1 /*
2  * SPU file system -- file contents
3  *
4  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5  *
6  * Author: Arnd Bergmann <arndb@de.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #undef DEBUG
24 
25 #include <linux/fs.h>
26 #include <linux/ioctl.h>
27 #include <linux/module.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/seq_file.h>
32 #include <linux/marker.h>
33 
34 #include <asm/io.h>
35 #include <asm/time.h>
36 #include <asm/spu.h>
37 #include <asm/spu_info.h>
38 #include <asm/uaccess.h>
39 
40 #include "spufs.h"
41 
42 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
43 
44 /* Simple attribute files */
45 struct spufs_attr {
46 	int (*get)(void *, u64 *);
47 	int (*set)(void *, u64);
48 	char get_buf[24];       /* enough to store a u64 and "\n\0" */
49 	char set_buf[24];
50 	void *data;
51 	const char *fmt;        /* format for read operation */
52 	struct mutex mutex;     /* protects access to these buffers */
53 };
54 
55 static int spufs_attr_open(struct inode *inode, struct file *file,
56 		int (*get)(void *, u64 *), int (*set)(void *, u64),
57 		const char *fmt)
58 {
59 	struct spufs_attr *attr;
60 
61 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
62 	if (!attr)
63 		return -ENOMEM;
64 
65 	attr->get = get;
66 	attr->set = set;
67 	attr->data = inode->i_private;
68 	attr->fmt = fmt;
69 	mutex_init(&attr->mutex);
70 	file->private_data = attr;
71 
72 	return nonseekable_open(inode, file);
73 }
74 
75 static int spufs_attr_release(struct inode *inode, struct file *file)
76 {
77        kfree(file->private_data);
78 	return 0;
79 }
80 
81 static ssize_t spufs_attr_read(struct file *file, char __user *buf,
82 		size_t len, loff_t *ppos)
83 {
84 	struct spufs_attr *attr;
85 	size_t size;
86 	ssize_t ret;
87 
88 	attr = file->private_data;
89 	if (!attr->get)
90 		return -EACCES;
91 
92 	ret = mutex_lock_interruptible(&attr->mutex);
93 	if (ret)
94 		return ret;
95 
96 	if (*ppos) {		/* continued read */
97 		size = strlen(attr->get_buf);
98 	} else {		/* first read */
99 		u64 val;
100 		ret = attr->get(attr->data, &val);
101 		if (ret)
102 			goto out;
103 
104 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
105 				 attr->fmt, (unsigned long long)val);
106 	}
107 
108 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
109 out:
110 	mutex_unlock(&attr->mutex);
111 	return ret;
112 }
113 
114 static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
115 		size_t len, loff_t *ppos)
116 {
117 	struct spufs_attr *attr;
118 	u64 val;
119 	size_t size;
120 	ssize_t ret;
121 
122 	attr = file->private_data;
123 	if (!attr->set)
124 		return -EACCES;
125 
126 	ret = mutex_lock_interruptible(&attr->mutex);
127 	if (ret)
128 		return ret;
129 
130 	ret = -EFAULT;
131 	size = min(sizeof(attr->set_buf) - 1, len);
132 	if (copy_from_user(attr->set_buf, buf, size))
133 		goto out;
134 
135 	ret = len; /* claim we got the whole input */
136 	attr->set_buf[size] = '\0';
137 	val = simple_strtol(attr->set_buf, NULL, 0);
138 	attr->set(attr->data, val);
139 out:
140 	mutex_unlock(&attr->mutex);
141 	return ret;
142 }
143 
144 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)	\
145 static int __fops ## _open(struct inode *inode, struct file *file)	\
146 {									\
147 	__simple_attr_check_format(__fmt, 0ull);			\
148 	return spufs_attr_open(inode, file, __get, __set, __fmt);	\
149 }									\
150 static struct file_operations __fops = {				\
151 	.owner	 = THIS_MODULE,						\
152 	.open	 = __fops ## _open,					\
153 	.release = spufs_attr_release,					\
154 	.read	 = spufs_attr_read,					\
155 	.write	 = spufs_attr_write,					\
156 };
157 
158 
159 static int
160 spufs_mem_open(struct inode *inode, struct file *file)
161 {
162 	struct spufs_inode_info *i = SPUFS_I(inode);
163 	struct spu_context *ctx = i->i_ctx;
164 
165 	mutex_lock(&ctx->mapping_lock);
166 	file->private_data = ctx;
167 	if (!i->i_openers++)
168 		ctx->local_store = inode->i_mapping;
169 	mutex_unlock(&ctx->mapping_lock);
170 	return 0;
171 }
172 
173 static int
174 spufs_mem_release(struct inode *inode, struct file *file)
175 {
176 	struct spufs_inode_info *i = SPUFS_I(inode);
177 	struct spu_context *ctx = i->i_ctx;
178 
179 	mutex_lock(&ctx->mapping_lock);
180 	if (!--i->i_openers)
181 		ctx->local_store = NULL;
182 	mutex_unlock(&ctx->mapping_lock);
183 	return 0;
184 }
185 
186 static ssize_t
187 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
188 			size_t size, loff_t *pos)
189 {
190 	char *local_store = ctx->ops->get_ls(ctx);
191 	return simple_read_from_buffer(buffer, size, pos, local_store,
192 					LS_SIZE);
193 }
194 
195 static ssize_t
196 spufs_mem_read(struct file *file, char __user *buffer,
197 				size_t size, loff_t *pos)
198 {
199 	struct spu_context *ctx = file->private_data;
200 	ssize_t ret;
201 
202 	ret = spu_acquire(ctx);
203 	if (ret)
204 		return ret;
205 	ret = __spufs_mem_read(ctx, buffer, size, pos);
206 	spu_release(ctx);
207 
208 	return ret;
209 }
210 
211 static ssize_t
212 spufs_mem_write(struct file *file, const char __user *buffer,
213 					size_t size, loff_t *ppos)
214 {
215 	struct spu_context *ctx = file->private_data;
216 	char *local_store;
217 	loff_t pos = *ppos;
218 	int ret;
219 
220 	if (pos < 0)
221 		return -EINVAL;
222 	if (pos > LS_SIZE)
223 		return -EFBIG;
224 	if (size > LS_SIZE - pos)
225 		size = LS_SIZE - pos;
226 
227 	ret = spu_acquire(ctx);
228 	if (ret)
229 		return ret;
230 
231 	local_store = ctx->ops->get_ls(ctx);
232 	ret = copy_from_user(local_store + pos, buffer, size);
233 	spu_release(ctx);
234 
235 	if (ret)
236 		return -EFAULT;
237 	*ppos = pos + size;
238 	return size;
239 }
240 
241 static unsigned long spufs_mem_mmap_nopfn(struct vm_area_struct *vma,
242 					  unsigned long address)
243 {
244 	struct spu_context *ctx	= vma->vm_file->private_data;
245 	unsigned long pfn, offset, addr0 = address;
246 #ifdef CONFIG_SPU_FS_64K_LS
247 	struct spu_state *csa = &ctx->csa;
248 	int psize;
249 
250 	/* Check what page size we are using */
251 	psize = get_slice_psize(vma->vm_mm, address);
252 
253 	/* Some sanity checking */
254 	BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));
255 
256 	/* Wow, 64K, cool, we need to align the address though */
257 	if (csa->use_big_pages) {
258 		BUG_ON(vma->vm_start & 0xffff);
259 		address &= ~0xfffful;
260 	}
261 #endif /* CONFIG_SPU_FS_64K_LS */
262 
263 	offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT);
264 	if (offset >= LS_SIZE)
265 		return NOPFN_SIGBUS;
266 
267 	pr_debug("spufs_mem_mmap_nopfn address=0x%lx -> 0x%lx, offset=0x%lx\n",
268 		 addr0, address, offset);
269 
270 	if (spu_acquire(ctx))
271 		return NOPFN_REFAULT;
272 
273 	if (ctx->state == SPU_STATE_SAVED) {
274 		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
275 							& ~_PAGE_NO_CACHE);
276 		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
277 	} else {
278 		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
279 					     | _PAGE_NO_CACHE);
280 		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
281 	}
282 	vm_insert_pfn(vma, address, pfn);
283 
284 	spu_release(ctx);
285 
286 	return NOPFN_REFAULT;
287 }
288 
289 
290 static struct vm_operations_struct spufs_mem_mmap_vmops = {
291 	.nopfn = spufs_mem_mmap_nopfn,
292 };
293 
294 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
295 {
296 #ifdef CONFIG_SPU_FS_64K_LS
297 	struct spu_context	*ctx = file->private_data;
298 	struct spu_state	*csa = &ctx->csa;
299 
300 	/* Sanity check VMA alignment */
301 	if (csa->use_big_pages) {
302 		pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
303 			 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
304 			 vma->vm_pgoff);
305 		if (vma->vm_start & 0xffff)
306 			return -EINVAL;
307 		if (vma->vm_pgoff & 0xf)
308 			return -EINVAL;
309 	}
310 #endif /* CONFIG_SPU_FS_64K_LS */
311 
312 	if (!(vma->vm_flags & VM_SHARED))
313 		return -EINVAL;
314 
315 	vma->vm_flags |= VM_IO | VM_PFNMAP;
316 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
317 				     | _PAGE_NO_CACHE);
318 
319 	vma->vm_ops = &spufs_mem_mmap_vmops;
320 	return 0;
321 }
322 
323 #ifdef CONFIG_SPU_FS_64K_LS
324 static unsigned long spufs_get_unmapped_area(struct file *file,
325 		unsigned long addr, unsigned long len, unsigned long pgoff,
326 		unsigned long flags)
327 {
328 	struct spu_context	*ctx = file->private_data;
329 	struct spu_state	*csa = &ctx->csa;
330 
331 	/* If not using big pages, fallback to normal MM g_u_a */
332 	if (!csa->use_big_pages)
333 		return current->mm->get_unmapped_area(file, addr, len,
334 						      pgoff, flags);
335 
336 	/* Else, try to obtain a 64K pages slice */
337 	return slice_get_unmapped_area(addr, len, flags,
338 				       MMU_PAGE_64K, 1, 0);
339 }
340 #endif /* CONFIG_SPU_FS_64K_LS */
341 
342 static const struct file_operations spufs_mem_fops = {
343 	.open			= spufs_mem_open,
344 	.release		= spufs_mem_release,
345 	.read			= spufs_mem_read,
346 	.write			= spufs_mem_write,
347 	.llseek			= generic_file_llseek,
348 	.mmap			= spufs_mem_mmap,
349 #ifdef CONFIG_SPU_FS_64K_LS
350 	.get_unmapped_area	= spufs_get_unmapped_area,
351 #endif
352 };
353 
354 static unsigned long spufs_ps_nopfn(struct vm_area_struct *vma,
355 				    unsigned long address,
356 				    unsigned long ps_offs,
357 				    unsigned long ps_size)
358 {
359 	struct spu_context *ctx = vma->vm_file->private_data;
360 	unsigned long area, offset = address - vma->vm_start;
361 	int ret = 0;
362 
363 	spu_context_nospu_trace(spufs_ps_nopfn__enter, ctx);
364 
365 	offset += vma->vm_pgoff << PAGE_SHIFT;
366 	if (offset >= ps_size)
367 		return NOPFN_SIGBUS;
368 
369 	/*
370 	 * Because we release the mmap_sem, the context may be destroyed while
371 	 * we're in spu_wait. Grab an extra reference so it isn't destroyed
372 	 * in the meantime.
