 		mask |= POLLIN | POLLRDNORM;
1822 
1823 	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1824 		free_elements, tagstatus, ctx->tagwait);
1825 
1826 	return mask;
1827 }
1828 
1829 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1830 {
1831 	struct spu_context *ctx = file->private_data;
1832 	int ret;
1833 
1834 	ret = spu_acquire(ctx);
1835 	if (ret)
1836 		goto out;
1837 #if 0
1838 /* this currently hangs */
1839 	ret = spufs_wait(ctx->mfc_wq,
1840 			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1841 	if (ret)
1842 		goto out;
1843 	ret = spufs_wait(ctx->mfc_wq,
1844 			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1845 	if (ret)
1846 		goto out;
1847 #else
1848 	ret = 0;
1849 #endif
1850 	spu_release(ctx);
1851 out:
1852 	return ret;
1853 }
1854 
1855 static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
1856 			   int datasync)
1857 {
1858 	return spufs_mfc_flush(file, NULL);
1859 }
1860 
1861 static int spufs_mfc_fasync(int fd, struct file *file, int on)
1862 {
1863 	struct spu_context *ctx = file->private_data;
1864 
1865 	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
1866 }
1867 
1868 static const struct file_operations spufs_mfc_fops = {
1869 	.open	 = spufs_mfc_open,
1870 	.release = spufs_mfc_release,
1871 	.read	 = spufs_mfc_read,
1872 	.write	 = spufs_mfc_write,
1873 	.poll	 = spufs_mfc_poll,
1874 	.flush	 = spufs_mfc_flush,
1875 	.fsync	 = spufs_mfc_fsync,
1876 	.fasync	 = spufs_mfc_fasync,
1877 	.mmap	 = spufs_mfc_mmap,
1878 };
1879 
1880 static int spufs_npc_set(void *data, u64 val)
1881 {
1882 	struct spu_context *ctx = data;
1883 	int ret;
1884 
1885 	ret = spu_acquire(ctx);
1886 	if (ret)
1887 		return ret;
1888 	ctx->ops->npc_write(ctx, val);
1889 	spu_release(ctx);
1890 
1891 	return 0;
1892 }
1893 
1894 static u64 spufs_npc_get(struct spu_context *ctx)
1895 {
1896 	return ctx->ops->npc_read(ctx);
1897 }
1898 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1899 		       "0x%llx\n", SPU_ATTR_ACQUIRE);
1900 
1901 static int spufs_decr_set(void *data, u64 val)
1902 {
1903 	struct spu_context *ctx = data;
1904 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1905 	int ret;
1906 
1907 	ret = spu_acquire_saved(ctx);
1908 	if (ret)
1909 		return ret;
1910 	lscsa->decr.slot[0] = (u32) val;
1911 	spu_release_saved(ctx);
1912 
1913 	return 0;
1914 }
1915 
1916 static u64 spufs_decr_get(struct spu_context *ctx)
1917 {
1918 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1919 	return lscsa->decr.slot[0];
1920 }
1921 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1922 		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1923 
1924 static int spufs_decr_status_set(void *data, u64 val)
1925 {
1926 	struct spu_context *ctx = data;
1927 	int ret;
1928 
1929 	ret = spu_acquire_saved(ctx);
1930 	if (ret)
1931 		return ret;
1932 	if (val)
1933 		ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1934 	else
1935 		ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1936 	spu_release_saved(ctx);
1937 
1938 	return 0;
1939 }
1940 
1941 static u64 spufs_decr_status_get(struct spu_context *ctx)
1942 {
1943 	if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1944 		return SPU_DECR_STATUS_RUNNING;
1945 	else
1946 		return 0;
1947 }
1948 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1949 		       spufs_decr_status_set, "0x%llx\n",
1950 		       SPU_ATTR_ACQUIRE_SAVED);
1951 
1952 static int spufs_event_mask_set(void *data, u64 val)
1953 {
1954 	struct spu_context *ctx = data;
1955 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1956 	int ret;
1957 
1958 	ret = spu_acquire_saved(ctx);
1959 	if (ret)
1960 		return ret;
1961 	lscsa->event_mask.slot[0] = (u32) val;
1962 	spu_release_saved(ctx);
1963 
1964 	return 0;
