1 /*
2  * SPU file system -- file contents
3  *
4  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5  *
6  * Author: Arnd Bergmann <arndb@de.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #undef DEBUG
24 
25 #include <linux/fs.h>
26 #include <linux/ioctl.h>
27 #include <linux/module.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/seq_file.h>
32 #include <linux/marker.h>
33 
34 #include <asm/io.h>
35 #include <asm/time.h>
36 #include <asm/spu.h>
37 #include <asm/spu_info.h>
38 #include <asm/uaccess.h>
39 
40 #include "spufs.h"
41 
42 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
43 
44 /* Simple attribute files */
45 struct spufs_attr {
46 	int (*get)(void *, u64 *);
47 	int (*set)(void *, u64);
48 	char get_buf[24];       /* enough to store a u64 and "\n\0" */
49 	char set_buf[24];
50 	void *data;
51 	const char *fmt;        /* format for read operation */
52 	struct mutex mutex;     /* protects access to these buffers */
53 };
54 
55 static int spufs_attr_open(struct inode *inode, struct file *file,
56 		int (*get)(void *, u64 *), int (*set)(void *, u64),
57 		const char *fmt)
58 {
59 	struct spufs_attr *attr;
60 
61 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
62 	if (!attr)
63 		return -ENOMEM;
64 
65 	attr->get = get;
66 	attr->set = set;
67 	attr->data = inode->i_private;
68 	attr->fmt = fmt;
69 	mutex_init(&attr->mutex);
70 	file->private_data = attr;
71 
72 	return nonseekable_open(inode, file);
73 }
74 
75 static int spufs_attr_release(struct inode *inode, struct file *file)
76 {
77        kfree(file->private_data);
78 	return 0;
79 }
80 
81 static ssize_t spufs_attr_read(struct file *file, char __user *buf,
82 		size_t len, loff_t *ppos)
83 {
84 	struct spufs_attr *attr;
85 	size_t size;
86 	ssize_t ret;
87 
88 	attr = file->private_data;
89 	if (!attr->get)
90 		return -EACCES;
91 
92 	ret = mutex_lock_interruptible(&attr->mutex);
93 	if (ret)
94 		return ret;
95 
96 	if (*ppos) {		/* continued read */
97 		size = strlen(attr->get_buf);
98 	} else {		/* first read */
99 		u64 val;
100 		ret = attr->get(attr->data, &val);
101 		if (ret)
102 			goto out;
103 
104 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
105 				 attr->fmt, (unsigned long long)val);
106 	}
107 
108 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
109 out:
110 	mutex_unlock(&attr->mutex);
111 	return ret;
112 }
113 
114 static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
115 		size_t len, loff_t *ppos)
116 {
117 	struct spufs_attr *attr;
118 	u64 val;
119 	size_t size;
120 	ssize_t ret;
121 
122 	attr = file->private_data;
123 	if (!attr->set)
124 		return -EACCES;
125 
126 	ret = mutex_lock_interruptible(&attr->mutex);
127 	if (ret)
128 		return ret;
129 
130 	ret = -EFAULT;
131 	size = min(sizeof(attr->set_buf) - 1, len);
132 	if (copy_from_user(attr->set_buf, buf, size))
133 		goto out;
134 
135 	ret = len; /* claim we got the whole input */
136 	attr->set_buf[size] = '\0';
137 	val = simple_strtol(attr->set_buf, NULL, 0);
138 	attr->set(attr->data, val);
139 out:
140 	mutex_unlock(&attr->mutex);
141 	return ret;
142 }
143 
144 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)	\
145 static int __fops ## _open(struct inode *inode, struct file *file)	\
146 {									\
147 	__simple_attr_check_format(__fmt, 0ull);			\
148 	return spufs_attr_open(inode, file, __get, __set, __fmt);	\
149 }									\
150 static struct file_operations __fops = {				\
151 	.owner	 = THIS_MODULE,						\
152 	.open	 = __fops ## _open,					\
153 	.release = spufs_attr_release,					\
154 	.read	 = spufs_attr_read,					\
155 	.write	 = spufs_attr_write,					\
156 };
157 
158 
159 static int
160 spufs_mem_open(struct inode *inode, struct file *file)
161 {
162 	struct spufs_inode_info *i = SPUFS_I(inode);
163 	struct spu_context *ctx = i->i_ctx;
164 
165 	mutex_lock(&ctx->mapping_lock);
166 	file->private_data = ctx;
167 	if (!i->i_openers++)
168 		ctx->local_store = inode->i_mapping;
169 	mutex_unlock(&ctx->mapping_lock);
170 	return 0;
171 }
172 
173 static int
174 spufs_mem_release(struct inode *inode, struct file *file)
175 {
176 	struct spufs_inode_info *i = SPUFS_I(inode);
177 	struct spu_context *ctx = i->i_ctx;
178 
179 	mutex_lock(&ctx->mapping_lock);
180 	if (!--i->i_openers)
181 		ctx->local_store = NULL;
182 	mutex_unlock(&ctx->mapping_lock);
183 	return 0;
184 }
185 
186 static ssize_t
187 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
188 			size_t size, loff_t *pos)
189 {
190 	char *local_store = ctx->ops->get_ls(ctx);
191 	return simple_read_from_buffer(buffer, size, pos, local_store,
192 					LS_SIZE);
193 }
194 
195 static ssize_t
196 spufs_mem_read(struct file *file, char __user *buffer,
197 				size_t size, loff_t *pos)
198 {
199 	struct spu_context *ctx = file->private_data;
200 	ssize_t ret;
201 
202 	ret = spu_acquire(ctx);
203 	if (ret)
204 		return ret;
205 	ret = __spufs_mem_read(ctx, buffer, size, pos);
206 	spu_release(ctx);
207 
208 	return ret;
209 }
210 
211 static ssize_t
212 spufs_mem_write(struct file *file, const char __user *buffer,
213 					size_t size, loff_t *ppos)
214 {
215 	struct spu_context *ctx = file->private_data;
216 	char *local_store;
217 	loff_t pos = *ppos;
218 	int ret;
219 
220 	if (pos < 0)
221 		return -EINVAL;
222 	if (pos > LS_SIZE)
223 		return -EFBIG;
224 	if (size > LS_SIZE - pos)
225 		size = LS_SIZE - pos;
226 
227 	ret = spu_acquire(ctx);
228 	if (ret)
229 		return ret;
230 
231 	local_store = ctx->ops->get_ls(ctx);
232 	ret = copy_from_user(local_store + pos, buffer, size);
233 	spu_release(ctx);
234 
235 	if (ret)
236 		return -EFAULT;
237 	*ppos = pos + size;
238 	return size;
239 }
240 
241 static int
242 spufs_mem_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
243 {
244 	struct spu_context *ctx	= vma->vm_file->private_data;
245 	unsigned long address = (unsigned long)vmf->virtual_address;
246 	unsigned long pfn, offset;
247 
248 #ifdef CONFIG_SPU_FS_64K_LS
249 	struct spu_state *csa = &ctx->csa;
250 	int psize;
251 
252 	/* Check what page size we are using */
253 	psize = get_slice_psize(vma->vm_mm, address);
254 
255 	/* Some sanity checking */
256 	BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));
257 
258 	/* Wow, 64K, cool, we need to align the address though */
259 	if (csa->use_big_pages) {
260 		BUG_ON(vma->vm_start & 0xffff);
261 		address &= ~0xfffful;
262 	}
263 #endif /* CONFIG_SPU_FS_64K_LS */
264 
265 	offset = vmf->pgoff << PAGE_SHIFT;
266 	if (offset >= LS_SIZE)
267 		return VM_FAULT_SIGBUS;
268 
269 	pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
270 			address, offset);
271 
272 	if (spu_acquire(ctx))
273 		return VM_FAULT_NOPAGE;
274 
275 	if (ctx->state == SPU_STATE_SAVED) {
276 		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
277 							& ~_PAGE_NO_CACHE);
278 		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
279 	} else {
280 		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
281 					     | _PAGE_NO_CACHE);
282 		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
283 	}
284 	vm_insert_pfn(vma, address, pfn);
285 
286 	spu_release(ctx);
287 
288 	return VM_FAULT_NOPAGE;
289 }
290 
291 static int spufs_mem_mmap_access(struct vm_area_struct *vma,
292 				unsigned long address,
293 				void *buf, int len, int write)
294 {
295 	struct spu_context *ctx = vma->vm_file->private_data;
296 	unsigned long offset = address - vma->vm_start;
297 	char *local_store;
298 
299 	if (write && !(vma->vm_flags & VM_WRITE))
300 		return -EACCES;
301 	if (spu_acquire(ctx))
302 		return -EINTR;
303 	if ((offset + len) > vma->vm_end)
304 		len = vma->vm_end - offset;
305 	local_store = ctx->ops->get_ls(ctx);
306 	if (write)
307 		memcpy_toio(local_store + offset, buf, len);
308 	else
309 		memcpy_fromio(buf, local_store + offset, len);
310 	spu_release(ctx);
311 	return len;
312 }
313 
314 static struct vm_operations_struct spufs_mem_mmap_vmops = {
315 	.fault = spufs_mem_mmap_fault,
316 	.access = spufs_mem_mmap_access,
317 };
318 
319 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
320 {
321 #ifdef CONFIG_SPU_FS_64K_LS
322 	struct spu_context	*ctx = file->private_data;
323 	struct spu_state	*csa = &ctx->csa;
324 
325 	/* Sanity check VMA alignment */
326 	if (csa->use_big_pages) {
327 		pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
328 			 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
329 			 vma->vm_pgoff);
330 		if (vma->vm_start & 0xffff)
331 			return -EINVAL;
332 		if (vma->vm_pgoff & 0xf)
333 			return -EINVAL;
334 	}
335 #endif /* CONFIG_SPU_FS_64K_LS */
336 
337 	if (!(vma->vm_flags & VM_SHARED))
338 		return -EINVAL;
339 
340 	vma->vm_flags |= VM_IO | VM_PFNMAP;
341 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
342 				     | _PAGE_NO_CACHE);
343 
344 	vma->vm_ops = &spufs_mem_mmap_vmops;
345 	return 0;
346 }
347 
348 #ifdef CONFIG_SPU_FS_64K_LS
349 static unsigned long spufs_get_unmapped_area(struct file *file,
350 		unsigned long addr, unsigned long len, unsigned long pgoff,
351 		unsigned long flags)
352 {
353 	struct spu_context	*ctx = file->private_data;
354 	struct spu_state	*csa = &ctx->csa;
355 
356 	/* If not using big pages, fallback to normal MM g_u_a */
357 	if (!csa->use_big_pages)
358 		return current->mm->get_unmapped_area(file, addr, len,
359 						      pgoff, flags);
360 
361 	/* Else, try to obtain a 64K pages slice */
362 	return slice_get_unmapped_area(addr, len, flags,
363 				       MMU_PAGE_64K, 1, 0);
364 }
365 #endif /* CONFIG_SPU_FS_64K_LS */
366 
367 static const struct file_operations spufs_mem_fops = {
368 	.open			= spufs_mem_open,
369 	.release		= spufs_mem_release,
370 	.read			= spufs_mem_read,
371 	.write			= spufs_mem_write,
372 	.llseek			= generic_file_llseek,
373 	.mmap			= spufs_mem_mmap,
374 #ifdef CONFIG_SPU_FS_64K_LS
375 	.get_unmapped_area	= spufs_get_unmapped_area,
376 #endif
377 };
378 
379 static int spufs_ps_fault(struct vm_area_struct *vma,
380 				    struct vm_fault *vmf,
381 				    unsigned long ps_offs,
382 				    unsigned long ps_size)
383 {
384 	struct spu_context *ctx = vma->vm_file->private_data;
385 	unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
386 	int ret = 0;
387 
388 	spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
389 
390 	if (offset >= ps_size)
391 		return VM_FAULT_SIGBUS;
392 
393 	/*
394 	 * Because we release the mmap_sem, the context may be destroyed while
395 	 * we're in spu_wait. Grab an extra reference so it isn't destroyed
396 	 * in the meantime.
