1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * SPU file system -- file contents 4 * 5 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005 6 * 7 * Author: Arnd Bergmann <arndb@de.ibm.com> 8 */ 9 10 #undef DEBUG 11 12 #include <linux/fs.h> 13 #include <linux/ioctl.h> 14 #include <linux/export.h> 15 #include <linux/pagemap.h> 16 #include <linux/poll.h> 17 #include <linux/ptrace.h> 18 #include <linux/seq_file.h> 19 #include <linux/slab.h> 20 21 #include <asm/io.h> 22 #include <asm/time.h> 23 #include <asm/spu.h> 24 #include <asm/spu_info.h> 25 #include <linux/uaccess.h> 26 27 #include "spufs.h" 28 #include "sputrace.h" 29 30 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000) 31 32 /* Simple attribute files */ 33 struct spufs_attr { 34 int (*get)(void *, u64 *); 35 int (*set)(void *, u64); 36 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 37 char set_buf[24]; 38 void *data; 39 const char *fmt; /* format for read operation */ 40 struct mutex mutex; /* protects access to these buffers */ 41 }; 42 43 static int spufs_attr_open(struct inode *inode, struct file *file, 44 int (*get)(void *, u64 *), int (*set)(void *, u64), 45 const char *fmt) 46 { 47 struct spufs_attr *attr; 48 49 attr = kmalloc(sizeof(*attr), GFP_KERNEL); 50 if (!attr) 51 return -ENOMEM; 52 53 attr->get = get; 54 attr->set = set; 55 attr->data = inode->i_private; 56 attr->fmt = fmt; 57 mutex_init(&attr->mutex); 58 file->private_data = attr; 59 60 return nonseekable_open(inode, file); 61 } 62 63 static int spufs_attr_release(struct inode *inode, struct file *file) 64 { 65 kfree(file->private_data); 66 return 0; 67 } 68 69 static ssize_t spufs_attr_read(struct file *file, char __user *buf, 70 size_t len, loff_t *ppos) 71 { 72 struct spufs_attr *attr; 73 size_t size; 74 ssize_t ret; 75 76 attr = file->private_data; 77 if (!attr->get) 78 return -EACCES; 79 80 ret = mutex_lock_interruptible(&attr->mutex); 81 if (ret) 82 return ret; 83 84 if (*ppos) { /* continued read */ 85 size = strlen(attr->get_buf); 86 } else { /* first read */ 87 u64 val; 88 ret = attr->get(attr->data, &val); 89 if (ret) 90 goto out; 91 92 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 93 attr->fmt, (unsigned long long)val); 94 } 95 96 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 97 out: 98 mutex_unlock(&attr->mutex); 99 return ret; 100 } 101 102 static ssize_t spufs_attr_write(struct file *file, const char __user *buf, 103 size_t len, loff_t *ppos) 104 { 105 struct spufs_attr *attr; 106 u64 val; 107 size_t size; 108 ssize_t ret; 109 110 attr = file->private_data; 111 if (!attr->set) 112 return -EACCES; 113 114 ret = mutex_lock_interruptible(&attr->mutex); 115 if (ret) 116 return ret; 117 118 ret = -EFAULT; 119 size = min(sizeof(attr->set_buf) - 1, len); 120 if (copy_from_user(attr->set_buf, buf, size)) 121 goto out; 122 123 ret = len; /* claim we got the whole input */ 124 attr->set_buf[size] = '\0'; 125 val = simple_strtol(attr->set_buf, NULL, 0); 126 attr->set(attr->data, val); 127 out: 128 mutex_unlock(&attr->mutex); 129 return ret; 130 } 131 132 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \ 133 static int __fops ## _open(struct inode *inode, struct file *file) \ 134 { \ 135 __simple_attr_check_format(__fmt, 0ull); \ 136 return spufs_attr_open(inode, file, __get, __set, __fmt); \ 137 } \ 138 static const struct file_operations __fops = { \ 139 .open = __fops ## _open, \ 140 .release = spufs_attr_release, \ 141 .read = spufs_attr_read, \ 142 .write = spufs_attr_write, \ 143 .llseek = generic_file_llseek, \ 144 }; 145 146 147 static int 148 spufs_mem_open(struct inode *inode, struct file *file) 149 { 150 struct spufs_inode_info *i = SPUFS_I(inode); 151 struct spu_context *ctx = i->i_ctx; 152 153 mutex_lock(&ctx->mapping_lock); 154 file->private_data = ctx; 155 if (!i->i_openers++) 156 ctx->local_store = inode->i_mapping; 157 mutex_unlock(&ctx->mapping_lock); 158 return 0; 159 } 160 161 static int 162 spufs_mem_release(struct inode *inode, struct file *file) 163 { 164 struct spufs_inode_info *i = SPUFS_I(inode); 165 struct spu_context *ctx = i->i_ctx; 166 167 mutex_lock(&ctx->mapping_lock); 168 if (!--i->i_openers) 169 ctx->local_store = NULL; 170 mutex_unlock(&ctx->mapping_lock); 171 return 0; 172 } 173 174 static ssize_t 175 __spufs_mem_read(struct spu_context *ctx, char __user *buffer, 176 size_t size, loff_t *pos) 177 { 178 char *local_store = ctx->ops->get_ls(ctx); 179 return simple_read_from_buffer(buffer, size, pos, local_store, 180 LS_SIZE); 181 } 182 183 static ssize_t 184 spufs_mem_read(struct file *file, char __user *buffer, 185 size_t size, loff_t *pos) 186 { 187 struct spu_context *ctx = file->private_data; 188 ssize_t ret; 189 190 ret = spu_acquire(ctx); 191 if (ret) 192 return ret; 193 ret = __spufs_mem_read(ctx, buffer, size, pos); 194 spu_release(ctx); 195 196 return ret; 197 } 198 199 static ssize_t 200 spufs_mem_write(struct file *file, const char __user *buffer, 201 size_t size, loff_t *ppos) 202 { 203 struct spu_context *ctx = file->private_data; 204 char *local_store; 205 loff_t pos = *ppos; 206 int ret; 207 208 if (pos > LS_SIZE) 209 return -EFBIG; 210 211 ret = spu_acquire(ctx); 212 if (ret) 213 return ret; 214 215 local_store = ctx->ops->get_ls(ctx); 216 size = simple_write_to_buffer(local_store, LS_SIZE, ppos, buffer, size); 217 spu_release(ctx); 218 219 return size; 220 } 221 222 static vm_fault_t 223 spufs_mem_mmap_fault(struct vm_fault *vmf) 224 { 225 struct vm_area_struct *vma = vmf->vma; 226 struct spu_context *ctx = vma->vm_file->private_data; 227 unsigned long pfn, offset; 228 vm_fault_t ret; 229 230 offset = vmf->pgoff << PAGE_SHIFT; 231 if (offset >= LS_SIZE) 232 return VM_FAULT_SIGBUS; 233 234 pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n", 235 vmf->address, offset); 236 237 if (spu_acquire(ctx)) 238 return VM_FAULT_NOPAGE; 239 240 if (ctx->state == SPU_STATE_SAVED) { 241 vma->vm_page_prot = pgprot_cached(vma->vm_page_prot); 242 pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset); 243 } else { 244 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot); 245 pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT; 246 } 247 ret = vmf_insert_pfn(vma, vmf->address, pfn); 248 249 spu_release(ctx); 250 251 return ret; 252 } 253 254 static int spufs_mem_mmap_access(struct vm_area_struct *vma, 255 unsigned long address, 256 void *buf, int len, int write) 257 { 258 struct spu_context *ctx = vma->vm_file->private_data; 259 unsigned long offset = address - vma->vm_start; 260 char *local_store; 261 262 if (write && !(vma->vm_flags & VM_WRITE)) 263 return -EACCES; 264 if (spu_acquire(ctx)) 265 return -EINTR; 266 if ((offset + len) > vma->vm_end) 267 len = vma->vm_end - offset; 268 local_store = ctx->ops->get_ls(ctx); 269 if (write) 270 memcpy_toio(local_store + offset, buf, len); 271 else 272 memcpy_fromio(buf, local_store + offset, len); 273 spu_release(ctx); 274 return len; 275 } 276 277 static const struct vm_operations_struct spufs_mem_mmap_vmops = { 278 .fault = spufs_mem_mmap_fault, 279 .access = spufs_mem_mmap_access, 280 }; 281 282 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma) 283 { 284 if (!(vma->vm_flags & VM_SHARED)) 285 return -EINVAL; 286 287 vma->vm_flags |= VM_IO | VM_PFNMAP; 288 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot); 289 290 vma->vm_ops = &spufs_mem_mmap_vmops; 291 return 0; 292 } 293 294 static const struct file_operations spufs_mem_fops = { 295 .open = spufs_mem_open, 296 .release = spufs_mem_release, 297 .read = spufs_mem_read, 298 .write = spufs_mem_write, 299 .llseek = generic_file_llseek, 300 .mmap = spufs_mem_mmap, 301 }; 302 303 static vm_fault_t spufs_ps_fault(struct vm_fault *vmf, 304 unsigned long ps_offs, 305 unsigned long ps_size) 306 { 307 struct spu_context *ctx = vmf->vma->vm_file->private_data; 308 unsigned long area, offset = vmf->pgoff << PAGE_SHIFT; 309 int err = 0; 310 vm_fault_t ret = VM_FAULT_NOPAGE; 311 312 spu_context_nospu_trace(spufs_ps_fault__enter, ctx); 313 314 if (offset >= ps_size) 315 return VM_FAULT_SIGBUS; 316 317 if (fatal_signal_pending(current)) 318 return VM_FAULT_SIGBUS; 319 320 /* 321 * Because we release the mmap_sem, the context may be destroyed while 322 * we're in spu_wait. Grab an extra reference so it isn't destroyed 323 * in the meantime. 324 */ 325 get_spu_context(ctx); 326 327 /* 328 * We have to wait for context to be loaded before we have 329 * pages to hand out to the user, but we don't want to wait 330 * with the mmap_sem held. 331 * It is possible to drop the mmap_sem here, but then we need 332 * to return VM_FAULT_NOPAGE because the mappings may have 333 * hanged. 