1 /*
2  * SPU file system -- file contents
3  *
4  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5  *
6  * Author: Arnd Bergmann <arndb@de.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #undef DEBUG
24 
25 #include <linux/fs.h>
26 #include <linux/ioctl.h>
27 #include <linux/export.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/seq_file.h>
32 #include <linux/slab.h>
33 
34 #include <asm/io.h>
35 #include <asm/time.h>
36 #include <asm/spu.h>
37 #include <asm/spu_info.h>
38 #include <linux/uaccess.h>
39 
40 #include "spufs.h"
41 #include "sputrace.h"
42 
43 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
44 
45 /* Simple attribute files */
46 struct spufs_attr {
47 	int (*get)(void *, u64 *);
48 	int (*set)(void *, u64);
49 	char get_buf[24];       /* enough to store a u64 and "\n\0" */
50 	char set_buf[24];
51 	void *data;
52 	const char *fmt;        /* format for read operation */
53 	struct mutex mutex;     /* protects access to these buffers */
54 };
55 
56 static int spufs_attr_open(struct inode *inode, struct file *file,
57 		int (*get)(void *, u64 *), int (*set)(void *, u64),
58 		const char *fmt)
59 {
60 	struct spufs_attr *attr;
61 
62 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
63 	if (!attr)
64 		return -ENOMEM;
65 
66 	attr->get = get;
67 	attr->set = set;
68 	attr->data = inode->i_private;
69 	attr->fmt = fmt;
70 	mutex_init(&attr->mutex);
71 	file->private_data = attr;
72 
73 	return nonseekable_open(inode, file);
74 }
75 
76 static int spufs_attr_release(struct inode *inode, struct file *file)
77 {
78        kfree(file->private_data);
79 	return 0;
80 }
81 
82 static ssize_t spufs_attr_read(struct file *file, char __user *buf,
83 		size_t len, loff_t *ppos)
84 {
85 	struct spufs_attr *attr;
86 	size_t size;
87 	ssize_t ret;
88 
89 	attr = file->private_data;
90 	if (!attr->get)
91 		return -EACCES;
92 
93 	ret = mutex_lock_interruptible(&attr->mutex);
94 	if (ret)
95 		return ret;
96 
97 	if (*ppos) {		/* continued read */
98 		size = strlen(attr->get_buf);
99 	} else {		/* first read */
100 		u64 val;
101 		ret = attr->get(attr->data, &val);
102 		if (ret)
103 			goto out;
104 
105 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
106 				 attr->fmt, (unsigned long long)val);
107 	}
108 
109 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
110 out:
111 	mutex_unlock(&attr->mutex);
112 	return ret;
113 }
114 
115 static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
116 		size_t len, loff_t *ppos)
117 {
118 	struct spufs_attr *attr;
119 	u64 val;
120 	size_t size;
121 	ssize_t ret;
122 
123 	attr = file->private_data;
124 	if (!attr->set)
125 		return -EACCES;
126 
127 	ret = mutex_lock_interruptible(&attr->mutex);
128 	if (ret)
129 		return ret;
130 
131 	ret = -EFAULT;
132 	size = min(sizeof(attr->set_buf) - 1, len);
133 	if (copy_from_user(attr->set_buf, buf, size))
134 		goto out;
135 
136 	ret = len; /* claim we got the whole input */
137 	attr->set_buf[size] = '\0';
138 	val = simple_strtol(attr->set_buf, NULL, 0);
139 	attr->set(attr->data, val);
140 out:
141 	mutex_unlock(&attr->mutex);
142 	return ret;
143 }
144 
145 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)	\
146 static int __fops ## _open(struct inode *inode, struct file *file)	\
147 {									\
148 	__simple_attr_check_format(__fmt, 0ull);			\
149 	return spufs_attr_open(inode, file, __get, __set, __fmt);	\
150 }									\
151 static const struct file_operations __fops = {				\
152 	.open	 = __fops ## _open,					\
153 	.release = spufs_attr_release,					\
154 	.read	 = spufs_attr_read,					\
155 	.write	 = spufs_attr_write,					\
156 	.llseek  = generic_file_llseek,					\
157 };
158 
159 
160 static int
161 spufs_mem_open(struct inode *inode, struct file *file)
162 {
163 	struct spufs_inode_info *i = SPUFS_I(inode);
164 	struct spu_context *ctx = i->i_ctx;
165 
166 	mutex_lock(&ctx->mapping_lock);
167 	file->private_data = ctx;
168 	if (!i->i_openers++)
169 		ctx->local_store = inode->i_mapping;
170 	mutex_unlock(&ctx->mapping_lock);
171 	return 0;
172 }
173 
174 static int
175 spufs_mem_release(struct inode *inode, struct file *file)
176 {
177 	struct spufs_inode_info *i = SPUFS_I(inode);
178 	struct spu_context *ctx = i->i_ctx;
179 
180 	mutex_lock(&ctx->mapping_lock);
181 	if (!--i->i_openers)
182 		ctx->local_store = NULL;
183 	mutex_unlock(&ctx->mapping_lock);
184 	return 0;
185 }
186 
187 static ssize_t
188 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
189 			size_t size, loff_t *pos)
190 {
191 	char *local_store = ctx->ops->get_ls(ctx);
192 	return simple_read_from_buffer(buffer, size, pos, local_store,
193 					LS_SIZE);
194 }
195 
196 static ssize_t
197 spufs_mem_read(struct file *file, char __user *buffer,
198 				size_t size, loff_t *pos)
199 {
200 	struct spu_context *ctx = file->private_data;
201 	ssize_t ret;
202 
203 	ret = spu_acquire(ctx);
204 	if (ret)
205 		return ret;
206 	ret = __spufs_mem_read(ctx, buffer, size, pos);
207 	spu_release(ctx);
208 
209 	return ret;
210 }
211 
212 static ssize_t
213 spufs_mem_write(struct file *file, const char __user *buffer,
214 					size_t size, loff_t *ppos)
215 {
216 	struct spu_context *ctx = file->private_data;
217 	char *local_store;
218 	loff_t pos = *ppos;
219 	int ret;
220 
221 	if (pos > LS_SIZE)
222 		return -EFBIG;
223 
224 	ret = spu_acquire(ctx);
225 	if (ret)
226 		return ret;
227 
228 	local_store = ctx->ops->get_ls(ctx);
229 	size = simple_write_to_buffer(local_store, LS_SIZE, ppos, buffer, size);
230 	spu_release(ctx);
231 
232 	return size;
233 }
234 
235 static int
236 spufs_mem_mmap_fault(struct vm_fault *vmf)
237 {
238 	struct vm_area_struct *vma = vmf->vma;
239 	struct spu_context *ctx	= vma->vm_file->private_data;
240 	unsigned long pfn, offset;
241 
242 	offset = vmf->pgoff << PAGE_SHIFT;
243 	if (offset >= LS_SIZE)
244 		return VM_FAULT_SIGBUS;
245 
246 	pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
247 			vmf->address, offset);
248 
249 	if (spu_acquire(ctx))
250 		return VM_FAULT_NOPAGE;
251 
252 	if (ctx->state == SPU_STATE_SAVED) {
253 		vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
254 		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
255 	} else {
256 		vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
257 		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
258 	}
259 	vm_insert_pfn(vma, vmf->address, pfn);
260 
261 	spu_release(ctx);
262 
263 	return VM_FAULT_NOPAGE;
264 }
265 
266 static int spufs_mem_mmap_access(struct vm_area_struct *vma,
267 				unsigned long address,
268 				void *buf, int len, int write)
269 {
270 	struct spu_context *ctx = vma->vm_file->private_data;
271 	unsigned long offset = address - vma->vm_start;
272 	char *local_store;
273 
274 	if (write && !(vma->vm_flags & VM_WRITE))
275 		return -EACCES;
276 	if (spu_acquire(ctx))
277 		return -EINTR;
278 	if ((offset + len) > vma->vm_end)
279 		len = vma->vm_end - offset;
280 	local_store = ctx->ops->get_ls(ctx);
281 	if (write)
282 		memcpy_toio(local_store + offset, buf, len);
283 	else
284 		memcpy_fromio(buf, local_store + offset, len);
285 	spu_release(ctx);
286 	return len;
287 }
288 
289 static const struct vm_operations_struct spufs_mem_mmap_vmops = {
290 	.fault = spufs_mem_mmap_fault,
291 	.access = spufs_mem_mmap_access,
292 };
293 
294 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
295 {
296 	if (!(vma->vm_flags & VM_SHARED))
297 		return -EINVAL;
298 
299 	vma->vm_flags |= VM_IO | VM_PFNMAP;
300 	vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
301 
302 	vma->vm_ops = &spufs_mem_mmap_vmops;
303 	return 0;
304 }
305 
306 static const struct file_operations spufs_mem_fops = {
307 	.open			= spufs_mem_open,
308 	.release		= spufs_mem_release,
309 	.read			= spufs_mem_read,
310 	.write			= spufs_mem_write,
311 	.llseek			= generic_file_llseek,
312 	.mmap			= spufs_mem_mmap,
313 };
314 
315 static int spufs_ps_fault(struct vm_fault *vmf,
316 				    unsigned long ps_offs,
317 				    unsigned long ps_size)
318 {
319 	struct spu_context *ctx = vmf->vma->vm_file->private_data;
320 	unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
321 	int ret = 0;
322 
323 	spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
324 
325 	if (offset >= ps_size)
326 		return VM_FAULT_SIGBUS;
327 
328 	if (fatal_signal_pending(current))
329 		return VM_FAULT_SIGBUS;
330 
331 	/*
332 	 * Because we release the mmap_sem, the context may be destroyed while
333 	 * we're in spu_wait. Grab an extra reference so it isn't destroyed
334 	 * in the meantime.
335 	 */
336 	get_spu_context(ctx);
337 
338 	/*
339 	 * We have to wait for context to be loaded before we have
340 	 * pages to hand out to the user, but we don't want to wait
341 	 * with the mmap_sem held.
342 	 * It is possible to drop the mmap_sem here, but then we need
343 	 * to return VM_FAULT_NOPAGE because the mappings may have
344 	 * hanged.