397 	 */
398 	get_spu_context(ctx);
399 
400 	/*
401 	 * We have to wait for context to be loaded before we have
402 	 * pages to hand out to the user, but we don't want to wait
403 	 * with the mmap_sem held.
404 	 * It is possible to drop the mmap_sem here, but then we need
405 	 * to return VM_FAULT_NOPAGE because the mappings may have
406 	 * hanged.
407 	 */
408 	if (spu_acquire(ctx))
409 		goto refault;
410 
411 	if (ctx->state == SPU_STATE_SAVED) {
412 		up_read(&current->mm->mmap_sem);
413 		spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
414 		ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
415 		spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
416 		down_read(&current->mm->mmap_sem);
417 	} else {
418 		area = ctx->spu->problem_phys + ps_offs;
419 		vm_insert_pfn(vma, (unsigned long)vmf->virtual_address,
420 					(area + offset) >> PAGE_SHIFT);
421 		spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
422 	}
423 
424 	if (!ret)
425 		spu_release(ctx);
426 
427 refault:
428 	put_spu_context(ctx);
429 	return VM_FAULT_NOPAGE;
430 }
431 
432 #if SPUFS_MMAP_4K
433 static int spufs_cntl_mmap_fault(struct vm_area_struct *vma,
434 					   struct vm_fault *vmf)
435 {
436 	return spufs_ps_fault(vma, vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
437 }
438 
439 static struct vm_operations_struct spufs_cntl_mmap_vmops = {
440 	.fault = spufs_cntl_mmap_fault,
441 };
442 
443 /*
444  * mmap support for problem state control area [0x4000 - 0x4fff].
445  */
446 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
447 {
448 	if (!(vma->vm_flags & VM_SHARED))
449 		return -EINVAL;
450 
451 	vma->vm_flags |= VM_IO | VM_PFNMAP;
452 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
453 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
454 
455 	vma->vm_ops = &spufs_cntl_mmap_vmops;
456 	return 0;
457 }
458 #else /* SPUFS_MMAP_4K */
459 #define spufs_cntl_mmap NULL
460 #endif /* !SPUFS_MMAP_4K */
461 
462 static int spufs_cntl_get(void *data, u64 *val)
463 {
464 	struct spu_context *ctx = data;
465 	int ret;
466 
467 	ret = spu_acquire(ctx);
468 	if (ret)
469 		return ret;
470 	*val = ctx->ops->status_read(ctx);
471 	spu_release(ctx);
472 
473 	return 0;
474 }
475 
476 static int spufs_cntl_set(void *data, u64 val)
477 {
478 	struct spu_context *ctx = data;
479 	int ret;
480 
481 	ret = spu_acquire(ctx);
482 	if (ret)
483 		return ret;
484 	ctx->ops->runcntl_write(ctx, val);
485 	spu_release(ctx);
486 
487 	return 0;
488 }
489 
490 static int spufs_cntl_open(struct inode *inode, struct file *file)
491 {
492 	struct spufs_inode_info *i = SPUFS_I(inode);
493 	struct spu_context *ctx = i->i_ctx;
494 
495 	mutex_lock(&ctx->mapping_lock);
496 	file->private_data = ctx;
497 	if (!i->i_openers++)
498 		ctx->cntl = inode->i_mapping;
499 	mutex_unlock(&ctx->mapping_lock);
500 	return simple_attr_open(inode, file, spufs_cntl_get,
501 					spufs_cntl_set, "0x%08lx");
502 }
503 
504 static int
505 spufs_cntl_release(struct inode *inode, struct file *file)
506 {
507 	struct spufs_inode_info *i = SPUFS_I(inode);
508 	struct spu_context *ctx = i->i_ctx;
509 
510 	simple_attr_release(inode, file);
511 
512 	mutex_lock(&ctx->mapping_lock);
513 	if (!--i->i_openers)
514 		ctx->cntl = NULL;
515 	mutex_unlock(&ctx->mapping_lock);
516 	return 0;
517 }
518 
519 static const struct file_operations spufs_cntl_fops = {
520 	.open = spufs_cntl_open,
521 	.release = spufs_cntl_release,
522 	.read = simple_attr_read,
523 	.write = simple_attr_write,
524 	.mmap = spufs_cntl_mmap,
525 };
526 
527 static int
528 spufs_regs_open(struct inode *inode, struct file *file)
529 {
530 	struct spufs_inode_info *i = SPUFS_I(inode);
531 	file->private_data = i->i_ctx;
532 	return 0;
533 }
534 
535 static ssize_t
536 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
537 			size_t size, loff_t *pos)
538 {
539 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
540 	return simple_read_from_buffer(buffer, size, pos,
541 				      lscsa->gprs, sizeof lscsa->gprs);
542 }
543 
544 static ssize_t
545 spufs_regs_read(struct file *file, char __user *buffer,
546 		size_t size, loff_t *pos)
547 {
548 	int ret;
549 	struct spu_context *ctx = file->private_data;
550 
551 	ret = spu_acquire_saved(ctx);
552 	if (ret)
553 		return ret;
554 	ret = __spufs_regs_read(ctx, buffer, size, pos);
555 	spu_release_saved(ctx);
556 	return ret;
557 }
558 
559 static ssize_t
560 spufs_regs_write(struct file *file, const char __user *buffer,
561 		 size_t size, loff_t *pos)
562 {
563 	struct spu_context *ctx = file->private_data;
564 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
565 	int ret;
566 
567 	size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
568 	if (size <= 0)
569 		return -EFBIG;
570 	*pos += size;
571 
572 	ret = spu_acquire_saved(ctx);
573 	if (ret)
574 		return ret;
575 
576 	ret = copy_from_user(lscsa->gprs + *pos - size,
577 			     buffer, size) ? -EFAULT : size;
578 
579 	spu_release_saved(ctx);
580 	return ret;
581 }
582 
583 static const struct file_operations spufs_regs_fops = {
584 	.open	 = spufs_regs_open,
585 	.read    = spufs_regs_read,
586 	.write   = spufs_regs_write,
587 	.llseek  = generic_file_llseek,
588 };
589 
590 static ssize_t
591 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
592 			size_t size, loff_t * pos)
593 {
594 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
595 	return simple_read_from_buffer(buffer, size, pos,
596 				      &lscsa->fpcr, sizeof(lscsa->fpcr));
597 }
598 
599 static ssize_t
600 spufs_fpcr_read(struct file *file, char __user * buffer,
601 		size_t size, loff_t * pos)
602 {
603 	int ret;
604 	struct spu_context *ctx = file->private_data;
605 
606 	ret = spu_acquire_saved(ctx);
607 	if (ret)
608 		return ret;
609 	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
610 	spu_release_saved(ctx);
611 	return ret;
612 }
613 
614 static ssize_t
615 spufs_fpcr_write(struct file *file, const char __user * buffer,
616 		 size_t size, loff_t * pos)
617 {
618 	struct spu_context *ctx = file->private_data;
619 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
620 	int ret;
621 
622 	size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
623 	if (size <= 0)
624 		return -EFBIG;
625 
626 	ret = spu_acquire_saved(ctx);
627 	if (ret)
628 		return ret;
629 
630 	*pos += size;
631 	ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
632 			     buffer, size) ? -EFAULT : size;
633 
634 	spu_release_saved(ctx);
635 	return ret;
636 }
637 
638 static const struct file_operations spufs_fpcr_fops = {
639 	.open = spufs_regs_open,
640 	.read = spufs_fpcr_read,
641 	.write = spufs_fpcr_write,
642 	.llseek = generic_file_llseek,
643 };
644 
645 /* generic open function for all pipe-like files */
646 static int spufs_pipe_open(struct inode *inode, struct file *file)
647 {
648 	struct spufs_inode_info *i = SPUFS_I(inode);
649 	file->private_data = i->i_ctx;
650 
651 	return nonseekable_open(inode, file);
652 }
653 
654 /*
655  * Read as many bytes from the mailbox as possible, until
656  * one of the conditions becomes true:
657  *
658  * - no more data available in the mailbox
659  * - end of the user provided buffer
660  * - end of the mapped area
661  */
662 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
663 			size_t len, loff_t *pos)
664 {
665 	struct spu_context *ctx = file->private_data;
666 	u32 mbox_data, __user *udata;
667 	ssize_t count;
668 
669 	if (len < 4)
670 		return -EINVAL;
671 
672 	if (!access_ok(VERIFY_WRITE, buf, len))
673 		return -EFAULT;
674 
675 	udata = (void __user *)buf;
676 
677 	count = spu_acquire(ctx);
678 	if (count)
679 		return count;
680 
681 	for (count = 0; (count + 4) <= len; count += 4, udata++) {
682 		int ret;
683 		ret = ctx->ops->mbox_read(ctx, &mbox_data);
684 		if (ret == 0)
685 			break;
686 
687 		/*
688 		 * at the end of the mapped area, we can fault
689 		 * but still need to return the data we have
690 		 * read successfully so far.