334 */ 335 if (spu_acquire(ctx)) 336 goto refault; 337 338 if (ctx->state == SPU_STATE_SAVED) { 339 up_read(¤t->mm->mmap_sem); 340 spu_context_nospu_trace(spufs_ps_fault__sleep, ctx); 341 err = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE); 342 spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu); 343 down_read(¤t->mm->mmap_sem); 344 } else { 345 area = ctx->spu->problem_phys + ps_offs; 346 ret = vmf_insert_pfn(vmf->vma, vmf->address, 347 (area + offset) >> PAGE_SHIFT); 348 spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu); 349 } 350 351 if (!err) 352 spu_release(ctx); 353 354 refault: 355 put_spu_context(ctx); 356 return ret; 357 } 358 359 #if SPUFS_MMAP_4K 360 static vm_fault_t spufs_cntl_mmap_fault(struct vm_fault *vmf) 361 { 362 return spufs_ps_fault(vmf, 0x4000, SPUFS_CNTL_MAP_SIZE); 363 } 364 365 static const struct vm_operations_struct spufs_cntl_mmap_vmops = { 366 .fault = spufs_cntl_mmap_fault, 367 }; 368 369 /* 370 * mmap support for problem state control area [0x4000 - 0x4fff]. 371 */ 372 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma) 373 { 374 if (!(vma->vm_flags & VM_SHARED)) 375 return -EINVAL; 376 377 vma->vm_flags |= VM_IO | VM_PFNMAP; 378 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 379 380 vma->vm_ops = &spufs_cntl_mmap_vmops; 381 return 0; 382 } 383 #else /* SPUFS_MMAP_4K */ 384 #define spufs_cntl_mmap NULL 385 #endif /* !SPUFS_MMAP_4K */ 386 387 static int spufs_cntl_get(void *data, u64 *val) 388 { 389 struct spu_context *ctx = data; 390 int ret; 391 392 ret = spu_acquire(ctx); 393 if (ret) 394 return ret; 395 *val = ctx->ops->status_read(ctx); 396 spu_release(ctx); 397 398 return 0; 399 } 400 401 static int spufs_cntl_set(void *data, u64 val) 402 { 403 struct spu_context *ctx = data; 404 int ret; 405 406 ret = spu_acquire(ctx); 407 if (ret) 408 return ret; 409 ctx->ops->runcntl_write(ctx, val); 410 spu_release(ctx); 411 412 return 0; 413 } 414 415 static int spufs_cntl_open(struct inode *inode, struct file *file) 416 { 417 struct spufs_inode_info *i = SPUFS_I(inode); 418 struct spu_context *ctx = i->i_ctx; 419 420 mutex_lock(&ctx->mapping_lock); 421 file->private_data = ctx; 422 if (!i->i_openers++) 423 ctx->cntl = inode->i_mapping; 424 mutex_unlock(&ctx->mapping_lock); 425 return simple_attr_open(inode, file, spufs_cntl_get, 426 spufs_cntl_set, "0x%08lx"); 427 } 428 429 static int 430 spufs_cntl_release(struct inode *inode, struct file *file) 431 { 432 struct spufs_inode_info *i = SPUFS_I(inode); 433 struct spu_context *ctx = i->i_ctx; 434 435 simple_attr_release(inode, file); 436 437 mutex_lock(&ctx->mapping_lock); 438 if (!--i->i_openers) 439 ctx->cntl = NULL; 440 mutex_unlock(&ctx->mapping_lock); 441 return 0; 442 } 443 444 static const struct file_operations spufs_cntl_fops = { 445 .open = spufs_cntl_open, 446 .release = spufs_cntl_release, 447 .read = simple_attr_read, 448 .write = simple_attr_write, 449 .llseek = generic_file_llseek, 450 .mmap = spufs_cntl_mmap, 451 }; 452 453 static int 454 spufs_regs_open(struct inode *inode, struct file *file) 455 { 456 struct spufs_inode_info *i = SPUFS_I(inode); 457 file->private_data = i->i_ctx; 458 return 0; 459 } 460 461 static ssize_t 462 __spufs_regs_read(struct spu_context *ctx, char __user *buffer, 463 size_t size, loff_t *pos) 464 { 465 struct spu_lscsa *lscsa = ctx->csa.lscsa; 466 return simple_read_from_buffer(buffer, size, pos, 467 lscsa->gprs, sizeof lscsa->gprs); 468 } 469 470 static ssize_t 471 spufs_regs_read(struct file *file, char __user *buffer, 472 size_t size, loff_t *pos) 473 { 474 int ret; 475 struct spu_context *ctx = file->private_data; 476 477 /* pre-check for file position: if we'd return EOF, there's no point 478 * causing a deschedule */ 479 if (*pos >= sizeof(ctx->csa.lscsa->gprs)) 480 return 0; 481 482 ret = spu_acquire_saved(ctx); 483 if (ret) 484 return ret; 485 ret = __spufs_regs_read(ctx, buffer, size, pos); 486 spu_release_saved(ctx); 487 return ret; 488 } 489 490 static ssize_t 491 spufs_regs_write(struct file *file, const char __user *buffer, 492 size_t size, loff_t *pos) 493 { 494 struct spu_context *ctx = file->private_data; 495 struct spu_lscsa *lscsa = ctx->csa.lscsa; 496 int ret; 497 498 if (*pos >= sizeof(lscsa->gprs)) 499 return -EFBIG; 500 501 ret = spu_acquire_saved(ctx); 502 if (ret) 503 return ret; 504 505 size = simple_write_to_buffer(lscsa->gprs, sizeof(lscsa->gprs), pos, 506 buffer, size); 507 508 spu_release_saved(ctx); 509 return size; 510 } 511 512 static const struct file_operations spufs_regs_fops = { 513 .open = spufs_regs_open, 514 .read = spufs_regs_read, 515 .write = spufs_regs_write, 516 .llseek = generic_file_llseek, 517 }; 518 519 static ssize_t 520 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer, 521 size_t size, loff_t * pos) 522 { 523 struct spu_lscsa *lscsa = ctx->csa.lscsa; 524 return simple_read_from_buffer(buffer, size, pos, 525 &lscsa->fpcr, sizeof(lscsa->fpcr)); 526 } 527 528 static ssize_t 529 spufs_fpcr_read(struct file *file, char __user * buffer, 530 size_t size, loff_t * pos) 531 { 532 int ret; 533 struct spu_context *ctx = file->private_data; 534 535 ret = spu_acquire_saved(ctx); 536 if (ret) 537 return ret; 538 ret = __spufs_fpcr_read(ctx, buffer, size, pos); 539 spu_release_saved(ctx); 540 return ret; 541 } 542 543 static ssize_t 544 spufs_fpcr_write(struct file *file, const char __user * buffer, 545 size_t size, loff_t * pos) 546 { 547 struct spu_context *ctx = file->private_data; 548 struct spu_lscsa *lscsa = ctx->csa.lscsa; 549 int ret; 550 551 if (*pos >= sizeof(lscsa->fpcr)) 552 return -EFBIG; 553 554 ret = spu_acquire_saved(ctx); 555 if (ret) 556 return ret; 557 558 size = simple_write_to_buffer(&lscsa->fpcr, sizeof(lscsa->fpcr), pos, 559 buffer, size); 560 561 spu_release_saved(ctx); 562 return size; 563 } 564 565 static const struct file_operations spufs_fpcr_fops = { 566 .open = spufs_regs_open, 567 .read = spufs_fpcr_read, 568 .write = spufs_fpcr_write, 569 .llseek = generic_file_llseek, 570 }; 571 572 /* generic open function for all pipe-like files */ 573 static int spufs_pipe_open(struct inode *inode, struct file *file) 574 { 575 struct spufs_inode_info *i = SPUFS_I(inode); 576 file->private_data = i->i_ctx; 577 578 return stream_open(inode, file); 579 } 580 581 /* 582 * Read as many bytes from the mailbox as possible, until 583 * one of the conditions becomes true: 584 * 585 * - no more data available in the mailbox 586 * - end of the user provided buffer 587 * - end of the mapped area 588 */ 589 static ssize_t spufs_mbox_read(struct file *file, char __user *buf, 590 size_t len, loff_t *pos) 591 { 592 struct spu_context *ctx = file->private_data; 593 u32 mbox_data, __user *udata; 594 ssize_t count; 595 596 if (len < 4) 597 return -EINVAL; 598 599 if (!access_ok(buf, len)) 600 return -EFAULT; 601 602 udata = (void __user *)buf; 603 604 count = spu_acquire(ctx); 605 if (count) 606 return count; 607 608 for (count = 0; (count + 4) <= len; count += 4, udata++) { 609 int ret; 610 ret = ctx->ops->mbox_read(ctx, &mbox_data); 611 if (ret == 0) 612 break; 613 614 /* 615 * at the end of the mapped area, we can fault 616 * but still need to return the data we have 617 * read successfully so far. 618 */ 619 ret = __put_user(mbox_data, udata); 620 if (ret) { 621 if (!count) 622 count = -EFAULT; 623 break; 624 } 625 } 626 spu_release(ctx); 627 628 if (!count) 629 count = -EAGAIN; 630 631 return count; 632 } 633 634 static const struct file_operations spufs_mbox_fops = { 635 .open = spufs_pipe_open, 636 .read = spufs_mbox_read, 637 .llseek = no_llseek, 638 }; 639 640 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf, 641 size_t len, loff_t *pos) 642 { 643 struct spu_context *ctx = file->private_data; 644 ssize_t ret; 645 u32 mbox_stat; 646 647 if (len < 4) 648 return -EINVAL; 649 650 ret = spu_acquire(ctx); 651 if (ret) 652 return ret; 653 654 mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff; 655 656 spu_release(ctx); 657 658 if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat)) 659 return -EFAULT; 660 661 return 4; 662 } 663 664 static const struct file_operations spufs_mbox_stat_fops = { 665 .open = spufs_pipe_open, 666 .read = spufs_mbox_stat_read, 667 .llseek = no_llseek, 668 }; 669 670 /* low-level ibox access function */ 671 size_t spu_ibox_read(struct spu_context *ctx, u32 *data) 672 { 673 return ctx->ops->ibox_read(ctx, data); 674 } 675 676 /* interrupt-level ibox callback function. */ 677 void spufs_ibox_callback(struct spu *spu) 678 { 679 struct spu_context *ctx = spu->ctx; 680 681 if (ctx) 682 wake_up_all(&ctx->ibox_wq); 683 } 684 685 /* 686 * Read as many bytes from the interrupt mailbox as possible, until 687 * one of the conditions becomes true: 688 * 689 * - no more data available in the mailbox 690 * - end of the user provided buffer 691 * - end of the mapped area 692 * 693 * If the file is opened without O_NONBLOCK, we wait here until 694 * any data is available, but return when we have been able to 695 * read something. 