1965 }
1966 
1967 static u64 spufs_event_mask_get(struct spu_context *ctx)
1968 {
1969 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1970 	return lscsa->event_mask.slot[0];
1971 }
1972 
1973 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1974 		       spufs_event_mask_set, "0x%llx\n",
1975 		       SPU_ATTR_ACQUIRE_SAVED);
1976 
1977 static u64 spufs_event_status_get(struct spu_context *ctx)
1978 {
1979 	struct spu_state *state = &ctx->csa;
1980 	u64 stat;
1981 	stat = state->spu_chnlcnt_RW[0];
1982 	if (stat)
1983 		return state->spu_chnldata_RW[0];
1984 	return 0;
1985 }
1986 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1987 		       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1988 
1989 static int spufs_srr0_set(void *data, u64 val)
1990 {
1991 	struct spu_context *ctx = data;
1992 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1993 	int ret;
1994 
1995 	ret = spu_acquire_saved(ctx);
1996 	if (ret)
1997 		return ret;
1998 	lscsa->srr0.slot[0] = (u32) val;
1999 	spu_release_saved(ctx);
2000 
2001 	return 0;
2002 }
2003 
2004 static u64 spufs_srr0_get(struct spu_context *ctx)
2005 {
2006 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
2007 	return lscsa->srr0.slot[0];
2008 }
2009 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
2010 		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
2011 
2012 static u64 spufs_id_get(struct spu_context *ctx)
2013 {
2014 	u64 num;
2015 
2016 	if (ctx->state == SPU_STATE_RUNNABLE)
2017 		num = ctx->spu->number;
2018 	else
2019 		num = (unsigned int)-1;
2020 
2021 	return num;
2022 }
2023 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
2024 		       SPU_ATTR_ACQUIRE)
2025 
2026 static u64 spufs_object_id_get(struct spu_context *ctx)
2027 {
2028 	/* FIXME: Should there really be no locking here? */
2029 	return ctx->object_id;
2030 }
2031 
2032 static int spufs_object_id_set(void *data, u64 id)
2033 {
2034 	struct spu_context *ctx = data;
2035 	ctx->object_id = id;
2036 
2037 	return 0;
2038 }
2039 
2040 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
2041 		       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
2042 
2043 static u64 spufs_lslr_get(struct spu_context *ctx)
2044 {
2045 	return ctx->csa.priv2.spu_lslr_RW;
2046 }
2047 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
2048 		       SPU_ATTR_ACQUIRE_SAVED);
2049 
2050 static int spufs_info_open(struct inode *inode, struct file *file)
2051 {
2052 	struct spufs_inode_info *i = SPUFS_I(inode);
2053 	struct spu_context *ctx = i->i_ctx;
2054 	file->private_data = ctx;
2055 	return 0;
2056 }
2057 
2058 static int spufs_caps_show(struct seq_file *s, void *private)
2059 {
2060 	struct spu_context *ctx = s->private;
2061 
2062 	if (!(ctx->flags & SPU_CREATE_NOSCHED))
2063 		seq_puts(s, "sched\n");
2064 	if (!(ctx->flags & SPU_CREATE_ISOLATE))
2065 		seq_puts(s, "step\n");
2066 	return 0;
2067 }
2068 
2069 static int spufs_caps_open(struct inode *inode, struct file *file)
2070 {
2071 	return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
2072 }
2073 
2074 static const struct file_operations spufs_caps_fops = {
2075 	.open		= spufs_caps_open,
2076 	.read		= seq_read,
2077 	.llseek		= seq_lseek,
2078 	.release	= single_release,
2079 };
2080 
2081 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
2082 			char __user *buf, size_t len, loff_t *pos)
2083 {
2084 	u32 data;
2085 
2086 	/* EOF if there's no entry in the mbox */
2087 	if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
2088 		return 0;
2089 
2090 	data = ctx->csa.prob.pu_mb_R;
2091 
2092 	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2093 }
2094 
2095 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
2096 				   size_t len, loff_t *pos)
2097 {