691 		 */
692 		ret = __put_user(mbox_data, udata);
693 		if (ret) {
694 			if (!count)
695 				count = -EFAULT;
696 			break;
697 		}
698 	}
699 	spu_release(ctx);
700 
701 	if (!count)
702 		count = -EAGAIN;
703 
704 	return count;
705 }
706 
707 static const struct file_operations spufs_mbox_fops = {
708 	.open	= spufs_pipe_open,
709 	.read	= spufs_mbox_read,
710 };
711 
712 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
713 			size_t len, loff_t *pos)
714 {
715 	struct spu_context *ctx = file->private_data;
716 	ssize_t ret;
717 	u32 mbox_stat;
718 
719 	if (len < 4)
720 		return -EINVAL;
721 
722 	ret = spu_acquire(ctx);
723 	if (ret)
724 		return ret;
725 
726 	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
727 
728 	spu_release(ctx);
729 
730 	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
731 		return -EFAULT;
732 
733 	return 4;
734 }
735 
736 static const struct file_operations spufs_mbox_stat_fops = {
737 	.open	= spufs_pipe_open,
738 	.read	= spufs_mbox_stat_read,
739 };
740 
741 /* low-level ibox access function */
742 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
743 {
744 	return ctx->ops->ibox_read(ctx, data);
745 }
746 
747 static int spufs_ibox_fasync(int fd, struct file *file, int on)
748 {
749 	struct spu_context *ctx = file->private_data;
750 
751 	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
752 }
753 
754 /* interrupt-level ibox callback function. */
755 void spufs_ibox_callback(struct spu *spu)
756 {
757 	struct spu_context *ctx = spu->ctx;
758 
759 	if (!ctx)
760 		return;
761 
762 	wake_up_all(&ctx->ibox_wq);
763 	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
764 }
765 
766 /*
767  * Read as many bytes from the interrupt mailbox as possible, until
768  * one of the conditions becomes true:
769  *
770  * - no more data available in the mailbox
771  * - end of the user provided buffer
772  * - end of the mapped area
773  *
774  * If the file is opened without O_NONBLOCK, we wait here until
775  * any data is available, but return when we have been able to
776  * read something.
777  */
778 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
779 			size_t len, loff_t *pos)
780 {
781 	struct spu_context *ctx = file->private_data;
782 	u32 ibox_data, __user *udata;
783 	ssize_t count;
784 
785 	if (len < 4)
786 		return -EINVAL;
787 
788 	if (!access_ok(VERIFY_WRITE, buf, len))
789 		return -EFAULT;
790 
791 	udata = (void __user *)buf;
792 
793 	count = spu_acquire(ctx);
794 	if (count)
795 		goto out;
796 
797 	/* wait only for the first element */
798 	count = 0;
799 	if (file->f_flags & O_NONBLOCK) {
800 		if (!spu_ibox_read(ctx, &ibox_data)) {
801 			count = -EAGAIN;
802 			goto out_unlock;
803 		}
804 	} else {
805 		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
806 		if (count)
807 			goto out;
808 	}
809 
810 	/* if we can't write at all, return -EFAULT */
811 	count = __put_user(ibox_data, udata);
812 	if (count)
813 		goto out_unlock;
814 
815 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
816 		int ret;
817 		ret = ctx->ops->ibox_read(ctx, &ibox_data);
818 		if (ret == 0)
819 			break;
820 		/*
821 		 * at the end of the mapped area, we can fault
822 		 * but still need to return the data we have
823 		 * read successfully so far.
824 		 */
825 		ret = __put_user(ibox_data, udata);
826 		if (ret)
827 			break;
828 	}
829 
830 out_unlock:
831 	spu_release(ctx);
832 out:
833 	return count;
834 }
835 
836 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
837 {
838 	struct spu_context *ctx = file->private_data;
839 	unsigned int mask;
840 
841 	poll_wait(file, &ctx->ibox_wq, wait);
842 
843 	/*
844 	 * For now keep this uninterruptible and also ignore the rule
845 	 * that poll should not sleep.  Will be fixed later.
846 	 */
847 	mutex_lock(&ctx->state_mutex);
848 	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
849 	spu_release(ctx);
850 
851 	return mask;
852 }
853 
854 static const struct file_operations spufs_ibox_fops = {
855 	.open	= spufs_pipe_open,
856 	.read	= spufs_ibox_read,
857 	.poll	= spufs_ibox_poll,
858 	.fasync	= spufs_ibox_fasync,
859 };
860 
861 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
862 			size_t len, loff_t *pos)
863 {
864 	struct spu_context *ctx = file->private_data;
865 	ssize_t ret;
866 	u32 ibox_stat;
867 
868 	if (len < 4)
869 		return -EINVAL;
870 
871 	ret = spu_acquire(ctx);
872 	if (ret)
873 		return ret;
874 	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
875 	spu_release(ctx);
876 
877 	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
878 		return -EFAULT;
879 
880 	return 4;
881 }
882 
883 static const struct file_operations spufs_ibox_stat_fops = {
884 	.open	= spufs_pipe_open,
885 	.read	= spufs_ibox_stat_read,
886 };
887 
888 /* low-level mailbox write */
889 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
890 {
891 	return ctx->ops->wbox_write(ctx, data);
892 }
893 
894 static int spufs_wbox_fasync(int fd, struct file *file, int on)
895 {
896 	struct spu_context *ctx = file->private_data;
897 	int ret;
898 
899 	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
900 
901 	return ret;
902 }
903 
904 /* interrupt-level wbox callback function. */
905 void spufs_wbox_callback(struct spu *spu)
906 {
907 	struct spu_context *ctx = spu->ctx;
908 
909 	if (!ctx)
910 		return;
911 
912 	wake_up_all(&ctx->wbox_wq);
913 	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
914 }
915 
916 /*
917  * Write as many bytes to the interrupt mailbox as possible, until
918  * one of the conditions becomes true:
919  *
920  * - the mailbox is full
921  * - end of the user provided buffer
922  * - end of the mapped area
923  *
924  * If the file is opened without O_NONBLOCK, we wait here until
925  * space is availabyl, but return when we have been able to
926  * write something.
927  */
928 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
929 			size_t len, loff_t *pos)
930 {
931 	struct spu_context *ctx = file->private_data;
932 	u32 wbox_data, __user *udata;
933 	ssize_t count;
934 
935 	if (len < 4)
936 		return -EINVAL;
937 
938 	udata = (void __user *)buf;
939 	if (!access_ok(VERIFY_READ, buf, len))
940 		return -EFAULT;
941 
942 	if (__get_user(wbox_data, udata))
943 		return -EFAULT;
944 
945 	count = spu_acquire(ctx);
946 	if (count)
947 		goto out;
948 
949 	/*
950 	 * make sure we can at least write one element, by waiting
951 	 * in case of !O_NONBLOCK
952 	 */
953 	count = 0;
954 	if (file->f_flags & O_NONBLOCK) {
955 		if (!spu_wbox_write(ctx, wbox_data)) {
956 			count = -EAGAIN;
957 			goto out_unlock;
958 		}
959 	} else {
960 		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
961 		if (count)
962 			goto out;
963 	}
964 
965 
966 	/* write as much as possible */
967 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
968 		int ret;
969 		ret = __get_user(wbox_data, udata);
970 		if (ret)
971 			break;
972 
973 		ret = spu_wbox_write(ctx, wbox_data);
974 		if (ret == 0)
975 			break;
976 	}
977 
978 out_unlock:
979 	spu_release(ctx);
980 out:
981 	return count;
982 }
983 
984 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
985 {
986 	struct spu_context *ctx = file->private_data;
987 	unsigned int mask;
988 
989 	poll_wait(file, &ctx->wbox_wq, wait);
990 
991 	/*
992 	 * For now keep this uninterruptible and also ignore the rule
993 	 * that poll should not sleep.  Will be fixed later.