345 	 */
346 	if (spu_acquire(ctx))
347 		goto refault;
348 
349 	if (ctx->state == SPU_STATE_SAVED) {
350 		up_read(&current->mm->mmap_sem);
351 		spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
352 		ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
353 		spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
354 		down_read(&current->mm->mmap_sem);
355 	} else {
356 		area = ctx->spu->problem_phys + ps_offs;
357 		vm_insert_pfn(vmf->vma, vmf->address, (area + offset) >> PAGE_SHIFT);
358 		spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
359 	}
360 
361 	if (!ret)
362 		spu_release(ctx);
363 
364 refault:
365 	put_spu_context(ctx);
366 	return VM_FAULT_NOPAGE;
367 }
368 
369 #if SPUFS_MMAP_4K
370 static int spufs_cntl_mmap_fault(struct vm_fault *vmf)
371 {
372 	return spufs_ps_fault(vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
373 }
374 
375 static const struct vm_operations_struct spufs_cntl_mmap_vmops = {
376 	.fault = spufs_cntl_mmap_fault,
377 };
378 
379 /*
380  * mmap support for problem state control area [0x4000 - 0x4fff].
381  */
382 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
383 {
384 	if (!(vma->vm_flags & VM_SHARED))
385 		return -EINVAL;
386 
387 	vma->vm_flags |= VM_IO | VM_PFNMAP;
388 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
389 
390 	vma->vm_ops = &spufs_cntl_mmap_vmops;
391 	return 0;
392 }
393 #else /* SPUFS_MMAP_4K */
394 #define spufs_cntl_mmap NULL
395 #endif /* !SPUFS_MMAP_4K */
396 
397 static int spufs_cntl_get(void *data, u64 *val)
398 {
399 	struct spu_context *ctx = data;
400 	int ret;
401 
402 	ret = spu_acquire(ctx);
403 	if (ret)
404 		return ret;
405 	*val = ctx->ops->status_read(ctx);
406 	spu_release(ctx);
407 
408 	return 0;
409 }
410 
411 static int spufs_cntl_set(void *data, u64 val)
412 {
413 	struct spu_context *ctx = data;
414 	int ret;
415 
416 	ret = spu_acquire(ctx);
417 	if (ret)
418 		return ret;
419 	ctx->ops->runcntl_write(ctx, val);
420 	spu_release(ctx);
421 
422 	return 0;
423 }
424 
425 static int spufs_cntl_open(struct inode *inode, struct file *file)
426 {
427 	struct spufs_inode_info *i = SPUFS_I(inode);
428 	struct spu_context *ctx = i->i_ctx;
429 
430 	mutex_lock(&ctx->mapping_lock);
431 	file->private_data = ctx;
432 	if (!i->i_openers++)
433 		ctx->cntl = inode->i_mapping;
434 	mutex_unlock(&ctx->mapping_lock);
435 	return simple_attr_open(inode, file, spufs_cntl_get,
436 					spufs_cntl_set, "0x%08lx");
437 }
438 
439 static int
440 spufs_cntl_release(struct inode *inode, struct file *file)
441 {
442 	struct spufs_inode_info *i = SPUFS_I(inode);
443 	struct spu_context *ctx = i->i_ctx;
444 
445 	simple_attr_release(inode, file);
446 
447 	mutex_lock(&ctx->mapping_lock);
448 	if (!--i->i_openers)
449 		ctx->cntl = NULL;
450 	mutex_unlock(&ctx->mapping_lock);
451 	return 0;
452 }
453 
454 static const struct file_operations spufs_cntl_fops = {
455 	.open = spufs_cntl_open,
456 	.release = spufs_cntl_release,
457 	.read = simple_attr_read,
458 	.write = simple_attr_write,
459 	.llseek	= generic_file_llseek,
460 	.mmap = spufs_cntl_mmap,
461 };
462 
463 static int
464 spufs_regs_open(struct inode *inode, struct file *file)
465 {
466 	struct spufs_inode_info *i = SPUFS_I(inode);
467 	file->private_data = i->i_ctx;
468 	return 0;
469 }
470 
471 static ssize_t
472 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
473 			size_t size, loff_t *pos)
474 {
475 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
476 	return simple_read_from_buffer(buffer, size, pos,
477 				      lscsa->gprs, sizeof lscsa->gprs);
478 }
479 
480 static ssize_t
481 spufs_regs_read(struct file *file, char __user *buffer,
482 		size_t size, loff_t *pos)
483 {
484 	int ret;
485 	struct spu_context *ctx = file->private_data;
486 
487 	/* pre-check for file position: if we'd return EOF, there's no point
488 	 * causing a deschedule */
489 	if (*pos >= sizeof(ctx->csa.lscsa->gprs))
490 		return 0;
491 
492 	ret = spu_acquire_saved(ctx);
493 	if (ret)
494 		return ret;
495 	ret = __spufs_regs_read(ctx, buffer, size, pos);
496 	spu_release_saved(ctx);
497 	return ret;
498 }
499 
500 static ssize_t
501 spufs_regs_write(struct file *file, const char __user *buffer,
502 		 size_t size, loff_t *pos)
503 {
504 	struct spu_context *ctx = file->private_data;
505 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
506 	int ret;
507 
508 	if (*pos >= sizeof(lscsa->gprs))
509 		return -EFBIG;
510 
511 	ret = spu_acquire_saved(ctx);
512 	if (ret)
513 		return ret;
514 
515 	size = simple_write_to_buffer(lscsa->gprs, sizeof(lscsa->gprs), pos,
516 					buffer, size);
517 
518 	spu_release_saved(ctx);
519 	return size;
520 }
521 
522 static const struct file_operations spufs_regs_fops = {
523 	.open	 = spufs_regs_open,
524 	.read    = spufs_regs_read,
525 	.write   = spufs_regs_write,
526 	.llseek  = generic_file_llseek,
527 };
528 
529 static ssize_t
530 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
531 			size_t size, loff_t * pos)
532 {
533 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
534 	return simple_read_from_buffer(buffer, size, pos,
535 				      &lscsa->fpcr, sizeof(lscsa->fpcr));
536 }
537 
538 static ssize_t
539 spufs_fpcr_read(struct file *file, char __user * buffer,
540 		size_t size, loff_t * pos)
541 {
542 	int ret;
543 	struct spu_context *ctx = file->private_data;
544 
545 	ret = spu_acquire_saved(ctx);
546 	if (ret)
547 		return ret;
548 	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
549 	spu_release_saved(ctx);
550 	return ret;
551 }
552 
553 static ssize_t
554 spufs_fpcr_write(struct file *file, const char __user * buffer,
555 		 size_t size, loff_t * pos)
556 {
557 	struct spu_context *ctx = file->private_data;
558 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
559 	int ret;
560 
561 	if (*pos >= sizeof(lscsa->fpcr))
562 		return -EFBIG;
563 
564 	ret = spu_acquire_saved(ctx);
565 	if (ret)
566 		return ret;
567 
568 	size = simple_write_to_buffer(&lscsa->fpcr, sizeof(lscsa->fpcr), pos,
569 					buffer, size);
570 
571 	spu_release_saved(ctx);
572 	return size;
573 }
574 
575 static const struct file_operations spufs_fpcr_fops = {
576 	.open = spufs_regs_open,
577 	.read = spufs_fpcr_read,
578 	.write = spufs_fpcr_write,
579 	.llseek = generic_file_llseek,
580 };
581 
582 /* generic open function for all pipe-like files */
583 static int spufs_pipe_open(struct inode *inode, struct file *file)
584 {
585 	struct spufs_inode_info *i = SPUFS_I(inode);
586 	file->private_data = i->i_ctx;
587 
588 	return nonseekable_open(inode, file);
589 }
590 
591 /*
592  * Read as many bytes from the mailbox as possible, until
593  * one of the conditions becomes true:
594  *
595  * - no more data available in the mailbox
596  * - end of the user provided buffer
597  * - end of the mapped area
598  */
599 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
600 			size_t len, loff_t *pos)
601 {
602 	struct spu_context *ctx = file->private_data;
603 	u32 mbox_data, __user *udata;
604 	ssize_t count;
605 
606 	if (len < 4)
607 		return -EINVAL;
608 
609 	if (!access_ok(VERIFY_WRITE, buf, len))
610 		return -EFAULT;
611 
612 	udata = (void __user *)buf;
613 
614 	count = spu_acquire(ctx);
615 	if (count)
616 		return count;
617 
618 	for (count = 0; (count + 4) <= len; count += 4, udata++) {
619 		int ret;
620 		ret = ctx->ops->mbox_read(ctx, &mbox_data);
621 		if (ret == 0)
622 			break;
623 
624 		/*
625 		 * at the end of the mapped area, we can fault
626 		 * but still need to return the data we have
627 		 * read successfully so far.
628 		 */
629 		ret = __put_user(mbox_data, udata);
630 		if (ret) {
631 			if (!count)
632 				count = -EFAULT;
633 			break;
634 		}
635 	}
636 	spu_release(ctx);
637 
638 	if (!count)
639 		count = -EAGAIN;
640 
641 	return count;
642 }
643 
644 static const struct file_operations spufs_mbox_fops = {
645 	.open	= spufs_pipe_open,
646 	.read	= spufs_mbox_read,
647 	.llseek	= no_llseek,
648 };
649 
650 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
651 			size_t len, loff_t *pos)
652 {
653 	struct spu_context *ctx = file->private_data;
654 	ssize_t ret;
655 	u32 mbox_stat;
656 
657 	if (len < 4)
658 		return -EINVAL;
659 
660 	ret = spu_acquire(ctx);
661 	if (ret)
662 		return ret;
663 
664 	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
665 
666 	spu_release(ctx);
667 
668 	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
669 		return -EFAULT;
670 
671 	return 4;
672 }
673 
674 static const struct file_operations spufs_mbox_stat_fops = {
675 	.open	= spufs_pipe_open,
676 	.read	= spufs_mbox_stat_read,
677 	.llseek = no_llseek,
678 };
679 
680 /* low-level ibox access function */
681 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
682 {
683 	return ctx->ops->ibox_read(ctx, data);
684 }
685 
686 static int spufs_ibox_fasync(int fd, struct file *file, int on)
687 {
688 	struct spu_context *ctx = file->private_data;
689 
690 	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
691 }
692 
693 /* interrupt-level ibox callback function. */
694 void spufs_ibox_callback(struct spu *spu)
695 {
696 	struct spu_context *ctx = spu->ctx;
697 
698 	if (!ctx)
699 		return;
700 
701 	wake_up_all(&ctx->ibox_wq);
702 	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
703 }
704 
705 /*
706  * Read as many bytes from the interrupt mailbox as possible, until
707  * one of the conditions becomes true:
708  *
709  * - no more data available in the mailbox
710  * - end of the user provided buffer
711  * - end of the mapped area
712  *
713  * If the file is opened without O_NONBLOCK, we wait here until
714  * any data is available, but return when we have been able to
715  * read something.