696 */ 697 static ssize_t spufs_ibox_read(struct file *file, char __user *buf, 698 size_t len, loff_t *pos) 699 { 700 struct spu_context *ctx = file->private_data; 701 u32 ibox_data, __user *udata; 702 ssize_t count; 703 704 if (len < 4) 705 return -EINVAL; 706 707 if (!access_ok(buf, len)) 708 return -EFAULT; 709 710 udata = (void __user *)buf; 711 712 count = spu_acquire(ctx); 713 if (count) 714 goto out; 715 716 /* wait only for the first element */ 717 count = 0; 718 if (file->f_flags & O_NONBLOCK) { 719 if (!spu_ibox_read(ctx, &ibox_data)) { 720 count = -EAGAIN; 721 goto out_unlock; 722 } 723 } else { 724 count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data)); 725 if (count) 726 goto out; 727 } 728 729 /* if we can't write at all, return -EFAULT */ 730 count = __put_user(ibox_data, udata); 731 if (count) 732 goto out_unlock; 733 734 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) { 735 int ret; 736 ret = ctx->ops->ibox_read(ctx, &ibox_data); 737 if (ret == 0) 738 break; 739 /* 740 * at the end of the mapped area, we can fault 741 * but still need to return the data we have 742 * read successfully so far. 743 */ 744 ret = __put_user(ibox_data, udata); 745 if (ret) 746 break; 747 } 748 749 out_unlock: 750 spu_release(ctx); 751 out: 752 return count; 753 } 754 755 static __poll_t spufs_ibox_poll(struct file *file, poll_table *wait) 756 { 757 struct spu_context *ctx = file->private_data; 758 __poll_t mask; 759 760 poll_wait(file, &ctx->ibox_wq, wait); 761 762 /* 763 * For now keep this uninterruptible and also ignore the rule 764 * that poll should not sleep. Will be fixed later. 765 */ 766 mutex_lock(&ctx->state_mutex); 767 mask = ctx->ops->mbox_stat_poll(ctx, EPOLLIN | EPOLLRDNORM); 768 spu_release(ctx); 769 770 return mask; 771 } 772 773 static const struct file_operations spufs_ibox_fops = { 774 .open = spufs_pipe_open, 775 .read = spufs_ibox_read, 776 .poll = spufs_ibox_poll, 777 .llseek = no_llseek, 778 }; 779 780 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf, 781 size_t len, loff_t *pos) 782 { 783 struct spu_context *ctx = file->private_data; 784 ssize_t ret; 785 u32 ibox_stat; 786 787 if (len < 4) 788 return -EINVAL; 789 790 ret = spu_acquire(ctx); 791 if (ret) 792 return ret; 793 ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff; 794 spu_release(ctx); 795 796 if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat)) 797 return -EFAULT; 798 799 return 4; 800 } 801 802 static const struct file_operations spufs_ibox_stat_fops = { 803 .open = spufs_pipe_open, 804 .read = spufs_ibox_stat_read, 805 .llseek = no_llseek, 806 }; 807 808 /* low-level mailbox write */ 809 size_t spu_wbox_write(struct spu_context *ctx, u32 data) 810 { 811 return ctx->ops->wbox_write(ctx, data); 812 } 813 814 /* interrupt-level wbox callback function. */ 815 void spufs_wbox_callback(struct spu *spu) 816 { 817 struct spu_context *ctx = spu->ctx; 818 819 if (ctx) 820 wake_up_all(&ctx->wbox_wq); 821 } 822 823 /* 824 * Write as many bytes to the interrupt mailbox as possible, until 825 * one of the conditions becomes true: 826 * 827 * - the mailbox is full 828 * - end of the user provided buffer 829 * - end of the mapped area 830 * 831 * If the file is opened without O_NONBLOCK, we wait here until 832 * space is available, but return when we have been able to 833 * write something. 834 */ 835 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf, 836 size_t len, loff_t *pos) 837 { 838 struct spu_context *ctx = file->private_data; 839 u32 wbox_data, __user *udata; 840 ssize_t count; 841 842 if (len < 4) 843 return -EINVAL; 844 845 udata = (void __user *)buf; 846 if (!access_ok(buf, len)) 847 return -EFAULT; 848 849 if (__get_user(wbox_data, udata)) 850 return -EFAULT; 851 852 count = spu_acquire(ctx); 853 if (count) 854 goto out; 855 856 /* 857 * make sure we can at least write one element, by waiting 858 * in case of !O_NONBLOCK 859 */ 860 count = 0; 861 if (file->f_flags & O_NONBLOCK) { 862 if (!spu_wbox_write(ctx, wbox_data)) { 863 count = -EAGAIN; 864 goto out_unlock; 865 } 866 } else { 867 count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data)); 868 if (count) 869 goto out; 870 } 871 872 873 /* write as much as possible */ 874 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) { 875 int ret; 876 ret = __get_user(wbox_data, udata); 877 if (ret) 878 break; 879 880 ret = spu_wbox_write(ctx, wbox_data); 881 if (ret == 0) 882 break; 883 } 884 885 out_unlock: 886 spu_release(ctx); 887 out: 888 return count; 889 } 890 891 static __poll_t spufs_wbox_poll(struct file *file, poll_table *wait) 892 { 893 struct spu_context *ctx = file->private_data; 894 __poll_t mask; 895 896 poll_wait(file, &ctx->wbox_wq, wait); 897 898 /* 899 * For now keep this uninterruptible and also ignore the rule 900 * that poll should not sleep. Will be fixed later. 901 */ 902 mutex_lock(&ctx->state_mutex); 903 mask = ctx->ops->mbox_stat_poll(ctx, EPOLLOUT | EPOLLWRNORM); 904 spu_release(ctx); 905 906 return mask; 907 } 908 909 static const struct file_operations spufs_wbox_fops = { 910 .open = spufs_pipe_open, 911 .write = spufs_wbox_write, 912 .poll = spufs_wbox_poll, 913 .llseek = no_llseek, 914 }; 915 916 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf, 917 size_t len, loff_t *pos) 918 { 919 struct spu_context *ctx = file->private_data; 920 ssize_t ret; 921 u32 wbox_stat; 922 923 if (len < 4) 924 return -EINVAL; 925 926 ret = spu_acquire(ctx); 927 if (ret) 928 return ret; 929 wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff; 930 spu_release(ctx); 931 932 if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat)) 933 return -EFAULT; 934 935 return 4; 936 } 937 938 static const struct file_operations spufs_wbox_stat_fops = { 939 .open = spufs_pipe_open, 940 .read = spufs_wbox_stat_read, 941 .llseek = no_llseek, 942 }; 943 944 static int spufs_signal1_open(struct inode *inode, struct file *file) 945 { 946 struct spufs_inode_info *i = SPUFS_I(inode); 947 struct spu_context *ctx = i->i_ctx; 948 949 mutex_lock(&ctx->mapping_lock); 950 file->private_data = ctx; 951 if (!i->i_openers++) 952 ctx->signal1 = inode->i_mapping; 953 mutex_unlock(&ctx->mapping_lock); 954 return nonseekable_open(inode, file); 955 } 956 957 static int 958 spufs_signal1_release(struct inode *inode, struct file *file) 959 { 960 struct spufs_inode_info *i = SPUFS_I(inode); 961 struct spu_context *ctx = i->i_ctx; 962 963 mutex_lock(&ctx->mapping_lock); 964 if (!--i->i_openers) 965 ctx->signal1 = NULL; 966 mutex_unlock(&ctx->mapping_lock); 967 return 0; 968 } 969 970 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf, 971 size_t len, loff_t *pos) 972 { 973 int ret = 0; 974 u32 data; 975 976 if (len < 4) 977 return -EINVAL; 978 979 if (ctx->csa.spu_chnlcnt_RW[3]) { 980 data = ctx->csa.spu_chnldata_RW[3]; 981 ret = 4; 982 } 983 984 if (!ret) 985 goto out; 986 987 if (copy_to_user(buf, &data, 4)) 988 return -EFAULT; 989 990 out: 991 return ret; 992 } 993 994 static ssize_t spufs_signal1_read(struct file *file, char __user *buf, 995 size_t len, loff_t *pos) 996 { 997 int ret; 998 struct spu_context *ctx = file->private_data; 999 1000 ret = spu_acquire_saved(ctx); 1001 if (ret) 1002 return ret; 1003 ret = __spufs_signal1_read(ctx, buf, len, pos); 1004 spu_release_saved(ctx); 1005 1006 return ret; 1007 } 1008 1009 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf, 1010 size_t len, loff_t *pos) 1011 { 1012 struct spu_context *ctx; 1013 ssize_t ret; 1014 u32 data; 1015 1016 ctx = file->private_data; 1017 1018 if (len < 4) 1019 return -EINVAL; 1020 1021 if (copy_from_user(&data, buf, 4)) 1022 return -EFAULT; 1023 1024 ret = spu_acquire(ctx); 1025 if (ret) 1026 return ret; 1027 ctx->ops->signal1_write(ctx, data); 1028 spu_release(ctx); 1029 1030 return 4; 1031 } 1032 1033 static vm_fault_t 1034 spufs_signal1_mmap_fault(struct vm_fault *vmf) 1035 { 1036 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000 1037 return spufs_ps_fault(vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE); 1038 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000 1039 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole 1040 * signal 1 and 2 area 1041 */ 1042 return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE); 1043 #else 1044 #error unsupported page size 1045 #endif 1046 } 1047 1048 static const struct vm_operations_struct spufs_signal1_mmap_vmops = { 1049 .fault = spufs_signal1_mmap_fault, 1050 }; 1051 1052 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma) 1053 { 1054 if (!