1 /*
2  * SPU file system -- file contents
3  *
4  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5  *
6  * Author: Arnd Bergmann <arndb@de.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #undef DEBUG
24 
25 #include <linux/fs.h>
26 #include <linux/ioctl.h>
27 #include <linux/module.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 
32 #include <asm/io.h>
33 #include <asm/semaphore.h>
34 #include <asm/spu.h>
35 #include <asm/spu_info.h>
36 #include <asm/uaccess.h>
37 
38 #include "spufs.h"
39 
40 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
41 
42 static int
43 spufs_mem_open(struct inode *inode, struct file *file)
44 {
45 	struct spufs_inode_info *i = SPUFS_I(inode);
46 	struct spu_context *ctx = i->i_ctx;
47 
48 	mutex_lock(&ctx->mapping_lock);
49 	file->private_data = ctx;
50 	if (!i->i_openers++)
51 		ctx->local_store = inode->i_mapping;
52 	mutex_unlock(&ctx->mapping_lock);
53 	return 0;
54 }
55 
56 static int
57 spufs_mem_release(struct inode *inode, struct file *file)
58 {
59 	struct spufs_inode_info *i = SPUFS_I(inode);
60 	struct spu_context *ctx = i->i_ctx;
61 
62 	mutex_lock(&ctx->mapping_lock);
63 	if (!--i->i_openers)
64 		ctx->local_store = NULL;
65 	mutex_unlock(&ctx->mapping_lock);
66 	return 0;
67 }
68 
69 static ssize_t
70 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
71 			size_t size, loff_t *pos)
72 {
73 	char *local_store = ctx->ops->get_ls(ctx);
74 	return simple_read_from_buffer(buffer, size, pos, local_store,
75 					LS_SIZE);
76 }
77 
78 static ssize_t
79 spufs_mem_read(struct file *file, char __user *buffer,
80 				size_t size, loff_t *pos)
81 {
82 	struct spu_context *ctx = file->private_data;
83 	ssize_t ret;
84 
85 	spu_acquire(ctx);
86 	ret = __spufs_mem_read(ctx, buffer, size, pos);
87 	spu_release(ctx);
88 	return ret;
89 }
90 
91 static ssize_t
92 spufs_mem_write(struct file *file, const char __user *buffer,
93 					size_t size, loff_t *ppos)
94 {
95 	struct spu_context *ctx = file->private_data;
96 	char *local_store;
97 	loff_t pos = *ppos;
98 	int ret;
99 
100 	if (pos < 0)
101 		return -EINVAL;
102 	if (pos > LS_SIZE)
103 		return -EFBIG;
104 	if (size > LS_SIZE - pos)
105 		size = LS_SIZE - pos;
106 
107 	spu_acquire(ctx);
108 	local_store = ctx->ops->get_ls(ctx);
109 	ret = copy_from_user(local_store + pos, buffer, size);
110 	spu_release(ctx);
111 
112 	if (ret)
113 		return -EFAULT;
114 	*ppos = pos + size;
115 	return size;
116 }
117 
118 static unsigned long spufs_mem_mmap_nopfn(struct vm_area_struct *vma,
119 					  unsigned long address)
120 {
121 	struct spu_context *ctx	= vma->vm_file->private_data;
122 	unsigned long pfn, offset, addr0 = address;
123 #ifdef CONFIG_SPU_FS_64K_LS
124 	struct spu_state *csa = &ctx->csa;
125 	int psize;
126 
127 	/* Check what page size we are using */
128 	psize = get_slice_psize(vma->vm_mm, address);
129 
130 	/* Some sanity checking */
131 	BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));
132 
133 	/* Wow, 64K, cool, we need to align the address though */
134 	if (csa->use_big_pages) {
135 		BUG_ON(vma->vm_start & 0xffff);
136 		address &= ~0xfffful;
137 	}
138 #endif /* CONFIG_SPU_FS_64K_LS */
139 
140 	offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT);
141 	if (offset >= LS_SIZE)
142 		return NOPFN_SIGBUS;
143 
144 	pr_debug("spufs_mem_mmap_nopfn address=0x%lx -> 0x%lx, offset=0x%lx\n",
145 		 addr0, address, offset);
146 
147 	spu_acquire(ctx);
148 
149 	if (ctx->state == SPU_STATE_SAVED) {
150 		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
151 							& ~_PAGE_NO_CACHE);
152 		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
153 	} else {
154 		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
155 					     | _PAGE_NO_CACHE);
156 		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
157 	}
158 	vm_insert_pfn(vma, address, pfn);
159 
160 	spu_release(ctx);
161 
162 	return NOPFN_REFAULT;
163 }
164 
165 
166 static struct vm_operations_struct spufs_mem_mmap_vmops = {
167 	.nopfn = spufs_mem_mmap_nopfn,
168 };
169 
170 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
171 {
172 #ifdef CONFIG_SPU_FS_64K_LS
173 	struct spu_context	*ctx = file->private_data;
174 	struct spu_state	*csa = &ctx->csa;
175 
176 	/* Sanity check VMA alignment */
177 	if (csa->use_big_pages) {
178 		pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
179 			 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
180 			 vma->vm_pgoff);
181 		if (vma->vm_start & 0xffff)
182 			return -EINVAL;
183 		if (vma->vm_pgoff & 0xf)
184 			return -EINVAL;
185 	}
186 #endif /* CONFIG_SPU_FS_64K_LS */
187 
188 	if (!(vma->vm_flags & VM_SHARED))
189 		return -EINVAL;
190 
191 	vma->vm_flags |= VM_IO | VM_PFNMAP;
192 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
193 				     | _PAGE_NO_CACHE);
194 
195 	vma->vm_ops = &spufs_mem_mmap_vmops;
196 	return 0;
197 }
198 
199 #ifdef CONFIG_SPU_FS_64K_LS
200 unsigned long spufs_get_unmapped_area(struct file *file, unsigned long addr,
201 				      unsigned long len, unsigned long pgoff,
202 				      unsigned long flags)
203 {
204 	struct spu_context	*ctx = file->private_data;
205 	struct spu_state	*csa = &ctx->csa;
206 
207 	/* If not using big pages, fallback to normal MM g_u_a */
208 	if (!csa->use_big_pages)
209 		return current->mm->get_unmapped_area(file, addr, len,
210 						      pgoff, flags);
211 
212 	/* Else, try to obtain a 64K pages slice */
213 	return slice_get_unmapped_area(addr, len, flags,
214 				       MMU_PAGE_64K, 1, 0);
215 }
216 #endif /* CONFIG_SPU_FS_64K_LS */
217 
218 static const struct file_operations spufs_mem_fops = {
219 	.open	 		= spufs_mem_open,
220 	.release 		= spufs_mem_release,
221 	.read   		= spufs_mem_read,
222 	.write   		= spufs_mem_write,
223 	.llseek  		= generic_file_llseek,
224 	.mmap    		= spufs_mem_mmap,
225 #ifdef CONFIG_SPU_FS_64K_LS
226 	.get_unmapped_area	= spufs_get_unmapped_area,
227 #endif
228 };
229 
230 static unsigned long spufs_ps_nopfn(struct vm_area_struct *vma,
231 				    unsigned long address,
232 				    unsigned long ps_offs,
233 				    unsigned long ps_size)
234 {
235 	struct spu_context *ctx = vma->vm_file->private_data;
236 	unsigned long area, offset = address - vma->vm_start;
237 	int ret;
238 
239 	offset += vma->vm_pgoff << PAGE_SHIFT;
240 	if (offset >= ps_size)
241 		return NOPFN_SIGBUS;
242 
243 	/* error here usually means a signal.. we might want to test
244 	 * the error code more precisely though
245 	 */
246 	ret = spu_acquire_runnable(ctx, 0);
247 	if (ret)
248 		return NOPFN_REFAULT;
249 
250 	area = ctx->spu->problem_phys + ps_offs;
251 	vm_insert_pfn(vma, address, (area + offset) >> PAGE_SHIFT);
252 	spu_release(ctx);
253 
254 	return NOPFN_REFAULT;
255 }
256 
257 #if SPUFS_MMAP_4K
258 static unsigned long spufs_cntl_mmap_nopfn(struct vm_area_struct *vma,
259 					   unsigned long address)
260 {
261 	return spufs_ps_nopfn(vma, address, 0x4000, 0x1000);
262 }
263 
264 static struct vm_operations_struct spufs_cntl_mmap_vmops = {
265 	.nopfn = spufs_cntl_mmap_nopfn,
266 };
267 
268 /*
269  * mmap support for problem state control area [0x4000 - 0x4fff].