716  */
717 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
718 			size_t len, loff_t *pos)
719 {
720 	struct spu_context *ctx = file->private_data;
721 	u32 ibox_data, __user *udata;
722 	ssize_t count;
723 
724 	if (len < 4)
725 		return -EINVAL;
726 
727 	if (!access_ok(VERIFY_WRITE, buf, len))
728 		return -EFAULT;
729 
730 	udata = (void __user *)buf;
731 
732 	count = spu_acquire(ctx);
733 	if (count)
734 		goto out;
735 
736 	/* wait only for the first element */
737 	count = 0;
738 	if (file->f_flags & O_NONBLOCK) {
739 		if (!spu_ibox_read(ctx, &ibox_data)) {
740 			count = -EAGAIN;
741 			goto out_unlock;
742 		}
743 	} else {
744 		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
745 		if (count)
746 			goto out;
747 	}
748 
749 	/* if we can't write at all, return -EFAULT */
750 	count = __put_user(ibox_data, udata);
751 	if (count)
752 		goto out_unlock;
753 
754 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
755 		int ret;
756 		ret = ctx->ops->ibox_read(ctx, &ibox_data);
757 		if (ret == 0)
758 			break;
759 		/*
760 		 * at the end of the mapped area, we can fault
761 		 * but still need to return the data we have
762 		 * read successfully so far.
763 		 */
764 		ret = __put_user(ibox_data, udata);
765 		if (ret)
766 			break;
767 	}
768 
769 out_unlock:
770 	spu_release(ctx);
771 out:
772 	return count;
773 }
774 
775 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
776 {
777 	struct spu_context *ctx = file->private_data;
778 	unsigned int mask;
779 
780 	poll_wait(file, &ctx->ibox_wq, wait);
781 
782 	/*
783 	 * For now keep this uninterruptible and also ignore the rule
784 	 * that poll should not sleep.  Will be fixed later.
785 	 */
786 	mutex_lock(&ctx->state_mutex);
787 	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
788 	spu_release(ctx);
789 
790 	return mask;
791 }
792 
793 static const struct file_operations spufs_ibox_fops = {
794 	.open	= spufs_pipe_open,
795 	.read	= spufs_ibox_read,
796 	.poll	= spufs_ibox_poll,
797 	.fasync	= spufs_ibox_fasync,
798 	.llseek = no_llseek,
799 };
800 
801 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
802 			size_t len, loff_t *pos)
803 {
804 	struct spu_context *ctx = file->private_data;
805 	ssize_t ret;
806 	u32 ibox_stat;
807 
808 	if (len < 4)
809 		return -EINVAL;
810 
811 	ret = spu_acquire(ctx);
812 	if (ret)
813 		return ret;
814 	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
815 	spu_release(ctx);
816 
817 	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
818 		return -EFAULT;
819 
820 	return 4;
821 }
822 
823 static const struct file_operations spufs_ibox_stat_fops = {
824 	.open	= spufs_pipe_open,
825 	.read	= spufs_ibox_stat_read,
826 	.llseek = no_llseek,
827 };
828 
829 /* low-level mailbox write */
830 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
831 {
832 	return ctx->ops->wbox_write(ctx, data);
833 }
834 
835 static int spufs_wbox_fasync(int fd, struct file *file, int on)
836 {
837 	struct spu_context *ctx = file->private_data;
838 	int ret;
839 
840 	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
841 
842 	return ret;
843 }
844 
845 /* interrupt-level wbox callback function. */
846 void spufs_wbox_callback(struct spu *spu)
847 {
848 	struct spu_context *ctx = spu->ctx;
849 
850 	if (!ctx)
851 		return;
852 
853 	wake_up_all(&ctx->wbox_wq);
854 	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
855 }
856 
857 /*
858  * Write as many bytes to the interrupt mailbox as possible, until
859  * one of the conditions becomes true:
860  *
861  * - the mailbox is full
862  * - end of the user provided buffer
863  * - end of the mapped area
864  *
865  * If the file is opened without O_NONBLOCK, we wait here until
866  * space is available, but return when we have been able to
867  * write something.
868  */
869 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
870 			size_t len, loff_t *pos)
871 {
872 	struct spu_context *ctx = file->private_data;
873 	u32 wbox_data, __user *udata;
874 	ssize_t count;
875 
876 	if (len < 4)
877 		return -EINVAL;
878 
879 	udata = (void __user *)buf;
880 	if (!access_ok(VERIFY_READ, buf, len))
881 		return -EFAULT;
882 
883 	if (__get_user(wbox_data, udata))
884 		return -EFAULT;
885 
886 	count = spu_acquire(ctx);
887 	if (count)
888 		goto out;
889 
890 	/*
891 	 * make sure we can at least write one element, by waiting
892 	 * in case of !O_NONBLOCK
893 	 */
894 	count = 0;
895 	if (file->f_flags & O_NONBLOCK) {
896 		if (!spu_wbox_write(ctx, wbox_data)) {
897 			count = -EAGAIN;
898 			goto out_unlock;
899 		}
900 	} else {
901 		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
902 		if (count)
903 			goto out;
904 	}
905 
906 
907 	/* write as much as possible */
908 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
909 		int ret;
910 		ret = __get_user(wbox_data, udata);
911 		if (ret)
912 			break;
913 
914 		ret = spu_wbox_write(ctx, wbox_data);
915 		if (ret == 0)
916 			break;
917 	}
918 
919 out_unlock:
920 	spu_release(ctx);
921 out:
922 	return count;
923 }
924 
925 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
926 {
927 	struct spu_context *ctx = file->private_data;
928 	unsigned int mask;
929 
930 	poll_wait(file, &ctx->wbox_wq, wait);
931 
932 	/*
933 	 * For now keep this uninterruptible and also ignore the rule
934 	 * that poll should not sleep.  Will be fixed later.
935 	 */
936 	mutex_lock(&ctx->state_mutex);
937 	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
938 	spu_release(ctx);
939 
940 	return mask;
941 }
942 
943 static const struct file_operations spufs_wbox_fops = {
944 	.open	= spufs_pipe_open,
945 	.write	= spufs_wbox_write,
946 	.poll	= spufs_wbox_poll,
947 	.fasync	= spufs_wbox_fasync,
948 	.llseek = no_llseek,
949 };
950 
951 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
952 			size_t len, loff_t *pos)
953 {
954 	struct spu_context *ctx = file->private_data;
955 	ssize_t ret;
956 	u32 wbox_stat;
957 
958 	if (len < 4)
959 		return -EINVAL;
960 
961 	ret = spu_acquire(ctx);
962 	if (ret)
963 		return ret;
964 	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
965 	spu_release(ctx);
966 
967 	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
968 		return -EFAULT;
969 
970 	return 4;
971 }
972 
973 static const struct file_operations spufs_wbox_stat_fops = {
974 	.open	= spufs_pipe_open,
975 	.read	= spufs_wbox_stat_read,
976 	.llseek = no_llseek,
977 };
978 
979 static int spufs_signal1_open(struct inode *inode, struct file *file)
980 {
981 	struct spufs_inode_info *i = SPUFS_I(inode);
982 	struct spu_context *ctx = i->i_ctx;
983 
984 	mutex_lock(&ctx->mapping_lock);
985 	file->private_data = ctx;
986 	if (!i->i_openers++)
987 		ctx->signal1 = inode->i_mapping;
988 	mutex_unlock(&ctx->mapping_lock);
989 	return nonseekable_open(inode, file);
990 }
991 
992 static int
993 spufs_signal1_release(struct inode *inode, struct file *file)
994 {
995 	struct spufs_inode_info *i = SPUFS_I(inode);
996 	struct spu_context *ctx = i->i_ctx;
997 
998 	mutex_lock(&ctx->mapping_lock);
999 	if (!--i->i_openers)
1000 		ctx->signal1 = NULL;
1001 	mutex_unlock(&ctx->mapping_lock);
1002 	return 0;
1003 }
1004 
1005 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1006 			size_t len, loff_t *pos)
1007 {
1008 	int ret = 0;
1009 	u32 data;
1010 
1011 	if (len < 4)
1012 		return -EINVAL;
1013 
1014 	if (ctx->csa.spu_chnlcnt_RW[3]) {
1015 		data = ctx->csa.spu_chnldata_RW[3];
1016 		ret = 4;
1017 	}
1018 
1019 	if (!ret)
1020 		goto out;
1021 
1022 	if (copy_to_user(buf, &data, 4))
1023 		return -EFAULT;
1024 
1025 out:
1026 	return ret;
1027 }
1028 
1029 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
1030 			size_t len, loff_t *pos)
1031 {
1032 	int ret;
1033 	struct spu_context *ctx = file->private_data;
1034 
1035 	ret = spu_acquire_saved(ctx);
1036 	if (ret)
1037 		return ret;
1038 	ret = __spufs_signal1_read(ctx, buf, len, pos);
1039 	spu_release_saved(ctx);
1040 
1041 	return ret;
1042 }
1043 
1044 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
1045 			size_t len, loff_t *pos)
1046 {
1047 	struct spu_context *ctx;
1048 	ssize_t ret;
1049 	u32 data;
1050 
1051 	ctx = file->private_data;
1052 
1053 	if (len < 4)
1054 		return -EINVAL;
1055 
1056 	if (copy_from_user(&data, buf, 4))
1057 		return -EFAULT;
1058 
1059 	ret = spu_acquire(ctx);
1060 	if (ret)
1061 		return ret;
1062 	ctx->ops->signal1_write(ctx, data);
1063 	spu_release(ctx);
1064 
1065 	return 4;
1066 }
1067 
1068 static int
1069 spufs_signal1_mmap_fault(struct vm_fault *vmf)
1070 {
1071 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1072 	return spufs_ps_fault(vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
1073 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1074 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1075 	 * signal 1 and 2 area
1076 	 */
1077 	return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1078 #else
1079 #error unsupported page size
1080 #endif
1081 }
1082 
1083 static const struct vm_operations_struct spufs_signal1_mmap_vmops = {