(vma->vm_flags & VM_SHARED)) 1055 return -EINVAL; 1056 1057 vma->vm_flags |= VM_IO | VM_PFNMAP; 1058 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1059 1060 vma->vm_ops = &spufs_signal1_mmap_vmops; 1061 return 0; 1062 } 1063 1064 static const struct file_operations spufs_signal1_fops = { 1065 .open = spufs_signal1_open, 1066 .release = spufs_signal1_release, 1067 .read = spufs_signal1_read, 1068 .write = spufs_signal1_write, 1069 .mmap = spufs_signal1_mmap, 1070 .llseek = no_llseek, 1071 }; 1072 1073 static const struct file_operations spufs_signal1_nosched_fops = { 1074 .open = spufs_signal1_open, 1075 .release = spufs_signal1_release, 1076 .write = spufs_signal1_write, 1077 .mmap = spufs_signal1_mmap, 1078 .llseek = no_llseek, 1079 }; 1080 1081 static int spufs_signal2_open(struct inode *inode, struct file *file) 1082 { 1083 struct spufs_inode_info *i = SPUFS_I(inode); 1084 struct spu_context *ctx = i->i_ctx; 1085 1086 mutex_lock(&ctx->mapping_lock); 1087 file->private_data = ctx; 1088 if (!i->i_openers++) 1089 ctx->signal2 = inode->i_mapping; 1090 mutex_unlock(&ctx->mapping_lock); 1091 return nonseekable_open(inode, file); 1092 } 1093 1094 static int 1095 spufs_signal2_release(struct inode *inode, struct file *file) 1096 { 1097 struct spufs_inode_info *i = SPUFS_I(inode); 1098 struct spu_context *ctx = i->i_ctx; 1099 1100 mutex_lock(&ctx->mapping_lock); 1101 if (!--i->i_openers) 1102 ctx->signal2 = NULL; 1103 mutex_unlock(&ctx->mapping_lock); 1104 return 0; 1105 } 1106 1107 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf, 1108 size_t len, loff_t *pos) 1109 { 1110 int ret = 0; 1111 u32 data; 1112 1113 if (len < 4) 1114 return -EINVAL; 1115 1116 if (ctx->csa.spu_chnlcnt_RW[4]) { 1117 data = ctx->csa.spu_chnldata_RW[4]; 1118 ret = 4; 1119 } 1120 1121 if (!ret) 1122 goto out; 1123 1124 if (copy_to_user(buf, &data, 4)) 1125 return -EFAULT; 1126 1127 out: 1128 return ret; 1129 } 1130 1131 static ssize_t spufs_signal2_read(struct file *file, char __user *buf, 1132 size_t len, loff_t *pos) 1133 { 1134 struct spu_context *ctx = file->private_data; 1135 int ret; 1136 1137 ret = spu_acquire_saved(ctx); 1138 if (ret) 1139 return ret; 1140 ret = __spufs_signal2_read(ctx, buf, len, pos); 1141 spu_release_saved(ctx); 1142 1143 return ret; 1144 } 1145 1146 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf, 1147 size_t len, loff_t *pos) 1148 { 1149 struct spu_context *ctx; 1150 ssize_t ret; 1151 u32 data; 1152 1153 ctx = file->private_data; 1154 1155 if (len < 4) 1156 return -EINVAL; 1157 1158 if (copy_from_user(&data, buf, 4)) 1159 return -EFAULT; 1160 1161 ret = spu_acquire(ctx); 1162 if (ret) 1163 return ret; 1164 ctx->ops->signal2_write(ctx, data); 1165 spu_release(ctx); 1166 1167 return 4; 1168 } 1169 1170 #if SPUFS_MMAP_4K 1171 static vm_fault_t 1172 spufs_signal2_mmap_fault(struct vm_fault *vmf) 1173 { 1174 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000 1175 return spufs_ps_fault(vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE); 1176 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000 1177 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole 1178 * signal 1 and 2 area 1179 */ 1180 return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE); 1181 #else 1182 #error unsupported page size 1183 #endif 1184 } 1185 1186 static const struct vm_operations_struct spufs_signal2_mmap_vmops = { 1187 .fault = spufs_signal2_mmap_fault, 1188 }; 1189 1190 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma) 1191 { 1192 if (!(vma->vm_flags & VM_SHARED)) 1193 return -EINVAL; 1194 1195 vma->vm_flags |= VM_IO | VM_PFNMAP; 1196 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1197 1198 vma->vm_ops = &spufs_signal2_mmap_vmops; 1199 return 0; 1200 } 1201 #else /* SPUFS_MMAP_4K */ 1202 #define spufs_signal2_mmap NULL 1203 #endif /* !SPUFS_MMAP_4K */ 1204 1205 static const struct file_operations spufs_signal2_fops = { 1206 .open = spufs_signal2_open, 1207 .release = spufs_signal2_release, 1208 .read = spufs_signal2_read, 1209 .write = spufs_signal2_write, 1210 .mmap = spufs_signal2_mmap, 1211 .llseek = no_llseek, 1212 }; 1213 1214 static const struct file_operations spufs_signal2_nosched_fops = { 1215 .open = spufs_signal2_open, 1216 .release = spufs_signal2_release, 1217 .write = spufs_signal2_write, 1218 .mmap = spufs_signal2_mmap, 1219 .llseek = no_llseek, 1220 }; 1221 1222 /* 1223 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the 1224 * work of acquiring (or not) the SPU context before calling through 1225 * to the actual get routine. The set routine is called directly. 1226 */ 1227 #define SPU_ATTR_NOACQUIRE 0 1228 #define SPU_ATTR_ACQUIRE 1 1229 #define SPU_ATTR_ACQUIRE_SAVED 2 1230 1231 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire) \ 1232 static int __##__get(void *data, u64 *val) \ 1233 { \ 1234 struct spu_context *ctx = data; \ 1235 int ret = 0; \ 1236 \ 1237 if (__acquire == SPU_ATTR_ACQUIRE) { \ 1238 ret = spu_acquire(ctx); \ 1239 if (ret) \ 1240 return ret; \ 1241 *val = __get(ctx); \ 1242 spu_release(ctx); \ 1243 } else if (__acquire == SPU_ATTR_ACQUIRE_SAVED) { \ 1244 ret = spu_acquire_saved(ctx); \ 1245 if (ret) \ 1246 return ret; \ 1247 *val = __get(ctx); \ 1248 spu_release_saved(ctx); \ 1249 } else \ 1250 *val = __get(ctx); \ 1251 \ 1252 return 0; \ 1253 } \ 1254 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt); 1255 1256 static int spufs_signal1_type_set(void *data, u64 val) 1257 { 1258 struct spu_context *ctx = data; 1259 int ret; 1260 1261 ret = spu_acquire(ctx); 1262 if (ret) 1263 return ret; 1264 ctx->ops->signal1_type_set(ctx, val); 1265 spu_release(ctx); 1266 1267 return 0; 1268 } 1269 1270 static u64 spufs_signal1_type_get(struct spu_context *ctx) 1271 { 1272 return ctx->ops->signal1_type_get(ctx); 1273 } 1274 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get, 1275 spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE); 1276 1277 1278 static int spufs_signal2_type_set(void *data, u64 val) 1279 { 1280 struct spu_context *ctx = data; 1281 int ret; 1282 1283 ret = spu_acquire(ctx); 1284 if (ret) 1285 return ret; 1286 ctx->ops->signal2_type_set(ctx, val); 1287 spu_release(ctx); 1288 1289 return 0; 1290 } 1291 1292 static u64 spufs_signal2_type_get(struct spu_context *ctx) 1293 { 1294 return ctx->ops->signal2_type_get(ctx); 1295 } 1296 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get, 1297 spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE); 1298 1299 #if SPUFS_MMAP_4K 1300 static vm_fault_t 1301 spufs_mss_mmap_fault(struct vm_fault *vmf) 1302 { 1303 return spufs_ps_fault(vmf, 0x0000, SPUFS_MSS_MAP_SIZE); 1304 } 1305 1306 static const struct vm_operations_struct spufs_mss_mmap_vmops = { 1307 .fault = spufs_mss_mmap_fault, 1308 }; 1309 1310 /* 1311 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff]. 1312 */ 1313 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma) 1314 { 1315 if (!(vma->vm_flags & VM_SHARED)) 1316 return -EINVAL; 1317 1318 vma->vm_flags |= VM_IO | VM_PFNMAP; 1319 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1320 1321 vma->vm_ops = &spufs_mss_mmap_vmops; 1322 return 0; 1323 } 1324 #else /* SPUFS_MMAP_4K */ 1325 #define spufs_mss_mmap NULL 1326 #endif /* !SPUFS_MMAP_4K */ 1327 1328 static int spufs_mss_open(struct inode *inode, struct file *file) 1329 { 1330 struct spufs_inode_info *i = SPUFS_I(inode); 1331 struct spu_context *ctx = i->i_ctx; 1332 1333 file->private_data = i->i_ctx; 1334 1335 mutex_lock(&ctx->mapping_lock); 1336 if (!i->i_openers++) 1337 ctx->mss = inode->i_mapping; 1338 mutex_unlock(&ctx->mapping_lock); 1339 return nonseekable_open(inode, file); 1340 } 1341 1342 static int 1343 spufs_mss_release(struct inode *inode, struct file *file) 1344 { 1345 struct spufs_inode_info *i = SPUFS_I(inode); 1346 struct spu_context *ctx = i->i_ctx; 1347 1348 mutex_lock(&ctx->mapping_lock); 1349 if (!--i->i_openers) 1350 ctx->mss = NULL; 1351 mutex_unlock(&ctx->mapping_lock); 1352 return 0; 1353 } 1354 1355 static const struct file_operations spufs_mss_fops = { 1356 .open = spufs_mss_open, 1357 .release = spufs_mss_release, 1358 .mmap = spufs_mss_mmap, 1359 .llseek = no_llseek, 1360 }; 1361 1362 static vm_fault_t 1363 spufs_psmap_mmap_fault(struct vm_fault *vmf) 1364 { 1365 return spufs_ps_fault(vmf, 0x0000, SPUFS_PS_MAP_SIZE); 1366 } 1367 1368 static const struct vm_operations_struct spufs_psmap_mmap_vmops = { 1369 .fault = spufs_psmap_mmap_fault, 1370 }; 1371 1372 /* 1373 * mmap support for full problem state area [0x00000 - 0x1ffff]. 1374 */ 1375 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma) 1376 { 1377 if (!(vma->vm_flags & VM_SHARED)) 1378 return -EINVAL; 1379 1380 vma->vm_flags |= VM_IO | VM_PFNMAP; 1381 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1382 1383 vma->vm_ops = &spufs_psmap_mmap_vmops; 1384 return 0; 1385 } 1386 1387 static int spufs_psmap_open(struct inode *inode, struct file *file) 1388 { 1389 struct spufs_inode_info *i = SPUFS_I(inode); 1390 struct spu_context *ctx = i->i_ctx; 1391 1392 mutex_lock(&ctx->mapping_lock); 1393 file->private_data = i->i_ctx; 1394 if (!i->i_openers++) 1395 ctx->psmap = inode->i_mapping; 1396 mutex_unlock(&ctx->mapping_lock); 1397 return nonseekable_open(inode, file); 1398 } 1399 1400 static int 1401 spufs_psmap_release(struct inode *inode, struct file *file) 1402 { 1403 struct spufs_inode_info *i = SPUFS_I(inode); 1404 struct spu_context *ctx = i->i_ctx; 1405 1406 mutex_lock(&ctx->mapping_lock); 1407 if (!