270  */
271 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
272 {
273 	if (!(vma->vm_flags & VM_SHARED))
274 		return -EINVAL;
275 
276 	vma->vm_flags |= VM_IO | VM_PFNMAP;
277 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
278 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
279 
280 	vma->vm_ops = &spufs_cntl_mmap_vmops;
281 	return 0;
282 }
283 #else /* SPUFS_MMAP_4K */
284 #define spufs_cntl_mmap NULL
285 #endif /* !SPUFS_MMAP_4K */
286 
287 static u64 spufs_cntl_get(void *data)
288 {
289 	struct spu_context *ctx = data;
290 	u64 val;
291 
292 	spu_acquire(ctx);
293 	val = ctx->ops->status_read(ctx);
294 	spu_release(ctx);
295 
296 	return val;
297 }
298 
299 static void spufs_cntl_set(void *data, u64 val)
300 {
301 	struct spu_context *ctx = data;
302 
303 	spu_acquire(ctx);
304 	ctx->ops->runcntl_write(ctx, val);
305 	spu_release(ctx);
306 }
307 
308 static int spufs_cntl_open(struct inode *inode, struct file *file)
309 {
310 	struct spufs_inode_info *i = SPUFS_I(inode);
311 	struct spu_context *ctx = i->i_ctx;
312 
313 	mutex_lock(&ctx->mapping_lock);
314 	file->private_data = ctx;
315 	if (!i->i_openers++)
316 		ctx->cntl = inode->i_mapping;
317 	mutex_unlock(&ctx->mapping_lock);
318 	return simple_attr_open(inode, file, spufs_cntl_get,
319 					spufs_cntl_set, "0x%08lx");
320 }
321 
322 static int
323 spufs_cntl_release(struct inode *inode, struct file *file)
324 {
325 	struct spufs_inode_info *i = SPUFS_I(inode);
326 	struct spu_context *ctx = i->i_ctx;
327 
328 	simple_attr_close(inode, file);
329 
330 	mutex_lock(&ctx->mapping_lock);
331 	if (!--i->i_openers)
332 		ctx->cntl = NULL;
333 	mutex_unlock(&ctx->mapping_lock);
334 	return 0;
335 }
336 
337 static const struct file_operations spufs_cntl_fops = {
338 	.open = spufs_cntl_open,
339 	.release = spufs_cntl_release,
340 	.read = simple_attr_read,
341 	.write = simple_attr_write,
342 	.mmap = spufs_cntl_mmap,
343 };
344 
345 static int
346 spufs_regs_open(struct inode *inode, struct file *file)
347 {
348 	struct spufs_inode_info *i = SPUFS_I(inode);
349 	file->private_data = i->i_ctx;
350 	return 0;
351 }
352 
353 static ssize_t
354 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
355 			size_t size, loff_t *pos)
356 {
357 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
358 	return simple_read_from_buffer(buffer, size, pos,
359 				      lscsa->gprs, sizeof lscsa->gprs);
360 }
361 
362 static ssize_t
363 spufs_regs_read(struct file *file, char __user *buffer,
364 		size_t size, loff_t *pos)
365 {
366 	int ret;
367 	struct spu_context *ctx = file->private_data;
368 
369 	spu_acquire_saved(ctx);
370 	ret = __spufs_regs_read(ctx, buffer, size, pos);
371 	spu_release(ctx);
372 	return ret;
373 }
374 
375 static ssize_t
376 spufs_regs_write(struct file *file, const char __user *buffer,
377 		 size_t size, loff_t *pos)
378 {
379 	struct spu_context *ctx = file->private_data;
380 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
381 	int ret;
382 
383 	size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
384 	if (size <= 0)
385 		return -EFBIG;
386 	*pos += size;
387 
388 	spu_acquire_saved(ctx);
389 
390 	ret = copy_from_user(lscsa->gprs + *pos - size,
391 			     buffer, size) ? -EFAULT : size;
392 
393 	spu_release(ctx);
394 	return ret;
395 }
396 
397 static const struct file_operations spufs_regs_fops = {
398 	.open	 = spufs_regs_open,
399 	.read    = spufs_regs_read,
400 	.write   = spufs_regs_write,
401 	.llseek  = generic_file_llseek,
402 };
403 
404 static ssize_t
405 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
406 			size_t size, loff_t * pos)
407 {
408 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
409 	return simple_read_from_buffer(buffer, size, pos,
410 				      &lscsa->fpcr, sizeof(lscsa->fpcr));
411 }
412 
413 static ssize_t
414 spufs_fpcr_read(struct file *file, char __user * buffer,
415 		size_t size, loff_t * pos)
416 {
417 	int ret;
418 	struct spu_context *ctx = file->private_data;
419 
420 	spu_acquire_saved(ctx);
421 	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
422 	spu_release(ctx);
423 	return ret;
424 }
425 
426 static ssize_t
427 spufs_fpcr_write(struct file *file, const char __user * buffer,
428 		 size_t size, loff_t * pos)
429 {
430 	struct spu_context *ctx = file->private_data;
431 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
432 	int ret;
433 
434 	size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
435 	if (size <= 0)
436 		return -EFBIG;
437 	*pos += size;
438 
439 	spu_acquire_saved(ctx);
440 
441 	ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
442 			     buffer, size) ? -EFAULT : size;
443 
444 	spu_release(ctx);
445 	return ret;
446 }
447 
448 static const struct file_operations spufs_fpcr_fops = {
449 	.open = spufs_regs_open,
450 	.read = spufs_fpcr_read,
451 	.write = spufs_fpcr_write,
452 	.llseek = generic_file_llseek,
453 };
454 
455 /* generic open function for all pipe-like files */
456 static int spufs_pipe_open(struct inode *inode, struct file *file)
457 {
458 	struct spufs_inode_info *i = SPUFS_I(inode);
459 	file->private_data = i->i_ctx;
460 
461 	return nonseekable_open(inode, file);
462 }
463 
464 /*
465  * Read as many bytes from the mailbox as possible, until
466  * one of the conditions becomes true:
467  *
468  * - no more data available in the mailbox
469  * - end of the user provided buffer
470  * - end of the mapped area
471  */
472 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
473 			size_t len, loff_t *pos)
474 {
475 	struct spu_context *ctx = file->private_data;
476 	u32 mbox_data, __user *udata;
477 	ssize_t count;
478 
479 	if (len < 4)
480 		return -EINVAL;
481 
482 	if (!access_ok(VERIFY_WRITE, buf, len))
483 		return -EFAULT;
484 
485 	udata = (void __user *)buf;
486 
487 	spu_acquire(ctx);
488 	for (count = 0; (count + 4) <= len; count += 4, udata++) {
489 		int ret;
490 		ret = ctx->ops->mbox_read(ctx, &mbox_data);
491 		if (ret == 0)
492 			break;
493 
494 		/*
495 		 * at the end of the mapped area, we can fault
496 		 * but still need to return the data we have
497 		 * read successfully so far.
498 		 */
499 		ret = __put_user(mbox_data, udata);
500 		if (ret) {
501 			if (!count)
502 				count = -EFAULT;
503 			break;
504 		}
505 	}
506 	spu_release(ctx);
507 
508 	if (!count)
509 		count = -EAGAIN;
510 
511 	return count;
512 }
513 
514 static const struct file_operations spufs_mbox_fops = {
515 	.open	= spufs_pipe_open,
516 	.read	= spufs_mbox_read,
517 };
518 
519 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
520 			size_t len, loff_t *pos)
521 {
522 	struct spu_context *ctx = file->private_data;
523 	u32 mbox_stat;
524 
525 	if (len < 4)
526 		return -EINVAL;
527 
528 	spu_acquire(ctx);
529 
530 	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
531 
532 	spu_release(ctx);
533 
534 	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
535 		return -EFAULT;
536 
537 	return 4;
538 }
539 
540 static const struct file_operations spufs_mbox_stat_fops = {
541 	.open	= spufs_pipe_open,
542 	.read	= spufs_mbox_stat_read,
543 };
544 
545 /* low-level ibox access function */
546 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
547 {
548 	return ctx->ops->ibox_read(ctx, data);
549 }
550 
551 static int spufs_ibox_fasync(int fd, struct file *file, int on)
552 {
553 	struct spu_context *ctx = file->private_data;
554 
555 	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
556 }
557 
558 /* interrupt-level ibox callback function. */
559 void spufs_ibox_callback(struct spu *spu)
560 {
561 	struct spu_context *ctx = spu->ctx;
562 
563 	wake_up_all(&ctx->ibox_wq);
564 	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
565 }
566 
567 /*
568  * Read as many bytes from the interrupt mailbox as possible, until
569  * one of the conditions becomes true:
570  *
571  * - no more data available in the mailbox
572  * - end of the user provided buffer
573  * - end of the mapped area
574  *
575  * If the file is opened without O_NONBLOCK, we wait here until
576  * any data is available, but return when we have been able to
577  * read something.