373 	 */
374 	get_spu_context(ctx);
375 
376 	/*
377 	 * We have to wait for context to be loaded before we have
378 	 * pages to hand out to the user, but we don't want to wait
379 	 * with the mmap_sem held.
380 	 * It is possible to drop the mmap_sem here, but then we need
381 	 * to return NOPFN_REFAULT because the mappings may have
382 	 * hanged.
383 	 */
384 	if (spu_acquire(ctx))
385 		goto refault;
386 
387 	if (ctx->state == SPU_STATE_SAVED) {
388 		up_read(&current->mm->mmap_sem);
389 		spu_context_nospu_trace(spufs_ps_nopfn__sleep, ctx);
390 		ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
391 		spu_context_trace(spufs_ps_nopfn__wake, ctx, ctx->spu);
392 		down_read(&current->mm->mmap_sem);
393 	} else {
394 		area = ctx->spu->problem_phys + ps_offs;
395 		vm_insert_pfn(vma, address, (area + offset) >> PAGE_SHIFT);
396 		spu_context_trace(spufs_ps_nopfn__insert, ctx, ctx->spu);
397 	}
398 
399 	if (!ret)
400 		spu_release(ctx);
401 
402 refault:
403 	put_spu_context(ctx);
404 	return NOPFN_REFAULT;
405 }
406 
407 #if SPUFS_MMAP_4K
408 static unsigned long spufs_cntl_mmap_nopfn(struct vm_area_struct *vma,
409 					   unsigned long address)
410 {
411 	return spufs_ps_nopfn(vma, address, 0x4000, 0x1000);
412 }
413 
414 static struct vm_operations_struct spufs_cntl_mmap_vmops = {
415 	.nopfn = spufs_cntl_mmap_nopfn,
416 };
417 
418 /*
419  * mmap support for problem state control area [0x4000 - 0x4fff].
420  */
421 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
422 {
423 	if (!(vma->vm_flags & VM_SHARED))
424 		return -EINVAL;
425 
426 	vma->vm_flags |= VM_IO | VM_PFNMAP;
427 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
428 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
429 
430 	vma->vm_ops = &spufs_cntl_mmap_vmops;
431 	return 0;
432 }
433 #else /* SPUFS_MMAP_4K */
434 #define spufs_cntl_mmap NULL
435 #endif /* !SPUFS_MMAP_4K */
436 
437 static int spufs_cntl_get(void *data, u64 *val)
438 {
439 	struct spu_context *ctx = data;
440 	int ret;
441 
442 	ret = spu_acquire(ctx);
443 	if (ret)
444 		return ret;
445 	*val = ctx->ops->status_read(ctx);
446 	spu_release(ctx);
447 
448 	return 0;
449 }
450 
451 static int spufs_cntl_set(void *data, u64 val)
452 {
453 	struct spu_context *ctx = data;
454 	int ret;
455 
456 	ret = spu_acquire(ctx);
457 	if (ret)
458 		return ret;
459 	ctx->ops->runcntl_write(ctx, val);
460 	spu_release(ctx);
461 
462 	return 0;
463 }
464 
465 static int spufs_cntl_open(struct inode *inode, struct file *file)
466 {
467 	struct spufs_inode_info *i = SPUFS_I(inode);
468 	struct spu_context *ctx = i->i_ctx;
469 
470 	mutex_lock(&ctx->mapping_lock);
471 	file->private_data = ctx;
472 	if (!i->i_openers++)
473 		ctx->cntl = inode->i_mapping;
474 	mutex_unlock(&ctx->mapping_lock);
475 	return simple_attr_open(inode, file, spufs_cntl_get,
476 					spufs_cntl_set, "0x%08lx");
477 }
478 
479 static int
480 spufs_cntl_release(struct inode *inode, struct file *file)
481 {
482 	struct spufs_inode_info *i = SPUFS_I(inode);
483 	struct spu_context *ctx = i->i_ctx;
484 
485 	simple_attr_release(inode, file);
486 
487 	mutex_lock(&ctx->mapping_lock);
488 	if (!--i->i_openers)
489 		ctx->cntl = NULL;
490 	mutex_unlock(&ctx->mapping_lock);
491 	return 0;
492 }
493 
494 static const struct file_operations spufs_cntl_fops = {
495 	.open = spufs_cntl_open,
496 	.release = spufs_cntl_release,
497 	.read = simple_attr_read,
498 	.write = simple_attr_write,
499 	.mmap = spufs_cntl_mmap,
500 };
501 
502 static int
503 spufs_regs_open(struct inode *inode, struct file *file)
504 {
505 	struct spufs_inode_info *i = SPUFS_I(inode);
506 	file->private_data = i->i_ctx;
507 	return 0;
508 }
509 
510 static ssize_t
511 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
512 			size_t size, loff_t *pos)
513 {
514 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
515 	return simple_read_from_buffer(buffer, size, pos,
516 				      lscsa->gprs, sizeof lscsa->gprs);
517 }
518 
519 static ssize_t
520 spufs_regs_read(struct file *file, char __user *buffer,
521 		size_t size, loff_t *pos)
522 {
523 	int ret;
524 	struct spu_context *ctx = file->private_data;
525 
526 	ret = spu_acquire_saved(ctx);
527 	if (ret)
528 		return ret;
529 	ret = __spufs_regs_read(ctx, buffer, size, pos);
530 	spu_release_saved(ctx);
531 	return ret;
532 }
533 
534 static ssize_t
535 spufs_regs_write(struct file *file, const char __user *buffer,
536 		 size_t size, loff_t *pos)
537 {
538 	struct spu_context *ctx = file->private_data;
539 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
540 	int ret;
541 
542 	size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
543 	if (size <= 0)
544 		return -EFBIG;
545 	*pos += size;
546 
547 	ret = spu_acquire_saved(ctx);
548 	if (ret)
549 		return ret;
550 
551 	ret = copy_from_user(lscsa->gprs + *pos - size,
552 			     buffer, size) ? -EFAULT : size;
553 
554 	spu_release_saved(ctx);
555 	return ret;
556 }
557 
558 static const struct file_operations spufs_regs_fops = {
559 	.open	 = spufs_regs_open,
560 	.read    = spufs_regs_read,
561 	.write   = spufs_regs_write,
562 	.llseek  = generic_file_llseek,
563 };
564 
565 static ssize_t
566 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
567 			size_t size, loff_t * pos)
568 {
569 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
570 	return simple_read_from_buffer(buffer, size, pos,
571 				      &lscsa->fpcr, sizeof(lscsa->fpcr));
572 }
573 
574 static ssize_t
575 spufs_fpcr_read(struct file *file, char __user * buffer,
576 		size_t size, loff_t * pos)
577 {
578 	int ret;
579 	struct spu_context *ctx = file->private_data;
580 
581 	ret = spu_acquire_saved(ctx);
582 	if (ret)
583 		return ret;
584 	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
585 	spu_release_saved(ctx);
586 	return ret;
587 }
588 
589 static ssize_t
590 spufs_fpcr_write(struct file *file, const char __user * buffer,
591 		 size_t size, loff_t * pos)
592 {
593 	struct spu_context *ctx = file->private_data;
594 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
595 	int ret;
596 
597 	size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
598 	if (size <= 0)
599 		return -EFBIG;
600 
601 	ret = spu_acquire_saved(ctx);
602 	if (ret)
603 		return ret;
604 
605 	*pos += size;
606 	ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
607 			     buffer, size) ? -EFAULT : size;
608 
609 	spu_release_saved(ctx);
610 	return ret;
611 }
612 
613 static const struct file_operations spufs_fpcr_fops = {
614 	.open = spufs_regs_open,
615 	.read = spufs_fpcr_read,
616 	.write = spufs_fpcr_write,
617 	.llseek = generic_file_llseek,
618 };
619 
620 /* generic open function for all pipe-like files */
621 static int spufs_pipe_open(struct inode *inode, struct file *file)
622 {
623 	struct spufs_inode_info *i = SPUFS_I(inode);
624 	file->private_data = i->i_ctx;
625 
626 	return nonseekable_open(inode, file);
627 }
628 
629 /*
630  * Read as many bytes from the mailbox as possible, until
631  * one of the conditions becomes true:
632  *
633  * - no more data available in the mailbox
634  * - end of the user provided buffer
635  * - end of the mapped area
636  */
637 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
638 			size_t len, loff_t *pos)
639 {
640 	struct spu_context *ctx = file->private_data;
641 	u32 mbox_data, __user *udata;
642 	ssize_t count;
643 
644 	if (len < 4)
645 		return -EINVAL;
646 
647 	if (!access_ok(VERIFY_WRITE, buf, len))
648 		return -EFAULT;
649 
650 	udata = (void __user *)buf;
651 
652 	count = spu_acquire(ctx);
653 	if (count)
654 		return count;
655 
656 	for (count = 0; (count + 4) <= len; count += 4, udata++) {
657 		int ret;
658 		ret = ctx->ops->mbox_read(ctx, &mbox_data);
659 		if (ret == 0)
660 			break;
661 
662 		/*
663 		 * at the end of the mapped area, we can fault
664 		 * but still need to return the data we have
665 		 * read successfully so far.