994 	 */
995 	mutex_lock(&ctx->state_mutex);
996 	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
997 	spu_release(ctx);
998 
999 	return mask;
1000 }
1001 
1002 static const struct file_operations spufs_wbox_fops = {
1003 	.open	= spufs_pipe_open,
1004 	.write	= spufs_wbox_write,
1005 	.poll	= spufs_wbox_poll,
1006 	.fasync	= spufs_wbox_fasync,
1007 };
1008 
1009 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
1010 			size_t len, loff_t *pos)
1011 {
1012 	struct spu_context *ctx = file->private_data;
1013 	ssize_t ret;
1014 	u32 wbox_stat;
1015 
1016 	if (len < 4)
1017 		return -EINVAL;
1018 
1019 	ret = spu_acquire(ctx);
1020 	if (ret)
1021 		return ret;
1022 	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
1023 	spu_release(ctx);
1024 
1025 	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
1026 		return -EFAULT;
1027 
1028 	return 4;
1029 }
1030 
1031 static const struct file_operations spufs_wbox_stat_fops = {
1032 	.open	= spufs_pipe_open,
1033 	.read	= spufs_wbox_stat_read,
1034 };
1035 
1036 static int spufs_signal1_open(struct inode *inode, struct file *file)
1037 {
1038 	struct spufs_inode_info *i = SPUFS_I(inode);
1039 	struct spu_context *ctx = i->i_ctx;
1040 
1041 	mutex_lock(&ctx->mapping_lock);
1042 	file->private_data = ctx;
1043 	if (!i->i_openers++)
1044 		ctx->signal1 = inode->i_mapping;
1045 	mutex_unlock(&ctx->mapping_lock);
1046 	return nonseekable_open(inode, file);
1047 }
1048 
1049 static int
1050 spufs_signal1_release(struct inode *inode, struct file *file)
1051 {
1052 	struct spufs_inode_info *i = SPUFS_I(inode);
1053 	struct spu_context *ctx = i->i_ctx;
1054 
1055 	mutex_lock(&ctx->mapping_lock);
1056 	if (!--i->i_openers)
1057 		ctx->signal1 = NULL;
1058 	mutex_unlock(&ctx->mapping_lock);
1059 	return 0;
1060 }
1061 
1062 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1063 			size_t len, loff_t *pos)
1064 {
1065 	int ret = 0;
1066 	u32 data;
1067 
1068 	if (len < 4)
1069 		return -EINVAL;
1070 
1071 	if (ctx->csa.spu_chnlcnt_RW[3]) {
1072 		data = ctx->csa.spu_chnldata_RW[3];
1073 		ret = 4;
1074 	}
1075 
1076 	if (!ret)
1077 		goto out;
1078 
1079 	if (copy_to_user(buf, &data, 4))
1080 		return -EFAULT;
1081 
1082 out:
1083 	return ret;
1084 }
1085 
1086 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
1087 			size_t len, loff_t *pos)
1088 {
1089 	int ret;
1090 	struct spu_context *ctx = file->private_data;
1091 
1092 	ret = spu_acquire_saved(ctx);
1093 	if (ret)
1094 		return ret;
1095 	ret = __spufs_signal1_read(ctx, buf, len, pos);
1096 	spu_release_saved(ctx);
1097 
1098 	return ret;
1099 }
1100 
1101 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
1102 			size_t len, loff_t *pos)
1103 {
1104 	struct spu_context *ctx;
1105 	ssize_t ret;
1106 	u32 data;
1107 
1108 	ctx = file->private_data;
1109 
1110 	if (len < 4)
1111 		return -EINVAL;
1112 
1113 	if (copy_from_user(&data, buf, 4))
1114 		return -EFAULT;
1115 
1116 	ret = spu_acquire(ctx);
1117 	if (ret)
1118 		return ret;
1119 	ctx->ops->signal1_write(ctx, data);
1120 	spu_release(ctx);
1121 
1122 	return 4;
1123 }
1124 
1125 static int
1126 spufs_signal1_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1127 {
1128 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1129 	return spufs_ps_fault(vma, vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
1130 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1131 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1132 	 * signal 1 and 2 area
1133 	 */
1134 	return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1135 #else
1136 #error unsupported page size
1137 #endif
1138 }
1139 
1140 static struct vm_operations_struct spufs_signal1_mmap_vmops = {
1141 	.fault = spufs_signal1_mmap_fault,
1142 };
1143 
1144 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1145 {
1146 	if (!(vma->vm_flags & VM_SHARED))
1147 		return -EINVAL;
1148 
1149 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1150 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1151 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1152 
1153 	vma->vm_ops = &spufs_signal1_mmap_vmops;
1154 	return 0;
1155 }
1156 
1157 static const struct file_operations spufs_signal1_fops = {
1158 	.open = spufs_signal1_open,
1159 	.release = spufs_signal1_release,
1160 	.read = spufs_signal1_read,
1161 	.write = spufs_signal1_write,
1162 	.mmap = spufs_signal1_mmap,
1163 };
1164 
1165 static const struct file_operations spufs_signal1_nosched_fops = {
1166 	.open = spufs_signal1_open,
1167 	.release = spufs_signal1_release,
1168 	.write = spufs_signal1_write,
1169 	.mmap = spufs_signal1_mmap,
1170 };
1171 
1172 static int spufs_signal2_open(struct inode *inode, struct file *file)
1173 {
1174 	struct spufs_inode_info *i = SPUFS_I(inode);
1175 	struct spu_context *ctx = i->i_ctx;
1176 
1177 	mutex_lock(&ctx->mapping_lock);
1178 	file->private_data = ctx;
1179 	if (!i->i_openers++)
1180 		ctx->signal2 = inode->i_mapping;
1181 	mutex_unlock(&ctx->mapping_lock);
1182 	return nonseekable_open(inode, file);
1183 }
1184 
1185 static int
1186 spufs_signal2_release(struct inode *inode, struct file *file)
1187 {
1188 	struct spufs_inode_info *i = SPUFS_I(inode);
1189 	struct spu_context *ctx = i->i_ctx;
1190 
1191 	mutex_lock(&ctx->mapping_lock);
1192 	if (!--i->i_openers)
1193 		ctx->signal2 = NULL;
1194 	mutex_unlock(&ctx->mapping_lock);
1195 	return 0;
1196 }
1197 
1198 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1199 			size_t len, loff_t *pos)
1200 {
1201 	int ret = 0;
1202 	u32 data;
1203 
1204 	if (len < 4)
1205 		return -EINVAL;
1206 
1207 	if (ctx->csa.spu_chnlcnt_RW[4]) {
1208 		data =  ctx->csa.spu_chnldata_RW[4];
1209 		ret = 4;
1210 	}
1211 
1212 	if (!ret)
1213 		goto out;
1214 
1215 	if (copy_to_user(buf, &data, 4))
1216 		return -EFAULT;
1217 
1218 out:
1219 	return ret;
1220 }
1221 
1222 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1223 			size_t len, loff_t *pos)
1224 {
1225 	struct spu_context *ctx = file->private_data;
1226 	int ret;
1227 
1228 	ret = spu_acquire_saved(ctx);
1229 	if (ret)
1230 		return ret;
1231 	ret = __spufs_signal2_read(ctx, buf, len, pos);
1232 	spu_release_saved(ctx);
1233 
1234 	return ret;
1235 }
1236 
1237 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1238 			size_t len, loff_t *pos)
1239 {
1240 	struct spu_context *ctx;
1241 	ssize_t ret;
1242 	u32 data;
1243 
1244 	ctx = file->private_data;
1245 
1246 	if (len < 4)
1247 		return -EINVAL;
1248 
1249 	if (copy_from_user(&data, buf, 4))
1250 		return -EFAULT;
1251 
1252 	ret = spu_acquire(ctx);
1253 	if (ret)
1254 		return ret;
1255 	ctx->ops->signal2_write(ctx, data);
1256 	spu_release(ctx);
1257 
1258 	return 4;
1259 }
1260 
1261 #if SPUFS_MMAP_4K
1262 static int
1263 spufs_signal2_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1264 {
1265 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1266 	return spufs_ps_fault(vma, vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
1267 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1268 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1269 	 * signal 1 and 2 area
1270 	 */
1271 	return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1272 #else
1273 #error unsupported page size
1274 #endif
1275 }
1276 
1277 static struct vm_operations_struct spufs_signal2_mmap_vmops = {
1278 	.fault = spufs_signal2_mmap_fault,
1279 };
1280 
1281 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1282 {
1283 	if (!(vma->vm_flags & VM_SHARED))
1284 		return -EINVAL;
1285 
1286 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1287 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1288 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1289 
1290 	vma->vm_ops = &spufs_signal2_mmap_vmops;
1291 	return 0;
1292 }
1293 #else /* SPUFS_MMAP_4K */
1294 #define spufs_signal2_mmap NULL
1295 #endif /* !SPUFS_MMAP_4K */
1296 
1297 static const struct file_operations spufs_signal2_fops = {
1298 	.open = spufs_signal2_open,
1299 	.release = spufs_signal2_release,
1300 	.read = spufs_signal2_read,
1301 	.write = spufs_signal2_write,
1302 	.mmap = spufs_signal2_mmap,
1303 };
1304 
1305 static const struct file_operations spufs_signal2_nosched_fops = {
1306 	.open = spufs_signal2_open,
1307 	.release = spufs_signal2_release,
1308 	.write = spufs_signal2_write,
1309 	.mmap = spufs_signal2_mmap,
1310 };
1311 
1312 /*
1313  * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1314  * work of acquiring (or not) the SPU context before calling through
1315  * to the actual get routine. The set routine is called directly.