578  */
579 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
580 			size_t len, loff_t *pos)
581 {
582 	struct spu_context *ctx = file->private_data;
583 	u32 ibox_data, __user *udata;
584 	ssize_t count;
585 
586 	if (len < 4)
587 		return -EINVAL;
588 
589 	if (!access_ok(VERIFY_WRITE, buf, len))
590 		return -EFAULT;
591 
592 	udata = (void __user *)buf;
593 
594 	spu_acquire(ctx);
595 
596 	/* wait only for the first element */
597 	count = 0;
598 	if (file->f_flags & O_NONBLOCK) {
599 		if (!spu_ibox_read(ctx, &ibox_data))
600 			count = -EAGAIN;
601 	} else {
602 		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
603 	}
604 	if (count)
605 		goto out;
606 
607 	/* if we can't write at all, return -EFAULT */
608 	count = __put_user(ibox_data, udata);
609 	if (count)
610 		goto out;
611 
612 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
613 		int ret;
614 		ret = ctx->ops->ibox_read(ctx, &ibox_data);
615 		if (ret == 0)
616 			break;
617 		/*
618 		 * at the end of the mapped area, we can fault
619 		 * but still need to return the data we have
620 		 * read successfully so far.
621 		 */
622 		ret = __put_user(ibox_data, udata);
623 		if (ret)
624 			break;
625 	}
626 
627 out:
628 	spu_release(ctx);
629 
630 	return count;
631 }
632 
633 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
634 {
635 	struct spu_context *ctx = file->private_data;
636 	unsigned int mask;
637 
638 	poll_wait(file, &ctx->ibox_wq, wait);
639 
640 	spu_acquire(ctx);
641 	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
642 	spu_release(ctx);
643 
644 	return mask;
645 }
646 
647 static const struct file_operations spufs_ibox_fops = {
648 	.open	= spufs_pipe_open,
649 	.read	= spufs_ibox_read,
650 	.poll	= spufs_ibox_poll,
651 	.fasync	= spufs_ibox_fasync,
652 };
653 
654 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
655 			size_t len, loff_t *pos)
656 {
657 	struct spu_context *ctx = file->private_data;
658 	u32 ibox_stat;
659 
660 	if (len < 4)
661 		return -EINVAL;
662 
663 	spu_acquire(ctx);
664 	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
665 	spu_release(ctx);
666 
667 	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
668 		return -EFAULT;
669 
670 	return 4;
671 }
672 
673 static const struct file_operations spufs_ibox_stat_fops = {
674 	.open	= spufs_pipe_open,
675 	.read	= spufs_ibox_stat_read,
676 };
677 
678 /* low-level mailbox write */
679 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
680 {
681 	return ctx->ops->wbox_write(ctx, data);
682 }
683 
684 static int spufs_wbox_fasync(int fd, struct file *file, int on)
685 {
686 	struct spu_context *ctx = file->private_data;
687 	int ret;
688 
689 	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
690 
691 	return ret;
692 }
693 
694 /* interrupt-level wbox callback function. */
695 void spufs_wbox_callback(struct spu *spu)
696 {
697 	struct spu_context *ctx = spu->ctx;
698 
699 	wake_up_all(&ctx->wbox_wq);
700 	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
701 }
702 
703 /*
704  * Write as many bytes to the interrupt mailbox as possible, until
705  * one of the conditions becomes true:
706  *
707  * - the mailbox is full
708  * - end of the user provided buffer
709  * - end of the mapped area
710  *
711  * If the file is opened without O_NONBLOCK, we wait here until
712  * space is availabyl, but return when we have been able to
713  * write something.
714  */
715 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
716 			size_t len, loff_t *pos)
717 {
718 	struct spu_context *ctx = file->private_data;
719 	u32 wbox_data, __user *udata;
720 	ssize_t count;
721 
722 	if (len < 4)
723 		return -EINVAL;
724 
725 	udata = (void __user *)buf;
726 	if (!access_ok(VERIFY_READ, buf, len))
727 		return -EFAULT;
728 
729 	if (__get_user(wbox_data, udata))
730 		return -EFAULT;
731 
732 	spu_acquire(ctx);
733 
734 	/*
735 	 * make sure we can at least write one element, by waiting
736 	 * in case of !O_NONBLOCK
737 	 */
738 	count = 0;
739 	if (file->f_flags & O_NONBLOCK) {
740 		if (!spu_wbox_write(ctx, wbox_data))
741 			count = -EAGAIN;
742 	} else {
743 		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
744 	}
745 
746 	if (count)
747 		goto out;
748 
749 	/* write aѕ much as possible */
750 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
751 		int ret;
752 		ret = __get_user(wbox_data, udata);
753 		if (ret)
754 			break;
755 
756 		ret = spu_wbox_write(ctx, wbox_data);
757 		if (ret == 0)
758 			break;
759 	}
760 
761 out:
762 	spu_release(ctx);
763 	return count;
764 }
765 
766 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
767 {
768 	struct spu_context *ctx = file->private_data;
769 	unsigned int mask;
770 
771 	poll_wait(file, &ctx->wbox_wq, wait);
772 
773 	spu_acquire(ctx);
774 	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
775 	spu_release(ctx);
776 
777 	return mask;
778 }
779 
780 static const struct file_operations spufs_wbox_fops = {
781 	.open	= spufs_pipe_open,
782 	.write	= spufs_wbox_write,
783 	.poll	= spufs_wbox_poll,
784 	.fasync	= spufs_wbox_fasync,
785 };
786 
787 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
788 			size_t len, loff_t *pos)
789 {
790 	struct spu_context *ctx = file->private_data;
791 	u32 wbox_stat;
792 
793 	if (len < 4)
794 		return -EINVAL;
795 
796 	spu_acquire(ctx);
797 	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
798 	spu_release(ctx);
799 
800 	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
801 		return -EFAULT;
802 
803 	return 4;
804 }
805 
806 static const struct file_operations spufs_wbox_stat_fops = {
807 	.open	= spufs_pipe_open,
808 	.read	= spufs_wbox_stat_read,
809 };
810 
811 static int spufs_signal1_open(struct inode *inode, struct file *file)
812 {
813 	struct spufs_inode_info *i = SPUFS_I(inode);
814 	struct spu_context *ctx = i->i_ctx;
815 
816 	mutex_lock(&ctx->mapping_lock);
817 	file->private_data = ctx;
818 	if (!i->i_openers++)
819 		ctx->signal1 = inode->i_mapping;
820 	mutex_unlock(&ctx->mapping_lock);
821 	return nonseekable_open(inode, file);
822 }
823 
824 static int
825 spufs_signal1_release(struct inode *inode, struct file *file)
826 {
827 	struct spufs_inode_info *i = SPUFS_I(inode);
828 	struct spu_context *ctx = i->i_ctx;
829 
830 	mutex_lock(&ctx->mapping_lock);
831 	if (!--i->i_openers)
832 		ctx->signal1 = NULL;
833 	mutex_unlock(&ctx->mapping_lock);
834 	return 0;
835 }
836 
837 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
838 			size_t len, loff_t *pos)
839 {
840 	int ret = 0;
841 	u32 data;
842 
843 	if (len < 4)
844 		return -EINVAL;
845 
846 	if (ctx->csa.spu_chnlcnt_RW[3]) {
847 		data = ctx->csa.spu_chnldata_RW[3];
848 		ret = 4;
849 	}
850 
851 	if (!ret)
852 		goto out;
853 
854 	if (copy_to_user(buf, &data, 4))
855 		return -EFAULT;
856 
857 out:
858 	return ret;
859 }
860 
861 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
862 			size_t len, loff_t *pos)
863 {
864 	int ret;
865 	struct spu_context *ctx = file->private_data;
866 
867 	spu_acquire_saved(ctx);
868 	ret = __spufs_signal1_read(ctx, buf, len, pos);
869 	spu_release(ctx);
870 
871 	return ret;
872 }
873 
874 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
875 			size_t len, loff_t *pos)
876 {
877 	struct spu_context *ctx;
878 	u32 data;
879 
880 	ctx = file->private_data;
881 
882 	if (len < 4)
883 		return -EINVAL;
884 
885 	if (copy_from_user(&data, buf, 4))
886 		return -EFAULT;
887 
888 	spu_acquire(ctx);
889 	ctx->ops->signal1_write(ctx, data);
890 	spu_release(ctx);
891 
892 	return 4;
893 }
894 
895 static unsigned long spufs_signal1_mmap_nopfn(struct vm_area_struct *vma,
896 					      unsigned long address)
897 {
898 #if PAGE_SIZE == 0x1000
899 	return spufs_ps_nopfn(vma, address, 0x14000, 0x1000);
900 #elif PAGE_SIZE == 0x10000
901 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