666 		 */
667 		ret = __put_user(mbox_data, udata);
668 		if (ret) {
669 			if (!count)
670 				count = -EFAULT;
671 			break;
672 		}
673 	}
674 	spu_release(ctx);
675 
676 	if (!count)
677 		count = -EAGAIN;
678 
679 	return count;
680 }
681 
682 static const struct file_operations spufs_mbox_fops = {
683 	.open	= spufs_pipe_open,
684 	.read	= spufs_mbox_read,
685 };
686 
687 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
688 			size_t len, loff_t *pos)
689 {
690 	struct spu_context *ctx = file->private_data;
691 	ssize_t ret;
692 	u32 mbox_stat;
693 
694 	if (len < 4)
695 		return -EINVAL;
696 
697 	ret = spu_acquire(ctx);
698 	if (ret)
699 		return ret;
700 
701 	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
702 
703 	spu_release(ctx);
704 
705 	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
706 		return -EFAULT;
707 
708 	return 4;
709 }
710 
711 static const struct file_operations spufs_mbox_stat_fops = {
712 	.open	= spufs_pipe_open,
713 	.read	= spufs_mbox_stat_read,
714 };
715 
716 /* low-level ibox access function */
717 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
718 {
719 	return ctx->ops->ibox_read(ctx, data);
720 }
721 
722 static int spufs_ibox_fasync(int fd, struct file *file, int on)
723 {
724 	struct spu_context *ctx = file->private_data;
725 
726 	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
727 }
728 
729 /* interrupt-level ibox callback function. */
730 void spufs_ibox_callback(struct spu *spu)
731 {
732 	struct spu_context *ctx = spu->ctx;
733 
734 	if (!ctx)
735 		return;
736 
737 	wake_up_all(&ctx->ibox_wq);
738 	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
739 }
740 
741 /*
742  * Read as many bytes from the interrupt mailbox as possible, until
743  * one of the conditions becomes true:
744  *
745  * - no more data available in the mailbox
746  * - end of the user provided buffer
747  * - end of the mapped area
748  *
749  * If the file is opened without O_NONBLOCK, we wait here until
750  * any data is available, but return when we have been able to
751  * read something.
752  */
753 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
754 			size_t len, loff_t *pos)
755 {
756 	struct spu_context *ctx = file->private_data;
757 	u32 ibox_data, __user *udata;
758 	ssize_t count;
759 
760 	if (len < 4)
761 		return -EINVAL;
762 
763 	if (!access_ok(VERIFY_WRITE, buf, len))
764 		return -EFAULT;
765 
766 	udata = (void __user *)buf;
767 
768 	count = spu_acquire(ctx);
769 	if (count)
770 		goto out;
771 
772 	/* wait only for the first element */
773 	count = 0;
774 	if (file->f_flags & O_NONBLOCK) {
775 		if (!spu_ibox_read(ctx, &ibox_data)) {
776 			count = -EAGAIN;
777 			goto out_unlock;
778 		}
779 	} else {
780 		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
781 		if (count)
782 			goto out;
783 	}
784 
785 	/* if we can't write at all, return -EFAULT */
786 	count = __put_user(ibox_data, udata);
787 	if (count)
788 		goto out_unlock;
789 
790 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
791 		int ret;
792 		ret = ctx->ops->ibox_read(ctx, &ibox_data);
793 		if (ret == 0)
794 			break;
795 		/*
796 		 * at the end of the mapped area, we can fault
797 		 * but still need to return the data we have
798 		 * read successfully so far.
799 		 */
800 		ret = __put_user(ibox_data, udata);
801 		if (ret)
802 			break;
803 	}
804 
805 out_unlock:
806 	spu_release(ctx);
807 out:
808 	return count;
809 }
810 
811 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
812 {
813 	struct spu_context *ctx = file->private_data;
814 	unsigned int mask;
815 
816 	poll_wait(file, &ctx->ibox_wq, wait);
817 
818 	/*
819 	 * For now keep this uninterruptible and also ignore the rule
820 	 * that poll should not sleep.  Will be fixed later.
821 	 */
822 	mutex_lock(&ctx->state_mutex);
823 	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
824 	spu_release(ctx);
825 
826 	return mask;
827 }
828 
829 static const struct file_operations spufs_ibox_fops = {
830 	.open	= spufs_pipe_open,
831 	.read	= spufs_ibox_read,
832 	.poll	= spufs_ibox_poll,
833 	.fasync	= spufs_ibox_fasync,
834 };
835 
836 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
837 			size_t len, loff_t *pos)
838 {
839 	struct spu_context *ctx = file->private_data;
840 	ssize_t ret;
841 	u32 ibox_stat;
842 
843 	if (len < 4)
844 		return -EINVAL;
845 
846 	ret = spu_acquire(ctx);
847 	if (ret)
848 		return ret;
849 	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
850 	spu_release(ctx);
851 
852 	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
853 		return -EFAULT;
854 
855 	return 4;
856 }
857 
858 static const struct file_operations spufs_ibox_stat_fops = {
859 	.open	= spufs_pipe_open,
860 	.read	= spufs_ibox_stat_read,
861 };
862 
863 /* low-level mailbox write */
864 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
865 {
866 	return ctx->ops->wbox_write(ctx, data);
867 }
868 
869 static int spufs_wbox_fasync(int fd, struct file *file, int on)
870 {
871 	struct spu_context *ctx = file->private_data;
872 	int ret;
873 
874 	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
875 
876 	return ret;
877 }
878 
879 /* interrupt-level wbox callback function. */
880 void spufs_wbox_callback(struct spu *spu)
881 {
882 	struct spu_context *ctx = spu->ctx;
883 
884 	if (!ctx)
885 		return;
886 
887 	wake_up_all(&ctx->wbox_wq);
888 	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
889 }
890 
891 /*
892  * Write as many bytes to the interrupt mailbox as possible, until
893  * one of the conditions becomes true:
894  *
895  * - the mailbox is full
896  * - end of the user provided buffer
897  * - end of the mapped area
898  *
899  * If the file is opened without O_NONBLOCK, we wait here until
900  * space is availabyl, but return when we have been able to
901  * write something.
902  */
903 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
904 			size_t len, loff_t *pos)
905 {
906 	struct spu_context *ctx = file->private_data;
907 	u32 wbox_data, __user *udata;
908 	ssize_t count;
909 
910 	if (len < 4)
911 		return -EINVAL;
912 
913 	udata = (void __user *)buf;
914 	if (!access_ok(VERIFY_READ, buf, len))
915 		return -EFAULT;
916 
917 	if (__get_user(wbox_data, udata))
918 		return -EFAULT;
919 
920 	count = spu_acquire(ctx);
921 	if (count)
922 		goto out;
923 
924 	/*
925 	 * make sure we can at least write one element, by waiting
926 	 * in case of !O_NONBLOCK
927 	 */
928 	count = 0;
929 	if (file->f_flags & O_NONBLOCK) {
930 		if (!spu_wbox_write(ctx, wbox_data)) {
931 			count = -EAGAIN;
932 			goto out_unlock;
933 		}
934 	} else {
935 		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
936 		if (count)
937 			goto out;
938 	}
939 
940 
941 	/* write as much as possible */
942 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
943 		int ret;
944 		ret = __get_user(wbox_data, udata);
945 		if (ret)
946 			break;
947 
948 		ret = spu_wbox_write(ctx, wbox_data);
949 		if (ret == 0)
950 			break;
951 	}
952 
953 out_unlock:
954 	spu_release(ctx);
955 out:
956 	return count;
957 }
958 
959 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
960 {
961 	struct spu_context *ctx = file->private_data;
962 	unsigned int mask;
963 
964 	poll_wait(file, &ctx->wbox_wq, wait);
965 
966 	/*
967 	 * For now keep this uninterruptible and also ignore the rule
968 	 * that poll should not sleep.  Will be fixed later.