2098 	int ret;
2099 	struct spu_context *ctx = file->private_data;
2100 
2101 	if (!access_ok(VERIFY_WRITE, buf, len))
2102 		return -EFAULT;
2103 
2104 	ret = spu_acquire_saved(ctx);
2105 	if (ret)
2106 		return ret;
2107 	spin_lock(&ctx->csa.register_lock);
2108 	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2109 	spin_unlock(&ctx->csa.register_lock);
2110 	spu_release_saved(ctx);
2111 
2112 	return ret;
2113 }
2114 
2115 static const struct file_operations spufs_mbox_info_fops = {
2116 	.open = spufs_info_open,
2117 	.read = spufs_mbox_info_read,
2118 	.llseek  = generic_file_llseek,
2119 };
2120 
2121 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
2122 				char __user *buf, size_t len, loff_t *pos)
2123 {
2124 	u32 data;
2125 
2126 	/* EOF if there's no entry in the ibox */
2127 	if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
2128 		return 0;
2129 
2130 	data = ctx->csa.priv2.puint_mb_R;
2131 
2132 	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2133 }
2134 
2135 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
2136 				   size_t len, loff_t *pos)
2137 {
2138 	struct spu_context *ctx = file->private_data;
2139 	int ret;
2140 
2141 	if (!access_ok(VERIFY_WRITE, buf, len))
2142 		return -EFAULT;
2143 
2144 	ret = spu_acquire_saved(ctx);
2145 	if (ret)
2146 		return ret;
2147 	spin_lock(&ctx->csa.register_lock);
2148 	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2149 	spin_unlock(&ctx->csa.register_lock);
2150 	spu_release_saved(ctx);
2151 
2152 	return ret;
2153 }
2154 
2155 static const struct file_operations spufs_ibox_info_fops = {
2156 	.open = spufs_info_open,
2157 	.read = spufs_ibox_info_read,
2158 	.llseek  = generic_file_llseek,
2159 };
2160 
2161 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
2162 			char __user *buf, size_t len, loff_t *pos)
2163 {
2164 	int i, cnt;
2165 	u32 data[4];
2166 	u32 wbox_stat;
2167 
2168 	wbox_stat = ctx->csa.prob.mb_stat_R;
2169 	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
2170 	for (i = 0; i < cnt; i++) {
2171 		data[i] = ctx->csa.spu_mailbox_data[i];
2172 	}
2173 
2174 	return simple_read_from_buffer(buf, len, pos, &data,
2175 				cnt * sizeof(u32));
2176 }
2177 
2178 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2179 				   size_t len, loff_t *pos)
2180 {
2181 	struct spu_context *ctx = file->private_data;
2182 	int ret;
2183 
2184 	if (!access_ok(VERIFY_WRITE, buf, len))
2185 		return -EFAULT;
2186 
2187 	ret = spu_acquire_saved(ctx);
2188 	if (ret)
2189 		return ret;
2190 	spin_lock(&ctx->csa.register_lock);
2191 	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2192 	spin_unlock(&ctx->csa.register_lock);
2193 	spu_release_saved(ctx);
2194 
2195 	return ret;
2196 }
2197 
2198 static const struct file_operations spufs_wbox_info_fops = {
2199 	.open = spufs_info_open,
2200 	.read = spufs_wbox_info_read,
2201 	.llseek  = generic_file_llseek,
2202 };
2203 
2204 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
2205 			char __user *buf, size_t len, loff_t *pos)
2206 {
2207 	struct spu_dma_info info;
2208 	struct mfc_cq_sr *qp, *spuqp;
2209 	int i;
2210 
2211 	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2212 	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2213 	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
2214 	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2215 	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2216 	for (i = 0; i < 16; i++) {
2217 		qp = &info.dma_info_command_data[i];
2218 		spuqp = &ctx->csa.priv2.spuq[i];
2219 
2220 		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2221 		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2222 		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2223 		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2224 	}