--i->i_openers) 1408 ctx->psmap = NULL; 1409 mutex_unlock(&ctx->mapping_lock); 1410 return 0; 1411 } 1412 1413 static const struct file_operations spufs_psmap_fops = { 1414 .open = spufs_psmap_open, 1415 .release = spufs_psmap_release, 1416 .mmap = spufs_psmap_mmap, 1417 .llseek = no_llseek, 1418 }; 1419 1420 1421 #if SPUFS_MMAP_4K 1422 static vm_fault_t 1423 spufs_mfc_mmap_fault(struct vm_fault *vmf) 1424 { 1425 return spufs_ps_fault(vmf, 0x3000, SPUFS_MFC_MAP_SIZE); 1426 } 1427 1428 static const struct vm_operations_struct spufs_mfc_mmap_vmops = { 1429 .fault = spufs_mfc_mmap_fault, 1430 }; 1431 1432 /* 1433 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff]. 1434 */ 1435 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma) 1436 { 1437 if (!(vma->vm_flags & VM_SHARED)) 1438 return -EINVAL; 1439 1440 vma->vm_flags |= VM_IO | VM_PFNMAP; 1441 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1442 1443 vma->vm_ops = &spufs_mfc_mmap_vmops; 1444 return 0; 1445 } 1446 #else /* SPUFS_MMAP_4K */ 1447 #define spufs_mfc_mmap NULL 1448 #endif /* !SPUFS_MMAP_4K */ 1449 1450 static int spufs_mfc_open(struct inode *inode, struct file *file) 1451 { 1452 struct spufs_inode_info *i = SPUFS_I(inode); 1453 struct spu_context *ctx = i->i_ctx; 1454 1455 /* we don't want to deal with DMA into other processes */ 1456 if (ctx->owner != current->mm) 1457 return -EINVAL; 1458 1459 if (atomic_read(&inode->i_count) != 1) 1460 return -EBUSY; 1461 1462 mutex_lock(&ctx->mapping_lock); 1463 file->private_data = ctx; 1464 if (!i->i_openers++) 1465 ctx->mfc = inode->i_mapping; 1466 mutex_unlock(&ctx->mapping_lock); 1467 return nonseekable_open(inode, file); 1468 } 1469 1470 static int 1471 spufs_mfc_release(struct inode *inode, struct file *file) 1472 { 1473 struct spufs_inode_info *i = SPUFS_I(inode); 1474 struct spu_context *ctx = i->i_ctx; 1475 1476 mutex_lock(&ctx->mapping_lock); 1477 if (!--i->i_openers) 1478 ctx->mfc = NULL; 1479 mutex_unlock(&ctx->mapping_lock); 1480 return 0; 1481 } 1482 1483 /* interrupt-level mfc callback function. */ 1484 void spufs_mfc_callback(struct spu *spu) 1485 { 1486 struct spu_context *ctx = spu->ctx; 1487 1488 if (ctx) 1489 wake_up_all(&ctx->mfc_wq); 1490 } 1491 1492 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status) 1493 { 1494 /* See if there is one tag group is complete */ 1495 /* FIXME we need locking around tagwait */ 1496 *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait; 1497 ctx->tagwait &= ~*status; 1498 if (*status) 1499 return 1; 1500 1501 /* enable interrupt waiting for any tag group, 1502 may silently fail if interrupts are already enabled */ 1503 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1); 1504 return 0; 1505 } 1506 1507 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer, 1508 size_t size, loff_t *pos) 1509 { 1510 struct spu_context *ctx = file->private_data; 1511 int ret = -EINVAL; 1512 u32 status; 1513 1514 if (size != 4) 1515 goto out; 1516 1517 ret = spu_acquire(ctx); 1518 if (ret) 1519 return ret; 1520 1521 ret = -EINVAL; 1522 if (file->f_flags & O_NONBLOCK) { 1523 status = ctx->ops->read_mfc_tagstatus(ctx); 1524 if (!(status & ctx->tagwait)) 1525 ret = -EAGAIN; 1526 else 1527 /* XXX(hch): shouldn't we clear ret here? */ 1528 ctx->tagwait &= ~status; 1529 } else { 1530 ret = spufs_wait(ctx->mfc_wq, 1531 spufs_read_mfc_tagstatus(ctx, &status)); 1532 if (ret) 1533 goto out; 1534 } 1535 spu_release(ctx); 1536 1537 ret = 4; 1538 if (copy_to_user(buffer, &status, 4)) 1539 ret = -EFAULT; 1540 1541 out: 1542 return ret; 1543 } 1544 1545 static int spufs_check_valid_dma(struct mfc_dma_command *cmd) 1546 { 1547 pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa, 1548 cmd->ea, cmd->size, cmd->tag, cmd->cmd); 1549 1550 switch (cmd->cmd) { 1551 case MFC_PUT_CMD: 1552 case MFC_PUTF_CMD: 1553 case MFC_PUTB_CMD: 1554 case MFC_GET_CMD: 1555 case MFC_GETF_CMD: 1556 case MFC_GETB_CMD: 1557 break; 1558 default: 1559 pr_debug("invalid DMA opcode %x\n", cmd->cmd); 1560 return -EIO; 1561 } 1562 1563 if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) { 1564 pr_debug("invalid DMA alignment, ea %llx lsa %x\n", 1565 cmd->ea, cmd->lsa); 1566 return -EIO; 1567 } 1568 1569 switch (cmd->size & 0xf) { 1570 case 1: 1571 break; 1572 case 2: 1573 if (cmd->lsa & 1) 1574 goto error; 1575 break; 1576 case 4: 1577 if (cmd->lsa & 3) 1578 goto error; 1579 break; 1580 case 8: 1581 if (cmd->lsa & 7) 1582 goto error; 1583 break; 1584 case 0: 1585 if (cmd->lsa & 15) 1586 goto error; 1587 break; 1588 error: 1589 default: 1590 pr_debug("invalid DMA alignment %x for size %x\n", 1591 cmd->lsa & 0xf, cmd->size); 1592 return -EIO; 1593 } 1594 1595 if (cmd->size > 16 * 1024) { 1596 pr_debug("invalid DMA size %x\n", cmd->size); 1597 return -EIO; 1598 } 1599 1600 if (cmd->tag & 0xfff0) { 1601 /* we reserve the higher tag numbers for kernel use */ 1602 pr_debug("invalid DMA tag\n"); 1603 return -EIO; 1604 } 1605 1606 if (cmd->class) { 1607 /* not supported in this version */ 1608 pr_debug("invalid DMA class\n"); 1609 return -EIO; 1610 } 1611 1612 return 0; 1613 } 1614 1615 static int spu_send_mfc_command(struct spu_context *ctx, 1616 struct mfc_dma_command cmd, 1617 int *error) 1618 { 1619 *error = ctx->ops->send_mfc_command(ctx, &cmd); 1620 if (*error == -EAGAIN) { 1621 /* wait for any tag group to complete 1622 so we have space for the new command */ 1623 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1); 1624 /* try again, because the queue might be 1625 empty again */ 1626 *error = ctx->ops->send_mfc_command(ctx, &cmd); 1627 if (*error == -EAGAIN) 1628 return 0; 1629 } 1630 return 1; 1631 } 1632 1633 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer, 1634 size_t size, loff_t *pos) 1635 { 1636 struct spu_context *ctx = file->private_data; 1637 struct mfc_dma_command cmd; 1638 int ret = -EINVAL; 1639 1640 if (size != sizeof cmd) 1641 goto out; 1642 1643 ret = -EFAULT; 1644 if (copy_from_user(&cmd, buffer, sizeof cmd)) 1645 goto out; 1646 1647 ret = spufs_check_valid_dma(&cmd); 1648 if (ret) 1649 goto out; 1650 1651 ret = spu_acquire(ctx); 1652 if (ret) 1653 goto out; 1654 1655 ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE); 1656 if (ret) 1657 goto out; 1658 1659 if (file->f_flags & O_NONBLOCK) { 1660 ret = ctx->ops->send_mfc_command(ctx, &cmd); 1661 } else { 1662 int status; 1663 ret = spufs_wait(ctx->mfc_wq, 1664 spu_send_mfc_command(ctx, cmd, &status)); 1665 if (ret) 1666 goto out; 1667 if (status) 1668 ret = status; 1669 } 1670 1671 if (ret) 1672 goto out_unlock; 1673 1674 ctx->tagwait |= 1 << cmd.tag; 1675 ret = size; 1676 1677 out_unlock: 1678 spu_release(ctx); 1679 out: 1680 return ret; 1681 } 1682 1683 static __poll_t spufs_mfc_poll(struct file *file,poll_table *wait) 1684 { 1685 struct spu_context *ctx = file->private_data; 1686 u32 free_elements, tagstatus; 1687 __poll_t mask; 1688 1689 poll_wait(file, &ctx->mfc_wq, wait); 1690 1691 /* 1692 * For now keep this uninterruptible and also ignore the rule 1693 * that poll should not sleep. Will be fixed later. 1694 */ 1695 mutex_lock(&ctx->state_mutex); 1696 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2); 1697 free_elements = ctx->ops->get_mfc_free_elements(ctx); 1698 tagstatus = ctx->ops->read_mfc_tagstatus(ctx); 1699 spu_release(ctx); 1700 1701 mask = 0; 1702 if (free_elements & 0xffff) 1703 mask |= EPOLLOUT | EPOLLWRNORM; 1704 if (tagstatus & ctx->tagwait) 1705 mask |= EPOLLIN | EPOLLRDNORM; 1706 1707 pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__, 1708 free_elements, tagstatus, ctx->tagwait); 1709 1710 return mask; 1711 } 1712 1713 static int spufs_mfc_flush(struct file *file, fl_owner_t id) 1714 { 1715 struct spu_context *ctx = file->private_data; 1716 int ret; 1717 1718 ret = spu_acquire(ctx); 1719 if (ret) 1720 goto out; 1721 #if 0 1722 /* this currently hangs */ 1723 ret = spufs_wait(ctx->mfc_wq, 1724 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2)); 1725 if (ret) 1726 goto out; 1727 ret = spufs_wait(ctx->mfc_wq, 1728 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait); 1729 if (ret) 1730 goto out; 1731 #else 1732 ret = 0; 1733 #endif 1734 spu_release(ctx); 1735 out: 1736 return ret; 1737 } 1738 1739 static int spufs_mfc_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1740 { 1741 struct inode *inode = file_inode(file); 1742 int err = file_write_and_wait_range(file, start, end); 