969 	 */
970 	mutex_lock(&ctx->state_mutex);
971 	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
972 	spu_release(ctx);
973 
974 	return mask;
975 }
976 
977 static const struct file_operations spufs_wbox_fops = {
978 	.open	= spufs_pipe_open,
979 	.write	= spufs_wbox_write,
980 	.poll	= spufs_wbox_poll,
981 	.fasync	= spufs_wbox_fasync,
982 };
983 
984 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
985 			size_t len, loff_t *pos)
986 {
987 	struct spu_context *ctx = file->private_data;
988 	ssize_t ret;
989 	u32 wbox_stat;
990 
991 	if (len < 4)
992 		return -EINVAL;
993 
994 	ret = spu_acquire(ctx);
995 	if (ret)
996 		return ret;
997 	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
998 	spu_release(ctx);
999 
1000 	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
1001 		return -EFAULT;
1002 
1003 	return 4;
1004 }
1005 
1006 static const struct file_operations spufs_wbox_stat_fops = {
1007 	.open	= spufs_pipe_open,
1008 	.read	= spufs_wbox_stat_read,
1009 };
1010 
1011 static int spufs_signal1_open(struct inode *inode, struct file *file)
1012 {
1013 	struct spufs_inode_info *i = SPUFS_I(inode);
1014 	struct spu_context *ctx = i->i_ctx;
1015 
1016 	mutex_lock(&ctx->mapping_lock);
1017 	file->private_data = ctx;
1018 	if (!i->i_openers++)
1019 		ctx->signal1 = inode->i_mapping;
1020 	mutex_unlock(&ctx->mapping_lock);
1021 	return nonseekable_open(inode, file);
1022 }
1023 
1024 static int
1025 spufs_signal1_release(struct inode *inode, struct file *file)
1026 {
1027 	struct spufs_inode_info *i = SPUFS_I(inode);
1028 	struct spu_context *ctx = i->i_ctx;
1029 
1030 	mutex_lock(&ctx->mapping_lock);
1031 	if (!--i->i_openers)
1032 		ctx->signal1 = NULL;
1033 	mutex_unlock(&ctx->mapping_lock);
1034 	return 0;
1035 }
1036 
1037 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1038 			size_t len, loff_t *pos)
1039 {
1040 	int ret = 0;
1041 	u32 data;
1042 
1043 	if (len < 4)
1044 		return -EINVAL;
1045 
1046 	if (ctx->csa.spu_chnlcnt_RW[3]) {
1047 		data = ctx->csa.spu_chnldata_RW[3];
1048 		ret = 4;
1049 	}
1050 
1051 	if (!ret)
1052 		goto out;
1053 
1054 	if (copy_to_user(buf, &data, 4))
1055 		return -EFAULT;
1056 
1057 out:
1058 	return ret;
1059 }
1060 
1061 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
1062 			size_t len, loff_t *pos)
1063 {
1064 	int ret;
1065 	struct spu_context *ctx = file->private_data;
1066 
1067 	ret = spu_acquire_saved(ctx);
1068 	if (ret)
1069 		return ret;
1070 	ret = __spufs_signal1_read(ctx, buf, len, pos);
1071 	spu_release_saved(ctx);
1072 
1073 	return ret;
1074 }
1075 
1076 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
1077 			size_t len, loff_t *pos)
1078 {
1079 	struct spu_context *ctx;
1080 	ssize_t ret;
1081 	u32 data;
1082 
1083 	ctx = file->private_data;
1084 
1085 	if (len < 4)
1086 		return -EINVAL;
1087 
1088 	if (copy_from_user(&data, buf, 4))
1089 		return -EFAULT;
1090 
1091 	ret = spu_acquire(ctx);
1092 	if (ret)
1093 		return ret;
1094 	ctx->ops->signal1_write(ctx, data);
1095 	spu_release(ctx);
1096 
1097 	return 4;
1098 }
1099 
1100 static unsigned long spufs_signal1_mmap_nopfn(struct vm_area_struct *vma,
1101 					      unsigned long address)
1102 {
1103 #if PAGE_SIZE == 0x1000
1104 	return spufs_ps_nopfn(vma, address, 0x14000, 0x1000);
1105 #elif PAGE_SIZE == 0x10000
1106 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1107 	 * signal 1 and 2 area
1108 	 */
1109 	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
1110 #else
1111 #error unsupported page size
1112 #endif
1113 }
1114 
1115 static struct vm_operations_struct spufs_signal1_mmap_vmops = {
1116 	.nopfn = spufs_signal1_mmap_nopfn,
1117 };
1118 
1119 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1120 {
1121 	if (!(vma->vm_flags & VM_SHARED))
1122 		return -EINVAL;
1123 
1124 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1125 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1126 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1127 
1128 	vma->vm_ops = &spufs_signal1_mmap_vmops;
1129 	return 0;
1130 }
1131 
1132 static const struct file_operations spufs_signal1_fops = {
1133 	.open = spufs_signal1_open,
1134 	.release = spufs_signal1_release,
1135 	.read = spufs_signal1_read,
1136 	.write = spufs_signal1_write,
1137 	.mmap = spufs_signal1_mmap,
1138 };
1139 
1140 static const struct file_operations spufs_signal1_nosched_fops = {
1141 	.open = spufs_signal1_open,
1142 	.release = spufs_signal1_release,
1143 	.write = spufs_signal1_write,
1144 	.mmap = spufs_signal1_mmap,
1145 };
1146 
1147 static int spufs_signal2_open(struct inode *inode, struct file *file)
1148 {
1149 	struct spufs_inode_info *i = SPUFS_I(inode);
1150 	struct spu_context *ctx = i->i_ctx;
1151 
1152 	mutex_lock(&ctx->mapping_lock);
1153 	file->private_data = ctx;
1154 	if (!i->i_openers++)
1155 		ctx->signal2 = inode->i_mapping;
1156 	mutex_unlock(&ctx->mapping_lock);
1157 	return nonseekable_open(inode, file);
1158 }
1159 
1160 static int
1161 spufs_signal2_release(struct inode *inode, struct file *file)
1162 {
1163 	struct spufs_inode_info *i = SPUFS_I(inode);
1164 	struct spu_context *ctx = i->i_ctx;
1165 
1166 	mutex_lock(&ctx->mapping_lock);
1167 	if (!--i->i_openers)
1168 		ctx->signal2 = NULL;
1169 	mutex_unlock(&ctx->mapping_lock);
1170 	return 0;
1171 }
1172 
1173 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1174 			size_t len, loff_t *pos)
1175 {
1176 	int ret = 0;
1177 	u32 data;
1178 
1179 	if (len < 4)
1180 		return -EINVAL;
1181 
1182 	if (ctx->csa.spu_chnlcnt_RW[4]) {
1183 		data =  ctx->csa.spu_chnldata_RW[4];
1184 		ret = 4;
1185 	}
1186 
1187 	if (!ret)
1188 		goto out;
1189 
1190 	if (copy_to_user(buf, &data, 4))
1191 		return -EFAULT;
1192 
1193 out:
1194 	return ret;
1195 }
1196 
1197 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1198 			size_t len, loff_t *pos)
1199 {
1200 	struct spu_context *ctx = file->private_data;
1201 	int ret;
1202 
1203 	ret = spu_acquire_saved(ctx);
1204 	if (ret)
1205 		return ret;
1206 	ret = __spufs_signal2_read(ctx, buf, len, pos);
1207 	spu_release_saved(ctx);
1208 
1209 	return ret;
1210 }
1211 
1212 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1213 			size_t len, loff_t *pos)
1214 {
1215 	struct spu_context *ctx;
1216 	ssize_t ret;
1217 	u32 data;
1218 
1219 	ctx = file->private_data;
1220 
1221 	if (len < 4)
1222 		return -EINVAL;
1223 
1224 	if (copy_from_user(&data, buf, 4))
1225 		return -EFAULT;
1226 
1227 	ret = spu_acquire(ctx);
1228 	if (ret)
1229 		return ret;
1230 	ctx->ops->signal2_write(ctx, data);
1231 	spu_release(ctx);
1232 
1233 	return 4;
1234 }
1235 
1236 #if SPUFS_MMAP_4K
1237 static unsigned long spufs_signal2_mmap_nopfn(struct vm_area_struct *vma,
1238 					      unsigned long address)
1239 {
1240 #if PAGE_SIZE == 0x1000
1241 	return spufs_ps_nopfn(vma, address, 0x1c000, 0x1000);
1242 #elif PAGE_SIZE == 0x10000
1243 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1244 	 * signal 1 and 2 area
1245 	 */
1246 	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
1247 #else
1248 #error unsupported page size
1249 #endif
1250 }
1251 
1252 static struct vm_operations_struct spufs_signal2_mmap_vmops = {
1253 	.nopfn = spufs_signal2_mmap_nopfn,
1254 };
1255 
1256 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1257 {
1258 	if (!(vma->vm_flags & VM_SHARED))
1259 		return -EINVAL;
1260 
1261 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1262 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1263 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1264 
1265 	vma->vm_ops = &spufs_signal2_mmap_vmops;
1266 	return 0;
1267 }
1268 #else /* SPUFS_MMAP_4K */
1269 #define spufs_signal2_mmap NULL
1270 #endif /* !SPUFS_MMAP_4K */
1271 
1272 static const struct file_operations spufs_signal2_fops = {
1273 	.open = spufs_signal2_open,
1274 	.release = spufs_signal2_release,
1275 	.read = spufs_signal2_read,
1276 	.write = spufs_signal2_write,
1277 	.mmap = spufs_signal2_mmap,
1278 };
1279 
1280 static const struct file_operations spufs_signal2_nosched_fops = {
1281 	.open = spufs_signal2_open,
1282 	.release = spufs_signal2_release,
1283 	.write = spufs_signal2_write,
1284 	.mmap = spufs_signal2_mmap,
1285 };
1286 
1287 /*
1288  * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1289  * work of acquiring (or not) the SPU context before calling through
1290  * to the actual get routine. The set routine is called directly.
1291  */
1292 #define SPU_ATTR_NOACQUIRE	0
1293 #define SPU_ATTR_ACQUIRE	1
1294 #define SPU_ATTR_ACQUIRE_SAVED	2
1295 
1296 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)	\
1297 static int __##__get(void *data, u64 *val)				\
1298 {									\
1299 	struct spu_context *ctx = data;					\
1300 	int ret = 0;							\
1301 									\
1302 	if (__acquire == SPU_ATTR_ACQUIRE) {				\
1303 		ret = spu_acquire(ctx);					\
1304 		if (ret)						\
1305 			return ret;					\
1306 		*val = __get(ctx);					\
1307 		spu_release(ctx);					\
1308 	} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED)	{		\
1309 		ret = spu_acquire_saved(ctx);				\
1310 		if (ret)						\
1311 			return ret;					\
1312 		*val = __get(ctx);					\
1313 		spu_release_saved(ctx);					\
1314 	} else								\
1315 		*val = __get(ctx);					\
1316 									\
1317 	return 0;							\
1318 }									\
1319 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1320 
1321 static int spufs_signal1_type_set(void *data, u64 val)
1322 {
1323 	struct spu_context *ctx = data;
1324 	int ret;
1325 
1326 	ret = spu_acquire(ctx);
1327 	if (ret)
1328 		return ret;
1329 	ctx->ops->signal1_type_set(ctx, val);
1330 	spu_release(ctx);
1331 
1332 	return 0;
1333 }
1334 
1335 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1336 {
1337 	return ctx->ops->signal1_type_get(ctx);
1338 }
1339 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1340 		       spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1341 
1342 
1343 static int spufs_signal2_type_set(void *data, u64 val)
1344 {
1345 	struct spu_context *ctx = data;
1346 	int ret;
1347 
1348 	ret = spu_acquire(ctx);
1349 	if (ret)
1350 		return ret;
1351 	ctx->ops->signal2_type_set(ctx, val);
1352 	spu_release(ctx);
1353 
1354 	return 0;
1355 }
1356 
1357 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1358 {
1359 	return ctx->ops->signal2_type_get(ctx);
1360 }
1361 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1362 		       spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1363 
1364 #if SPUFS_MMAP_4K
1365 static unsigned long spufs_mss_mmap_nopfn(struct vm_area_struct *vma,
1366 					  unsigned long address)
1367 {
1368 	return spufs_ps_nopfn(vma, address, 0x0000, 0x1000);
1369 }
1370 
1371 static struct vm_operations_struct spufs_mss_mmap_vmops = {
1372 	.nopfn = spufs_mss_mmap_nopfn,
1373 };
1374 
1375 /*
1376  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1377  */
1378 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1379 {
1380 	if (!(vma->vm_flags & VM_SHARED))
1381 		return -EINVAL;
1382 
1383 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1384 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1385 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1386 
1387 	vma->vm_ops = &spufs_mss_mmap_vmops;
1388 	return 0;
1389 }
1390 #else /* SPUFS_MMAP_4K */
1391 #define spufs_mss_mmap NULL
1392 #endif /* !SPUFS_MMAP_4K */
1393 
1394 static int spufs_mss_open(struct inode *inode, struct file *file)
1395 {
1396 	struct spufs_inode_info *i = SPUFS_I(inode);
1397 	struct spu_context *ctx = i->i_ctx;
1398 
1399 	file->private_data = i->i_ctx;
1400 
1401 	mutex_lock(&ctx->mapping_lock);
1402 	if (!i->i_openers++)
1403 		ctx->mss = inode->i_mapping;
1404 	mutex_unlock(&ctx->mapping_lock);
1405 	return nonseekable_open(inode, file);
1406 }
1407 
1408 static int
1409 spufs_mss_release(struct inode *inode, struct file *file)
1410 {
1411 	struct spufs_inode_info *i = SPUFS_I(inode);
1412 	struct spu_context *ctx = i->i_ctx;
1413 
1414 	mutex_lock(&ctx->mapping_lock);
1415 	if (!--i->i_openers)
1416 		ctx->mss = NULL;
1417 	mutex_unlock(&ctx->mapping_lock);
1418 	return 0;
1419 }
1420 
1421 static const struct file_operations spufs_mss_fops = {
1422 	.open	 = spufs_mss_open,
1423 	.release = spufs_mss_release,
1424 	.mmap	 = spufs_mss_mmap,
1425 };
1426 
1427 static unsigned long spufs_psmap_mmap_nopfn(struct vm_area_struct *vma,
1428 					    unsigned long address)
1429 {
1430 	return spufs_ps_nopfn(vma, address, 0x0000, 0x20000);
1431 }
1432 
1433 static struct vm_operations_struct spufs_psmap_mmap_vmops = {
1434 	.nopfn = spufs_psmap_mmap_nopfn,
1435 };
1436 
1437 /*
1438  * mmap support for full problem state area [0x00000 - 0x1ffff].