2225 
2226 	return simple_read_from_buffer(buf, len, pos, &info,
2227 				sizeof info);
2228 }
2229 
2230 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2231 			      size_t len, loff_t *pos)
2232 {
2233 	struct spu_context *ctx = file->private_data;
2234 	int ret;
2235 
2236 	if (!access_ok(VERIFY_WRITE, buf, len))
2237 		return -EFAULT;
2238 
2239 	ret = spu_acquire_saved(ctx);
2240 	if (ret)
2241 		return ret;
2242 	spin_lock(&ctx->csa.register_lock);
2243 	ret = __spufs_dma_info_read(ctx, buf, len, pos);
2244 	spin_unlock(&ctx->csa.register_lock);
2245 	spu_release_saved(ctx);
2246 
2247 	return ret;
2248 }
2249 
2250 static const struct file_operations spufs_dma_info_fops = {
2251 	.open = spufs_info_open,
2252 	.read = spufs_dma_info_read,
2253 };
2254 
2255 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
2256 			char __user *buf, size_t len, loff_t *pos)
2257 {
2258 	struct spu_proxydma_info info;
2259 	struct mfc_cq_sr *qp, *puqp;
2260 	int ret = sizeof info;
2261 	int i;
2262 
2263 	if (len < ret)
2264 		return -EINVAL;
2265 
2266 	if (!access_ok(VERIFY_WRITE, buf, len))
2267 		return -EFAULT;
2268 
2269 	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2270 	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2271 	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2272 	for (i = 0; i < 8; i++) {
2273 		qp = &info.proxydma_info_command_data[i];
2274 		puqp = &ctx->csa.priv2.puq[i];
2275 
2276 		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2277 		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2278 		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2279 		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2280 	}
2281 
2282 	return simple_read_from_buffer(buf, len, pos, &info,
2283 				sizeof info);
2284 }
2285 
2286 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2287 				   size_t len, loff_t *pos)
2288 {
2289 	struct spu_context *ctx = file->private_data;
2290 	int ret;
2291 
2292 	ret = spu_acquire_saved(ctx);
2293 	if (ret)
2294 		return ret;
2295 	spin_lock(&ctx->csa.register_lock);
2296 	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2297 	spin_unlock(&ctx->csa.register_lock);
2298 	spu_release_saved(ctx);
2299 
2300 	return ret;
2301 }
2302 
2303 static const struct file_operations spufs_proxydma_info_fops = {
2304 	.open = spufs_info_open,
2305 	.read = spufs_proxydma_info_read,
2306 };
2307 
2308 static int spufs_show_tid(struct seq_file *s, void *private)
2309 {
2310 	struct spu_context *ctx = s->private;
2311 
2312 	seq_printf(s, "%d\n", ctx->tid);
2313 	return 0;
2314 }
2315 
2316 static int spufs_tid_open(struct inode *inode, struct file *file)
2317 {
2318 	return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2319 }
2320 
2321 static const struct file_operations spufs_tid_fops = {
2322 	.open		= spufs_tid_open,
2323 	.read		= seq_read,
2324 	.llseek		= seq_lseek,
2325 	.release	= single_release,
2326 };
2327 
2328 static const char *ctx_state_names[] = {
2329 	"user", "system", "iowait", "loaded"
2330 };
2331 
2332 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2333 		enum spu_utilization_state state)
2334 {
2335 	struct timespec ts;
2336 	unsigned long long time = ctx->stats.times[state];
2337 
2338 	/*
2339 	 * In general, utilization statistics are updated by the controlling
2340 	 * thread as the spu context moves through various well defined
2341 	 * state transitions, but if the context is lazily loaded its
2342 	 * utilization statistics are not updated as the controlling thread
2343 	 * is not tightly coupled with the execution of the spu context.  We
2344 	 * calculate and apply the time delta from the last recorded state
2345 	 * of the spu context.