902 	 * signal 1 and 2 area
903 	 */
904 	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
905 #else
906 #error unsupported page size
907 #endif
908 }
909 
910 static struct vm_operations_struct spufs_signal1_mmap_vmops = {
911 	.nopfn = spufs_signal1_mmap_nopfn,
912 };
913 
914 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
915 {
916 	if (!(vma->vm_flags & VM_SHARED))
917 		return -EINVAL;
918 
919 	vma->vm_flags |= VM_IO | VM_PFNMAP;
920 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
921 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
922 
923 	vma->vm_ops = &spufs_signal1_mmap_vmops;
924 	return 0;
925 }
926 
927 static const struct file_operations spufs_signal1_fops = {
928 	.open = spufs_signal1_open,
929 	.release = spufs_signal1_release,
930 	.read = spufs_signal1_read,
931 	.write = spufs_signal1_write,
932 	.mmap = spufs_signal1_mmap,
933 };
934 
935 static int spufs_signal2_open(struct inode *inode, struct file *file)
936 {
937 	struct spufs_inode_info *i = SPUFS_I(inode);
938 	struct spu_context *ctx = i->i_ctx;
939 
940 	mutex_lock(&ctx->mapping_lock);
941 	file->private_data = ctx;
942 	if (!i->i_openers++)
943 		ctx->signal2 = inode->i_mapping;
944 	mutex_unlock(&ctx->mapping_lock);
945 	return nonseekable_open(inode, file);
946 }
947 
948 static int
949 spufs_signal2_release(struct inode *inode, struct file *file)
950 {
951 	struct spufs_inode_info *i = SPUFS_I(inode);
952 	struct spu_context *ctx = i->i_ctx;
953 
954 	mutex_lock(&ctx->mapping_lock);
955 	if (!--i->i_openers)
956 		ctx->signal2 = NULL;
957 	mutex_unlock(&ctx->mapping_lock);
958 	return 0;
959 }
960 
961 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
962 			size_t len, loff_t *pos)
963 {
964 	int ret = 0;
965 	u32 data;
966 
967 	if (len < 4)
968 		return -EINVAL;
969 
970 	if (ctx->csa.spu_chnlcnt_RW[4]) {
971 		data =  ctx->csa.spu_chnldata_RW[4];
972 		ret = 4;
973 	}
974 
975 	if (!ret)
976 		goto out;
977 
978 	if (copy_to_user(buf, &data, 4))
979 		return -EFAULT;
980 
981 out:
982 	return ret;
983 }
984 
985 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
986 			size_t len, loff_t *pos)
987 {
988 	struct spu_context *ctx = file->private_data;
989 	int ret;
990 
991 	spu_acquire_saved(ctx);
992 	ret = __spufs_signal2_read(ctx, buf, len, pos);
993 	spu_release(ctx);
994 
995 	return ret;
996 }
997 
998 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
999 			size_t len, loff_t *pos)
1000 {
1001 	struct spu_context *ctx;
1002 	u32 data;
1003 
1004 	ctx = file->private_data;
1005 
1006 	if (len < 4)
1007 		return -EINVAL;
1008 
1009 	if (copy_from_user(&data, buf, 4))
1010 		return -EFAULT;
1011 
1012 	spu_acquire(ctx);
1013 	ctx->ops->signal2_write(ctx, data);
1014 	spu_release(ctx);
1015 
1016 	return 4;
1017 }
1018 
1019 #if SPUFS_MMAP_4K
1020 static unsigned long spufs_signal2_mmap_nopfn(struct vm_area_struct *vma,
1021 					      unsigned long address)
1022 {
1023 #if PAGE_SIZE == 0x1000
1024 	return spufs_ps_nopfn(vma, address, 0x1c000, 0x1000);
1025 #elif PAGE_SIZE == 0x10000
1026 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1027 	 * signal 1 and 2 area
1028 	 */
1029 	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
1030 #else
1031 #error unsupported page size
1032 #endif
1033 }
1034 
1035 static struct vm_operations_struct spufs_signal2_mmap_vmops = {
1036 	.nopfn = spufs_signal2_mmap_nopfn,
1037 };
1038 
1039 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1040 {
1041 	if (!(vma->vm_flags & VM_SHARED))
1042 		return -EINVAL;
1043 
1044 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1045 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1046 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1047 
1048 	vma->vm_ops = &spufs_signal2_mmap_vmops;
1049 	return 0;
1050 }
1051 #else /* SPUFS_MMAP_4K */
1052 #define spufs_signal2_mmap NULL
1053 #endif /* !SPUFS_MMAP_4K */
1054 
1055 static const struct file_operations spufs_signal2_fops = {
1056 	.open = spufs_signal2_open,
1057 	.release = spufs_signal2_release,
1058 	.read = spufs_signal2_read,
1059 	.write = spufs_signal2_write,
1060 	.mmap = spufs_signal2_mmap,
1061 };
1062 
1063 static void spufs_signal1_type_set(void *data, u64 val)
1064 {
1065 	struct spu_context *ctx = data;
1066 
1067 	spu_acquire(ctx);
1068 	ctx->ops->signal1_type_set(ctx, val);
1069 	spu_release(ctx);
1070 }
1071 
1072 static u64 __spufs_signal1_type_get(void *data)
1073 {
1074 	struct spu_context *ctx = data;
1075 	return ctx->ops->signal1_type_get(ctx);
1076 }
1077 
1078 static u64 spufs_signal1_type_get(void *data)
1079 {
1080 	struct spu_context *ctx = data;
1081 	u64 ret;
1082 
1083 	spu_acquire(ctx);
1084 	ret = __spufs_signal1_type_get(data);
1085 	spu_release(ctx);
1086 
1087 	return ret;
1088 }
1089 DEFINE_SIMPLE_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1090 					spufs_signal1_type_set, "%llu");
1091 
1092 static void spufs_signal2_type_set(void *data, u64 val)
1093 {
1094 	struct spu_context *ctx = data;
1095 
1096 	spu_acquire(ctx);
1097 	ctx->ops->signal2_type_set(ctx, val);
1098 	spu_release(ctx);
1099 }
1100 
1101 static u64 __spufs_signal2_type_get(void *data)
1102 {
1103 	struct spu_context *ctx = data;
1104 	return ctx->ops->signal2_type_get(ctx);
1105 }
1106 
1107 static u64 spufs_signal2_type_get(void *data)
1108 {
1109 	struct spu_context *ctx = data;
1110 	u64 ret;
1111 
1112 	spu_acquire(ctx);
1113 	ret = __spufs_signal2_type_get(data);
1114 	spu_release(ctx);
1115 
1116 	return ret;
1117 }
1118 DEFINE_SIMPLE_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1119 					spufs_signal2_type_set, "%llu");
1120 
1121 #if SPUFS_MMAP_4K
1122 static unsigned long spufs_mss_mmap_nopfn(struct vm_area_struct *vma,
1123 					  unsigned long address)
1124 {
1125 	return spufs_ps_nopfn(vma, address, 0x0000, 0x1000);
1126 }
1127 
1128 static struct vm_operations_struct spufs_mss_mmap_vmops = {
1129 	.nopfn = spufs_mss_mmap_nopfn,
1130 };
1131 
1132 /*
1133  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1134  */
1135 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1136 {
1137 	if (!(vma->vm_flags & VM_SHARED))
1138 		return -EINVAL;
1139 
1140 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1141 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1142 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1143 
1144 	vma->vm_ops = &spufs_mss_mmap_vmops;
1145 	return 0;
1146 }
1147 #else /* SPUFS_MMAP_4K */
1148 #define spufs_mss_mmap NULL
1149 #endif /* !SPUFS_MMAP_4K */
1150 
1151 static int spufs_mss_open(struct inode *inode, struct file *file)
1152 {
1153 	struct spufs_inode_info *i = SPUFS_I(inode);
1154 	struct spu_context *ctx = i->i_ctx;
1155 
1156 	file->private_data = i->i_ctx;
1157 
1158 	mutex_lock(&ctx->mapping_lock);
1159 	if (!i->i_openers++)
1160 		ctx->mss = inode->i_mapping;
1161 	mutex_unlock(&ctx->mapping_lock);
1162 	return nonseekable_open(inode, file);
1163 }
1164 
1165 static int
1166 spufs_mss_release(struct inode *inode, struct file *file)
1167 {
1168 	struct spufs_inode_info *i = SPUFS_I(inode);
1169 	struct spu_context *ctx = i->i_ctx;
1170 
1171 	mutex_lock(&ctx->mapping_lock);
1172 	if (!--i->i_openers)
1173 		ctx->mss = NULL;
1174 	mutex_unlock(&ctx->mapping_lock);
1175 	return 0;
1176 }
1177 
1178 static const struct file_operations spufs_mss_fops = {
1179 	.open	 = spufs_mss_open,
1180 	.release = spufs_mss_release,
1181 	.mmap	 = spufs_mss_mmap,
1182 };
1183 
1184 static unsigned long spufs_psmap_mmap_nopfn(struct vm_area_struct *vma,
1185 					    unsigned long address)
1186 {
1187 	return spufs_ps_nopfn(vma, address, 0x0000, 0x20000);
1188 }
1189 
1190 static struct vm_operations_struct spufs_psmap_mmap_vmops = {
1191 	.nopfn = spufs_psmap_mmap_nopfn,
1192 };
1193 
1194 /*
1195  * mmap support for full problem state area [0x00000 - 0x1ffff].