1084 	.fault = spufs_signal1_mmap_fault,
1085 };
1086 
1087 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1088 {
1089 	if (!(vma->vm_flags & VM_SHARED))
1090 		return -EINVAL;
1091 
1092 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1093 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1094 
1095 	vma->vm_ops = &spufs_signal1_mmap_vmops;
1096 	return 0;
1097 }
1098 
1099 static const struct file_operations spufs_signal1_fops = {
1100 	.open = spufs_signal1_open,
1101 	.release = spufs_signal1_release,
1102 	.read = spufs_signal1_read,
1103 	.write = spufs_signal1_write,
1104 	.mmap = spufs_signal1_mmap,
1105 	.llseek = no_llseek,
1106 };
1107 
1108 static const struct file_operations spufs_signal1_nosched_fops = {
1109 	.open = spufs_signal1_open,
1110 	.release = spufs_signal1_release,
1111 	.write = spufs_signal1_write,
1112 	.mmap = spufs_signal1_mmap,
1113 	.llseek = no_llseek,
1114 };
1115 
1116 static int spufs_signal2_open(struct inode *inode, struct file *file)
1117 {
1118 	struct spufs_inode_info *i = SPUFS_I(inode);
1119 	struct spu_context *ctx = i->i_ctx;
1120 
1121 	mutex_lock(&ctx->mapping_lock);
1122 	file->private_data = ctx;
1123 	if (!i->i_openers++)
1124 		ctx->signal2 = inode->i_mapping;
1125 	mutex_unlock(&ctx->mapping_lock);
1126 	return nonseekable_open(inode, file);
1127 }
1128 
1129 static int
1130 spufs_signal2_release(struct inode *inode, struct file *file)
1131 {
1132 	struct spufs_inode_info *i = SPUFS_I(inode);
1133 	struct spu_context *ctx = i->i_ctx;
1134 
1135 	mutex_lock(&ctx->mapping_lock);
1136 	if (!--i->i_openers)
1137 		ctx->signal2 = NULL;
1138 	mutex_unlock(&ctx->mapping_lock);
1139 	return 0;
1140 }
1141 
1142 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1143 			size_t len, loff_t *pos)
1144 {
1145 	int ret = 0;
1146 	u32 data;
1147 
1148 	if (len < 4)
1149 		return -EINVAL;
1150 
1151 	if (ctx->csa.spu_chnlcnt_RW[4]) {
1152 		data =  ctx->csa.spu_chnldata_RW[4];
1153 		ret = 4;
1154 	}
1155 
1156 	if (!ret)
1157 		goto out;
1158 
1159 	if (copy_to_user(buf, &data, 4))
1160 		return -EFAULT;
1161 
1162 out:
1163 	return ret;
1164 }
1165 
1166 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1167 			size_t len, loff_t *pos)
1168 {
1169 	struct spu_context *ctx = file->private_data;
1170 	int ret;
1171 
1172 	ret = spu_acquire_saved(ctx);
1173 	if (ret)
1174 		return ret;
1175 	ret = __spufs_signal2_read(ctx, buf, len, pos);
1176 	spu_release_saved(ctx);
1177 
1178 	return ret;
1179 }
1180 
1181 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1182 			size_t len, loff_t *pos)
1183 {
1184 	struct spu_context *ctx;
1185 	ssize_t ret;
1186 	u32 data;
1187 
1188 	ctx = file->private_data;
1189 
1190 	if (len < 4)
1191 		return -EINVAL;
1192 
1193 	if (copy_from_user(&data, buf, 4))
1194 		return -EFAULT;
1195 
1196 	ret = spu_acquire(ctx);
1197 	if (ret)
1198 		return ret;
1199 	ctx->ops->signal2_write(ctx, data);
1200 	spu_release(ctx);
1201 
1202 	return 4;
1203 }
1204 
1205 #if SPUFS_MMAP_4K
1206 static int
1207 spufs_signal2_mmap_fault(struct vm_fault *vmf)
1208 {
1209 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1210 	return spufs_ps_fault(vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
1211 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1212 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1213 	 * signal 1 and 2 area
1214 	 */
1215 	return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1216 #else
1217 #error unsupported page size
1218 #endif
1219 }
1220 
1221 static const struct vm_operations_struct spufs_signal2_mmap_vmops = {
1222 	.fault = spufs_signal2_mmap_fault,
1223 };
1224 
1225 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1226 {
1227 	if (!(vma->vm_flags & VM_SHARED))
1228 		return -EINVAL;
1229 
1230 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1231 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1232 
1233 	vma->vm_ops = &spufs_signal2_mmap_vmops;
1234 	return 0;
1235 }
1236 #else /* SPUFS_MMAP_4K */
1237 #define spufs_signal2_mmap NULL
1238 #endif /* !SPUFS_MMAP_4K */
1239 
1240 static const struct file_operations spufs_signal2_fops = {
1241 	.open = spufs_signal2_open,
1242 	.release = spufs_signal2_release,
1243 	.read = spufs_signal2_read,
1244 	.write = spufs_signal2_write,
1245 	.mmap = spufs_signal2_mmap,
1246 	.llseek = no_llseek,
1247 };
1248 
1249 static const struct file_operations spufs_signal2_nosched_fops = {
1250 	.open = spufs_signal2_open,
1251 	.release = spufs_signal2_release,
1252 	.write = spufs_signal2_write,
1253 	.mmap = spufs_signal2_mmap,
1254 	.llseek = no_llseek,
1255 };
1256 
1257 /*
1258  * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1259  * work of acquiring (or not) the SPU context before calling through
1260  * to the actual get routine. The set routine is called directly.
1261  */
1262 #define SPU_ATTR_NOACQUIRE	0
1263 #define SPU_ATTR_ACQUIRE	1
1264 #define SPU_ATTR_ACQUIRE_SAVED	2
1265 
1266 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)	\
1267 static int __##__get(void *data, u64 *val)				\
1268 {									\
1269 	struct spu_context *ctx = data;					\
1270 	int ret = 0;							\
1271 									\
1272 	if (__acquire == SPU_ATTR_ACQUIRE) {				\
1273 		ret = spu_acquire(ctx);					\
1274 		if (ret)						\
1275 			return ret;					\
1276 		*val = __get(ctx);					\
1277 		spu_release(ctx);					\
1278 	} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED)	{		\
1279 		ret = spu_acquire_saved(ctx);				\
1280 		if (ret)						\
1281 			return ret;					\
1282 		*val = __get(ctx);					\
1283 		spu_release_saved(ctx);					\
1284 	} else								\
1285 		*val = __get(ctx);					\
1286 									\
1287 	return 0;							\
1288 }									\
1289 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1290 
1291 static int spufs_signal1_type_set(void *data, u64 val)
1292 {
1293 	struct spu_context *ctx = data;
1294 	int ret;
1295 
1296 	ret = spu_acquire(ctx);
1297 	if (ret)
1298 		return ret;
1299 	ctx->ops->signal1_type_set(ctx, val);
1300 	spu_release(ctx);
1301 
1302 	return 0;
1303 }
1304 
1305 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1306 {
1307 	return ctx->ops->signal1_type_get(ctx);
1308 }
1309 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1310 		       spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1311 
1312 
1313 static int spufs_signal2_type_set(void *data, u64 val)
1314 {
1315 	struct spu_context *ctx = data;
1316 	int ret;
1317 
1318 	ret = spu_acquire(ctx);
1319 	if (ret)
1320 		return ret;
1321 	ctx->ops->signal2_type_set(ctx, val);
1322 	spu_release(ctx);
1323 
1324 	return 0;
1325 }
1326 
1327 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1328 {
1329 	return ctx->ops->signal2_type_get(ctx);
1330 }
1331 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1332 		       spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1333 
1334 #if SPUFS_MMAP_4K
1335 static int
1336 spufs_mss_mmap_fault(struct vm_fault *vmf)
1337 {
1338 	return spufs_ps_fault(vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1339 }
1340 
1341 static const struct vm_operations_struct spufs_mss_mmap_vmops = {
1342 	.fault = spufs_mss_mmap_fault,
1343 };
1344 
1345 /*
1346  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1347  */
1348 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1349 {
1350 	if (!(vma->vm_flags & VM_SHARED))
1351 		return -EINVAL;
1352 
1353 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1354 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1355 
1356 	vma->vm_ops = &spufs_mss_mmap_vmops;
1357 	return 0;
1358 }
1359 #else /* SPUFS_MMAP_4K */
1360 #define spufs_mss_mmap NULL
1361 #endif /* !SPUFS_MMAP_4K */
1362 
1363 static int spufs_mss_open(struct inode *inode, struct file *file)
1364 {
1365 	struct spufs_inode_info *i = SPUFS_I(inode);
1366 	struct spu_context *ctx = i->i_ctx;
1367 
1368 	file->private_data = i->i_ctx;
1369 
1370 	mutex_lock(&ctx->mapping_lock);
1371 	if (!i->i_openers++)
1372 		ctx->mss = inode->i_mapping;
1373 	mutex_unlock(&ctx->mapping_lock);
1374 	return nonseekable_open(inode, file);
1375 }
1376 
1377 static int
1378 spufs_mss_release(struct inode *inode, struct file *file)
1379 {
1380 	struct spufs_inode_info *i = SPUFS_I(inode);
1381 	struct spu_context *ctx = i->i_ctx;
1382 
1383 	mutex_lock(&ctx->mapping_lock);
1384 	if (!--i->i_openers)
1385 		ctx->mss = NULL;
1386 	mutex_unlock(&ctx->mapping_lock);
1387 	return 0;
1388 }
1389 
1390 static const struct file_operations spufs_mss_fops = {
1391 	.open	 = spufs_mss_open,
1392 	.release = spufs_mss_release,
1393 	.mmap	 = spufs_mss_mmap,
1394 	.llseek  = no_llseek,
1395 };
1396 
1397 static int
1398 spufs_psmap_mmap_fault(struct vm_fault *vmf)
1399 {
1400 	return spufs_ps_fault(vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1401 }
1402 
1403 static const struct vm_operations_struct spufs_psmap_mmap_vmops = {
1404 	.fault = spufs_psmap_mmap_fault,
1405 };
1406 
1407 /*
1408  * mmap support for full problem state area [0x00000 - 0x1ffff].