2346 	 */
2347 	if (ctx->spu && ctx->stats.util_state == state) {
2348 		ktime_get_ts(&ts);
2349 		time += timespec_to_ns(&ts) - ctx->stats.tstamp;
2350 	}
2351 
2352 	return time / NSEC_PER_MSEC;
2353 }
2354 
2355 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2356 {
2357 	unsigned long long slb_flts = ctx->stats.slb_flt;
2358 
2359 	if (ctx->state == SPU_STATE_RUNNABLE) {
2360 		slb_flts += (ctx->spu->stats.slb_flt -
2361 			     ctx->stats.slb_flt_base);
2362 	}
2363 
2364 	return slb_flts;
2365 }
2366 
2367 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2368 {
2369 	unsigned long long class2_intrs = ctx->stats.class2_intr;
2370 
2371 	if (ctx->state == SPU_STATE_RUNNABLE) {
2372 		class2_intrs += (ctx->spu->stats.class2_intr -
2373 				 ctx->stats.class2_intr_base);
2374 	}
2375 
2376 	return class2_intrs;
2377 }
2378 
2379 
2380 static int spufs_show_stat(struct seq_file *s, void *private)
2381 {
2382 	struct spu_context *ctx = s->private;
2383 	int ret;
2384 
2385 	ret = spu_acquire(ctx);
2386 	if (ret)
2387 		return ret;
2388 
2389 	seq_printf(s, "%s %llu %llu %llu %llu "
2390 		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2391 		ctx_state_names[ctx->stats.util_state],
2392 		spufs_acct_time(ctx, SPU_UTIL_USER),
2393 		spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2394 		spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2395 		spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2396 		ctx->stats.vol_ctx_switch,
2397 		ctx->stats.invol_ctx_switch,
2398 		spufs_slb_flts(ctx),
2399 		ctx->stats.hash_flt,
2400 		ctx->stats.min_flt,
2401 		ctx->stats.maj_flt,
2402 		spufs_class2_intrs(ctx),
2403 		ctx->stats.libassist);
2404 	spu_release(ctx);
2405 	return 0;
2406 }
2407 
2408 static int spufs_stat_open(struct inode *inode, struct file *file)
2409 {
2410 	return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2411 }
2412 
2413 static const struct file_operations spufs_stat_fops = {
2414 	.open		= spufs_stat_open,
2415 	.read		= seq_read,
2416 	.llseek		= seq_lseek,
2417 	.release	= single_release,
2418 };
2419 
2420 static inline int spufs_switch_log_used(struct spu_context *ctx)
2421 {
2422 	return (ctx->switch_log->head - ctx->switch_log->tail) %
2423 		SWITCH_LOG_BUFSIZE;
2424 }
2425 
2426 static inline int spufs_switch_log_avail(struct spu_context *ctx)
2427 {
2428 	return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
2429 }
2430 
2431 static int spufs_switch_log_open(struct inode *inode, struct file *file)
2432 {
2433 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2434 	int rc;
2435 
2436 	rc = spu_acquire(ctx);
2437 	if (rc)
2438 		return rc;
2439 
2440 	if (ctx->switch_log) {
2441 		rc = -EBUSY;
2442 		goto out;
2443 	}
2444 
2445 	ctx->switch_log = kmalloc(sizeof(struct switch_log) +
2446 		SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry),
2447 		GFP_KERNEL);
2448 
2449 	if (!ctx->switch_log) {
2450 		rc = -ENOMEM;
2451 		goto out;
2452 	}
2453 
2454 	ctx->switch_log->head = ctx->switch_log->tail = 0;
2455 	init_waitqueue_head(&ctx->switch_log->wait);
2456 	rc = 0;
2457 
2458 out:
2459 	spu_release(ctx);
2460 	return rc;
2461 }
2462 
2463 static int spufs_switch_log_release(struct inode *inode, struct file *file)
2464 {
2465 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2466 	int rc;
2467 
2468 	rc = spu_acquire(ctx);
2469 	if (rc)
2470 		return rc;