1743 if (!err) { 1744 inode_lock(inode); 1745 err = spufs_mfc_flush(file, NULL); 1746 inode_unlock(inode); 1747 } 1748 return err; 1749 } 1750 1751 static const struct file_operations spufs_mfc_fops = { 1752 .open = spufs_mfc_open, 1753 .release = spufs_mfc_release, 1754 .read = spufs_mfc_read, 1755 .write = spufs_mfc_write, 1756 .poll = spufs_mfc_poll, 1757 .flush = spufs_mfc_flush, 1758 .fsync = spufs_mfc_fsync, 1759 .mmap = spufs_mfc_mmap, 1760 .llseek = no_llseek, 1761 }; 1762 1763 static int spufs_npc_set(void *data, u64 val) 1764 { 1765 struct spu_context *ctx = data; 1766 int ret; 1767 1768 ret = spu_acquire(ctx); 1769 if (ret) 1770 return ret; 1771 ctx->ops->npc_write(ctx, val); 1772 spu_release(ctx); 1773 1774 return 0; 1775 } 1776 1777 static u64 spufs_npc_get(struct spu_context *ctx) 1778 { 1779 return ctx->ops->npc_read(ctx); 1780 } 1781 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set, 1782 "0x%llx\n", SPU_ATTR_ACQUIRE); 1783 1784 static int spufs_decr_set(void *data, u64 val) 1785 { 1786 struct spu_context *ctx = data; 1787 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1788 int ret; 1789 1790 ret = spu_acquire_saved(ctx); 1791 if (ret) 1792 return ret; 1793 lscsa->decr.slot[0] = (u32) val; 1794 spu_release_saved(ctx); 1795 1796 return 0; 1797 } 1798 1799 static u64 spufs_decr_get(struct spu_context *ctx) 1800 { 1801 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1802 return lscsa->decr.slot[0]; 1803 } 1804 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set, 1805 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED); 1806 1807 static int spufs_decr_status_set(void *data, u64 val) 1808 { 1809 struct spu_context *ctx = data; 1810 int ret; 1811 1812 ret = spu_acquire_saved(ctx); 1813 if (ret) 1814 return ret; 1815 if (val) 1816 ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING; 1817 else 1818 ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING; 1819 spu_release_saved(ctx); 1820 1821 return 0; 1822 } 1823 1824 static u64 spufs_decr_status_get(struct spu_context *ctx) 1825 { 1826 if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) 1827 return SPU_DECR_STATUS_RUNNING; 1828 else 1829 return 0; 1830 } 1831 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get, 1832 spufs_decr_status_set, "0x%llx\n", 1833 SPU_ATTR_ACQUIRE_SAVED); 1834 1835 static int spufs_event_mask_set(void *data, u64 val) 1836 { 1837 struct spu_context *ctx = data; 1838 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1839 int ret; 1840 1841 ret = spu_acquire_saved(ctx); 1842 if (ret) 1843 return ret; 1844 lscsa->event_mask.slot[0] = (u32) val; 1845 spu_release_saved(ctx); 1846 1847 return 0; 1848 } 1849 1850 static u64 spufs_event_mask_get(struct spu_context *ctx) 1851 { 1852 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1853 return lscsa->event_mask.slot[0]; 1854 } 1855 1856 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get, 1857 spufs_event_mask_set, "0x%llx\n", 1858 SPU_ATTR_ACQUIRE_SAVED); 1859 1860 static u64 spufs_event_status_get(struct spu_context *ctx) 1861 { 1862 struct spu_state *state = &ctx->csa; 1863 u64 stat; 1864 stat = state->spu_chnlcnt_RW[0]; 1865 if (stat) 1866 return state->spu_chnldata_RW[0]; 1867 return 0; 1868 } 1869 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get, 1870 NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED) 1871 1872 static int spufs_srr0_set(void *data, u64 val) 1873 { 1874 struct spu_context *ctx = data; 1875 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1876 int ret; 1877 1878 ret = spu_acquire_saved(ctx); 1879 if (ret) 1880 return ret; 1881 lscsa->srr0.slot[0] = (u32) val; 1882 spu_release_saved(ctx); 1883 1884 return 0; 1885 } 1886 1887 static u64 spufs_srr0_get(struct spu_context *ctx) 1888 { 1889 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1890 return lscsa->srr0.slot[0]; 1891 } 1892 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set, 1893 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED) 1894 1895 static u64 spufs_id_get(struct spu_context *ctx) 1896 { 1897 u64 num; 1898 1899 if (ctx->state == SPU_STATE_RUNNABLE) 1900 num = ctx->spu->number; 1901 else 1902 num = (unsigned int)-1; 1903 1904 return num; 1905 } 1906 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n", 1907 SPU_ATTR_ACQUIRE) 1908 1909 static u64 spufs_object_id_get(struct spu_context *ctx) 1910 { 1911 /* FIXME: Should there really be no locking here? */ 1912 return ctx->object_id; 1913 } 1914 1915 static int spufs_object_id_set(void *data, u64 id) 1916 { 1917 struct spu_context *ctx = data; 1918 ctx->object_id = id; 1919 1920 return 0; 1921 } 1922 1923 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get, 1924 spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE); 1925 1926 static u64 spufs_lslr_get(struct spu_context *ctx) 1927 { 1928 return ctx->csa.priv2.spu_lslr_RW; 1929 } 1930 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n", 1931 SPU_ATTR_ACQUIRE_SAVED); 1932 1933 static int spufs_info_open(struct inode *inode, struct file *file) 1934 { 1935 struct spufs_inode_info *i = SPUFS_I(inode); 1936 struct spu_context *ctx = i->i_ctx; 1937 file->private_data = ctx; 1938 return 0; 1939 } 1940 1941 static int spufs_caps_show(struct seq_file *s, void *private) 1942 { 1943 struct spu_context *ctx = s->private; 1944 1945 if (!(ctx->flags & SPU_CREATE_NOSCHED)) 1946 seq_puts(s, "sched\n"); 1947 if (!(ctx->flags & SPU_CREATE_ISOLATE)) 1948 seq_puts(s, "step\n"); 1949 return 0; 1950 } 1951 1952 static int spufs_caps_open(struct inode *inode, struct file *file) 1953 { 1954 return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx); 1955 } 1956 1957 static const struct file_operations spufs_caps_fops = { 1958 .open = spufs_caps_open, 1959 .read = seq_read, 1960 .llseek = seq_lseek, 1961 .release = single_release, 1962 }; 1963 1964 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx, 1965 char __user *buf, size_t len, loff_t *pos) 1966 { 1967 u32 data; 1968 1969 /* EOF if there's no entry in the mbox */ 1970 if (!(ctx->csa.prob.mb_stat_R & 0x0000ff)) 1971 return 0; 1972 1973 data = ctx->csa.prob.pu_mb_R; 1974 1975 return simple_read_from_buffer(buf, len, pos, &data, sizeof data); 1976 } 1977 1978 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf, 1979 size_t len, loff_t *pos) 1980 { 1981 int ret; 1982 struct spu_context *ctx = file->private_data; 1983 1984 if (!access_ok(buf, len)) 1985 return -EFAULT; 1986 1987 ret = spu_acquire_saved(ctx); 1988 if (ret) 1989 return ret; 1990 spin_lock(&ctx->csa.register_lock); 1991 ret = __spufs_mbox_info_read(ctx, buf, len, pos); 1992 spin_unlock(&ctx->csa.register_lock); 1993 spu_release_saved(ctx); 1994 1995 return ret; 1996 } 1997 1998 static const struct file_operations spufs_mbox_info_fops = { 1999 .open = spufs_info_open, 2000 .read = spufs_mbox_info_read, 2001 .llseek = generic_file_llseek, 2002 }; 2003 2004 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx, 2005 char __user *buf, size_t len, loff_t *pos) 2006 { 2007 u32 data; 2008 2009 /* EOF if there's no entry in the ibox */ 2010 if (!(ctx->csa.prob.mb_stat_R & 0xff0000)) 2011 return 0; 2012 2013 data = ctx->csa.priv2.puint_mb_R; 2014 2015 return simple_read_from_buffer(buf, len, pos, &data, sizeof data); 2016 } 2017 2018 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf, 2019 size_t len, loff_t *pos) 2020 { 2021 struct spu_context *ctx = file->private_data; 2022 int ret; 2023 2024 if (!access_ok(buf, len)) 2025 return -EFAULT; 2026 2027 ret = spu_acquire_saved(ctx); 2028 if (ret) 2029 return ret; 2030 spin_lock(&ctx->csa.register_lock); 2031 ret = __spufs_ibox_info_read(ctx, buf, len, pos); 2032 spin_unlock(&ctx->csa.register_lock); 2033 spu_release_saved(ctx); 2034 2035 return ret; 2036 } 2037 2038 static const struct file_operations spufs_ibox_info_fops = { 2039 .open = spufs_info_open, 2040 .read = spufs_ibox_info_read, 2041 .llseek = generic_file_llseek, 2042 }; 2043 2044 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx, 2045 char __user *buf, size_t len, loff_t *pos) 2046 { 2047 int i, cnt; 2048 u32 data[4]; 2049 u32 wbox_stat; 2050 2051 wbox_stat = ctx->csa.prob.mb_stat_R; 2052 cnt = 4 - ((wbox_stat & 0x00ff00) >> 8); 2053 for (i = 0; i < cnt; i++) { 2054 data[i] = ctx->csa.spu_mailbox_data[i]; 2055 } 2056 2057 return simple_read_from_buffer(buf, len, pos, &data, 2058 cnt * sizeof(u32)); 2059 } 2060 2061 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf, 2062 size_t len, loff_t *pos) 2063 { 2064 struct spu_context *ctx = file->private_data; 2065 int ret; 2066 2067 if (!access_ok(buf, len)) 2068 return -EFAULT; 2069 2070 ret = spu_acquire_saved(ctx); 2071 if (ret) 2072 return ret; 2073 spin_lock(&ctx->csa.register_lock); 2074 ret = __spufs_wbox_info_read(ctx, buf, len, pos); 2075 spin_unlock(&ctx->csa.register_lock); 