1196  */
1197 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1198 {
1199 	if (!(vma->vm_flags & VM_SHARED))
1200 		return -EINVAL;
1201 
1202 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1203 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1204 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1205 
1206 	vma->vm_ops = &spufs_psmap_mmap_vmops;
1207 	return 0;
1208 }
1209 
1210 static int spufs_psmap_open(struct inode *inode, struct file *file)
1211 {
1212 	struct spufs_inode_info *i = SPUFS_I(inode);
1213 	struct spu_context *ctx = i->i_ctx;
1214 
1215 	mutex_lock(&ctx->mapping_lock);
1216 	file->private_data = i->i_ctx;
1217 	if (!i->i_openers++)
1218 		ctx->psmap = inode->i_mapping;
1219 	mutex_unlock(&ctx->mapping_lock);
1220 	return nonseekable_open(inode, file);
1221 }
1222 
1223 static int
1224 spufs_psmap_release(struct inode *inode, struct file *file)
1225 {
1226 	struct spufs_inode_info *i = SPUFS_I(inode);
1227 	struct spu_context *ctx = i->i_ctx;
1228 
1229 	mutex_lock(&ctx->mapping_lock);
1230 	if (!--i->i_openers)
1231 		ctx->psmap = NULL;
1232 	mutex_unlock(&ctx->mapping_lock);
1233 	return 0;
1234 }
1235 
1236 static const struct file_operations spufs_psmap_fops = {
1237 	.open	 = spufs_psmap_open,
1238 	.release = spufs_psmap_release,
1239 	.mmap	 = spufs_psmap_mmap,
1240 };
1241 
1242 
1243 #if SPUFS_MMAP_4K
1244 static unsigned long spufs_mfc_mmap_nopfn(struct vm_area_struct *vma,
1245 					  unsigned long address)
1246 {
1247 	return spufs_ps_nopfn(vma, address, 0x3000, 0x1000);
1248 }
1249 
1250 static struct vm_operations_struct spufs_mfc_mmap_vmops = {
1251 	.nopfn = spufs_mfc_mmap_nopfn,
1252 };
1253 
1254 /*
1255  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1256  */
1257 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1258 {
1259 	if (!(vma->vm_flags & VM_SHARED))
1260 		return -EINVAL;
1261 
1262 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1263 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1264 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1265 
1266 	vma->vm_ops = &spufs_mfc_mmap_vmops;
1267 	return 0;
1268 }
1269 #else /* SPUFS_MMAP_4K */
1270 #define spufs_mfc_mmap NULL
1271 #endif /* !SPUFS_MMAP_4K */
1272 
1273 static int spufs_mfc_open(struct inode *inode, struct file *file)
1274 {
1275 	struct spufs_inode_info *i = SPUFS_I(inode);
1276 	struct spu_context *ctx = i->i_ctx;
1277 
1278 	/* we don't want to deal with DMA into other processes */
1279 	if (ctx->owner != current->mm)
1280 		return -EINVAL;
1281 
1282 	if (atomic_read(&inode->i_count) != 1)
1283 		return -EBUSY;
1284 
1285 	mutex_lock(&ctx->mapping_lock);
1286 	file->private_data = ctx;
1287 	if (!i->i_openers++)
1288 		ctx->mfc = inode->i_mapping;
1289 	mutex_unlock(&ctx->mapping_lock);
1290 	return nonseekable_open(inode, file);
1291 }
1292 
1293 static int
1294 spufs_mfc_release(struct inode *inode, struct file *file)
1295 {
1296 	struct spufs_inode_info *i = SPUFS_I(inode);
1297 	struct spu_context *ctx = i->i_ctx;
1298 
1299 	mutex_lock(&ctx->mapping_lock);
1300 	if (!--i->i_openers)
1301 		ctx->mfc = NULL;
1302 	mutex_unlock(&ctx->mapping_lock);
1303 	return 0;
1304 }
1305 
1306 /* interrupt-level mfc callback function. */
1307 void spufs_mfc_callback(struct spu *spu)
1308 {
1309 	struct spu_context *ctx = spu->ctx;
1310 
1311 	wake_up_all(&ctx->mfc_wq);
1312 
1313 	pr_debug("%s %s\n", __FUNCTION__, spu->name);
1314 	if (ctx->mfc_fasync) {
1315 		u32 free_elements, tagstatus;
1316 		unsigned int mask;
1317 
1318 		/* no need for spu_acquire in interrupt context */
1319 		free_elements = ctx->ops->get_mfc_free_elements(ctx);
1320 		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1321 
1322 		mask = 0;
1323 		if (free_elements & 0xffff)
1324 			mask |= POLLOUT;
1325 		if (tagstatus & ctx->tagwait)
1326 			mask |= POLLIN;
1327 
1328 		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
1329 	}
1330 }
1331 
1332 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1333 {
1334 	/* See if there is one tag group is complete */
1335 	/* FIXME we need locking around tagwait */
1336 	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1337 	ctx->tagwait &= ~*status;
1338 	if (*status)
1339 		return 1;
1340 
1341 	/* enable interrupt waiting for any tag group,
1342 	   may silently fail if interrupts are already enabled */
1343 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1344 	return 0;
1345 }
1346 
1347 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1348 			size_t size, loff_t *pos)
1349 {
1350 	struct spu_context *ctx = file->private_data;
1351 	int ret = -EINVAL;
1352 	u32 status;
1353 
1354 	if (size != 4)
1355 		goto out;
1356 
1357 	spu_acquire(ctx);
1358 	if (file->f_flags & O_NONBLOCK) {
1359 		status = ctx->ops->read_mfc_tagstatus(ctx);
1360 		if (!(status & ctx->tagwait))
1361 			ret = -EAGAIN;
1362 		else
1363 			ctx->tagwait &= ~status;
1364 	} else {
1365 		ret = spufs_wait(ctx->mfc_wq,
1366 			   spufs_read_mfc_tagstatus(ctx, &status));
1367 	}
1368 	spu_release(ctx);
1369 
1370 	if (ret)
1371 		goto out;
1372 
1373 	ret = 4;
1374 	if (copy_to_user(buffer, &status, 4))
1375 		ret = -EFAULT;
1376 
1377 out:
1378 	return ret;
1379 }
1380 
1381 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1382 {
1383 	pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
1384 		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1385 
1386 	switch (cmd->cmd) {
1387 	case MFC_PUT_CMD:
1388 	case MFC_PUTF_CMD:
1389 	case MFC_PUTB_CMD:
1390 	case MFC_GET_CMD:
1391 	case MFC_GETF_CMD:
1392 	case MFC_GETB_CMD:
1393 		break;
1394 	default:
1395 		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1396 		return -EIO;
1397 	}
1398 
1399 	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1400 		pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
1401 				cmd->ea, cmd->lsa);
1402 		return -EIO;
1403 	}
1404 
1405 	switch (cmd->size & 0xf) {
1406 	case 1:
1407 		break;
1408 	case 2:
1409 		if (cmd->lsa & 1)
1410 			goto error;
1411 		break;
1412 	case 4:
1413 		if (cmd->lsa & 3)
1414 			goto error;
1415 		break;
1416 	case 8:
1417 		if (cmd->lsa & 7)
1418 			goto error;
1419 		break;
1420 	case 0:
1421 		if (cmd->lsa & 15)
1422 			goto error;
1423 		break;
1424 	error:
1425 	default:
1426 		pr_debug("invalid DMA alignment %x for size %x\n",
1427 			cmd->lsa & 0xf, cmd->size);
1428 		return -EIO;
1429 	}
1430 
1431 	if (cmd->size > 16 * 1024) {
1432 		pr_debug("invalid DMA size %x\n", cmd->size);
1433 		return -EIO;
1434 	}
1435 
1436 	if (cmd->tag & 0xfff0) {
1437 		/* we reserve the higher tag numbers for kernel use */