1316  */
1317 #define SPU_ATTR_NOACQUIRE	0
1318 #define SPU_ATTR_ACQUIRE	1
1319 #define SPU_ATTR_ACQUIRE_SAVED	2
1320 
1321 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)	\
1322 static int __##__get(void *data, u64 *val)				\
1323 {									\
1324 	struct spu_context *ctx = data;					\
1325 	int ret = 0;							\
1326 									\
1327 	if (__acquire == SPU_ATTR_ACQUIRE) {				\
1328 		ret = spu_acquire(ctx);					\
1329 		if (ret)						\
1330 			return ret;					\
1331 		*val = __get(ctx);					\
1332 		spu_release(ctx);					\
1333 	} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED)	{		\
1334 		ret = spu_acquire_saved(ctx);				\
1335 		if (ret)						\
1336 			return ret;					\
1337 		*val = __get(ctx);					\
1338 		spu_release_saved(ctx);					\
1339 	} else								\
1340 		*val = __get(ctx);					\
1341 									\
1342 	return 0;							\
1343 }									\
1344 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1345 
1346 static int spufs_signal1_type_set(void *data, u64 val)
1347 {
1348 	struct spu_context *ctx = data;
1349 	int ret;
1350 
1351 	ret = spu_acquire(ctx);
1352 	if (ret)
1353 		return ret;
1354 	ctx->ops->signal1_type_set(ctx, val);
1355 	spu_release(ctx);
1356 
1357 	return 0;
1358 }
1359 
1360 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1361 {
1362 	return ctx->ops->signal1_type_get(ctx);
1363 }
1364 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1365 		       spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1366 
1367 
1368 static int spufs_signal2_type_set(void *data, u64 val)
1369 {
1370 	struct spu_context *ctx = data;
1371 	int ret;
1372 
1373 	ret = spu_acquire(ctx);
1374 	if (ret)
1375 		return ret;
1376 	ctx->ops->signal2_type_set(ctx, val);
1377 	spu_release(ctx);
1378 
1379 	return 0;
1380 }
1381 
1382 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1383 {
1384 	return ctx->ops->signal2_type_get(ctx);
1385 }
1386 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1387 		       spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1388 
1389 #if SPUFS_MMAP_4K
1390 static int
1391 spufs_mss_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1392 {
1393 	return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1394 }
1395 
1396 static struct vm_operations_struct spufs_mss_mmap_vmops = {
1397 	.fault = spufs_mss_mmap_fault,
1398 };
1399 
1400 /*
1401  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1402  */
1403 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1404 {
1405 	if (!(vma->vm_flags & VM_SHARED))
1406 		return -EINVAL;
1407 
1408 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1409 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1410 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1411 
1412 	vma->vm_ops = &spufs_mss_mmap_vmops;
1413 	return 0;
1414 }
1415 #else /* SPUFS_MMAP_4K */
1416 #define spufs_mss_mmap NULL
1417 #endif /* !SPUFS_MMAP_4K */
1418 
1419 static int spufs_mss_open(struct inode *inode, struct file *file)
1420 {
1421 	struct spufs_inode_info *i = SPUFS_I(inode);
1422 	struct spu_context *ctx = i->i_ctx;
1423 
1424 	file->private_data = i->i_ctx;
1425 
1426 	mutex_lock(&ctx->mapping_lock);
1427 	if (!i->i_openers++)
1428 		ctx->mss = inode->i_mapping;
1429 	mutex_unlock(&ctx->mapping_lock);
1430 	return nonseekable_open(inode, file);
1431 }
1432 
1433 static int
1434 spufs_mss_release(struct inode *inode, struct file *file)
1435 {
1436 	struct spufs_inode_info *i = SPUFS_I(inode);
1437 	struct spu_context *ctx = i->i_ctx;
1438 
1439 	mutex_lock(&ctx->mapping_lock);
1440 	if (!--i->i_openers)
1441 		ctx->mss = NULL;
1442 	mutex_unlock(&ctx->mapping_lock);
1443 	return 0;
1444 }
1445 
1446 static const struct file_operations spufs_mss_fops = {
1447 	.open	 = spufs_mss_open,
1448 	.release = spufs_mss_release,
1449 	.mmap	 = spufs_mss_mmap,
1450 };
1451 
1452 static int
1453 spufs_psmap_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1454 {
1455 	return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1456 }
1457 
1458 static struct vm_operations_struct spufs_psmap_mmap_vmops = {
1459 	.fault = spufs_psmap_mmap_fault,
1460 };
1461 
1462 /*
1463  * mmap support for full problem state area [0x00000 - 0x1ffff].
1464  */
1465 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1466 {
1467 	if (!(vma->vm_flags & VM_SHARED))
1468 		return -EINVAL;
1469 
1470 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1471 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1472 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1473 
1474 	vma->vm_ops = &spufs_psmap_mmap_vmops;
1475 	return 0;
1476 }
1477 
1478 static int spufs_psmap_open(struct inode *inode, struct file *file)
1479 {
1480 	struct spufs_inode_info *i = SPUFS_I(inode);
1481 	struct spu_context *ctx = i->i_ctx;
1482 
1483 	mutex_lock(&ctx->mapping_lock);
1484 	file->private_data = i->i_ctx;
1485 	if (!i->i_openers++)
1486 		ctx->psmap = inode->i_mapping;
1487 	mutex_unlock(&ctx->mapping_lock);
1488 	return nonseekable_open(inode, file);
1489 }
1490 
1491 static int
1492 spufs_psmap_release(struct inode *inode, struct file *file)
1493 {
1494 	struct spufs_inode_info *i = SPUFS_I(inode);
1495 	struct spu_context *ctx = i->i_ctx;
1496 
1497 	mutex_lock(&ctx->mapping_lock);
1498 	if (!--i->i_openers)
1499 		ctx->psmap = NULL;
1500 	mutex_unlock(&ctx->mapping_lock);
1501 	return 0;
1502 }
1503 
1504 static const struct file_operations spufs_psmap_fops = {
1505 	.open	 = spufs_psmap_open,
1506 	.release = spufs_psmap_release,
1507 	.mmap	 = spufs_psmap_mmap,
1508 };
1509 
1510 
1511 #if SPUFS_MMAP_4K
1512 static int
1513 spufs_mfc_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1514 {
1515 	return spufs_ps_fault(vma, vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1516 }
1517 
1518 static struct vm_operations_struct spufs_mfc_mmap_vmops = {
1519 	.fault = spufs_mfc_mmap_fault,
1520 };
1521 
1522 /*
1523  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1524  */
1525 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1526 {
1527 	if (!(vma->vm_flags & VM_SHARED))
1528 		return -EINVAL;
1529 
1530 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1531 	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1532 				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1533 
1534 	vma->vm_ops = &spufs_mfc_mmap_vmops;
1535 	return 0;
1536 }
1537 #else /* SPUFS_MMAP_4K */
1538 #define spufs_mfc_mmap NULL
1539 #endif /* !SPUFS_MMAP_4K */
1540 
1541 static int spufs_mfc_open(struct inode *inode, struct file *file)
1542 {
1543 	struct spufs_inode_info *i = SPUFS_I(inode);
1544 	struct spu_context *ctx = i->i_ctx;
1545 
1546 	/* we don't want to deal with DMA into other processes */
1547 	if (ctx->owner != current->mm)
1548 		return -EINVAL;
1549 
1550 	if (atomic_read(&inode->i_count) != 1)
1551 		return -EBUSY;
1552 
1553 	mutex_lock(&ctx->mapping_lock);
1554 	file->private_data = ctx;
1555 	if (!i->i_openers++)
1556 		ctx->mfc = inode->i_mapping;
1557 	mutex_unlock(&ctx->mapping_lock);
1558 	return nonseekable_open(inode, file);
1559 }
1560 
1561 static int
1562 spufs_mfc_release(struct inode *inode, struct file *file)
1563 {
1564 	struct spufs_inode_info *i = SPUFS_I(inode);
1565 	struct spu_context *ctx = i->i_ctx;
1566 
1567 	mutex_lock(&ctx->mapping_lock);
1568 	if (!--i->i_openers)
1569 		ctx->mfc = NULL;
1570 	mutex_unlock(&ctx->mapping_lock);
1571 	return 0;
1572 }
1573 
1574 /* interrupt-level mfc callback function. */
1575 void spufs_mfc_callback(struct spu *spu)
1576 {
1577 	struct spu_context *ctx = spu->ctx;
1578 
1579 	if (!ctx)
1580 		return;
1581 
1582 	wake_up_all(&ctx->mfc_wq);
1583 
1584 	pr_debug("%s %s\n", __func__, spu->name);
1585 	if (ctx->mfc_fasync) {
1586 		u32 free_elements, tagstatus;
1587 		unsigned int mask;
1588 
1589 		/* no need for spu_acquire in interrupt context */
1590 		free_elements = ctx->ops->get_mfc_free_elements(ctx);
1591 		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1592 
1593 		mask = 0;
1594 		if (free_elements & 0xffff)
1595 			mask |= POLLOUT;
1596 		if (tagstatus & ctx->tagwait)
1597 			mask |= POLLIN;
1598 
1599 		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
1600 	}
1601 }
1602 
1603 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1604 {
1605 	/* See if there is one tag group is complete */
1606 	/* FIXME we need locking around tagwait */
1607 	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1608 	ctx->tagwait &= ~*status;
1609 	if (*status)
1610 		return 1;
1611 