2076 spu_release_saved(ctx); 2077 2078 return ret; 2079 } 2080 2081 static const struct file_operations spufs_wbox_info_fops = { 2082 .open = spufs_info_open, 2083 .read = spufs_wbox_info_read, 2084 .llseek = generic_file_llseek, 2085 }; 2086 2087 static ssize_t __spufs_dma_info_read(struct spu_context *ctx, 2088 char __user *buf, size_t len, loff_t *pos) 2089 { 2090 struct spu_dma_info info; 2091 struct mfc_cq_sr *qp, *spuqp; 2092 int i; 2093 2094 info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW; 2095 info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0]; 2096 info.dma_info_status = ctx->csa.spu_chnldata_RW[24]; 2097 info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25]; 2098 info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27]; 2099 for (i = 0; i < 16; i++) { 2100 qp = &info.dma_info_command_data[i]; 2101 spuqp = &ctx->csa.priv2.spuq[i]; 2102 2103 qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW; 2104 qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW; 2105 qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW; 2106 qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW; 2107 } 2108 2109 return simple_read_from_buffer(buf, len, pos, &info, 2110 sizeof info); 2111 } 2112 2113 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf, 2114 size_t len, loff_t *pos) 2115 { 2116 struct spu_context *ctx = file->private_data; 2117 int ret; 2118 2119 if (!access_ok(buf, len)) 2120 return -EFAULT; 2121 2122 ret = spu_acquire_saved(ctx); 2123 if (ret) 2124 return ret; 2125 spin_lock(&ctx->csa.register_lock); 2126 ret = __spufs_dma_info_read(ctx, buf, len, pos); 2127 spin_unlock(&ctx->csa.register_lock); 2128 spu_release_saved(ctx); 2129 2130 return ret; 2131 } 2132 2133 static const struct file_operations spufs_dma_info_fops = { 2134 .open = spufs_info_open, 2135 .read = spufs_dma_info_read, 2136 .llseek = no_llseek, 2137 }; 2138 2139 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx, 2140 char __user *buf, size_t len, loff_t *pos) 2141 { 2142 struct spu_proxydma_info info; 2143 struct mfc_cq_sr *qp, *puqp; 2144 int ret = sizeof info; 2145 int i; 2146 2147 if (len < ret) 2148 return -EINVAL; 2149 2150 if (!access_ok(buf, len)) 2151 return -EFAULT; 2152 2153 info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW; 2154 info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW; 2155 info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R; 2156 for (i = 0; i < 8; i++) { 2157 qp = &info.proxydma_info_command_data[i]; 2158 puqp = &ctx->csa.priv2.puq[i]; 2159 2160 qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW; 2161 qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW; 2162 qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW; 2163 qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW; 2164 } 2165 2166 return simple_read_from_buffer(buf, len, pos, &info, 2167 sizeof info); 2168 } 2169 2170 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf, 2171 size_t len, loff_t *pos) 2172 { 2173 struct spu_context *ctx = file->private_data; 2174 int ret; 2175 2176 ret = spu_acquire_saved(ctx); 2177 if (ret) 2178 return ret; 2179 spin_lock(&ctx->csa.register_lock); 2180 ret = __spufs_proxydma_info_read(ctx, buf, len, pos); 2181 spin_unlock(&ctx->csa.register_lock); 2182 spu_release_saved(ctx); 2183 2184 return ret; 2185 } 2186 2187 static const struct file_operations spufs_proxydma_info_fops = { 2188 .open = spufs_info_open, 2189 .read = spufs_proxydma_info_read, 2190 .llseek = no_llseek, 2191 }; 2192 2193 static int spufs_show_tid(struct seq_file *s, void *private) 2194 { 2195 struct spu_context *ctx = s->private; 2196 2197 seq_printf(s, "%d\n", ctx->tid); 2198 return 0; 2199 } 2200 2201 static int spufs_tid_open(struct inode *inode, struct file *file) 2202 { 2203 return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx); 2204 } 2205 2206 static const struct file_operations spufs_tid_fops = { 2207 .open = spufs_tid_open, 2208 .read = seq_read, 2209 .llseek = seq_lseek, 2210 .release = single_release, 2211 }; 2212 2213 static const char *ctx_state_names[] = { 2214 "user", "system", "iowait", "loaded" 2215 }; 2216 2217 static unsigned long long spufs_acct_time(struct spu_context *ctx, 2218 enum spu_utilization_state state) 2219 { 2220 unsigned long long time = ctx->stats.times[state]; 2221 2222 /* 2223 * In general, utilization statistics are updated by the controlling 2224 * thread as the spu context moves through various well defined 2225 * state transitions, but if the context is lazily loaded its 2226 * utilization statistics are not updated as the controlling thread 2227 * is not tightly coupled with the execution of the spu context. We 2228 * calculate and apply the time delta from the last recorded state 2229 * of the spu context. 2230 */ 2231 if (ctx->spu && ctx->stats.util_state == state) { 2232 time += ktime_get_ns() - ctx->stats.tstamp; 2233 } 2234 2235 return time / NSEC_PER_MSEC; 2236 } 2237 2238 static unsigned long long spufs_slb_flts(struct spu_context *ctx) 2239 { 2240 unsigned long long slb_flts = ctx->stats.slb_flt; 2241 2242 if (ctx->state == SPU_STATE_RUNNABLE) { 2243 slb_flts += (ctx->spu->stats.slb_flt - 2244 ctx->stats.slb_flt_base); 2245 } 2246 2247 return slb_flts; 2248 } 2249 2250 static unsigned long long spufs_class2_intrs(struct spu_context *ctx) 2251 { 2252 unsigned long long class2_intrs = ctx->stats.class2_intr; 2253 2254 if (ctx->state == SPU_STATE_RUNNABLE) { 2255 class2_intrs += (ctx->spu->stats.class2_intr - 2256 ctx->stats.class2_intr_base); 2257 } 2258 2259 return class2_intrs; 2260 } 2261 2262 2263 static int spufs_show_stat(struct seq_file *s, void *private) 2264 { 2265 struct spu_context *ctx = s->private; 2266 int ret; 2267 2268 ret = spu_acquire(ctx); 2269 if (ret) 2270 return ret; 2271 2272 seq_printf(s, "%s %llu %llu %llu %llu " 2273 "%llu %llu %llu %llu %llu %llu %llu %llu\n", 2274 ctx_state_names[ctx->stats.util_state], 2275 spufs_acct_time(ctx, SPU_UTIL_USER), 2276 spufs_acct_time(ctx, SPU_UTIL_SYSTEM), 2277 spufs_acct_time(ctx, SPU_UTIL_IOWAIT), 2278 spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED), 2279 ctx->stats.vol_ctx_switch, 2280 ctx->stats.invol_ctx_switch, 2281 spufs_slb_flts(ctx), 2282 ctx->stats.hash_flt, 2283 ctx->stats.min_flt, 2284 ctx->stats.maj_flt, 2285 spufs_class2_intrs(ctx), 2286 ctx->stats.libassist); 2287 spu_release(ctx); 2288 return 0; 2289 } 2290 2291 static int spufs_stat_open(struct inode *inode, struct file *file) 2292 { 2293 return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx); 2294 } 2295 2296 static const struct file_operations spufs_stat_fops = { 2297 .open = spufs_stat_open, 2298 .read = seq_read, 2299 .llseek = seq_lseek, 2300 .release = single_release, 2301 }; 2302 2303 static inline int spufs_switch_log_used(struct spu_context *ctx) 2304 { 2305 return (ctx->switch_log->head - ctx->switch_log->tail) % 2306 SWITCH_LOG_BUFSIZE; 2307 } 2308 2309 static inline int spufs_switch_log_avail(struct spu_context *ctx) 2310 { 2311 return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx); 2312 } 2313 2314 static int spufs_switch_log_open(struct inode *inode, struct file *file) 2315 { 2316 struct spu_context *ctx = SPUFS_I(inode)->i_ctx; 2317 int rc; 2318 2319 rc = spu_acquire(ctx); 2320 if (rc) 2321 return rc; 2322 2323 if (ctx->switch_log) { 2324 rc = -EBUSY; 2325 goto out; 2326 } 2327 2328 ctx->switch_log = kmalloc(struct_size(ctx->switch_log, log, 2329 SWITCH_LOG_BUFSIZE), GFP_KERNEL); 2330 2331 if (!ctx->switch_log) { 2332 rc = -ENOMEM; 2333 goto out; 2334 } 2335 2336 ctx->switch_log->head = ctx->switch_log->tail = 0; 2337 init_waitqueue_head(&ctx->switch_log->wait); 2338 rc = 0; 2339 2340 out: 2341 spu_release(ctx); 2342 return rc; 2343 } 2344 2345 static int spufs_switch_log_release(struct inode *inode, struct file *file) 2346 { 2347 struct spu_context *ctx = SPUFS_I(inode)->i_ctx; 2348 int rc; 2349 2350 rc = spu_acquire(ctx); 2351 if (rc) 2352 return rc; 2353 2354 kfree(ctx->switch_log); 2355 ctx->switch_log = NULL; 2356 spu_release(ctx); 2357 2358 return 0; 2359 } 2360 2361 static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n) 2362 { 2363 struct switch_log_entry *p; 2364 2365 p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE; 2366 2367 return snprintf(tbuf, n, "%llu.