1438 		pr_debug("invalid DMA tag\n");
1439 		return -EIO;
1440 	}
1441 
1442 	if (cmd->class) {
1443 		/* not supported in this version */
1444 		pr_debug("invalid DMA class\n");
1445 		return -EIO;
1446 	}
1447 
1448 	return 0;
1449 }
1450 
1451 static int spu_send_mfc_command(struct spu_context *ctx,
1452 				struct mfc_dma_command cmd,
1453 				int *error)
1454 {
1455 	*error = ctx->ops->send_mfc_command(ctx, &cmd);
1456 	if (*error == -EAGAIN) {
1457 		/* wait for any tag group to complete
1458 		   so we have space for the new command */
1459 		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1460 		/* try again, because the queue might be
1461 		   empty again */
1462 		*error = ctx->ops->send_mfc_command(ctx, &cmd);
1463 		if (*error == -EAGAIN)
1464 			return 0;
1465 	}
1466 	return 1;
1467 }
1468 
1469 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1470 			size_t size, loff_t *pos)
1471 {
1472 	struct spu_context *ctx = file->private_data;
1473 	struct mfc_dma_command cmd;
1474 	int ret = -EINVAL;
1475 
1476 	if (size != sizeof cmd)
1477 		goto out;
1478 
1479 	ret = -EFAULT;
1480 	if (copy_from_user(&cmd, buffer, sizeof cmd))
1481 		goto out;
1482 
1483 	ret = spufs_check_valid_dma(&cmd);
1484 	if (ret)
1485 		goto out;
1486 
1487 	ret = spu_acquire_runnable(ctx, 0);
1488 	if (ret)
1489 		goto out;
1490 
1491 	if (file->f_flags & O_NONBLOCK) {
1492 		ret = ctx->ops->send_mfc_command(ctx, &cmd);
1493 	} else {
1494 		int status;
1495 		ret = spufs_wait(ctx->mfc_wq,
1496 				 spu_send_mfc_command(ctx, cmd, &status));
1497 		if (status)
1498 			ret = status;
1499 	}
1500 	spu_release(ctx);
1501 
1502 	if (ret)
1503 		goto out;
1504 
1505 	ctx->tagwait |= 1 << cmd.tag;
1506 	ret = size;
1507 
1508 out:
1509 	return ret;
1510 }
1511 
1512 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
1513 {
1514 	struct spu_context *ctx = file->private_data;
1515 	u32 free_elements, tagstatus;
1516 	unsigned int mask;
1517 
1518 	spu_acquire(ctx);
1519 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1520 	free_elements = ctx->ops->get_mfc_free_elements(ctx);
1521 	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1522 	spu_release(ctx);
1523 
1524 	poll_wait(file, &ctx->mfc_wq, wait);
1525 
1526 	mask = 0;
1527 	if (free_elements & 0xffff)
1528 		mask |= POLLOUT | POLLWRNORM;
1529 	if (tagstatus & ctx->tagwait)
1530 		mask |= POLLIN | POLLRDNORM;
1531 
1532 	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__,
1533 		free_elements, tagstatus, ctx->tagwait);
1534 
1535 	return mask;
1536 }
1537 
1538 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1539 {
1540 	struct spu_context *ctx = file->private_data;
1541 	int ret;
1542 
1543 	spu_acquire(ctx);
1544 #if 0
1545 /* this currently hangs */
1546 	ret = spufs_wait(ctx->mfc_wq,
1547 			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1548 	if (ret)
1549 		goto out;
1550 	ret = spufs_wait(ctx->mfc_wq,
1551 			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1552 out:
1553 #else
1554 	ret = 0;
1555 #endif
1556 	spu_release(ctx);
1557 
1558 	return ret;
1559 }
1560 
1561 static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
1562 			   int datasync)
1563 {
1564 	return spufs_mfc_flush(file, NULL);
1565 }
1566 
1567 static int spufs_mfc_fasync(int fd, struct file *file, int on)
1568 {
1569 	struct spu_context *ctx = file->private_data;
1570 
1571 	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
1572 }
1573 
1574 static const struct file_operations spufs_mfc_fops = {
1575 	.open	 = spufs_mfc_open,
1576 	.release = spufs_mfc_release,
1577 	.read	 = spufs_mfc_read,
1578 	.write	 = spufs_mfc_write,
1579 	.poll	 = spufs_mfc_poll,
1580 	.flush	 = spufs_mfc_flush,
1581 	.fsync	 = spufs_mfc_fsync,
1582 	.fasync	 = spufs_mfc_fasync,
1583 	.mmap	 = spufs_mfc_mmap,
1584 };
1585 
1586 static void spufs_npc_set(void *data, u64 val)
1587 {
1588 	struct spu_context *ctx = data;
1589 	spu_acquire(ctx);
1590 	ctx->ops->npc_write(ctx, val);
1591 	spu_release(ctx);
1592 }
1593 
1594 static u64 spufs_npc_get(void *data)
1595 {
1596 	struct spu_context *ctx = data;
1597 	u64 ret;
1598 	spu_acquire(ctx);
1599 	ret = ctx->ops->npc_read(ctx);
1600 	spu_release(ctx);
1601 	return ret;
1602 }
1603 DEFINE_SIMPLE_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1604 			"0x%llx\n")
1605 
1606 static void spufs_decr_set(void *data, u64 val)
1607 {
1608 	struct spu_context *ctx = data;
1609 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1610 	spu_acquire_saved(ctx);
1611 	lscsa->decr.slot[0] = (u32) val;
1612 	spu_release(ctx);
1613 }
1614 
1615 static u64 __spufs_decr_get(void *data)
1616 {
1617 	struct spu_context *ctx = data;
1618 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1619 	return lscsa->decr.slot[0];
1620 }
1621 
1622 static u64 spufs_decr_get(void *data)
1623 {
1624 	struct spu_context *ctx = data;
1625 	u64 ret;
1626 	spu_acquire_saved(ctx);
1627 	ret = __spufs_decr_get(data);
1628 	spu_release(ctx);
1629 	return ret;
1630 }
1631 DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1632 			"0x%llx\n")
1633 
1634 static void spufs_decr_status_set(void *data, u64 val)
1635 {
1636 	struct spu_context *ctx = data;
1637 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1638 	spu_acquire_saved(ctx);
1639 	lscsa->decr_status.slot[0] = (u32) val;
1640 	spu_release(ctx);
1641 }
1642 
1643 static u64 __spufs_decr_status_get(void *data)
1644 {
1645 	struct spu_context *ctx = data;
1646 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1647 	return lscsa->decr_status.slot[0];
1648 }
1649 
1650 static u64 spufs_decr_status_get(void *data)
1651 {
1652 	struct spu_context *ctx = data;
1653 	u64 ret;
1654 	spu_acquire_saved(ctx);
1655 	ret = __spufs_decr_status_get(data);
1656 	spu_release(ctx);
1657 	return ret;
1658 }
1659 DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1660 			spufs_decr_status_set, "0x%llx\n")
1661 
1662 static void spufs_event_mask_set(void *data, u64 val)
1663 {
1664 	struct spu_context *ctx = data;
1665 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1666 	spu_acquire_saved(ctx);
1667 	lscsa->event_mask.slot[0] = (u32) val;
1668 	spu_release(ctx);
1669 }
1670 
1671 static u64 __spufs_event_mask_get(void *data)
1672 {
1673 	struct spu_context *ctx = data;
1674 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1675 	return lscsa->event_mask.slot[0];
1676 }
1677 
1678 static u64 spufs_event_mask_get(void *data)
1679 {
1680 	struct spu_context *ctx = data;
1681 	u64 ret;
1682 	spu_acquire_saved(ctx);
1683 	ret = __spufs_event_mask_get(data);