2471 
2472 	kfree(ctx->switch_log);
2473 	ctx->switch_log = NULL;
2474 	spu_release(ctx);
2475 
2476 	return 0;
2477 }
2478 
2479 static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
2480 {
2481 	struct switch_log_entry *p;
2482 
2483 	p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;
2484 
2485 	return snprintf(tbuf, n, "%u.%09u %d %u %u %llu\n",
2486 			(unsigned int) p->tstamp.tv_sec,
2487 			(unsigned int) p->tstamp.tv_nsec,
2488 			p->spu_id,
2489 			(unsigned int) p->type,
2490 			(unsigned int) p->val,
2491 			(unsigned long long) p->timebase);
2492 }
2493 
2494 static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
2495 			     size_t len, loff_t *ppos)
2496 {
2497 	struct inode *inode = file->f_path.dentry->d_inode;
2498 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2499 	int error = 0, cnt = 0;
2500 
2501 	if (!buf || len < 0)
2502 		return -EINVAL;
2503 
2504 	error = spu_acquire(ctx);
2505 	if (error)
2506 		return error;
2507 
2508 	while (cnt < len) {
2509 		char tbuf[128];
2510 		int width;
2511 
2512 		if (spufs_switch_log_used(ctx) == 0) {
2513 			if (cnt > 0) {
2514 				/* If there's data ready to go, we can
2515 				 * just return straight away */
2516 				break;
2517 
2518 			} else if (file->f_flags & O_NONBLOCK) {
2519 				error = -EAGAIN;
2520 				break;
2521 
2522 			} else {
2523 				/* spufs_wait will drop the mutex and
2524 				 * re-acquire, but since we're in read(), the
2525 				 * file cannot be _released (and so
2526 				 * ctx->switch_log is stable).
2527 				 */
2528 				error = spufs_wait(ctx->switch_log->wait,
2529 						spufs_switch_log_used(ctx) > 0);
2530 
2531 				/* On error, spufs_wait returns without the
2532 				 * state mutex held */
2533 				if (error)
2534 					return error;
2535 
2536 				/* We may have had entries read from underneath
2537 				 * us while we dropped the mutex in spufs_wait,
2538 				 * so re-check */
2539 				if (spufs_switch_log_used(ctx) == 0)
2540 					continue;
2541 			}
2542 		}
2543 
2544 		width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2545 		if (width < len)
2546 			ctx->switch_log->tail =
2547 				(ctx->switch_log->tail + 1) %
2548 				 SWITCH_LOG_BUFSIZE;
2549 		else
2550 			/* If the record is greater than space available return
2551 			 * partial buffer (so far) */
2552 			break;
2553 
2554 		error = copy_to_user(buf + cnt, tbuf, width);
2555 		if (error)
2556 			break;
2557 		cnt += width;
2558 	}
2559 
2560 	spu_release(ctx);
2561 
2562 	return cnt == 0 ? error : cnt;
2563 }
2564 
2565 static unsigned int spufs_switch_log_poll(struct file *file, poll_table *wait)
2566 {
2567 	struct inode *inode = file->f_path.dentry->d_inode;
2568 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2569 	unsigned int mask = 0;
2570 	int rc;
2571 
2572 	poll_wait(file, &ctx->switch_log->wait, wait);
2573 
2574 	rc = spu_acquire(ctx);
2575 	if (rc)
2576 		return rc;
2577 
2578 	if (spufs_switch_log_used(ctx) > 0)
2579 		mask |= POLLIN;
2580 
2581 	spu_release(ctx);
2582 
2583 	return mask;
2584 }
2585 
2586 static const struct file_operations spufs_switch_log_fops = {
2587 	.owner		= THIS_MODULE,
2588 	.open		= spufs_switch_log_open,
2589 	.read		= spufs_switch_log_read,
2590 	.poll		= spufs_switch_log_poll,
2591 	.release	= spufs_switch_log_release,
2592 };
2593 
2594 /**
2595  * Log a context switch event to a switch log reader.