1612 	/* enable interrupt waiting for any tag group,
1613 	   may silently fail if interrupts are already enabled */
1614 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1615 	return 0;
1616 }
1617 
1618 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1619 			size_t size, loff_t *pos)
1620 {
1621 	struct spu_context *ctx = file->private_data;
1622 	int ret = -EINVAL;
1623 	u32 status;
1624 
1625 	if (size != 4)
1626 		goto out;
1627 
1628 	ret = spu_acquire(ctx);
1629 	if (ret)
1630 		return ret;
1631 
1632 	ret = -EINVAL;
1633 	if (file->f_flags & O_NONBLOCK) {
1634 		status = ctx->ops->read_mfc_tagstatus(ctx);
1635 		if (!(status & ctx->tagwait))
1636 			ret = -EAGAIN;
1637 		else
1638 			/* XXX(hch): shouldn't we clear ret here? */
1639 			ctx->tagwait &= ~status;
1640 	} else {
1641 		ret = spufs_wait(ctx->mfc_wq,
1642 			   spufs_read_mfc_tagstatus(ctx, &status));
1643 		if (ret)
1644 			goto out;
1645 	}
1646 	spu_release(ctx);
1647 
1648 	ret = 4;
1649 	if (copy_to_user(buffer, &status, 4))
1650 		ret = -EFAULT;
1651 
1652 out:
1653 	return ret;
1654 }
1655 
1656 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1657 {
1658 	pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
1659 		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1660 
1661 	switch (cmd->cmd) {
1662 	case MFC_PUT_CMD:
1663 	case MFC_PUTF_CMD:
1664 	case MFC_PUTB_CMD:
1665 	case MFC_GET_CMD:
1666 	case MFC_GETF_CMD:
1667 	case MFC_GETB_CMD:
1668 		break;
1669 	default:
1670 		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1671 		return -EIO;
1672 	}
1673 
1674 	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1675 		pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
1676 				cmd->ea, cmd->lsa);
1677 		return -EIO;
1678 	}
1679 
1680 	switch (cmd->size & 0xf) {
1681 	case 1:
1682 		break;
1683 	case 2:
1684 		if (cmd->lsa & 1)
1685 			goto error;
1686 		break;
1687 	case 4:
1688 		if (cmd->lsa & 3)
1689 			goto error;
1690 		break;
1691 	case 8:
1692 		if (cmd->lsa & 7)
1693 			goto error;
1694 		break;
1695 	case 0:
1696 		if (cmd->lsa & 15)
1697 			goto error;
1698 		break;
1699 	error:
1700 	default:
1701 		pr_debug("invalid DMA alignment %x for size %x\n",
1702 			cmd->lsa & 0xf, cmd->size);
1703 		return -EIO;
1704 	}
1705 
1706 	if (cmd->size > 16 * 1024) {
1707 		pr_debug("invalid DMA size %x\n", cmd->size);
1708 		return -EIO;
1709 	}
1710 
1711 	if (cmd->tag & 0xfff0) {
1712 		/* we reserve the higher tag numbers for kernel use */
1713 		pr_debug("invalid DMA tag\n");
1714 		return -EIO;
1715 	}
1716 
1717 	if (cmd->class) {
1718 		/* not supported in this version */
1719 		pr_debug("invalid DMA class\n");
1720 		return -EIO;
1721 	}
1722 
1723 	return 0;
1724 }
1725 
1726 static int spu_send_mfc_command(struct spu_context *ctx,
1727 				struct mfc_dma_command cmd,
1728 				int *error)
1729 {
1730 	*error = ctx->ops->send_mfc_command(ctx, &cmd);
1731 	if (*error == -EAGAIN) {
1732 		/* wait for any tag group to complete
1733 		   so we have space for the new command */
1734 		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1735 		/* try again, because the queue might be
1736 		   empty again */
1737 		*error = ctx->ops->send_mfc_command(ctx, &cmd);
1738 		if (*error == -EAGAIN)
1739 			return 0;
1740 	}
1741 	return 1;
1742 }
1743 
1744 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1745 			size_t size, loff_t *pos)
1746 {
1747 	struct spu_context *ctx = file->private_data;
1748 	struct mfc_dma_command cmd;
1749 	int ret = -EINVAL;
1750 
1751 	if (size != sizeof cmd)
1752 		goto out;
1753 
1754 	ret = -EFAULT;
1755 	if (copy_from_user(&cmd, buffer, sizeof cmd))
1756 		goto out;
1757 
1758 	ret = spufs_check_valid_dma(&cmd);
1759 	if (ret)
1760 		goto out;
1761 
1762 	ret = spu_acquire(ctx);
1763 	if (ret)
1764 		goto out;
1765 
1766 	ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1767 	if (ret)
1768 		goto out;
1769 
1770 	if (file->f_flags & O_NONBLOCK) {
1771 		ret = ctx->ops->send_mfc_command(ctx, &cmd);
1772 	} else {
1773 		int status;
1774 		ret = spufs_wait(ctx->mfc_wq,
1775 				 spu_send_mfc_command(ctx, cmd, &status));
1776 		if (ret)
1777 			goto out;
1778 		if (status)
1779 			ret = status;
1780 	}
1781 
1782 	if (ret)
1783 		goto out_unlock;
1784 
1785 	ctx->tagwait |= 1 << cmd.tag;
1786 	ret = size;
1787 
1788 out_unlock:
1789 	spu_release(ctx);
1790 out:
1791 	return ret;
1792 }
1793 
1794 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
1795 {
1796 	struct spu_context *ctx = file->private_data;
1797 	u32 free_elements, tagstatus;
1798 	unsigned int mask;
1799 
1800 	poll_wait(file, &ctx->mfc_wq, wait);
1801 
1802 	/*
1803 	 * For now keep this uninterruptible and also ignore the rule
1804 	 * that poll should not sleep.  Will be fixed later.
1805 	 */
1806 	mutex_lock(&ctx->state_mutex);
1807 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1808 	free_elements = ctx->ops->get_mfc_free_elements(ctx);
1809 	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1810 	spu_release(ctx);
1811 
1812 	mask = 0;
1813 	if (free_elements & 0xffff)
1814 		mask |= POLLOUT | POLLWRNORM;
1815 	if (tagstatus & ctx->tagwait)
1816 		mask |= POLLIN | POLLRDNORM;
1817 
1818 	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1819 		free_elements, tagstatus, ctx->tagwait);
1820 
1821 	return mask;
1822 }
1823 
1824 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1825 {
1826 	struct spu_context *ctx = file->private_data;
1827 	int ret;
1828 
1829 	ret = spu_acquire(ctx);
1830 	if (ret)
1831 		goto out;
1832 #if 0
1833 /* this currently hangs */
1834 	ret = spufs_wait(ctx->mfc_wq,
1835 			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1836 	if (ret)
1837 		goto out;
1838 	ret = spufs_wait(ctx->mfc_wq,
1839 			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1840 	if (ret)
1841 		goto out;
1842 #else
1843 	ret = 0;
1844 #endif
1845 	spu_release(ctx);
1846 out:
1847 	return ret;
1848 }
1849 
1850 static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
1851 			   int datasync)
1852 {
1853 	return spufs_mfc_flush(file, NULL);
1854 }
1855 
1856 static int spufs_mfc_fasync(int fd, struct file *file, int on)
1857 {
1858 	struct spu_context *ctx = file->private_data;
1859 
1860 	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
1861 }
1862 
1863 static const struct file_operations spufs_mfc_fops = {
1864 	.open	 = spufs_mfc_open,
1865 	.release = spufs_mfc_release,
1866 	.read	 = spufs_mfc_read,
1867 	.write	 = spufs_mfc_write,
1868 	.poll	 = spufs_mfc_poll,
1869 	.flush	 = spufs_mfc_flush,
1870 	.fsync	 = spufs_mfc_fsync,
1871 	.fasync	 = spufs_mfc_fasync,
1872 	.mmap	 = spufs_mfc_mmap,
1873 };
1874 
1875 static int spufs_npc_set(void *data, u64 val)
1876 {
1877 	struct spu_context *ctx = data;
1878 	int ret;
1879 
1880 	ret = spu_acquire(ctx);
1881 	if (ret)
1882 		return ret;
1883 	ctx->ops->npc_write(ctx, val);
1884 	spu_release(ctx);
1885 
1886 	return 0;
1887 }
1888 
1889 static u64 spufs_npc_get(struct spu_context *ctx)
1890 {
1891 	return ctx->ops->npc_read(ctx);
1892 }
1893 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1894 		       "0x%llx\n", SPU_ATTR_ACQUIRE);
1895 
1896 static int spufs_decr_set(void *data, u64 val)
1897 {
1898 	struct spu_context *ctx = data;
1899 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1900 	int ret;
1901 
1902 	ret = spu_acquire_saved(ctx);
1903 	if (ret)
1904 		return ret;
1905 	lscsa->decr.slot[0] = (u32) val;
1906 	spu_release_saved(ctx);
1907 
1908 	return 0;
1909 }
1910 
1911 static u64 spufs_decr_get(struct spu_context *ctx)
1912 {
1913 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1914 	return lscsa->decr.slot[0];
1915 }
1916 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1917 		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1918 
1919 static int spufs_decr_status_set(void *data, u64 val)
1920 {
1921 	struct spu_context *ctx = data;
1922 	int ret;
1923 
1924 	ret = spu_acquire_saved(ctx);
1925 	if (ret)
1926 		return ret;
1927 	if (val)
1928 		ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1929 	else
1930 		ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1931 	spu_release_saved(ctx);
1932 
1933 	return 0;
1934 }
1935 
1936 static u64 spufs_decr_status_get(struct spu_context *ctx)
1937 {
1938 	if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1939 		return SPU_DECR_STATUS_RUNNING;
1940 	else
1941 		return 0;
1942 }
1943 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1944 		       spufs_decr_status_set, "0x%llx\n",