1409  */
1410 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1411 {
1412 	if (!(vma->vm_flags & VM_SHARED))
1413 		return -EINVAL;
1414 
1415 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1416 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1417 
1418 	vma->vm_ops = &spufs_psmap_mmap_vmops;
1419 	return 0;
1420 }
1421 
1422 static int spufs_psmap_open(struct inode *inode, struct file *file)
1423 {
1424 	struct spufs_inode_info *i = SPUFS_I(inode);
1425 	struct spu_context *ctx = i->i_ctx;
1426 
1427 	mutex_lock(&ctx->mapping_lock);
1428 	file->private_data = i->i_ctx;
1429 	if (!i->i_openers++)
1430 		ctx->psmap = inode->i_mapping;
1431 	mutex_unlock(&ctx->mapping_lock);
1432 	return nonseekable_open(inode, file);
1433 }
1434 
1435 static int
1436 spufs_psmap_release(struct inode *inode, struct file *file)
1437 {
1438 	struct spufs_inode_info *i = SPUFS_I(inode);
1439 	struct spu_context *ctx = i->i_ctx;
1440 
1441 	mutex_lock(&ctx->mapping_lock);
1442 	if (!--i->i_openers)
1443 		ctx->psmap = NULL;
1444 	mutex_unlock(&ctx->mapping_lock);
1445 	return 0;
1446 }
1447 
1448 static const struct file_operations spufs_psmap_fops = {
1449 	.open	 = spufs_psmap_open,
1450 	.release = spufs_psmap_release,
1451 	.mmap	 = spufs_psmap_mmap,
1452 	.llseek  = no_llseek,
1453 };
1454 
1455 
1456 #if SPUFS_MMAP_4K
1457 static int
1458 spufs_mfc_mmap_fault(struct vm_fault *vmf)
1459 {
1460 	return spufs_ps_fault(vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1461 }
1462 
1463 static const struct vm_operations_struct spufs_mfc_mmap_vmops = {
1464 	.fault = spufs_mfc_mmap_fault,
1465 };
1466 
1467 /*
1468  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1469  */
1470 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1471 {
1472 	if (!(vma->vm_flags & VM_SHARED))
1473 		return -EINVAL;
1474 
1475 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1476 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1477 
1478 	vma->vm_ops = &spufs_mfc_mmap_vmops;
1479 	return 0;
1480 }
1481 #else /* SPUFS_MMAP_4K */
1482 #define spufs_mfc_mmap NULL
1483 #endif /* !SPUFS_MMAP_4K */
1484 
1485 static int spufs_mfc_open(struct inode *inode, struct file *file)
1486 {
1487 	struct spufs_inode_info *i = SPUFS_I(inode);
1488 	struct spu_context *ctx = i->i_ctx;
1489 
1490 	/* we don't want to deal with DMA into other processes */
1491 	if (ctx->owner != current->mm)
1492 		return -EINVAL;
1493 
1494 	if (atomic_read(&inode->i_count) != 1)
1495 		return -EBUSY;
1496 
1497 	mutex_lock(&ctx->mapping_lock);
1498 	file->private_data = ctx;
1499 	if (!i->i_openers++)
1500 		ctx->mfc = inode->i_mapping;
1501 	mutex_unlock(&ctx->mapping_lock);
1502 	return nonseekable_open(inode, file);
1503 }
1504 
1505 static int
1506 spufs_mfc_release(struct inode *inode, struct file *file)
1507 {
1508 	struct spufs_inode_info *i = SPUFS_I(inode);
1509 	struct spu_context *ctx = i->i_ctx;
1510 
1511 	mutex_lock(&ctx->mapping_lock);
1512 	if (!--i->i_openers)
1513 		ctx->mfc = NULL;
1514 	mutex_unlock(&ctx->mapping_lock);
1515 	return 0;
1516 }
1517 
1518 /* interrupt-level mfc callback function. */
1519 void spufs_mfc_callback(struct spu *spu)
1520 {
1521 	struct spu_context *ctx = spu->ctx;
1522 
1523 	if (!ctx)
1524 		return;
1525 
1526 	wake_up_all(&ctx->mfc_wq);
1527 
1528 	pr_debug("%s %s\n", __func__, spu->name);
1529 	if (ctx->mfc_fasync) {
1530 		u32 free_elements, tagstatus;
1531 		unsigned int mask;
1532 
1533 		/* no need for spu_acquire in interrupt context */
1534 		free_elements = ctx->ops->get_mfc_free_elements(ctx);
1535 		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1536 
1537 		mask = 0;
1538 		if (free_elements & 0xffff)
1539 			mask |= POLLOUT;
1540 		if (tagstatus & ctx->tagwait)
1541 			mask |= POLLIN;
1542 
1543 		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
1544 	}
1545 }
1546 
1547 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1548 {
1549 	/* See if there is one tag group is complete */
1550 	/* FIXME we need locking around tagwait */
1551 	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1552 	ctx->tagwait &= ~*status;
1553 	if (*status)
1554 		return 1;
1555 
1556 	/* enable interrupt waiting for any tag group,
1557 	   may silently fail if interrupts are already enabled */
1558 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1559 	return 0;
1560 }
1561 
1562 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1563 			size_t size, loff_t *pos)
1564 {
1565 	struct spu_context *ctx = file->private_data;
1566 	int ret = -EINVAL;
1567 	u32 status;
1568 
1569 	if (size != 4)
1570 		goto out;
1571 
1572 	ret = spu_acquire(ctx);
1573 	if (ret)
1574 		return ret;
1575 
1576 	ret = -EINVAL;
1577 	if (file->f_flags & O_NONBLOCK) {
1578 		status = ctx->ops->read_mfc_tagstatus(ctx);
1579 		if (!(status & ctx->tagwait))
1580 			ret = -EAGAIN;
1581 		else
1582 			/* XXX(hch): shouldn't we clear ret here? */
1583 			ctx->tagwait &= ~status;
1584 	} else {
1585 		ret = spufs_wait(ctx->mfc_wq,
1586 			   spufs_read_mfc_tagstatus(ctx, &status));
1587 		if (ret)
1588 			goto out;
1589 	}
1590 	spu_release(ctx);
1591 
1592 	ret = 4;
1593 	if (copy_to_user(buffer, &status, 4))
1594 		ret = -EFAULT;
1595 
1596 out:
1597 	return ret;
1598 }
1599 
1600 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1601 {
1602 	pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa,
1603 		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1604 
1605 	switch (cmd->cmd) {
1606 	case MFC_PUT_CMD:
1607 	case MFC_PUTF_CMD:
1608 	case MFC_PUTB_CMD:
1609 	case MFC_GET_CMD:
1610 	case MFC_GETF_CMD:
1611 	case MFC_GETB_CMD:
1612 		break;
1613 	default:
1614 		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1615 		return -EIO;
1616 	}
1617 
1618 	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1619 		pr_debug("invalid DMA alignment, ea %llx lsa %x\n",
1620 				cmd->ea, cmd->lsa);
1621 		return -EIO;
1622 	}
1623 
1624 	switch (cmd->size & 0xf) {
1625 	case 1:
1626 		break;
1627 	case 2:
1628 		if (cmd->lsa & 1)
1629 			goto error;
1630 		break;
1631 	case 4:
1632 		if (cmd->lsa & 3)
1633 			goto error;
1634 		break;
1635 	case 8:
1636 		if (cmd->lsa & 7)
1637 			goto error;
1638 		break;
1639 	case 0:
1640 		if (cmd->lsa & 15)
1641 			goto error;
1642 		break;
1643 	error:
1644 	default:
1645 		pr_debug("invalid DMA alignment %x for size %x\n",
1646 			cmd->lsa & 0xf, cmd->size);
1647 		return -EIO;
1648 	}
1649 
1650 	if (cmd->size > 16 * 1024) {
1651 		pr_debug("invalid DMA size %x\n", cmd->size);
1652 		return -EIO;
1653 	}
1654 
1655 	if (cmd->tag & 0xfff0) {
1656 		/* we reserve the higher tag numbers for kernel use */
1657 		pr_debug("invalid DMA tag\n");
1658 		return -EIO;
1659 	}
1660 
1661 	if (cmd->class) {
1662 		/* not supported in this version */
1663 		pr_debug("invalid DMA class\n");
1664 		return -EIO;
1665 	}
1666 
1667 	return 0;
1668 }
1669 
1670 static int spu_send_mfc_command(struct spu_context *ctx,
1671 				struct mfc_dma_command cmd,
1672 				int *error)
1673 {
1674 	*error = ctx->ops->send_mfc_command(ctx, &cmd);
1675 	if (*error == -EAGAIN) {
1676 		/* wait for any tag group to complete
1677 		   so we have space for the new command */
1678 		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1679 		/* try again, because the queue might be
1680 		   empty again */
1681 		*error = ctx->ops->send_mfc_command(ctx, &cmd);
1682 		if (*error == -EAGAIN)
1683 			return 0;
1684 	}
1685 	return 1;
1686 }
1687 
1688 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1689 			size_t size, loff_t *pos)
1690 {
1691 	struct spu_context *ctx = file->private_data;
1692 	struct mfc_dma_command cmd;
1693 	int ret = -EINVAL;
1694 
1695 	if (size != sizeof cmd)
1696 		goto out;
1697 
1698 	ret = -EFAULT;
1699 	if (copy_from_user(&cmd, buffer, sizeof cmd))
1700 		goto out;
1701 
1702 	ret = spufs_check_valid_dma(&cmd);
1703 	if (ret)
1704 		goto out;
1705 
1706 	ret = spu_acquire(ctx);
1707 	if (ret)
1708 		goto out;
1709 
1710 	ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1711 	if (ret)
1712 		goto out;
1713 
1714 	if (file->f_flags & O_NONBLOCK) {
1715 		ret = ctx->ops->send_mfc_command(ctx, &cmd);
1716 	} else {
1717 		int status;
1718 		ret = spufs_wait(ctx->mfc_wq,
1719 				 spu_send_mfc_command(ctx, cmd, &status));
1720 		if (ret)
1721 			goto out;
1722 		if (status)
1723 			ret = status;
1724 	}
1725 
1726 	if (ret)
1727 		goto out_unlock;
1728 
1729 	ctx->tagwait |= 1 << cmd.tag;
1730 	ret = size;
1731 
1732 out_unlock:
1733 	spu_release(ctx);
1734 out:
1735 	return ret;
1736 }
1737 
1738 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
1739 {
1740 	struct spu_context *ctx = file->private_data;
1741 	u32 free_elements, tagstatus;
1742 	unsigned int mask;
1743 
1744 	poll_wait(file, &ctx->mfc_wq, wait);
1745 
1746 	/*
1747 	 * For now keep this uninterruptible and also ignore the rule
1748 	 * that poll should not sleep.  Will be fixed later.