1684 	spu_release(ctx);
1685 	return ret;
1686 }
1687 DEFINE_SIMPLE_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1688 			spufs_event_mask_set, "0x%llx\n")
1689 
1690 static u64 __spufs_event_status_get(void *data)
1691 {
1692 	struct spu_context *ctx = data;
1693 	struct spu_state *state = &ctx->csa;
1694 	u64 stat;
1695 	stat = state->spu_chnlcnt_RW[0];
1696 	if (stat)
1697 		return state->spu_chnldata_RW[0];
1698 	return 0;
1699 }
1700 
1701 static u64 spufs_event_status_get(void *data)
1702 {
1703 	struct spu_context *ctx = data;
1704 	u64 ret = 0;
1705 
1706 	spu_acquire_saved(ctx);
1707 	ret = __spufs_event_status_get(data);
1708 	spu_release(ctx);
1709 	return ret;
1710 }
1711 DEFINE_SIMPLE_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1712 			NULL, "0x%llx\n")
1713 
1714 static void spufs_srr0_set(void *data, u64 val)
1715 {
1716 	struct spu_context *ctx = data;
1717 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1718 	spu_acquire_saved(ctx);
1719 	lscsa->srr0.slot[0] = (u32) val;
1720 	spu_release(ctx);
1721 }
1722 
1723 static u64 spufs_srr0_get(void *data)
1724 {
1725 	struct spu_context *ctx = data;
1726 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1727 	u64 ret;
1728 	spu_acquire_saved(ctx);
1729 	ret = lscsa->srr0.slot[0];
1730 	spu_release(ctx);
1731 	return ret;
1732 }
1733 DEFINE_SIMPLE_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1734 			"0x%llx\n")
1735 
1736 static u64 spufs_id_get(void *data)
1737 {
1738 	struct spu_context *ctx = data;
1739 	u64 num;
1740 
1741 	spu_acquire(ctx);
1742 	if (ctx->state == SPU_STATE_RUNNABLE)
1743 		num = ctx->spu->number;
1744 	else
1745 		num = (unsigned int)-1;
1746 	spu_release(ctx);
1747 
1748 	return num;
1749 }
1750 DEFINE_SIMPLE_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n")
1751 
1752 static u64 __spufs_object_id_get(void *data)
1753 {
1754 	struct spu_context *ctx = data;
1755 	return ctx->object_id;
1756 }
1757 
1758 static u64 spufs_object_id_get(void *data)
1759 {
1760 	/* FIXME: Should there really be no locking here? */
1761 	return __spufs_object_id_get(data);
1762 }
1763 
1764 static void spufs_object_id_set(void *data, u64 id)
1765 {
1766 	struct spu_context *ctx = data;
1767 	ctx->object_id = id;
1768 }
1769 
1770 DEFINE_SIMPLE_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
1771 		spufs_object_id_set, "0x%llx\n");
1772 
1773 static u64 __spufs_lslr_get(void *data)
1774 {
1775 	struct spu_context *ctx = data;
1776 	return ctx->csa.priv2.spu_lslr_RW;
1777 }
1778 
1779 static u64 spufs_lslr_get(void *data)
1780 {
1781 	struct spu_context *ctx = data;
1782 	u64 ret;
1783 
1784 	spu_acquire_saved(ctx);
1785 	ret = __spufs_lslr_get(data);
1786 	spu_release(ctx);
1787 
1788 	return ret;
1789 }
1790 DEFINE_SIMPLE_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n")
1791 
1792 static int spufs_info_open(struct inode *inode, struct file *file)
1793 {
1794 	struct spufs_inode_info *i = SPUFS_I(inode);
1795 	struct spu_context *ctx = i->i_ctx;
1796 	file->private_data = ctx;
1797 	return 0;
1798 }
1799 
1800 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
1801 			char __user *buf, size_t len, loff_t *pos)
1802 {
1803 	u32 mbox_stat;
1804 	u32 data;
1805 
1806 	mbox_stat = ctx->csa.prob.mb_stat_R;
1807 	if (mbox_stat & 0x0000ff) {
1808 		data = ctx->csa.prob.pu_mb_R;
1809 	}
1810 
1811 	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
1812 }
1813 
1814 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
1815 				   size_t len, loff_t *pos)
1816 {
1817 	int ret;
1818 	struct spu_context *ctx = file->private_data;
1819 
1820 	if (!access_ok(VERIFY_WRITE, buf, len))
1821 		return -EFAULT;
1822 
1823 	spu_acquire_saved(ctx);
1824 	spin_lock(&ctx->csa.register_lock);
1825 	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
1826 	spin_unlock(&ctx->csa.register_lock);
1827 	spu_release(ctx);
1828 
1829 	return ret;
1830 }
1831 
1832 static const struct file_operations spufs_mbox_info_fops = {
1833 	.open = spufs_info_open,
1834 	.read = spufs_mbox_info_read,
1835 	.llseek  = generic_file_llseek,
1836 };
1837 
1838 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
1839 				char __user *buf, size_t len, loff_t *pos)
1840 {
1841 	u32 ibox_stat;
1842 	u32 data;
1843 
1844 	ibox_stat = ctx->csa.prob.mb_stat_R;
1845 	if (ibox_stat & 0xff0000) {
1846 		data = ctx->csa.priv2.puint_mb_R;
1847 	}
1848 
1849 	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
1850 }
1851 
1852 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
1853 				   size_t len, loff_t *pos)
1854 {
1855 	struct spu_context *ctx = file->private_data;
1856 	int ret;
1857 
1858 	if (!access_ok(VERIFY_WRITE, buf, len))
1859 		return -EFAULT;
1860 
1861 	spu_acquire_saved(ctx);
1862 	spin_lock(&ctx->csa.register_lock);
1863 	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
1864 	spin_unlock(&ctx->csa.register_lock);
1865 	spu_release(ctx);
1866 
1867 	return ret;
1868 }
1869 
1870 static const struct file_operations spufs_ibox_info_fops = {
1871 	.open = spufs_info_open,
1872 	.read = spufs_ibox_info_read,
1873 	.llseek  = generic_file_llseek,
1874 };
1875 
1876 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
1877 			char __user *buf, size_t len, loff_t *pos)
1878 {
1879 	int i, cnt;
1880 	u32 data[4];
1881 	u32 wbox_stat;
1882 
1883 	wbox_stat = ctx->csa.prob.mb_stat_R;
1884 	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
1885 	for (i = 0; i < cnt; i++) {
1886 		data[i] = ctx->csa.spu_mailbox_data[i];
1887 	}
1888 
1889 	return simple_read_from_buffer(buf, len, pos, &data,
1890 				cnt * sizeof(u32));
1891 }
1892 
1893 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
1894 				   size_t len, loff_t *pos)
1895 {
1896 	struct spu_context *ctx = file->private_data;
1897 	int ret;
1898 
1899 	if (!access_ok(VERIFY_WRITE, buf, len))
1900 		return -EFAULT;
1901 
1902 	spu_acquire_saved(ctx);
1903 	spin_lock(&ctx->csa.register_lock);
1904 	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
1905 	spin_unlock(&ctx->csa.register_lock);
1906 	spu_release(ctx);
1907 
1908 	return ret;
1909 }
1910 
1911 static const struct file_operations spufs_wbox_info_fops = {
1912 	.open = spufs_info_open,
1913 	.read = spufs_wbox_info_read,
1914 	.llseek  = generic_file_llseek,
1915 };
1916 
1917 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
1918 			char __user *buf, size_t len, loff_t *pos)
1919 {
1920 	struct spu_dma_info info;
1921 	struct mfc_cq_sr *qp, *spuqp;
1922 	int i;
1923 
1924 	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