%09u %d %u %u %llu\n", 2368 (unsigned long long) p->tstamp.tv_sec, 2369 (unsigned int) p->tstamp.tv_nsec, 2370 p->spu_id, 2371 (unsigned int) p->type, 2372 (unsigned int) p->val, 2373 (unsigned long long) p->timebase); 2374 } 2375 2376 static ssize_t spufs_switch_log_read(struct file *file, char __user *buf, 2377 size_t len, loff_t *ppos) 2378 { 2379 struct inode *inode = file_inode(file); 2380 struct spu_context *ctx = SPUFS_I(inode)->i_ctx; 2381 int error = 0, cnt = 0; 2382 2383 if (!buf) 2384 return -EINVAL; 2385 2386 error = spu_acquire(ctx); 2387 if (error) 2388 return error; 2389 2390 while (cnt < len) { 2391 char tbuf[128]; 2392 int width; 2393 2394 if (spufs_switch_log_used(ctx) == 0) { 2395 if (cnt > 0) { 2396 /* If there's data ready to go, we can 2397 * just return straight away */ 2398 break; 2399 2400 } else if (file->f_flags & O_NONBLOCK) { 2401 error = -EAGAIN; 2402 break; 2403 2404 } else { 2405 /* spufs_wait will drop the mutex and 2406 * re-acquire, but since we're in read(), the 2407 * file cannot be _released (and so 2408 * ctx->switch_log is stable). 2409 */ 2410 error = spufs_wait(ctx->switch_log->wait, 2411 spufs_switch_log_used(ctx) > 0); 2412 2413 /* On error, spufs_wait returns without the 2414 * state mutex held */ 2415 if (error) 2416 return error; 2417 2418 /* We may have had entries read from underneath 2419 * us while we dropped the mutex in spufs_wait, 2420 * so re-check */ 2421 if (spufs_switch_log_used(ctx) == 0) 2422 continue; 2423 } 2424 } 2425 2426 width = switch_log_sprint(ctx, tbuf, sizeof(tbuf)); 2427 if (width < len) 2428 ctx->switch_log->tail = 2429 (ctx->switch_log->tail + 1) % 2430 SWITCH_LOG_BUFSIZE; 2431 else 2432 /* If the record is greater than space available return 2433 * partial buffer (so far) */ 2434 break; 2435 2436 error = copy_to_user(buf + cnt, tbuf, width); 2437 if (error) 2438 break; 2439 cnt += width; 2440 } 2441 2442 spu_release(ctx); 2443 2444 return cnt == 0 ? error : cnt; 2445 } 2446 2447 static __poll_t spufs_switch_log_poll(struct file *file, poll_table *wait) 2448 { 2449 struct inode *inode = file_inode(file); 2450 struct spu_context *ctx = SPUFS_I(inode)->i_ctx; 2451 __poll_t mask = 0; 2452 int rc; 2453 2454 poll_wait(file, &ctx->switch_log->wait, wait); 2455 2456 rc = spu_acquire(ctx); 2457 if (rc) 2458 return rc; 2459 2460 if (spufs_switch_log_used(ctx) > 0) 2461 mask |= EPOLLIN; 2462 2463 spu_release(ctx); 2464 2465 return mask; 2466 } 2467 2468 static const struct file_operations spufs_switch_log_fops = { 2469 .open = spufs_switch_log_open, 2470 .read = spufs_switch_log_read, 2471 .poll = spufs_switch_log_poll, 2472 .release = spufs_switch_log_release, 2473 .llseek = no_llseek, 2474 }; 2475 2476 /** 2477 * Log a context switch event to a switch log reader. 2478 * 2479 * Must be called with ctx->state_mutex held. 2480 */ 2481 void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx, 2482 u32 type, u32 val) 2483 { 2484 if (!ctx->switch_log) 2485 return; 2486 2487 if (spufs_switch_log_avail(ctx) > 1) { 2488 struct switch_log_entry *p; 2489 2490 p = ctx->switch_log->log + ctx->switch_log->head; 2491 ktime_get_ts64(&p->tstamp); 2492 p->timebase = get_tb(); 2493 p->spu_id = spu ? spu->number : -1; 2494 p->type = type; 2495 p->val = val; 2496 2497 ctx->switch_log->head = 2498 (ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE; 2499 } 2500 2501 wake_up(&ctx->switch_log->wait); 2502 } 2503 2504 static int spufs_show_ctx(struct seq_file *s, void *private) 2505 { 2506 struct spu_context *ctx = s->private; 2507 u64 mfc_control_RW; 2508 2509 mutex_lock(&ctx->state_mutex); 2510 if (ctx->spu) { 2511 struct spu *spu = ctx->spu; 2512 struct spu_priv2 __iomem *priv2 = spu->priv2; 2513 2514 spin_lock_irq(&spu->register_lock); 2515 mfc_control_RW = in_be64(&priv2->mfc_control_RW); 2516 spin_unlock_irq(&spu->register_lock); 2517 } else { 2518 struct spu_state *csa = &ctx->csa; 2519 2520 mfc_control_RW = csa->priv2.mfc_control_RW; 2521 } 2522 2523 seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)" 2524 " %c %llx %llx %llx %llx %x %x\n", 2525 ctx->state == SPU_STATE_SAVED ? 'S' : 'R', 2526 ctx->flags, 2527 ctx->sched_flags, 2528 ctx->prio, 2529 ctx->time_slice, 2530 ctx->spu ? ctx->spu->number : -1, 2531 !list_empty(&ctx->rq) ? 'q' : ' ', 2532 ctx->csa.class_0_pending, 2533 ctx->csa.class_0_dar, 2534 ctx->csa.class_1_dsisr, 2535 mfc_control_RW, 2536 ctx->ops->runcntl_read(ctx), 2537 ctx->ops->status_read(ctx)); 2538 2539 mutex_unlock(&ctx->state_mutex); 2540 2541 return 0; 2542 } 2543 2544 static int spufs_ctx_open(struct inode *inode, struct file *file) 2545 { 2546 return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx); 2547 } 2548 2549 static const struct file_operations spufs_ctx_fops = { 2550 .open = spufs_ctx_open, 2551 .read = seq_read, 2552 .llseek = seq_lseek, 2553 .release = single_release, 2554 }; 2555 2556 const struct spufs_tree_descr spufs_dir_contents[] = { 2557 { "capabilities", &spufs_caps_fops, 0444, }, 2558 { "mem", &spufs_mem_fops, 0666, LS_SIZE, }, 2559 { "regs", &spufs_regs_fops, 0666, sizeof(struct spu_reg128[128]), }, 2560 { "mbox", &spufs_mbox_fops, 0444, }, 2561 { "ibox", &spufs_ibox_fops, 0444, }, 2562 { "wbox", &spufs_wbox_fops, 0222, }, 2563 { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), }, 2564 { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), }, 2565 { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), }, 2566 { "signal1", &spufs_signal1_fops, 0666, }, 2567 { "signal2", &spufs_signal2_fops, 0666, }, 2568 { "signal1_type", &spufs_signal1_type, 0666, }, 2569 { "signal2_type", &spufs_signal2_type, 0666, }, 2570 { "cntl", &spufs_cntl_fops, 0666, }, 2571 { "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), }, 2572 { "lslr", &spufs_lslr_ops, 0444, }, 2573 { "mfc", &spufs_mfc_fops, 0666, }, 2574 { "mss", &spufs_mss_fops, 0666, }, 2575 { "npc", &spufs_npc_ops, 0666, }, 2576 { "srr0", &spufs_srr0_ops, 0666, }, 2577 { "decr", &spufs_decr_ops, 0666, }, 2578 { "decr_status", &spufs_decr_status_ops, 0666, }, 2579 { "event_mask", &spufs_event_mask_ops, 0666, }, 2580 { "event_status", &spufs_event_status_ops, 0444, }, 2581 { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, }, 2582 { "phys-id", &spufs_id_ops, 0666, }, 2583 { "object-id", &spufs_object_id_ops, 0666, }, 2584 { "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), }, 2585 { "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), }, 2586 { "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), }, 2587 { "dma_info", &spufs_dma_info_fops, 0444, 2588 sizeof(struct spu_dma_info), }, 2589 { "proxydma_info", &spufs_proxydma_info_fops, 0444, 2590 sizeof(struct spu_proxydma_info)}, 2591 { "tid", &spufs_tid_fops, 0444, }, 2592 { "stat", &spufs_stat_fops, 0444, }, 2593 { "switch_log", &spufs_switch_log_fops, 0444 }, 2594 {}, 2595 }; 2596 2597 const struct spufs_tree_descr spufs_dir_nosched_contents[] = { 2598 { "capabilities", &spufs_caps_fops, 0444, }, 2599 { "mem", &spufs_mem_fops, 0666, LS_SIZE, }, 2600 { "mbox", &spufs_mbox_fops, 0444, }, 2601 { "ibox", &spufs_ibox_fops, 0444, }, 2602 { "wbox", &spufs_wbox_fops, 0222, }, 2603 { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), }, 2604 { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), }, 2605 { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), }, 2606 { "signal1", &spufs_signal1_nosched_fops, 0222, }, 2607 { "signal2", &spufs_signal2_nosched_fops, 0222, }, 2608 { "signal1_type", &spufs_signal1_type, 0666, }, 2609 { "signal2_type", &spufs_signal2_type, 0666, }, 2610 { "mss", &spufs_mss_fops, 0666, }, 2611 { "mfc", &spufs_mfc_fops, 0666, }, 2612 { "cntl", &spufs_cntl_fops, 0666, }, 2613 { "npc", &spufs_npc_ops, 0666, }, 2614 { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, }, 2615 { "phys-id", &spufs_id_ops, 0666, }, 2616 { "object-id", &spufs_object_id_ops, 0666, }, 2617 { "tid", &spufs_tid_fops, 0444, }, 2618 { "stat", &spufs_stat_fops, 0444, }, 2619 {}, 2620 }; 2621 2622 const struct spufs_tree_descr spufs_dir_debug_contents[] = { 2623 { ".ctx", &spufs_ctx_fops, 0444, }, 2624 {}, 2625 }; 2626 2627 const struct spufs_coredump_reader spufs_coredump_read[] = { 2628 { "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])}, 2629 { "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) }, 2630 { "lslr", NULL, spufs_lslr_get, 19 }, 2631 { "decr", NULL, spufs_decr_get, 19 }, 2632 { "decr_status", NULL, spufs_decr_status_get, 19 }, 2633 { "mem", __spufs_mem_read, NULL, LS_SIZE, }, 2634 { "signal1", __spufs_signal1_read, NULL, sizeof(u32) }, 2635 { "signal1_type", NULL, spufs_signal1_type_get, 19 }, 2636 { "signal2", __spufs_signal2_read, NULL, sizeof(u32) }, 2637 { "signal2_type", NULL, spufs_signal2_type_get, 19 }, 2638 { "event_mask", NULL, spufs_event_mask_get, 19 }, 2639 { "event_status", NULL, spufs_event_status_get, 19 }, 2640 { "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) }, 2641 { "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) }, 2642 { "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)}, 2643 { "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)}, 2644 { "proxydma_info", __spufs_proxydma_info_read, 2645 NULL, sizeof(struct spu_proxydma_info)}, 2646 { "object-id", NULL, spufs_object_id_get, 19 }, 2647 { "npc", NULL, spufs_npc_get, 19 }, 2648 { NULL }, 2649 }; 2650