1439  */
1440 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1441 {
1442 	if (!(vma->vm_flags & VM_SHARED))
1443 		return -EINVAL;
1444 
1445 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1446 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1447 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1448 
1449 	vma->vm_ops = &spufs_psmap_mmap_vmops;
1450 	return 0;
1451 }
1452 
1453 static int spufs_psmap_open(struct inode *inode, struct file *file)
1454 {
1455 	struct spufs_inode_info *i = SPUFS_I(inode);
1456 	struct spu_context *ctx = i->i_ctx;
1457 
1458 	mutex_lock(&ctx->mapping_lock);
1459 	file->private_data = i->i_ctx;
1460 	if (!i->i_openers++)
1461 		ctx->psmap = inode->i_mapping;
1462 	mutex_unlock(&ctx->mapping_lock);
1463 	return nonseekable_open(inode, file);
1464 }
1465 
1466 static int
1467 spufs_psmap_release(struct inode *inode, struct file *file)
1468 {
1469 	struct spufs_inode_info *i = SPUFS_I(inode);
1470 	struct spu_context *ctx = i->i_ctx;
1471 
1472 	mutex_lock(&ctx->mapping_lock);
1473 	if (!--i->i_openers)
1474 		ctx->psmap = NULL;
1475 	mutex_unlock(&ctx->mapping_lock);
1476 	return 0;
1477 }
1478 
1479 static const struct file_operations spufs_psmap_fops = {
1480 	.open	 = spufs_psmap_open,
1481 	.release = spufs_psmap_release,
1482 	.mmap	 = spufs_psmap_mmap,
1483 };
1484 
1485 
1486 #if SPUFS_MMAP_4K
1487 static unsigned long spufs_mfc_mmap_nopfn(struct vm_area_struct *vma,
1488 					  unsigned long address)
1489 {
1490 	return spufs_ps_nopfn(vma, address, 0x3000, 0x1000);
1491 }
1492 
1493 static struct vm_operations_struct spufs_mfc_mmap_vmops = {
1494 	.nopfn = spufs_mfc_mmap_nopfn,
1495 };
1496 
1497 /*
1498  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1499  */
1500 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1501 {
1502 	if (!(vma->vm_flags & VM_SHARED))
1503 		return -EINVAL;
1504 
1505 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1506 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1507 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1508 
1509 	vma->vm_ops = &spufs_mfc_mmap_vmops;
1510 	return 0;
1511 }
1512 #else /* SPUFS_MMAP_4K */
1513 #define spufs_mfc_mmap NULL
1514 #endif /* !SPUFS_MMAP_4K */
1515 
1516 static int spufs_mfc_open(struct inode *inode, struct file *file)
1517 {
1518 	struct spufs_inode_info *i = SPUFS_I(inode);
1519 	struct spu_context *ctx = i->i_ctx;
1520 
1521 	/* we don't want to deal with DMA into other processes */
1522 	if (ctx->owner != current->mm)
1523 		return -EINVAL;
1524 
1525 	if (atomic_read(&inode->i_count) != 1)
1526 		return -EBUSY;
1527 
1528 	mutex_lock(&ctx->mapping_lock);
1529 	file->private_data = ctx;
1530 	if (!i->i_openers++)
1531 		ctx->mfc = inode->i_mapping;
1532 	mutex_unlock(&ctx->mapping_lock);
1533 	return nonseekable_open(inode, file);
1534 }
1535 
1536 static int
1537 spufs_mfc_release(struct inode *inode, struct file *file)
1538 {
1539 	struct spufs_inode_info *i = SPUFS_I(inode);
1540 	struct spu_context *ctx = i->i_ctx;
1541 
1542 	mutex_lock(&ctx->mapping_lock);
1543 	if (!--i->i_openers)
1544 		ctx->mfc = NULL;
1545 	mutex_unlock(&ctx->mapping_lock);
1546 	return 0;
1547 }
1548 
1549 /* interrupt-level mfc callback function. */
1550 void spufs_mfc_callback(struct spu *spu)
1551 {
1552 	struct spu_context *ctx = spu->ctx;
1553 
1554 	if (!ctx)
1555 		return;
1556 
1557 	wake_up_all(&ctx->mfc_wq);
1558 
1559 	pr_debug("%s %s\n", __func__, spu->name);
1560 	if (ctx->mfc_fasync) {
1561 		u32 free_elements, tagstatus;
1562 		unsigned int mask;
1563 
1564 		/* no need for spu_acquire in interrupt context */
1565 		free_elements = ctx->ops->get_mfc_free_elements(ctx);
1566 		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1567 
1568 		mask = 0;
1569 		if (free_elements & 0xffff)
1570 			mask |= POLLOUT;
1571 		if (tagstatus & ctx->tagwait)
1572 			mask |= POLLIN;
1573 
1574 		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
1575 	}
1576 }
1577 
1578 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1579 {
1580 	/* See if there is one tag group is complete */
1581 	/* FIXME we need locking around tagwait */
1582 	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1583 	ctx->tagwait &= ~*status;
1584 	if (*status)
1585 		return 1;
1586 
1587 	/* enable interrupt waiting for any tag group,
1588 	   may silently fail if interrupts are already enabled */
1589 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1590 	return 0;
1591 }
1592 
1593 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1594 			size_t size, loff_t *pos)
1595 {
1596 	struct spu_context *ctx = file->private_data;
1597 	int ret = -EINVAL;
1598 	u32 status;
1599 
1600 	if (size != 4)
1601 		goto out;
1602 
1603 	ret = spu_acquire(ctx);
1604 	if (ret)
1605 		return ret;
1606 
1607 	ret = -EINVAL;
1608 	if (file->f_flags & O_NONBLOCK) {
1609 		status = ctx->ops->read_mfc_tagstatus(ctx);
1610 		if (!(status & ctx->tagwait))
1611 			ret = -EAGAIN;
1612 		else
1613 			/* XXX(hch): shouldn't we clear ret here? */
1614 			ctx->tagwait &= ~status;
1615 	} else {
1616 		ret = spufs_wait(ctx->mfc_wq,
1617 			   spufs_read_mfc_tagstatus(ctx, &status));
1618 		if (ret)
1619 			goto out;
1620 	}
1621 	spu_release(ctx);
1622 
1623 	ret = 4;
1624 	if (copy_to_user(buffer, &status, 4))
1625 		ret = -EFAULT;
1626 
1627 out:
1628 	return ret;
1629 }
1630 
1631 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1632 {
1633 	pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
1634 		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1635 
1636 	switch (cmd->cmd) {
1637 	case MFC_PUT_CMD:
1638 	case MFC_PUTF_CMD:
1639 	case MFC_PUTB_CMD:
1640 	case MFC_GET_CMD:
1641 	case MFC_GETF_CMD:
1642 	case MFC_GETB_CMD:
1643 		break;
1644 	default:
1645 		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1646 		return -EIO;
1647 	}
1648 
1649 	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1650 		pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
1651 				cmd->ea, cmd->lsa);
1652 		return -EIO;
1653 	}
1654 
1655 	switch (cmd->size & 0xf) {
1656 	case 1:
1657 		break;
1658 	case 2:
1659 		if (cmd->lsa & 1)
1660 			goto error;
1661 		break;
1662 	case 4:
1663 		if (cmd->lsa & 3)
1664 			goto error;
1665 		break;
1666 	case 8:
1667 		if (cmd->lsa & 7)
1668 			goto error;
1669 		break;
1670 	case 0:
1671 		if (cmd->lsa & 15)
1672 			goto error;
1673 		break;
1674 	error:
1675 	default:
1676 		pr_debug("invalid DMA alignment %x for size %x\n",
1677 			cmd->lsa & 0xf, cmd->size);
1678 		return -EIO;
1679 	}
1680 
1681 	if (cmd->size > 16 * 1024) {
1682 		pr_debug("invalid DMA size %x\n", cmd->size);
1683 		return -EIO;
1684 	}
1685 
1686 	if (cmd->tag & 0xfff0) {
1687 		/* we reserve the higher tag numbers for kernel use */
1688 		pr_debug("invalid DMA tag\n");
1689 		return -EIO;
1690 	}
1691 
1692 	if (cmd->class) {
1693 		/* not supported in this version */
1694 		pr_debug("invalid DMA class\n");
1695 		return -EIO;
1696 	}
1697 
1698 	return 0;
1699 }
1700 
1701 static int spu_send_mfc_command(struct spu_context *ctx,
1702 				struct mfc_dma_command cmd,
1703 				int *error)
1704 {
1705 	*error = ctx->ops->send_mfc_command(ctx, &cmd);
1706 	if (*error == -EAGAIN) {
1707 		/* wait for any tag group to complete
1708 		   so we have space for the new command */
1709 		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1710 		/* try again, because the queue might be
1711 		   empty again */
1712 		*error = ctx->ops->send_mfc_command(ctx, &cmd);
1713 		if (*error == -EAGAIN)
1714 			return 0;
1715 	}
1716 	return 1;
1717 }
1718 
1719 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1720 			size_t size, loff_t *pos)
1721 {
1722 	struct spu_context *ctx = file->private_data;
1723 	struct mfc_dma_command cmd;
1724 	int ret = -EINVAL;
1725 
1726 	if (size != sizeof cmd)
1727 		goto out;
1728 
1729 	ret = -EFAULT;
1730 	if (copy_from_user(&cmd, buffer, sizeof cmd))
1731 		goto out;
1732 
1733 	ret = spufs_check_valid_dma(&cmd);
1734 	if (ret)
1735 		goto out;
1736 
1737 	ret = spu_acquire(ctx);
1738 	if (ret)
1739 		goto out;
1740 
1741 	ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1742 	if (ret)
1743 		goto out;
1744 
1745 	if (file->f_flags & O_NONBLOCK) {
1746 		ret = ctx->ops->send_mfc_command(ctx, &cmd);
1747 	} else {
1748 		int status;
1749 		ret = spufs_wait(ctx->mfc_wq,
1750 				 spu_send_mfc_command(ctx, cmd, &status));
1751 		if (ret)
1752 			goto out;
1753 		if (status)
1754 			ret = status;
1755 	}
1756 
1757 	if (ret)
1758 		goto out_unlock;
1759 
1760 	ctx->tagwait |= 1 << cmd.tag;
1761 	ret = size;
1762 
1763 out_unlock:
1764 	spu_release(ctx);
1765 out:
1766 	return ret;
1767 }
1768 
1769 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
1770 {
1771 	struct spu_context *ctx = file->private_data;
1772 	u32 free_elements, tagstatus;
1773 	unsigned int mask;
1774 
1775 	poll_wait(file, &ctx->mfc_wq, wait);
1776 
1777 	/*
1778 	 * For now keep this uninterruptible and also ignore the rule
1779 	 * that poll should not sleep.  Will be fixed later.