1749 	 */
1750 	mutex_lock(&ctx->state_mutex);
1751 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1752 	free_elements = ctx->ops->get_mfc_free_elements(ctx);
1753 	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1754 	spu_release(ctx);
1755 
1756 	mask = 0;
1757 	if (free_elements & 0xffff)
1758 		mask |= POLLOUT | POLLWRNORM;
1759 	if (tagstatus & ctx->tagwait)
1760 		mask |= POLLIN | POLLRDNORM;
1761 
1762 	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1763 		free_elements, tagstatus, ctx->tagwait);
1764 
1765 	return mask;
1766 }
1767 
1768 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1769 {
1770 	struct spu_context *ctx = file->private_data;
1771 	int ret;
1772 
1773 	ret = spu_acquire(ctx);
1774 	if (ret)
1775 		goto out;
1776 #if 0
1777 /* this currently hangs */
1778 	ret = spufs_wait(ctx->mfc_wq,
1779 			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1780 	if (ret)
1781 		goto out;
1782 	ret = spufs_wait(ctx->mfc_wq,
1783 			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1784 	if (ret)
1785 		goto out;
1786 #else
1787 	ret = 0;
1788 #endif
1789 	spu_release(ctx);
1790 out:
1791 	return ret;
1792 }
1793 
1794 static int spufs_mfc_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1795 {
1796 	struct inode *inode = file_inode(file);
1797 	int err = filemap_write_and_wait_range(inode->i_mapping, start, end);
1798 	if (!err) {
1799 		inode_lock(inode);
1800 		err = spufs_mfc_flush(file, NULL);
1801 		inode_unlock(inode);
1802 	}
1803 	return err;
1804 }
1805 
1806 static int spufs_mfc_fasync(int fd, struct file *file, int on)
1807 {
1808 	struct spu_context *ctx = file->private_data;
1809 
1810 	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
1811 }
1812 
1813 static const struct file_operations spufs_mfc_fops = {
1814 	.open	 = spufs_mfc_open,
1815 	.release = spufs_mfc_release,
1816 	.read	 = spufs_mfc_read,
1817 	.write	 = spufs_mfc_write,
1818 	.poll	 = spufs_mfc_poll,
1819 	.flush	 = spufs_mfc_flush,
1820 	.fsync	 = spufs_mfc_fsync,
1821 	.fasync	 = spufs_mfc_fasync,
1822 	.mmap	 = spufs_mfc_mmap,
1823 	.llseek  = no_llseek,
1824 };
1825 
1826 static int spufs_npc_set(void *data, u64 val)
1827 {
1828 	struct spu_context *ctx = data;
1829 	int ret;
1830 
1831 	ret = spu_acquire(ctx);
1832 	if (ret)
1833 		return ret;
1834 	ctx->ops->npc_write(ctx, val);
1835 	spu_release(ctx);
1836 
1837 	return 0;
1838 }
1839 
1840 static u64 spufs_npc_get(struct spu_context *ctx)
1841 {
1842 	return ctx->ops->npc_read(ctx);
1843 }
1844 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1845 		       "0x%llx\n", SPU_ATTR_ACQUIRE);
1846 
1847 static int spufs_decr_set(void *data, u64 val)
1848 {
1849 	struct spu_context *ctx = data;
1850 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1851 	int ret;
1852 
1853 	ret = spu_acquire_saved(ctx);
1854 	if (ret)
1855 		return ret;
1856 	lscsa->decr.slot[0] = (u32) val;
1857 	spu_release_saved(ctx);
1858 
1859 	return 0;
1860 }
1861 
1862 static u64 spufs_decr_get(struct spu_context *ctx)
1863 {
1864 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1865 	return lscsa->decr.slot[0];
1866 }
1867 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1868 		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1869 
1870 static int spufs_decr_status_set(void *data, u64 val)
1871 {
1872 	struct spu_context *ctx = data;
1873 	int ret;
1874 
1875 	ret = spu_acquire_saved(ctx);
1876 	if (ret)
1877 		return ret;
1878 	if (val)
1879 		ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1880 	else
1881 		ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1882 	spu_release_saved(ctx);
1883 
1884 	return 0;
1885 }
1886 
1887 static u64 spufs_decr_status_get(struct spu_context *ctx)
1888 {
1889 	if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1890 		return SPU_DECR_STATUS_RUNNING;
1891 	else
1892 		return 0;
1893 }
1894 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1895 		       spufs_decr_status_set, "0x%llx\n",
1896 		       SPU_ATTR_ACQUIRE_SAVED);
1897 
1898 static int spufs_event_mask_set(void *data, u64 val)
1899 {
1900 	struct spu_context *ctx = data;
1901 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1902 	int ret;
1903 
1904 	ret = spu_acquire_saved(ctx);
1905 	if (ret)
1906 		return ret;
1907 	lscsa->event_mask.slot[0] = (u32) val;
1908 	spu_release_saved(ctx);
1909 
1910 	return 0;
1911 }
1912 
1913 static u64 spufs_event_mask_get(struct spu_context *ctx)
1914 {
1915 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1916 	return lscsa->event_mask.slot[0];
1917 }
1918 
1919 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1920 		       spufs_event_mask_set, "0x%llx\n",
1921 		       SPU_ATTR_ACQUIRE_SAVED);
1922 
1923 static u64 spufs_event_status_get(struct spu_context *ctx)
1924 {
1925 	struct spu_state *state = &ctx->csa;
1926 	u64 stat;
1927 	stat = state->spu_chnlcnt_RW[0];
1928 	if (stat)
1929 		return state->spu_chnldata_RW[0];
1930 	return 0;
1931 }
1932 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1933 		       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1934 
1935 static int spufs_srr0_set(void *data, u64 val)
1936 {
1937 	struct spu_context *ctx = data;
1938 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1939 	int ret;
1940 
1941 	ret = spu_acquire_saved(ctx);
1942 	if (ret)
1943 		return ret;
1944 	lscsa->srr0.slot[0] = (u32) val;
1945 	spu_release_saved(ctx);
1946 
1947 	return 0;
1948 }
1949 
1950 static u64 spufs_srr0_get(struct spu_context *ctx)
1951 {
1952 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1953 	return lscsa->srr0.slot[0];
1954 }
1955 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1956 		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1957 
1958 static u64 spufs_id_get(struct spu_context *ctx)
1959 {
1960 	u64 num;
1961 
1962 	if (ctx->state == SPU_STATE_RUNNABLE)
1963 		num = ctx->spu->number;
1964 	else
1965 		num = (unsigned int)-1;
1966 
1967 	return num;
1968 }
1969 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
1970 		       SPU_ATTR_ACQUIRE)
1971 
1972 static u64 spufs_object_id_get(struct spu_context *ctx)
1973 {
1974 	/* FIXME: Should there really be no locking here? */
1975 	return ctx->object_id;
1976 }
1977 
1978 static int spufs_object_id_set(void *data, u64 id)
1979 {
1980 	struct spu_context *ctx = data;
1981 	ctx->object_id = id;
1982 
1983 	return 0;
1984 }
1985 
1986 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
1987 		       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
1988 
1989 static u64 spufs_lslr_get(struct spu_context *ctx)
1990 {
1991 	return ctx->csa.priv2.spu_lslr_RW;
1992 }
1993 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
1994 		       SPU_ATTR_ACQUIRE_SAVED);
1995 
1996 static int spufs_info_open(struct inode *inode, struct file *file)
1997 {
1998 	struct spufs_inode_info *i = SPUFS_I(inode);
1999 	struct spu_context *ctx = i->i_ctx;
2000 	file->private_data = ctx;
2001 	return 0;
2002 }
2003 
2004 static int spufs_caps_show(struct seq_file *s, void *private)
2005 {
2006 	struct spu_context *ctx = s->private;
2007 
2008 	if (!(ctx->flags & SPU_CREATE_NOSCHED))
2009 		seq_puts(s, "sched\n");
2010 	if (!(ctx->flags & SPU_CREATE_ISOLATE))
2011 		seq_puts(s, "step\n");
2012 	return 0;
2013 }
2014 
2015 static int spufs_caps_open(struct inode *inode, struct file *file)
2016 {
2017 	return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
2018 }
2019 
2020 static const struct file_operations spufs_caps_fops = {
2021 	.open		= spufs_caps_open,
2022 	.read		= seq_read,
2023 	.llseek		= seq_lseek,
2024 	.release	= single_release,
2025 };
2026 
2027 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
2028 			char __user *buf, size_t len, loff_t *pos)
2029 {
2030 	u32 data;
2031 
2032 	/* EOF if there's no entry in the mbox */
2033 	if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
2034 		return 0;
2035 
2036 	data = ctx->csa.prob.pu_mb_R;
2037 
2038 	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2039 }
2040 
2041 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
2042 				   size_t len, loff_t *pos)
2043 {
2044 	int ret;
2045 	struct spu_context *ctx = file->private_data;
2046 
2047 	if (!access_ok(VERIFY_WRITE, buf, len))
2048 		return -EFAULT;
2049 
2050 	ret = spu_acquire_saved(ctx);
2051 	if (ret)
2052 		return ret;
2053 	spin_lock(&ctx->csa.register_lock);
2054 	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2055 	spin_unlock(&ctx->csa.register_lock);
2056 	spu_release_saved(ctx);
2057 
2058 	return ret;
2059 }
2060 
2061 static const struct file_operations spufs_mbox_info_fops = {
2062 	.open = spufs_info_open,
2063 	.read = spufs_mbox_info_read,
2064 	.llseek  = generic_file_llseek,
2065 };
2066 
2067 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
2068 				char __user *buf, size_t len, loff_t *pos)
2069 {
2070 	u32 data;
2071 
2072 	/* EOF if there's no entry in the ibox */
2073 	if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
2074 		return 0;
2075 
2076 	data = ctx->csa.priv2.puint_mb_R;
2077 
2078 	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2079 }
2080 
2081 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
2082 				   size_t len, loff_t *pos)
2083 {
2084 	struct spu_context *ctx = file->private_data;
2085 	int ret;
2086 
2087 	if (!access_ok(VERIFY_WRITE, buf, len))
2088 		return -EFAULT;
2089 
2090 	ret = spu_acquire_saved(ctx);
2091 	if (ret)
2092 		return ret;
2093 	spin_lock(&ctx->csa.register_lock);
2094 	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2095 	spin_unlock(&ctx->csa.register_lock);
2096 	spu_release_saved(ctx);
2097 
2098 	return ret;
2099 }
2100 
2101 static const struct file_operations spufs_ibox_info_fops = {
2102 	.open = spufs_info_open,
2103 	.read = spufs_ibox_info_read,
2104 	.llseek  = generic_file_llseek,
2105 };
2106 
2107 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
2108 			char __user *buf, size_t len, loff_t *pos)
2109 {
2110 	int i, cnt;
2111 	u32 data[4];
2112 	u32 wbox_stat;
2113 
2114 	wbox_stat = ctx->csa.prob.mb_stat_R;
2115 	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
2116 	for (i = 0; i < cnt; i++) {
2117 		data[i] = ctx->csa.spu_mailbox_data[i];
2118 	}
2119 
2120 	return simple_read_from_buffer(buf, len, pos, &data,