1945 		       SPU_ATTR_ACQUIRE_SAVED);
1946 
1947 static int spufs_event_mask_set(void *data, u64 val)
1948 {
1949 	struct spu_context *ctx = data;
1950 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1951 	int ret;
1952 
1953 	ret = spu_acquire_saved(ctx);
1954 	if (ret)
1955 		return ret;
1956 	lscsa->event_mask.slot[0] = (u32) val;
1957 	spu_release_saved(ctx);
1958 
1959 	return 0;
1960 }
1961 
1962 static u64 spufs_event_mask_get(struct spu_context *ctx)
1963 {
1964 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1965 	return lscsa->event_mask.slot[0];
1966 }
1967 
1968 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1969 		       spufs_event_mask_set, "0x%llx\n",
1970 		       SPU_ATTR_ACQUIRE_SAVED);
1971 
1972 static u64 spufs_event_status_get(struct spu_context *ctx)
1973 {
1974 	struct spu_state *state = &ctx->csa;
1975 	u64 stat;
1976 	stat = state->spu_chnlcnt_RW[0];
1977 	if (stat)
1978 		return state->spu_chnldata_RW[0];
1979 	return 0;
1980 }
1981 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1982 		       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1983 
1984 static int spufs_srr0_set(void *data, u64 val)
1985 {
1986 	struct spu_context *ctx = data;
1987 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1988 	int ret;
1989 
1990 	ret = spu_acquire_saved(ctx);
1991 	if (ret)
1992 		return ret;
1993 	lscsa->srr0.slot[0] = (u32) val;
1994 	spu_release_saved(ctx);
1995 
1996 	return 0;
1997 }
1998 
1999 static u64 spufs_srr0_get(struct spu_context *ctx)
2000 {
2001 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
2002 	return lscsa->srr0.slot[0];
2003 }
2004 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
2005 		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
2006 
2007 static u64 spufs_id_get(struct spu_context *ctx)
2008 {
2009 	u64 num;
2010 
2011 	if (ctx->state == SPU_STATE_RUNNABLE)
2012 		num = ctx->spu->number;
2013 	else
2014 		num = (unsigned int)-1;
2015 
2016 	return num;
2017 }
2018 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
2019 		       SPU_ATTR_ACQUIRE)
2020 
2021 static u64 spufs_object_id_get(struct spu_context *ctx)
2022 {
2023 	/* FIXME: Should there really be no locking here? */
2024 	return ctx->object_id;
2025 }
2026 
2027 static int spufs_object_id_set(void *data, u64 id)
2028 {
2029 	struct spu_context *ctx = data;
2030 	ctx->object_id = id;
2031 
2032 	return 0;
2033 }
2034 
2035 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
2036 		       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
2037 
2038 static u64 spufs_lslr_get(struct spu_context *ctx)
2039 {
2040 	return ctx->csa.priv2.spu_lslr_RW;
2041 }
2042 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
2043 		       SPU_ATTR_ACQUIRE_SAVED);
2044 
2045 static int spufs_info_open(struct inode *inode, struct file *file)
2046 {
2047 	struct spufs_inode_info *i = SPUFS_I(inode);
2048 	struct spu_context *ctx = i->i_ctx;
2049 	file->private_data = ctx;
2050 	return 0;
2051 }
2052 
2053 static int spufs_caps_show(struct seq_file *s, void *private)
2054 {
2055 	struct spu_context *ctx = s->private;
2056 
2057 	if (!(ctx->flags & SPU_CREATE_NOSCHED))
2058 		seq_puts(s, "sched\n");
2059 	if (!(ctx->flags & SPU_CREATE_ISOLATE))
2060 		seq_puts(s, "step\n");
2061 	return 0;
2062 }
2063 
2064 static int spufs_caps_open(struct inode *inode, struct file *file)
2065 {
2066 	return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
2067 }
2068 
2069 static const struct file_operations spufs_caps_fops = {
2070 	.open		= spufs_caps_open,
2071 	.read		= seq_read,
2072 	.llseek		= seq_lseek,
2073 	.release	= single_release,
2074 };
2075 
2076 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
2077 			char __user *buf, size_t len, loff_t *pos)
2078 {
2079 	u32 data;
2080 
2081 	/* EOF if there's no entry in the mbox */
2082 	if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
2083 		return 0;
2084 
2085 	data = ctx->csa.prob.pu_mb_R;
2086 
2087 	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2088 }
2089 
2090 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
2091 				   size_t len, loff_t *pos)
2092 {
2093 	int ret;
2094 	struct spu_context *ctx = file->private_data;
2095 
2096 	if (!access_ok(VERIFY_WRITE, buf, len))
2097 		return -EFAULT;
2098 
2099 	ret = spu_acquire_saved(ctx);
2100 	if (ret)
2101 		return ret;
2102 	spin_lock(&ctx->csa.register_lock);
2103 	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2104 	spin_unlock(&ctx->csa.register_lock);
2105 	spu_release_saved(ctx);
2106 
2107 	return ret;
2108 }
2109 
2110 static const struct file_operations spufs_mbox_info_fops = {
2111 	.open = spufs_info_open,
2112 	.read = spufs_mbox_info_read,
2113 	.llseek  = generic_file_llseek,
2114 };
2115 
2116 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
2117 				char __user *buf, size_t len, loff_t *pos)
2118 {
2119 	u32 data;
2120 
2121 	/* EOF if there's no entry in the ibox */
2122 	if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
2123 		return 0;
2124 
2125 	data = ctx->csa.priv2.puint_mb_R;
2126 
2127 	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2128 }
2129 
2130 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
2131 				   size_t len, loff_t *pos)
2132 {
2133 	struct spu_context *ctx = file->private_data;
2134 	int ret;
2135 
2136 	if (!access_ok(VERIFY_WRITE, buf, len))
2137 		return -EFAULT;
2138 
2139 	ret = spu_acquire_saved(ctx);
2140 	if (ret)
2141 		return ret;
2142 	spin_lock(&ctx->csa.register_lock);
2143 	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2144 	spin_unlock(&ctx->csa.register_lock);
2145 	spu_release_saved(ctx);
2146 
2147 	return ret;
2148 }
2149 
2150 static const struct file_operations spufs_ibox_info_fops = {
2151 	.open = spufs_info_open,
2152 	.read = spufs_ibox_info_read,
2153 	.llseek  = generic_file_llseek,
2154 };
2155 
2156 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
2157 			char __user *buf, size_t len, loff_t *pos)
2158 {
2159 	int i, cnt;
2160 	u32 data[4];
2161 	u32 wbox_stat;
2162 
2163 	wbox_stat = ctx->csa.prob.mb_stat_R;
2164 	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
2165 	for (i = 0; i < cnt; i++) {
2166 		data[i] = ctx->csa.spu_mailbox_data[i];
2167 	}
2168 
2169 	return simple_read_from_buffer(buf, len, pos, &data,
2170 				cnt * sizeof(u32));
2171 }
2172 
2173 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2174 				   size_t len, loff_t *pos)
2175 {
2176 	struct spu_context *ctx = file->private_data;
2177 	int ret;
2178 
2179 	if (!access_ok(VERIFY_WRITE, buf, len))
2180 		return -EFAULT;
2181 
2182 	ret = spu_acquire_saved(ctx);
2183 	if (ret)
2184 		return ret;
2185 	spin_lock(&ctx->csa.register_lock);
2186 	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2187 	spin_unlock(&ctx->csa.register_lock);
2188 	spu_release_saved(ctx);
2189 
2190 	return ret;
2191 }
2192 
2193 static const struct file_operations spufs_wbox_info_fops = {
2194 	.open = spufs_info_open,
2195 	.read = spufs_wbox_info_read,
2196 	.llseek  = generic_file_llseek,
2197 };
2198 
2199 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
2200 			char __user *buf, size_t len, loff_t *pos)
2201 {
2202 	struct spu_dma_info info;
2203 	struct mfc_cq_sr *qp, *spuqp;
2204 	int i;
2205 
2206 	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2207 	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2208 	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
2209 	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2210 	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2211 	for (i = 0; i < 16; i++) {
2212 		qp = &info.dma_info_command_data[i];
2213 		spuqp = &ctx->csa.priv2.spuq[i];
2214 
2215 		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2216 		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2217 		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2218 		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2219 	}
2220 
2221 	return simple_read_from_buffer(buf, len, pos, &info,
2222 				sizeof info);
2223 }
2224 
2225 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2226 			      size_t len, loff_t *pos)
2227 {
2228 	struct spu_context *ctx = file->private_data;
2229 	int ret;
2230 
2231 	if (!access_ok(VERIFY_WRITE, buf, len))
2232 		return -EFAULT;
2233 
2234 	ret = spu_acquire_saved(ctx);
2235 	if (ret)
2236 		return ret;
2237 	spin_lock(&ctx->csa.register_lock);
2238 	ret = __spufs_dma_info_read(ctx, buf, len, pos);