1780 	 */
1781 	mutex_lock(&ctx->state_mutex);
1782 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1783 	free_elements = ctx->ops->get_mfc_free_elements(ctx);
1784 	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1785 	spu_release(ctx);
1786 
1787 	mask = 0;
1788 	if (free_elements & 0xffff)
1789 		mask |= POLLOUT | POLLWRNORM;
1790 	if (tagstatus & ctx->tagwait)
1791 		mask |= POLLIN | POLLRDNORM;
1792 
1793 	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1794 		free_elements, tagstatus, ctx->tagwait);
1795 
1796 	return mask;
1797 }
1798 
1799 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1800 {
1801 	struct spu_context *ctx = file->private_data;
1802 	int ret;
1803 
1804 	ret = spu_acquire(ctx);
1805 	if (ret)
1806 		goto out;
1807 #if 0
1808 /* this currently hangs */
1809 	ret = spufs_wait(ctx->mfc_wq,
1810 			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1811 	if (ret)
1812 		goto out;
1813 	ret = spufs_wait(ctx->mfc_wq,
1814 			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1815 	if (ret)
1816 		goto out;
1817 #else
1818 	ret = 0;
1819 #endif
1820 	spu_release(ctx);
1821 out:
1822 	return ret;
1823 }
1824 
1825 static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
1826 			   int datasync)
1827 {
1828 	return spufs_mfc_flush(file, NULL);
1829 }
1830 
1831 static int spufs_mfc_fasync(int fd, struct file *file, int on)
1832 {
1833 	struct spu_context *ctx = file->private_data;
1834 
1835 	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
1836 }
1837 
1838 static const struct file_operations spufs_mfc_fops = {
1839 	.open	 = spufs_mfc_open,
1840 	.release = spufs_mfc_release,
1841 	.read	 = spufs_mfc_read,
1842 	.write	 = spufs_mfc_write,
1843 	.poll	 = spufs_mfc_poll,
1844 	.flush	 = spufs_mfc_flush,
1845 	.fsync	 = spufs_mfc_fsync,
1846 	.fasync	 = spufs_mfc_fasync,
1847 	.mmap	 = spufs_mfc_mmap,
1848 };
1849 
1850 static int spufs_npc_set(void *data, u64 val)
1851 {
1852 	struct spu_context *ctx = data;
1853 	int ret;
1854 
1855 	ret = spu_acquire(ctx);
1856 	if (ret)
1857 		return ret;
1858 	ctx->ops->npc_write(ctx, val);
1859 	spu_release(ctx);
1860 
1861 	return 0;
1862 }
1863 
1864 static u64 spufs_npc_get(struct spu_context *ctx)
1865 {
1866 	return ctx->ops->npc_read(ctx);
1867 }
1868 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1869 		       "0x%llx\n", SPU_ATTR_ACQUIRE);
1870 
1871 static int spufs_decr_set(void *data, u64 val)
1872 {
1873 	struct spu_context *ctx = data;
1874 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1875 	int ret;
1876 
1877 	ret = spu_acquire_saved(ctx);
1878 	if (ret)
1879 		return ret;
1880 	lscsa->decr.slot[0] = (u32) val;
1881 	spu_release_saved(ctx);
1882 
1883 	return 0;
1884 }
1885 
1886 static u64 spufs_decr_get(struct spu_context *ctx)
1887 {
1888 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1889 	return lscsa->decr.slot[0];
1890 }
1891 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1892 		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1893 
1894 static int spufs_decr_status_set(void *data, u64 val)
1895 {
1896 	struct spu_context *ctx = data;
1897 	int ret;
1898 
1899 	ret = spu_acquire_saved(ctx);
1900 	if (ret)
1901 		return ret;
1902 	if (val)
1903 		ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1904 	else
1905 		ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1906 	spu_release_saved(ctx);
1907 
1908 	return 0;
1909 }
1910 
1911 static u64 spufs_decr_status_get(struct spu_context *ctx)
1912 {
1913 	if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1914 		return SPU_DECR_STATUS_RUNNING;
1915 	else
1916 		return 0;
1917 }
1918 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1919 		       spufs_decr_status_set, "0x%llx\n",
1920 		       SPU_ATTR_ACQUIRE_SAVED);
1921 
1922 static int spufs_event_mask_set(void *data, u64 val)
1923 {
1924 	struct spu_context *ctx = data;
1925 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1926 	int ret;
1927 
1928 	ret = spu_acquire_saved(ctx);
1929 	if (ret)
1930 		return ret;
1931 	lscsa->event_mask.slot[0] = (u32) val;
1932 	spu_release_saved(ctx);
1933 
1934 	return 0;
1935 }
1936 
1937 static u64 spufs_event_mask_get(struct spu_context *ctx)
1938 {
1939 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1940 	return lscsa->event_mask.slot[0];
1941 }
1942 
1943 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1944 		       spufs_event_mask_set, "0x%llx\n",
1945 		       SPU_ATTR_ACQUIRE_SAVED);
1946 
1947 static u64 spufs_event_status_get(struct spu_context *ctx)
1948 {
1949 	struct spu_state *state = &ctx->csa;
1950 	u64 stat;
1951 	stat = state->spu_chnlcnt_RW[0];
1952 	if (stat)
1953 		return state->spu_chnldata_RW[0];
1954 	return 0;
1955 }
1956 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1957 		       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1958 
1959 static int spufs_srr0_set(void *data, u64 val)
1960 {
1961 	struct spu_context *ctx = data;
1962 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1963 	int ret;
1964 
1965 	ret = spu_acquire_saved(ctx);
1966 	if (ret)
1967 		return ret;
1968 	lscsa->srr0.slot[0] = (u32) val;
1969 	spu_release_saved(ctx);
1970 
1971 	return 0;
1972 }
1973 
1974 static u64 spufs_srr0_get(struct spu_context *ctx)
1975 {
1976 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1977 	return lscsa->srr0.slot[0];
1978 }
1979 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1980 		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1981 
1982 static u64 spufs_id_get(struct spu_context *ctx)
1983 {
1984 	u64 num;
1985 
1986 	if (ctx->state == SPU_STATE_RUNNABLE)
1987 		num = ctx->spu->number;
1988 	else
1989 		num = (unsigned int)-1;
1990 
1991 	return num;
1992 }
1993 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
1994 		       SPU_ATTR_ACQUIRE)
1995 
1996 static u64 spufs_object_id_get(struct spu_context *ctx)
1997 {
1998 	/* FIXME: Should there really be no locking here? */
1999 	return ctx->object_id;
2000 }
2001 
2002 static int spufs_object_id_set(void *data, u64 id)
2003 {
2004 	struct spu_context *ctx = data;
2005 	ctx->object_id = id;
2006 
2007 	return 0;
2008 }
2009 
2010 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
2011 		       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
2012 
2013 static u64 spufs_lslr_get(struct spu_context *ctx)
2014 {
2015 	return ctx->csa.priv2.spu_lslr_RW;
2016 }
2017 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
2018 		       SPU_ATTR_ACQUIRE_SAVED);
2019 
2020 static int spufs_info_open(struct inode *inode, struct file *file)
2021 {
2022 	struct spufs_inode_info *i = SPUFS_I(inode);
2023 	struct spu_context *ctx = i->i_ctx;
2024 	file->private_data = ctx;
2025 	return 0;
2026 }
2027 
2028 static int spufs_caps_show(struct seq_file *s, void *private)
2029 {
2030 	struct spu_context *ctx = s->private;
2031 
2032 	if (!(ctx->flags & SPU_CREATE_NOSCHED))
2033 		seq_puts(s, "sched\n");
2034 	if (!(ctx->flags & SPU_CREATE_ISOLATE))
2035 		seq_puts(s, "step\n");
2036 	return 0;
2037 }
2038 
2039 static int spufs_caps_open(struct inode *inode, struct file *file)
2040 {
2041 	return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
2042 }
2043 
2044 static const struct file_operations spufs_caps_fops = {
2045 	.open		= spufs_caps_open,
2046 	.read		= seq_read,
2047 	.llseek		= seq_lseek,
2048 	.release	= single_release,
2049 };
2050 
2051 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
2052 			char __user *buf, size_t len, loff_t *pos)
2053 {
2054 	u32 data;
2055 
2056 	/* EOF if there's no entry in the mbox */
2057 	if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
2058 		return 0;
2059 
2060 	data = ctx->csa.prob.pu_mb_R;
2061 
2062 	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2063 }
2064 
2065 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
2066 				   size_t len, loff_t *pos)
2067 {
2068 	int ret;
2069 	struct spu_context *ctx = file->private_data;
2070 
2071 	if (!access_ok(VERIFY_WRITE, buf, len))
2072 		return -EFAULT;
2073 
2074 	ret = spu_acquire_saved(ctx);
2075 	if (ret)
2076 		return ret;
2077 	spin_lock(&ctx->csa.register_lock);
2078 	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2079 	spin_unlock(&ctx->csa.register_lock);
2080 	spu_release_saved(ctx);
2081 
2082 	return ret;
2083 }
2084 
2085 static const struct file_operations spufs_mbox_info_fops = {
2086 	.open = spufs_info_open,
2087 	.read = spufs_mbox_info_read,
2088 	.llseek  = generic_file_llseek,
2089 };
2090 
2091 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
2092 				char __user *buf, size_t len, loff_t *pos)
2093 {
2094 	u32 data;
2095 
2096 	/* EOF if there's no entry in the ibox */
2097 	if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
2098 		return 0;
2099 
2100 	data = ctx->csa.priv2.puint_mb_R;
2101 
2102 	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2103 }
2104 
2105 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
2106 				   size_t len, loff_t *pos)
2107 {
2108 	struct spu_context *ctx = file->private_data;
2109 	int ret;
2110 