2596  *
2597  * Must be called with ctx->state_mutex held.
2598  */
2599 void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
2600 		u32 type, u32 val)
2601 {
2602 	if (!ctx->switch_log)
2603 		return;
2604 
2605 	if (spufs_switch_log_avail(ctx) > 1) {
2606 		struct switch_log_entry *p;
2607 
2608 		p = ctx->switch_log->log + ctx->switch_log->head;
2609 		ktime_get_ts(&p->tstamp);
2610 		p->timebase = get_tb();
2611 		p->spu_id = spu ? spu->number : -1;
2612 		p->type = type;
2613 		p->val = val;
2614 
2615 		ctx->switch_log->head =
2616 			(ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
2617 	}
2618 
2619 	wake_up(&ctx->switch_log->wait);
2620 }
2621 
2622 static int spufs_show_ctx(struct seq_file *s, void *private)
2623 {
2624 	struct spu_context *ctx = s->private;
2625 	u64 mfc_control_RW;
2626 
2627 	mutex_lock(&ctx->state_mutex);
2628 	if (ctx->spu) {
2629 		struct spu *spu = ctx->spu;
2630 		struct spu_priv2 __iomem *priv2 = spu->priv2;
2631 
2632 		spin_lock_irq(&spu->register_lock);
2633 		mfc_control_RW = in_be64(&priv2->mfc_control_RW);
2634 		spin_unlock_irq(&spu->register_lock);
2635 	} else {
2636 		struct spu_state *csa = &ctx->csa;
2637 
2638 		mfc_control_RW = csa->priv2.mfc_control_RW;
2639 	}
2640 
2641 	seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
2642 		" %c %lx %lx %lx %lx %x %x\n",
2643 		ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
2644 		ctx->flags,
2645 		ctx->sched_flags,
2646 		ctx->prio,
2647 		ctx->time_slice,
2648 		ctx->spu ? ctx->spu->number : -1,
2649 		!list_empty(&ctx->rq) ? 'q' : ' ',
2650 		ctx->csa.class_0_pending,
2651 		ctx->csa.class_0_dar,
2652 		ctx->csa.class_1_dsisr,
2653 		mfc_control_RW,
2654 		ctx->ops->runcntl_read(ctx),
2655 		ctx->ops->status_read(ctx));
2656 
2657 	mutex_unlock(&ctx->state_mutex);
2658 
2659 	return 0;
2660 }
2661 
2662 static int spufs_ctx_open(struct inode *inode, struct file *file)
2663 {
2664 	return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
2665 }
2666 
2667 static const struct file_operations spufs_ctx_fops = {
2668 	.open           = spufs_ctx_open,
2669 	.read           = seq_read,
2670 	.llseek         = seq_lseek,
2671 	.release        = single_release,
2672 };
2673 
2674 struct spufs_tree_descr spufs_dir_contents[] = {
2675 	{ "capabilities", &spufs_caps_fops, 0444, },
2676 	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2677 	{ "regs", &spufs_regs_fops,  0666, sizeof(struct spu_reg128[128]), },
2678 	{ "mbox", &spufs_mbox_fops, 0444, },
2679 	{ "ibox", &spufs_ibox_fops, 0444, },
2680 	{ "wbox", &spufs_wbox_fops, 0222, },
2681 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2682 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2683 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2684 	{ "signal1", &spufs_signal1_fops, 0666, },
2685 	{ "signal2", &spufs_signal2_fops, 0666, },
2686 	{ "signal1_type", &spufs_signal1_type, 0666, },
2687 	{ "signal2_type", &spufs_signal2_type, 0666, },
2688 	{ "cntl", &spufs_cntl_fops,  0666, },
2689 	{ "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2690 	{ "lslr", &spufs_lslr_ops, 0444, },
2691 	{ "mfc", &spufs_mfc_fops, 0666, },
2692 	{ "mss", &spufs_mss_fops, 0666, },
2693 	{ "npc", &spufs_npc_ops, 0666, },
2694 	{ "srr0", &spufs_srr0_ops, 0666, },
2695 	{ "decr", &spufs_decr_ops, 0666, },