2121 				cnt * sizeof(u32));
2122 }
2123 
2124 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2125 				   size_t len, loff_t *pos)
2126 {
2127 	struct spu_context *ctx = file->private_data;
2128 	int ret;
2129 
2130 	if (!access_ok(VERIFY_WRITE, buf, len))
2131 		return -EFAULT;
2132 
2133 	ret = spu_acquire_saved(ctx);
2134 	if (ret)
2135 		return ret;
2136 	spin_lock(&ctx->csa.register_lock);
2137 	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2138 	spin_unlock(&ctx->csa.register_lock);
2139 	spu_release_saved(ctx);
2140 
2141 	return ret;
2142 }
2143 
2144 static const struct file_operations spufs_wbox_info_fops = {
2145 	.open = spufs_info_open,
2146 	.read = spufs_wbox_info_read,
2147 	.llseek  = generic_file_llseek,
2148 };
2149 
2150 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
2151 			char __user *buf, size_t len, loff_t *pos)
2152 {
2153 	struct spu_dma_info info;
2154 	struct mfc_cq_sr *qp, *spuqp;
2155 	int i;
2156 
2157 	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2158 	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2159 	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
2160 	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2161 	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2162 	for (i = 0; i < 16; i++) {
2163 		qp = &info.dma_info_command_data[i];
2164 		spuqp = &ctx->csa.priv2.spuq[i];
2165 
2166 		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2167 		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2168 		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2169 		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2170 	}
2171 
2172 	return simple_read_from_buffer(buf, len, pos, &info,
2173 				sizeof info);
2174 }
2175 
2176 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2177 			      size_t len, loff_t *pos)
2178 {
2179 	struct spu_context *ctx = file->private_data;
2180 	int ret;
2181 
2182 	if (!access_ok(VERIFY_WRITE, buf, len))
2183 		return -EFAULT;
2184 
2185 	ret = spu_acquire_saved(ctx);
2186 	if (ret)
2187 		return ret;
2188 	spin_lock(&ctx->csa.register_lock);
2189 	ret = __spufs_dma_info_read(ctx, buf, len, pos);
2190 	spin_unlock(&ctx->csa.register_lock);
2191 	spu_release_saved(ctx);
2192 
2193 	return ret;
2194 }
2195 
2196 static const struct file_operations spufs_dma_info_fops = {
2197 	.open = spufs_info_open,
2198 	.read = spufs_dma_info_read,
2199 	.llseek = no_llseek,
2200 };
2201 
2202 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
2203 			char __user *buf, size_t len, loff_t *pos)
2204 {
2205 	struct spu_proxydma_info info;
2206 	struct mfc_cq_sr *qp, *puqp;
2207 	int ret = sizeof info;
2208 	int i;
2209 
2210 	if (len < ret)
2211 		return -EINVAL;
2212 
2213 	if (!access_ok(VERIFY_WRITE, buf, len))
2214 		return -EFAULT;
2215 
2216 	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2217 	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2218 	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2219 	for (i = 0; i < 8; i++) {
2220 		qp = &info.proxydma_info_command_data[i];
2221 		puqp = &ctx->csa.priv2.puq[i];
2222 
2223 		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2224 		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2225 		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2226 		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2227 	}
2228 
2229 	return simple_read_from_buffer(buf, len, pos, &info,
2230 				sizeof info);
2231 }
2232 
2233 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2234 				   size_t len, loff_t *pos)
2235 {
2236 	struct spu_context *ctx = file->private_data;
2237 	int ret;
2238 
2239 	ret = spu_acquire_saved(ctx);
2240 	if (ret)
2241 		return ret;
2242 	spin_lock(&ctx->csa.register_lock);
2243 	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2244 	spin_unlock(&ctx->csa.register_lock);
2245 	spu_release_saved(ctx);
2246 
2247 	return ret;
2248 }
2249 
2250 static const struct file_operations spufs_proxydma_info_fops = {
2251 	.open = spufs_info_open,
2252 	.read = spufs_proxydma_info_read,
2253 	.llseek = no_llseek,
2254 };
2255 
2256 static int spufs_show_tid(struct seq_file *s, void *private)
2257 {
2258 	struct spu_context *ctx = s->private;
2259 
2260 	seq_printf(s, "%d\n", ctx->tid);
2261 	return 0;
2262 }
2263 
2264 static int spufs_tid_open(struct inode *inode, struct file *file)
2265 {
2266 	return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2267 }
2268 
2269 static const struct file_operations spufs_tid_fops = {
2270 	.open		= spufs_tid_open,
2271 	.read		= seq_read,
2272 	.llseek		= seq_lseek,
2273 	.release	= single_release,
2274 };
2275 
2276 static const char *ctx_state_names[] = {
2277 	"user", "system", "iowait", "loaded"
2278 };
2279 
2280 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2281 		enum spu_utilization_state state)
2282 {
2283 	unsigned long long time = ctx->stats.times[state];
2284 
2285 	/*
2286 	 * In general, utilization statistics are updated by the controlling
2287 	 * thread as the spu context moves through various well defined
2288 	 * state transitions, but if the context is lazily loaded its
2289 	 * utilization statistics are not updated as the controlling thread
2290 	 * is not tightly coupled with the execution of the spu context.  We
2291 	 * calculate and apply the time delta from the last recorded state
2292 	 * of the spu context.
2293 	 */
2294 	if (ctx->spu && ctx->stats.util_state == state) {
2295 		time += ktime_get_ns() - ctx->stats.tstamp;
2296 	}
2297 
2298 	return time / NSEC_PER_MSEC;
2299 }
2300 
2301 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2302 {
2303 	unsigned long long slb_flts = ctx->stats.slb_flt;
2304 
2305 	if (ctx->state == SPU_STATE_RUNNABLE) {
2306 		slb_flts += (ctx->spu->stats.slb_flt -
2307 			     ctx->stats.slb_flt_base);
2308 	}
2309 
2310 	return slb_flts;
2311 }
2312 
2313 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2314 {
2315 	unsigned long long class2_intrs = ctx->stats.class2_intr;
2316 
2317 	if (ctx->state == SPU_STATE_RUNNABLE) {
2318 		class2_intrs += (ctx->spu->stats.class2_intr -
2319 				 ctx->stats.class2_intr_base);
2320 	}
2321 
2322 	return class2_intrs;
2323 }
2324 
2325 
2326 static int spufs_show_stat(struct seq_file *s, void *private)
2327 {
2328 	struct spu_context *ctx = s->private;
2329 	int ret;
2330 
2331 	ret = spu_acquire(ctx);
2332 	if (ret)
2333 		return ret;
2334 
2335 	seq_printf(s, "%s %llu %llu %llu %llu "
2336 		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2337 		ctx_state_names[ctx->stats.util_state],
2338 		spufs_acct_time(ctx, SPU_UTIL_USER),
2339 		spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2340 		spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2341 		spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2342 		ctx->stats.vol_ctx_switch,
2343 		ctx->stats.invol_ctx_switch,
2344 		spufs_slb_flts(ctx),
2345 		ctx->stats.hash_flt,
2346 		ctx->stats.min_flt,
2347 		ctx->stats.maj_flt,
2348 		spufs_class2_intrs(ctx),
2349 		ctx->stats.libassist);
2350 	spu_release(ctx);
2351 	return 0;
2352 }
2353 
2354 static int spufs_stat_open(struct inode *inode, struct file *file)
2355 {
2356 	return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2357 }
2358 
2359 static const struct file_operations spufs_stat_fops = {
2360 	.open		= spufs_stat_open,
2361 	.read		= seq_read,
2362 	.llseek		= seq_lseek,
2363 	.release	= single_release,
2364 };
2365 
2366 static inline int spufs_switch_log_used(struct spu_context *ctx)
2367 {
2368 	return (ctx->switch_log->head - ctx->switch_log->tail) %
2369 		SWITCH_LOG_BUFSIZE;
2370 }
2371 
2372 static inline int spufs_switch_log_avail(struct spu_context *ctx)
2373 {
2374 	return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
2375 }
2376 
2377 static int spufs_switch_log_open(struct inode *inode, struct file *file)
2378 {
2379 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2380 	int rc;
2381 
2382 	rc = spu_acquire(ctx);
2383 	if (rc)
2384 		return rc;
2385 
2386 	if (ctx->switch_log) {
2387 		rc = -EBUSY;
2388 		goto out;
2389 	}
2390 
2391 	ctx->switch_log = kmalloc(sizeof(struct switch_log) +
2392 		SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry),
2393 		GFP_KERNEL);
2394 
2395 	if (!ctx->switch_log) {
2396 		rc = -ENOMEM;
2397 		goto out;
2398 	}
2399 
2400 	ctx->switch_log->head = ctx->switch_log->tail = 0;
2401 	init_waitqueue_head(&ctx->switch_log->wait);
2402 	rc = 0;
2403 
2404 out:
2405 	spu_release(ctx);
2406 	return rc;
2407 }
2408 
2409 static int spufs_switch_log_release(struct inode *inode, struct file *file)
2410 {
2411 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2412 	int rc;
2413 
2414 	rc = spu_acquire(ctx);
2415 	if (rc)
2416 		return rc;
2417 
2418 	kfree(ctx->switch_log);
2419 	ctx->switch_log = NULL;
2420 	spu_release(ctx);
2421 
2422 	return 0;
2423 }
2424 
2425 static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
2426 {
2427 	struct switch_log_entry *p;
2428 
2429 	p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;
2430 
2431 	return snprintf(tbuf, n, "%u.%09u %d %u %u %llu\n",
2432 			(unsigned int) p->tstamp.tv_sec,
2433 			(unsigned int) p->tstamp.tv_nsec,
2434 			p->spu_id,
2435 			(unsigned int) p->type,
2436 			(unsigned int) p->val,
2437 			(unsigned long long) p->timebase);
2438 }
2439 
2440 static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
2441 			     size_t len, loff_t *ppos)
2442 {
2443 	struct inode *inode = file_inode(file);
2444 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2445 	int error = 0, cnt = 0;
2446 
2447 	if (!buf)
2448 		return -EINVAL;
2449 
2450 	error = spu_acquire(ctx);
2451 	if (error)
2452 		return error;
2453 
2454 	while (cnt < len) {
2455 		char tbuf[128];
2456 		int width;
2457 
2458 		if (spufs_switch_log_used(ctx) == 0) {
2459 			if (cnt > 0) {
2460 				/* If there's data ready to go, we can
2461 				 * just return straight away */
2462 				break;
2463 
2464 			} else if (file->f_flags & O_NONBLOCK) {
2465 				error = -EAGAIN;
2466 				break;
2467 
2468 			} else {
2469 				/* spufs_wait will drop the mutex and
2470 				 * re-acquire, but since we're in read(), the
2471 				 * file cannot be _released (and so
2472 				 * ctx->switch_log is stable).