2111 	if (!access_ok(VERIFY_WRITE, buf, len))
2112 		return -EFAULT;
2113 
2114 	ret = spu_acquire_saved(ctx);
2115 	if (ret)
2116 		return ret;
2117 	spin_lock(&ctx->csa.register_lock);
2118 	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2119 	spin_unlock(&ctx->csa.register_lock);
2120 	spu_release_saved(ctx);
2121 
2122 	return ret;
2123 }
2124 
2125 static const struct file_operations spufs_ibox_info_fops = {
2126 	.open = spufs_info_open,
2127 	.read = spufs_ibox_info_read,
2128 	.llseek  = generic_file_llseek,
2129 };
2130 
2131 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
2132 			char __user *buf, size_t len, loff_t *pos)
2133 {
2134 	int i, cnt;
2135 	u32 data[4];
2136 	u32 wbox_stat;
2137 
2138 	wbox_stat = ctx->csa.prob.mb_stat_R;
2139 	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
2140 	for (i = 0; i < cnt; i++) {
2141 		data[i] = ctx->csa.spu_mailbox_data[i];
2142 	}
2143 
2144 	return simple_read_from_buffer(buf, len, pos, &data,
2145 				cnt * sizeof(u32));
2146 }
2147 
2148 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2149 				   size_t len, loff_t *pos)
2150 {
2151 	struct spu_context *ctx = file->private_data;
2152 	int ret;
2153 
2154 	if (!access_ok(VERIFY_WRITE, buf, len))
2155 		return -EFAULT;
2156 
2157 	ret = spu_acquire_saved(ctx);
2158 	if (ret)
2159 		return ret;
2160 	spin_lock(&ctx->csa.register_lock);
2161 	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2162 	spin_unlock(&ctx->csa.register_lock);
2163 	spu_release_saved(ctx);
2164 
2165 	return ret;
2166 }
2167 
2168 static const struct file_operations spufs_wbox_info_fops = {
2169 	.open = spufs_info_open,
2170 	.read = spufs_wbox_info_read,
2171 	.llseek  = generic_file_llseek,
2172 };
2173 
2174 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
2175 			char __user *buf, size_t len, loff_t *pos)
2176 {
2177 	struct spu_dma_info info;
2178 	struct mfc_cq_sr *qp, *spuqp;
2179 	int i;
2180 
2181 	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2182 	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2183 	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
2184 	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2185 	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2186 	for (i = 0; i < 16; i++) {
2187 		qp = &info.dma_info_command_data[i];
2188 		spuqp = &ctx->csa.priv2.spuq[i];
2189 
2190 		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2191 		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2192 		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2193 		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2194 	}
2195 
2196 	return simple_read_from_buffer(buf, len, pos, &info,
2197 				sizeof info);
2198 }
2199 
2200 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2201 			      size_t len, loff_t *pos)
2202 {
2203 	struct spu_context *ctx = file->private_data;
2204 	int ret;
2205 
2206 	if (!access_ok(VERIFY_WRITE, buf, len))
2207 		return -EFAULT;
2208 
2209 	ret = spu_acquire_saved(ctx);
2210 	if (ret)
2211 		return ret;
2212 	spin_lock(&ctx->csa.register_lock);
2213 	ret = __spufs_dma_info_read(ctx, buf, len, pos);
2214 	spin_unlock(&ctx->csa.register_lock);
2215 	spu_release_saved(ctx);
2216 
2217 	return ret;
2218 }
2219 
2220 static const struct file_operations spufs_dma_info_fops = {
2221 	.open = spufs_info_open,
2222 	.read = spufs_dma_info_read,
2223 };
2224 
2225 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
2226 			char __user *buf, size_t len, loff_t *pos)
2227 {
2228 	struct spu_proxydma_info info;
2229 	struct mfc_cq_sr *qp, *puqp;
2230 	int ret = sizeof info;
2231 	int i;
2232 
2233 	if (len < ret)
2234 		return -EINVAL;
2235 
2236 	if (!access_ok(VERIFY_WRITE, buf, len))
2237 		return -EFAULT;
2238 
2239 	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2240 	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2241 	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2242 	for (i = 0; i < 8; i++) {
2243 		qp = &info.proxydma_info_command_data[i];
2244 		puqp = &ctx->csa.priv2.puq[i];
2245 
2246 		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2247 		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2248 		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2249 		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2250 	}
2251 
2252 	return simple_read_from_buffer(buf, len, pos, &info,
2253 				sizeof info);
2254 }
2255 
2256 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2257 				   size_t len, loff_t *pos)
2258 {
2259 	struct spu_context *ctx = file->private_data;
2260 	int ret;
2261 
2262 	ret = spu_acquire_saved(ctx);
2263 	if (ret)
2264 		return ret;
2265 	spin_lock(&ctx->csa.register_lock);
2266 	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2267 	spin_unlock(&ctx->csa.register_lock);
2268 	spu_release_saved(ctx);
2269 
2270 	return ret;
2271 }
2272 
2273 static const struct file_operations spufs_proxydma_info_fops = {
2274 	.open = spufs_info_open,
2275 	.read = spufs_proxydma_info_read,
2276 };
2277 
2278 static int spufs_show_tid(struct seq_file *s, void *private)
2279 {
2280 	struct spu_context *ctx = s->private;
2281 
2282 	seq_printf(s, "%d\n", ctx->tid);
2283 	return 0;
2284 }
2285 
2286 static int spufs_tid_open(struct inode *inode, struct file *file)
2287 {
2288 	return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2289 }
2290 
2291 static const struct file_operations spufs_tid_fops = {
2292 	.open		= spufs_tid_open,
2293 	.read		= seq_read,
2294 	.llseek		= seq_lseek,
2295 	.release	= single_release,
2296 };
2297 
2298 static const char *ctx_state_names[] = {
2299 	"user", "system", "iowait", "loaded"
2300 };
2301 
2302 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2303 		enum spu_utilization_state state)
2304 {
2305 	struct timespec ts;
2306 	unsigned long long time = ctx->stats.times[state];
2307 
2308 	/*
2309 	 * In general, utilization statistics are updated by the controlling
2310 	 * thread as the spu context moves through various well defined
2311 	 * state transitions, but if the context is lazily loaded its
2312 	 * utilization statistics are not updated as the controlling thread
2313 	 * is not tightly coupled with the execution of the spu context.  We
2314 	 * calculate and apply the time delta from the last recorded state
2315 	 * of the spu context.
2316 	 */
2317 	if (ctx->spu && ctx->stats.util_state == state) {
2318 		ktime_get_ts(&ts);
2319 		time += timespec_to_ns(&ts) - ctx->stats.tstamp;
2320 	}
2321 
2322 	return time / NSEC_PER_MSEC;
2323 }
2324 
2325 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2326 {
2327 	unsigned long long slb_flts = ctx->stats.slb_flt;
2328 
2329 	if (ctx->state == SPU_STATE_RUNNABLE) {
2330 		slb_flts += (ctx->spu->stats.slb_flt -
2331 			     ctx->stats.slb_flt_base);
2332 	}
2333 
2334 	return slb_flts;
2335 }
2336 
2337 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2338 {
2339 	unsigned long long class2_intrs = ctx->stats.class2_intr;
2340 
2341 	if (ctx->state == SPU_STATE_RUNNABLE) {
2342 		class2_intrs += (ctx->spu->stats.class2_intr -
2343 				 ctx->stats.class2_intr_base);
2344 	}
2345 
2346 	return class2_intrs;
2347 }
2348 
2349 
2350 static int spufs_show_stat(struct seq_file *s, void *private)
2351 {
2352 	struct spu_context *ctx = s->private;
2353 	int ret;
2354 
2355 	ret = spu_acquire(ctx);
2356 	if (ret)
2357 		return ret;
2358 
2359 	seq_printf(s, "%s %llu %llu %llu %llu "
2360 		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2361 		ctx_state_names[ctx->stats.util_state],
2362 		spufs_acct_time(ctx, SPU_UTIL_USER),
2363 		spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2364 		spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2365 		spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2366 		ctx->stats.vol_ctx_switch,
2367 		ctx->stats.invol_ctx_switch,
2368 		spufs_slb_flts(ctx),
2369 		ctx->stats.hash_flt,
2370 		ctx->stats.min_flt,
2371 		ctx->stats.maj_flt,
2372 		spufs_class2_intrs(ctx),
2373 		ctx->stats.libassist);
2374 	spu_release(ctx);
2375 	return 0;
2376 }
2377 
2378 static int spufs_stat_open(struct inode *inode, struct file *file)
2379 {
2380 	return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2381 }
2382 
2383 static const struct file_operations spufs_stat_fops = {
2384 	.open		= spufs_stat_open,
2385 	.read		= seq_read,
2386 	.llseek		= seq_lseek,
2387 	.release	= single_release,
2388 };
2389 
2390 static inline int spufs_switch_log_used(struct spu_context *ctx)
2391 {
2392 	return (ctx->switch_log->head - ctx->switch_log->tail) %
2393 		SWITCH_LOG_BUFSIZE;
2394 }
2395 
2396 static inline int spufs_switch_log_avail(struct spu_context *ctx)
2397 {
2398 	return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
2399 }
2400 
2401 static int spufs_switch_log_open(struct inode *inode, struct file *file)
2402 {
2403 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2404 
2405 	/*
2406 	 * We (ab-)use the mapping_lock here because it serves the similar
2407 	 * purpose for synchronizing open/close elsewhere.  Maybe it should
2408 	 * be renamed eventually.