2696 	{ "decr_status", &spufs_decr_status_ops, 0666, },
2697 	{ "event_mask", &spufs_event_mask_ops, 0666, },
2698 	{ "event_status", &spufs_event_status_ops, 0444, },
2699 	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2700 	{ "phys-id", &spufs_id_ops, 0666, },
2701 	{ "object-id", &spufs_object_id_ops, 0666, },
2702 	{ "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
2703 	{ "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
2704 	{ "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
2705 	{ "dma_info", &spufs_dma_info_fops, 0444,
2706 		sizeof(struct spu_dma_info), },
2707 	{ "proxydma_info", &spufs_proxydma_info_fops, 0444,
2708 		sizeof(struct spu_proxydma_info)},
2709 	{ "tid", &spufs_tid_fops, 0444, },
2710 	{ "stat", &spufs_stat_fops, 0444, },
2711 	{ "switch_log", &spufs_switch_log_fops, 0444 },
2712 	{},
2713 };
2714 
2715 struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2716 	{ "capabilities", &spufs_caps_fops, 0444, },
2717 	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2718 	{ "mbox", &spufs_mbox_fops, 0444, },
2719 	{ "ibox", &spufs_ibox_fops, 0444, },
2720 	{ "wbox", &spufs_wbox_fops, 0222, },
2721 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2722 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2723 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2724 	{ "signal1", &spufs_signal1_nosched_fops, 0222, },
2725 	{ "signal2", &spufs_signal2_nosched_fops, 0222, },
2726 	{ "signal1_type", &spufs_signal1_type, 0666, },
2727 	{ "signal2_type", &spufs_signal2_type, 0666, },
2728 	{ "mss", &spufs_mss_fops, 0666, },
2729 	{ "mfc", &spufs_mfc_fops, 0666, },
2730 	{ "cntl", &spufs_cntl_fops,  0666, },
2731 	{ "npc", &spufs_npc_ops, 0666, },
2732 	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2733 	{ "phys-id", &spufs_id_ops, 0666, },
2734 	{ "object-id", &spufs_object_id_ops, 0666, },
2735 	{ "tid", &spufs_tid_fops, 0444, },
2736 	{ "stat", &spufs_stat_fops, 0444, },
2737 	{},
2738 };
2739 
2740 struct spufs_tree_descr spufs_dir_debug_contents[] = {
2741 	{ ".ctx", &spufs_ctx_fops, 0444, },
2742 	{},
2743 };
2744 
2745 struct spufs_coredump_reader spufs_coredump_read[] = {
2746 	{ "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
2747 	{ "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2748 	{ "lslr", NULL, spufs_lslr_get, 19 },
2749 	{ "decr", NULL, spufs_decr_get, 19 },
2750 	{ "decr_status", NULL, spufs_decr_status_get, 19 },
2751 	{ "mem", __spufs_mem_read, NULL, LS_SIZE, },
2752 	{ "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2753 	{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
2754 	{ "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2755 	{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
2756 	{ "event_mask", NULL, spufs_event_mask_get, 19 },
2757 	{ "event_status", NULL, spufs_event_status_get, 19 },
2758 	{ "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
2759 	{ "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
2760 	{ "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
2761 	{ "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
2762 	{ "proxydma_info", __spufs_proxydma_info_read,
2763 			   NULL, sizeof(struct spu_proxydma_info)},
2764 	{ "object-id", NULL, spufs_object_id_get, 19 },
2765 	{ "npc", NULL, spufs_npc_get, 19 },
2766 	{ NULL },
2767 };
2768