2473 				 */
2474 				error = spufs_wait(ctx->switch_log->wait,
2475 						spufs_switch_log_used(ctx) > 0);
2476 
2477 				/* On error, spufs_wait returns without the
2478 				 * state mutex held */
2479 				if (error)
2480 					return error;
2481 
2482 				/* We may have had entries read from underneath
2483 				 * us while we dropped the mutex in spufs_wait,
2484 				 * so re-check */
2485 				if (spufs_switch_log_used(ctx) == 0)
2486 					continue;
2487 			}
2488 		}
2489 
2490 		width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2491 		if (width < len)
2492 			ctx->switch_log->tail =
2493 				(ctx->switch_log->tail + 1) %
2494 				 SWITCH_LOG_BUFSIZE;
2495 		else
2496 			/* If the record is greater than space available return
2497 			 * partial buffer (so far) */
2498 			break;
2499 
2500 		error = copy_to_user(buf + cnt, tbuf, width);
2501 		if (error)
2502 			break;
2503 		cnt += width;
2504 	}
2505 
2506 	spu_release(ctx);
2507 
2508 	return cnt == 0 ? error : cnt;
2509 }
2510 
2511 static unsigned int spufs_switch_log_poll(struct file *file, poll_table *wait)
2512 {
2513 	struct inode *inode = file_inode(file);
2514 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2515 	unsigned int mask = 0;
2516 	int rc;
2517 
2518 	poll_wait(file, &ctx->switch_log->wait, wait);
2519 
2520 	rc = spu_acquire(ctx);
2521 	if (rc)
2522 		return rc;
2523 
2524 	if (spufs_switch_log_used(ctx) > 0)
2525 		mask |= POLLIN;
2526 
2527 	spu_release(ctx);
2528 
2529 	return mask;
2530 }
2531 
2532 static const struct file_operations spufs_switch_log_fops = {
2533 	.open		= spufs_switch_log_open,
2534 	.read		= spufs_switch_log_read,
2535 	.poll		= spufs_switch_log_poll,
2536 	.release	= spufs_switch_log_release,
2537 	.llseek		= no_llseek,
2538 };
2539 
2540 /**
2541  * Log a context switch event to a switch log reader.
2542  *
2543  * Must be called with ctx->state_mutex held.
2544  */
2545 void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
2546 		u32 type, u32 val)
2547 {
2548 	if (!ctx->switch_log)
2549 		return;
2550 
2551 	if (spufs_switch_log_avail(ctx) > 1) {
2552 		struct switch_log_entry *p;
2553 
2554 		p = ctx->switch_log->log + ctx->switch_log->head;
2555 		ktime_get_ts(&p->tstamp);
2556 		p->timebase = get_tb();
2557 		p->spu_id = spu ? spu->number : -1;
2558 		p->type = type;
2559 		p->val = val;
2560 
2561 		ctx->switch_log->head =
2562 			(ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
2563 	}
2564 
2565 	wake_up(&ctx->switch_log->wait);
2566 }
2567 
2568 static int spufs_show_ctx(struct seq_file *s, void *private)
2569 {
2570 	struct spu_context *ctx = s->private;
2571 	u64 mfc_control_RW;
2572 
2573 	mutex_lock(&ctx->state_mutex);
2574 	if (ctx->spu) {
2575 		struct spu *spu = ctx->spu;
2576 		struct spu_priv2 __iomem *priv2 = spu->priv2;
2577 
2578 		spin_lock_irq(&spu->register_lock);
2579 		mfc_control_RW = in_be64(&priv2->mfc_control_RW);
2580 		spin_unlock_irq(&spu->register_lock);
2581 	} else {
2582 		struct spu_state *csa = &ctx->csa;
2583 
2584 		mfc_control_RW = csa->priv2.mfc_control_RW;
2585 	}
2586 
2587 	seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
2588 		" %c %llx %llx %llx %llx %x %x\n",
2589 		ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
2590 		ctx->flags,
2591 		ctx->sched_flags,
2592 		ctx->prio,
2593 		ctx->time_slice,
2594 		ctx->spu ? ctx->spu->number : -1,
2595 		!list_empty(&ctx->rq) ? 'q' : ' ',
2596 		ctx->csa.class_0_pending,
2597 		ctx->csa.class_0_dar,
2598 		ctx->csa.class_1_dsisr,
2599 		mfc_control_RW,
2600 		ctx->ops->runcntl_read(ctx),
2601 		ctx->ops->status_read(ctx));
2602 
2603 	mutex_unlock(&ctx->state_mutex);
2604 
2605 	return 0;
2606 }
2607 
2608 static int spufs_ctx_open(struct inode *inode, struct file *file)
2609 {
2610 	return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
2611 }
2612 
2613 static const struct file_operations spufs_ctx_fops = {
2614 	.open           = spufs_ctx_open,
2615 	.read           = seq_read,
2616 	.llseek         = seq_lseek,
2617 	.release        = single_release,
2618 };
2619 
2620 const struct spufs_tree_descr spufs_dir_contents[] = {
2621 	{ "capabilities", &spufs_caps_fops, 0444, },
2622 	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2623 	{ "regs", &spufs_regs_fops,  0666, sizeof(struct spu_reg128[128]), },
2624 	{ "mbox", &spufs_mbox_fops, 0444, },
2625 	{ "ibox", &spufs_ibox_fops, 0444, },
2626 	{ "wbox", &spufs_wbox_fops, 0222, },
2627 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2628 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2629 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2630 	{ "signal1", &spufs_signal1_fops, 0666, },
2631 	{ "signal2", &spufs_signal2_fops, 0666, },
2632 	{ "signal1_type", &spufs_signal1_type, 0666, },
2633 	{ "signal2_type", &spufs_signal2_type, 0666, },
2634 	{ "cntl", &spufs_cntl_fops,  0666, },
2635 	{ "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2636 	{ "lslr", &spufs_lslr_ops, 0444, },
2637 	{ "mfc", &spufs_mfc_fops, 0666, },
2638 	{ "mss", &spufs_mss_fops, 0666, },
2639 	{ "npc", &spufs_npc_ops, 0666, },
2640 	{ "srr0", &spufs_srr0_ops, 0666, },
2641 	{ "decr", &spufs_decr_ops, 0666, },
2642 	{ "decr_status", &spufs_decr_status_ops, 0666, },
2643 	{ "event_mask", &spufs_event_mask_ops, 0666, },
2644 	{ "event_status", &spufs_event_status_ops, 0444, },
2645 	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2646 	{ "phys-id", &spufs_id_ops, 0666, },
2647 	{ "object-id", &spufs_object_id_ops, 0666, },
2648 	{ "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
2649 	{ "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
2650 	{ "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
2651 	{ "dma_info", &spufs_dma_info_fops, 0444,
2652 		sizeof(struct spu_dma_info), },
2653 	{ "proxydma_info", &spufs_proxydma_info_fops, 0444,
2654 		sizeof(struct spu_proxydma_info)},
2655 	{ "tid", &spufs_tid_fops, 0444, },
2656 	{ "stat", &spufs_stat_fops, 0444, },
2657 	{ "switch_log", &spufs_switch_log_fops, 0444 },
2658 	{},
2659 };
2660 
2661 const struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2662 	{ "capabilities", &spufs_caps_fops, 0444, },
2663 	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2664 	{ "mbox", &spufs_mbox_fops, 0444, },
2665 	{ "ibox", &spufs_ibox_fops, 0444, },
2666 	{ "wbox", &spufs_wbox_fops, 0222, },
2667 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2668 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2669 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2670 	{ "signal1", &spufs_signal1_nosched_fops, 0222, },
2671 	{ "signal2", &spufs_signal2_nosched_fops, 0222, },
2672 	{ "signal1_type", &spufs_signal1_type, 0666, },
2673 	{ "signal2_type", &spufs_signal2_type, 0666, },
2674 	{ "mss", &spufs_mss_fops, 0666, },
2675 	{ "mfc", &spufs_mfc_fops, 0666, },
2676 	{ "cntl", &spufs_cntl_fops,  0666, },
2677 	{ "npc", &spufs_npc_ops, 0666, },
2678 	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2679 	{ "phys-id", &spufs_id_ops, 0666, },
2680 	{ "object-id", &spufs_object_id_ops, 0666, },
2681 	{ "tid", &spufs_tid_fops, 0444, },
2682 	{ "stat", &spufs_stat_fops, 0444, },
2683 	{},
2684 };
2685 
2686 const struct spufs_tree_descr spufs_dir_debug_contents[] = {
2687 	{ ".ctx", &spufs_ctx_fops, 0444, },
2688 	{},
2689 };
2690 
2691 const struct spufs_coredump_reader spufs_coredump_read[] = {
2692 	{ "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
2693 	{ "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2694 	{ "lslr", NULL, spufs_lslr_get, 19 },
2695 	{ "decr", NULL, spufs_decr_get, 19 },
2696 	{ "decr_status", NULL, spufs_decr_status_get, 19 },
2697 	{ "mem", __spufs_mem_read, NULL, LS_SIZE, },
2698 	{ "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2699 	{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
2700 	{ "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2701 	{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
2702 	{ "event_mask", NULL, spufs_event_mask_get, 19 },
2703 	{ "event_status", NULL, spufs_event_status_get, 19 },
2704 	{ "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
2705 	{ "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
2706 	{ "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
2707 	{ "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
2708 	{ "proxydma_info", __spufs_proxydma_info_read,
2709 			   NULL, sizeof(struct spu_proxydma_info)},
2710 	{ "object-id", NULL, spufs_object_id_get, 19 },
2711 	{ "npc", NULL, spufs_npc_get, 19 },
2712 	{ NULL },
2713 };
2714