2409 	 */
2410 	mutex_lock(&ctx->mapping_lock);
2411 	if (ctx->switch_log) {
2412 		spin_lock(&ctx->switch_log->lock);
2413 		ctx->switch_log->head = 0;
2414 		ctx->switch_log->tail = 0;
2415 		spin_unlock(&ctx->switch_log->lock);
2416 	} else {
2417 		/*
2418 		 * We allocate the switch log data structures on first open.
2419 		 * They will never be free because we assume a context will
2420 		 * be traced until it goes away.
2421 		 */
2422 		ctx->switch_log = kzalloc(sizeof(struct switch_log) +
2423 			SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry),
2424 			GFP_KERNEL);
2425 		if (!ctx->switch_log)
2426 			goto out;
2427 		spin_lock_init(&ctx->switch_log->lock);
2428 		init_waitqueue_head(&ctx->switch_log->wait);
2429 	}
2430 	mutex_unlock(&ctx->mapping_lock);
2431 
2432 	return 0;
2433  out:
2434 	mutex_unlock(&ctx->mapping_lock);
2435 	return -ENOMEM;
2436 }
2437 
2438 static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
2439 {
2440 	struct switch_log_entry *p;
2441 
2442 	p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;
2443 
2444 	return snprintf(tbuf, n, "%u.%09u %d %u %u %llu\n",
2445 			(unsigned int) p->tstamp.tv_sec,
2446 			(unsigned int) p->tstamp.tv_nsec,
2447 			p->spu_id,
2448 			(unsigned int) p->type,
2449 			(unsigned int) p->val,
2450 			(unsigned long long) p->timebase);
2451 }
2452 
2453 static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
2454 			     size_t len, loff_t *ppos)
2455 {
2456 	struct inode *inode = file->f_path.dentry->d_inode;
2457 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2458 	int error = 0, cnt = 0;
2459 
2460 	if (!buf || len < 0)
2461 		return -EINVAL;
2462 
2463 	while (cnt < len) {
2464 		char tbuf[128];
2465 		int width;
2466 
2467 		if (file->f_flags & O_NONBLOCK) {
2468 			if (spufs_switch_log_used(ctx) <= 0)
2469 				return cnt ? cnt : -EAGAIN;
2470 		} else {
2471 			/* Wait for data in buffer */
2472 			error = wait_event_interruptible(ctx->switch_log->wait,
2473 					spufs_switch_log_used(ctx) > 0);
2474 			if (error)
2475 				break;
2476 		}
2477 
2478 		spin_lock(&ctx->switch_log->lock);
2479 		if (ctx->switch_log->head == ctx->switch_log->tail) {
2480 			/* multiple readers race? */
2481 			spin_unlock(&ctx->switch_log->lock);
2482 			continue;
2483 		}
2484 
2485 		width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2486 		if (width < len) {
2487 			ctx->switch_log->tail =
2488 				(ctx->switch_log->tail + 1) %
2489 				 SWITCH_LOG_BUFSIZE;
2490 		}
2491 
2492 		spin_unlock(&ctx->switch_log->lock);
2493 
2494 		/*
2495 		 * If the record is greater than space available return
2496 		 * partial buffer (so far)
2497 		 */
2498 		if (width >= len)
2499 			break;
2500 
2501 		error = copy_to_user(buf + cnt, tbuf, width);
2502 		if (error)
2503 			break;
2504 		cnt += width;
2505 	}
2506 
2507 	return cnt == 0 ? error : cnt;
2508 }
2509 
2510 static unsigned int spufs_switch_log_poll(struct file *file, poll_table *wait)
2511 {
2512 	struct inode *inode = file->f_path.dentry->d_inode;
2513 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2514 	unsigned int mask = 0;
2515 
2516 	poll_wait(file, &ctx->switch_log->wait, wait);
2517 
2518 	if (spufs_switch_log_used(ctx) > 0)
2519 		mask |= POLLIN;
2520 
2521 	return mask;
2522 }
2523 
2524 static const struct file_operations spufs_switch_log_fops = {
2525 	.owner	= THIS_MODULE,
2526 	.open	= spufs_switch_log_open,
2527 	.read	= spufs_switch_log_read,
2528 	.poll	= spufs_switch_log_poll,
2529 };
2530 
2531 void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
2532 		u32 type, u32 val)
2533 {
2534 	if (!ctx->switch_log)
2535 		return;
2536 
2537 	spin_lock(&ctx->switch_log->lock);
2538 	if (spufs_switch_log_avail(ctx) > 1) {
2539 		struct switch_log_entry *p;
2540 
2541 		p = ctx->switch_log->log + ctx->switch_log->head;
2542 		ktime_get_ts(&p->tstamp);
2543 		p->timebase = get_tb();
2544 		p->spu_id = spu ? spu->number : -1;
2545 		p->type = type;
2546 		p->val = val;
2547 
2548 		ctx->switch_log->head =
2549 			(ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
2550 	}
2551 	spin_unlock(&ctx->switch_log->lock);
2552 
2553 	wake_up(&ctx->switch_log->wait);
2554 }
2555 
2556 struct tree_descr spufs_dir_contents[] = {
2557 	{ "capabilities", &spufs_caps_fops, 0444, },
2558 	{ "mem",  &spufs_mem_fops,  0666, },
2559 	{ "regs", &spufs_regs_fops,  0666, },
2560 	{ "mbox", &spufs_mbox_fops, 0444, },
2561 	{ "ibox", &spufs_ibox_fops, 0444, },
2562 	{ "wbox", &spufs_wbox_fops, 0222, },
2563 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
2564 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
2565 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2566 	{ "signal1", &spufs_signal1_fops, 0666, },
2567 	{ "signal2", &spufs_signal2_fops, 0666, },
2568 	{ "signal1_type", &spufs_signal1_type, 0666, },
2569 	{ "signal2_type", &spufs_signal2_type, 0666, },
2570 	{ "cntl", &spufs_cntl_fops,  0666, },
2571 	{ "fpcr", &spufs_fpcr_fops, 0666, },
2572 	{ "lslr", &spufs_lslr_ops, 0444, },
2573 	{ "mfc", &spufs_mfc_fops, 0666, },
2574 	{ "mss", &spufs_mss_fops, 0666, },
2575 	{ "npc", &spufs_npc_ops, 0666, },
2576 	{ "srr0", &spufs_srr0_ops, 0666, },
2577 	{ "decr", &spufs_decr_ops, 0666, },
2578 	{ "decr_status", &spufs_decr_status_ops, 0666, },
2579 	{ "event_mask", &spufs_event_mask_ops, 0666, },
2580 	{ "event_status", &spufs_event_status_ops, 0444, },
2581 	{ "psmap", &spufs_psmap_fops, 0666, },
2582 	{ "phys-id", &spufs_id_ops, 0666, },
2583 	{ "object-id", &spufs_object_id_ops, 0666, },
2584 	{ "mbox_info", &spufs_mbox_info_fops, 0444, },
2585 	{ "ibox_info", &spufs_ibox_info_fops, 0444, },
2586 	{ "wbox_info", &spufs_wbox_info_fops, 0444, },
2587 	{ "dma_info", &spufs_dma_info_fops, 0444, },
2588 	{ "proxydma_info", &spufs_proxydma_info_fops, 0444, },
2589 	{ "tid", &spufs_tid_fops, 0444, },
2590 	{ "stat", &spufs_stat_fops, 0444, },
2591 	{ "switch_log", &spufs_switch_log_fops, 0444 },
2592 	{},
2593 };
2594 
2595 struct tree_descr spufs_dir_nosched_contents[] = {
2596 	{ "capabilities", &spufs_caps_fops, 0444, },
2597 	{ "mem",  &spufs_mem_fops,  0666, },
2598 	{ "mbox", &spufs_mbox_fops, 0444, },
2599 	{ "ibox", &spufs_ibox_fops, 0444, },
2600 	{ "wbox", &spufs_wbox_fops, 0222, },
2601 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
2602 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
2603 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2604 	{ "signal1", &spufs_signal1_nosched_fops, 0222, },
2605 	{ "signal2", &spufs_signal2_nosched_fops, 0222, },
2606 	{ "signal1_type", &spufs_signal1_type, 0666, },
2607 	{ "signal2_type", &spufs_signal2_type, 0666, },
2608 	{ "mss", &spufs_mss_fops, 0666, },
2609 	{ "mfc", &spufs_mfc_fops, 0666, },
2610 	{ "cntl", &spufs_cntl_fops,  0666, },
2611 	{ "npc", &spufs_npc_ops, 0666, },
2612 	{ "psmap", &spufs_psmap_fops, 0666, },
2613 	{ "phys-id", &spufs_id_ops, 0666, },
2614 	{ "object-id", &spufs_object_id_ops, 0666, },
2615 	{ "tid", &spufs_tid_fops, 0444, },
2616 	{ "stat", &spufs_stat_fops, 0444, },
2617 	{},
2618 };
2619 
2620 struct spufs_coredump_reader spufs_coredump_read[] = {
2621 	{ "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
2622 	{ "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2623 	{ "lslr", NULL, spufs_lslr_get, 19 },
2624 	{ "decr", NULL, spufs_decr_get, 19 },
2625 	{ "decr_status", NULL, spufs_decr_status_get, 19 },
2626 	{ "mem", __spufs_mem_read, NULL, LS_SIZE, },
2627 	{ "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2628 	{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
2629 	{ "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2630 	{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
2631 	{ "event_mask", NULL, spufs_event_mask_get, 19 },
2632 	{ "event_status", NULL, spufs_event_status_get, 19 },
2633 	{ "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
2634 	{ "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
2635 	{ "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
2636 	{ "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
2637 	{ "proxydma_info", __spufs_proxydma_info_read,
2638 			   NULL, sizeof(struct spu_proxydma_info)},
2639 	{ "object-id", NULL, spufs_object_id_get, 19 },
2640 	{ "npc", NULL, spufs_npc_get, 19 },
2641 	{ NULL },
2642 };
2643