1925 	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
1926 	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
1927 	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
1928 	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
1929 	for (i = 0; i < 16; i++) {
1930 		qp = &info.dma_info_command_data[i];
1931 		spuqp = &ctx->csa.priv2.spuq[i];
1932 
1933 		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
1934 		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
1935 		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
1936 		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
1937 	}
1938 
1939 	return simple_read_from_buffer(buf, len, pos, &info,
1940 				sizeof info);
1941 }
1942 
1943 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
1944 			      size_t len, loff_t *pos)
1945 {
1946 	struct spu_context *ctx = file->private_data;
1947 	int ret;
1948 
1949 	if (!access_ok(VERIFY_WRITE, buf, len))
1950 		return -EFAULT;
1951 
1952 	spu_acquire_saved(ctx);
1953 	spin_lock(&ctx->csa.register_lock);
1954 	ret = __spufs_dma_info_read(ctx, buf, len, pos);
1955 	spin_unlock(&ctx->csa.register_lock);
1956 	spu_release(ctx);
1957 
1958 	return ret;
1959 }
1960 
1961 static const struct file_operations spufs_dma_info_fops = {
1962 	.open = spufs_info_open,
1963 	.read = spufs_dma_info_read,
1964 };
1965 
1966 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
1967 			char __user *buf, size_t len, loff_t *pos)
1968 {
1969 	struct spu_proxydma_info info;
1970 	struct mfc_cq_sr *qp, *puqp;
1971 	int ret = sizeof info;
1972 	int i;
1973 
1974 	if (len < ret)
1975 		return -EINVAL;
1976 
1977 	if (!access_ok(VERIFY_WRITE, buf, len))
1978 		return -EFAULT;
1979 
1980 	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
1981 	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
1982 	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
1983 	for (i = 0; i < 8; i++) {
1984 		qp = &info.proxydma_info_command_data[i];
1985 		puqp = &ctx->csa.priv2.puq[i];
1986 
1987 		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
1988 		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
1989 		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
1990 		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
1991 	}
1992 
1993 	return simple_read_from_buffer(buf, len, pos, &info,
1994 				sizeof info);
1995 }
1996 
1997 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
1998 				   size_t len, loff_t *pos)
1999 {
2000 	struct spu_context *ctx = file->private_data;
2001 	int ret;
2002 
2003 	spu_acquire_saved(ctx);
2004 	spin_lock(&ctx->csa.register_lock);
2005 	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2006 	spin_unlock(&ctx->csa.register_lock);
2007 	spu_release(ctx);
2008 
2009 	return ret;
2010 }
2011 
2012 static const struct file_operations spufs_proxydma_info_fops = {
2013 	.open = spufs_info_open,
2014 	.read = spufs_proxydma_info_read,
2015 };
2016 
2017 struct tree_descr spufs_dir_contents[] = {
2018 	{ "mem",  &spufs_mem_fops,  0666, },
2019 	{ "regs", &spufs_regs_fops,  0666, },
2020 	{ "mbox", &spufs_mbox_fops, 0444, },
2021 	{ "ibox", &spufs_ibox_fops, 0444, },
2022 	{ "wbox", &spufs_wbox_fops, 0222, },
2023 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
2024 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
2025 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2026 	{ "signal1", &spufs_signal1_fops, 0666, },
2027 	{ "signal2", &spufs_signal2_fops, 0666, },
2028 	{ "signal1_type", &spufs_signal1_type, 0666, },
2029 	{ "signal2_type", &spufs_signal2_type, 0666, },
2030 	{ "cntl", &spufs_cntl_fops,  0666, },
2031 	{ "fpcr", &spufs_fpcr_fops, 0666, },
2032 	{ "lslr", &spufs_lslr_ops, 0444, },
2033 	{ "mfc", &spufs_mfc_fops, 0666, },
2034 	{ "mss", &spufs_mss_fops, 0666, },
2035 	{ "npc", &spufs_npc_ops, 0666, },
2036 	{ "srr0", &spufs_srr0_ops, 0666, },
2037 	{ "decr", &spufs_decr_ops, 0666, },
2038 	{ "decr_status", &spufs_decr_status_ops, 0666, },
2039 	{ "event_mask", &spufs_event_mask_ops, 0666, },
2040 	{ "event_status", &spufs_event_status_ops, 0444, },
2041 	{ "psmap", &spufs_psmap_fops, 0666, },
2042 	{ "phys-id", &spufs_id_ops, 0666, },
2043 	{ "object-id", &spufs_object_id_ops, 0666, },
2044 	{ "mbox_info", &spufs_mbox_info_fops, 0444, },
2045 	{ "ibox_info", &spufs_ibox_info_fops, 0444, },
2046 	{ "wbox_info", &spufs_wbox_info_fops, 0444, },
2047 	{ "dma_info", &spufs_dma_info_fops, 0444, },
2048 	{ "proxydma_info", &spufs_proxydma_info_fops, 0444, },
2049 	{},
2050 };
2051 
2052 struct tree_descr spufs_dir_nosched_contents[] = {
2053 	{ "mem",  &spufs_mem_fops,  0666, },
2054 	{ "mbox", &spufs_mbox_fops, 0444, },
2055 	{ "ibox", &spufs_ibox_fops, 0444, },
2056 	{ "wbox", &spufs_wbox_fops, 0222, },
2057 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
2058 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
2059 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2060 	{ "signal1", &spufs_signal1_fops, 0666, },
2061 	{ "signal2", &spufs_signal2_fops, 0666, },
2062 	{ "signal1_type", &spufs_signal1_type, 0666, },
2063 	{ "signal2_type", &spufs_signal2_type, 0666, },
2064 	{ "mss", &spufs_mss_fops, 0666, },
2065 	{ "mfc", &spufs_mfc_fops, 0666, },
2066 	{ "cntl", &spufs_cntl_fops,  0666, },
2067 	{ "npc", &spufs_npc_ops, 0666, },
2068 	{ "psmap", &spufs_psmap_fops, 0666, },
2069 	{ "phys-id", &spufs_id_ops, 0666, },
2070 	{ "object-id", &spufs_object_id_ops, 0666, },
2071 	{},
2072 };
2073 
2074 struct spufs_coredump_reader spufs_coredump_read[] = {
2075 	{ "regs", __spufs_regs_read, NULL, 128 * 16 },
2076 	{ "fpcr", __spufs_fpcr_read, NULL, 16 },
2077 	{ "lslr", NULL, __spufs_lslr_get, 11 },
2078 	{ "decr", NULL, __spufs_decr_get, 11 },
2079 	{ "decr_status", NULL, __spufs_decr_status_get, 11 },
2080 	{ "mem", __spufs_mem_read, NULL, 256 * 1024, },
2081 	{ "signal1", __spufs_signal1_read, NULL, 4 },
2082 	{ "signal1_type", NULL, __spufs_signal1_type_get, 2 },
2083 	{ "signal2", __spufs_signal2_read, NULL, 4 },
2084 	{ "signal2_type", NULL, __spufs_signal2_type_get, 2 },
2085 	{ "event_mask", NULL, __spufs_event_mask_get, 8 },
2086 	{ "event_status", NULL, __spufs_event_status_get, 8 },
2087 	{ "mbox_info", __spufs_mbox_info_read, NULL, 4 },
2088 	{ "ibox_info", __spufs_ibox_info_read, NULL, 4 },
2089 	{ "wbox_info", __spufs_wbox_info_read, NULL, 16 },
2090 	{ "dma_info", __spufs_dma_info_read, NULL, 69 * 8 },
2091 	{ "proxydma_info", __spufs_proxydma_info_read, NULL, 35 * 8 },
2092 	{ "object-id", NULL, __spufs_object_id_get, 19 },
2093 	{ },
2094 };
2095 int spufs_coredump_num_notes = ARRAY_SIZE(spufs_coredump_read) - 1;
2096 
2097