2239 	spin_unlock(&ctx->csa.register_lock);
2240 	spu_release_saved(ctx);
2241 
2242 	return ret;
2243 }
2244 
2245 static const struct file_operations spufs_dma_info_fops = {
2246 	.open = spufs_info_open,
2247 	.read = spufs_dma_info_read,
2248 };
2249 
2250 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
2251 			char __user *buf, size_t len, loff_t *pos)
2252 {
2253 	struct spu_proxydma_info info;
2254 	struct mfc_cq_sr *qp, *puqp;
2255 	int ret = sizeof info;
2256 	int i;
2257 
2258 	if (len < ret)
2259 		return -EINVAL;
2260 
2261 	if (!access_ok(VERIFY_WRITE, buf, len))
2262 		return -EFAULT;
2263 
2264 	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2265 	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2266 	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2267 	for (i = 0; i < 8; i++) {
2268 		qp = &info.proxydma_info_command_data[i];
2269 		puqp = &ctx->csa.priv2.puq[i];
2270 
2271 		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2272 		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2273 		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2274 		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2275 	}
2276 
2277 	return simple_read_from_buffer(buf, len, pos, &info,
2278 				sizeof info);
2279 }
2280 
2281 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2282 				   size_t len, loff_t *pos)
2283 {
2284 	struct spu_context *ctx = file->private_data;
2285 	int ret;
2286 
2287 	ret = spu_acquire_saved(ctx);
2288 	if (ret)
2289 		return ret;
2290 	spin_lock(&ctx->csa.register_lock);
2291 	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2292 	spin_unlock(&ctx->csa.register_lock);
2293 	spu_release_saved(ctx);
2294 
2295 	return ret;
2296 }
2297 
2298 static const struct file_operations spufs_proxydma_info_fops = {
2299 	.open = spufs_info_open,
2300 	.read = spufs_proxydma_info_read,
2301 };
2302 
2303 static int spufs_show_tid(struct seq_file *s, void *private)
2304 {
2305 	struct spu_context *ctx = s->private;
2306 
2307 	seq_printf(s, "%d\n", ctx->tid);
2308 	return 0;
2309 }
2310 
2311 static int spufs_tid_open(struct inode *inode, struct file *file)
2312 {
2313 	return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2314 }
2315 
2316 static const struct file_operations spufs_tid_fops = {
2317 	.open		= spufs_tid_open,
2318 	.read		= seq_read,
2319 	.llseek		= seq_lseek,
2320 	.release	= single_release,
2321 };
2322 
2323 static const char *ctx_state_names[] = {
2324 	"user", "system", "iowait", "loaded"
2325 };
2326 
2327 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2328 		enum spu_utilization_state state)
2329 {
2330 	struct timespec ts;
2331 	unsigned long long time = ctx->stats.times[state];
2332 
2333 	/*
2334 	 * In general, utilization statistics are updated by the controlling
2335 	 * thread as the spu context moves through various well defined
2336 	 * state transitions, but if the context is lazily loaded its
2337 	 * utilization statistics are not updated as the controlling thread
2338 	 * is not tightly coupled with the execution of the spu context.  We
2339 	 * calculate and apply the time delta from the last recorded state
2340 	 * of the spu context.
2341 	 */
2342 	if (ctx->spu && ctx->stats.util_state == state) {
2343 		ktime_get_ts(&ts);
2344 		time += timespec_to_ns(&ts) - ctx->stats.tstamp;
2345 	}
2346 
2347 	return time / NSEC_PER_MSEC;
2348 }
2349 
2350 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2351 {
2352 	unsigned long long slb_flts = ctx->stats.slb_flt;
2353 
2354 	if (ctx->state == SPU_STATE_RUNNABLE) {
2355 		slb_flts += (ctx->spu->stats.slb_flt -
2356 			     ctx->stats.slb_flt_base);
2357 	}
2358 
2359 	return slb_flts;
2360 }
2361 
2362 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2363 {
2364 	unsigned long long class2_intrs = ctx->stats.class2_intr;
2365 
2366 	if (ctx->state == SPU_STATE_RUNNABLE) {
2367 		class2_intrs += (ctx->spu->stats.class2_intr -
2368 				 ctx->stats.class2_intr_base);
2369 	}
2370 
2371 	return class2_intrs;
2372 }
2373 
2374 
2375 static int spufs_show_stat(struct seq_file *s, void *private)
2376 {
2377 	struct spu_context *ctx = s->private;
2378 	int ret;
2379 
2380 	ret = spu_acquire(ctx);
2381 	if (ret)
2382 		return ret;
2383 
2384 	seq_printf(s, "%s %llu %llu %llu %llu "
2385 		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2386 		ctx_state_names[ctx->stats.util_state],
2387 		spufs_acct_time(ctx, SPU_UTIL_USER),
2388 		spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2389 		spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2390 		spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2391 		ctx->stats.vol_ctx_switch,
2392 		ctx->stats.invol_ctx_switch,
2393 		spufs_slb_flts(ctx),
2394 		ctx->stats.hash_flt,
2395 		ctx->stats.min_flt,
2396 		ctx->stats.maj_flt,
2397 		spufs_class2_intrs(ctx),
2398 		ctx->stats.libassist);
2399 	spu_release(ctx);
2400 	return 0;
2401 }
2402 
2403 static int spufs_stat_open(struct inode *inode, struct file *file)
2404 {
2405 	return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2406 }
2407 
2408 static const struct file_operations spufs_stat_fops = {
2409 	.open		= spufs_stat_open,
2410 	.read		= seq_read,
2411 	.llseek		= seq_lseek,
2412 	.release	= single_release,
2413 };
2414 
2415 static inline int spufs_switch_log_used(struct spu_context *ctx)
2416 {
2417 	return (ctx->switch_log->head - ctx->switch_log->tail) %
2418 		SWITCH_LOG_BUFSIZE;
2419 }
2420 
2421 static inline int spufs_switch_log_avail(struct spu_context *ctx)
2422 {
2423 	return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
2424 }
2425 
2426 static int spufs_switch_log_open(struct inode *inode, struct file *file)
2427 {
2428 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2429 
2430 	/*
2431 	 * We (ab-)use the mapping_lock here because it serves the similar
2432 	 * purpose for synchronizing open/close elsewhere.  Maybe it should
2433 	 * be renamed eventually.
2434 	 */
2435 	mutex_lock(&ctx->mapping_lock);
2436 	if (ctx->switch_log) {
2437 		spin_lock(&ctx->switch_log->lock);
2438 		ctx->switch_log->head = 0;
2439 		ctx->switch_log->tail = 0;
2440 		spin_unlock(&ctx->switch_log->lock);
2441 	} else {
2442 		/*
2443 		 * We allocate the switch log data structures on first open.
2444 		 * They will never be free because we assume a context will
2445 		 * be traced until it goes away.
2446 		 */
2447 		ctx->switch_log = kzalloc(sizeof(struct switch_log) +
2448 			SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry),
2449 			GFP_KERNEL);
2450 		if (!ctx->switch_log)
2451 			goto out;
2452 		spin_lock_init(&ctx->switch_log->lock);
2453 		init_waitqueue_head(&ctx->switch_log->wait);
2454 	}
2455 	mutex_unlock(&ctx->mapping_lock);
2456 
2457 	return 0;
2458  out:
2459 	mutex_unlock(&ctx->mapping_lock);
2460 	return -ENOMEM;
2461 }
2462 
2463 static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
2464 {
2465 	struct switch_log_entry *p;
2466 
2467 	p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;
2468 
2469 	return snprintf(tbuf, n, "%u.%09u %d %u %u %llu\n",
2470 			(unsigned int) p->tstamp.tv_sec,
2471 			(unsigned int) p->tstamp.tv_nsec,
2472 			p->spu_id,
2473 			(unsigned int) p->type,
2474 			(unsigned int) p->val,
2475 			(unsigned long long) p->timebase);
2476 }
2477 
2478 static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
2479 			     size_t len, loff_t *ppos)
2480 {
2481 	struct inode *inode = file->f_path.dentry->d_inode;
2482 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2483 	int error = 0, cnt = 0;
2484 
2485 	if (!buf || len < 0)
2486 		return -EINVAL;
2487 
2488 	while (cnt < len) {
2489 		char tbuf[128];
2490 		int width;
2491 
2492 		if (file->f_flags & O_NONBLOCK) {
2493 			if (spufs_switch_log_used(ctx) <= 0)
2494 				return cnt ? cnt : -EAGAIN;
2495 		} else {
2496 			/* Wait for data in buffer */
2497 			error = wait_event_interruptible(ctx->switch_log->wait,
2498 					spufs_switch_log_used(ctx) > 0);
2499 			if (error)
2500 				break;
2501 		}
2502 
2503 		spin_lock(&ctx->switch_log->lock);
2504 		if (ctx->switch_log->head == ctx->switch_log->tail) {
2505 			/* multiple readers race? */
2506 			spin_unlock(&ctx->switch_log->lock);
2507 			continue;
2508 		}
2509 
2510 		width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2511 		if (width < len) {
2512 			ctx->switch_log->tail =
2513 				(ctx->switch_log->tail + 1) %
2514 				 SWITCH_LOG_BUFSIZE;
2515 		}
2516 
2517 		spin_unlock(&ctx->switch_log->lock);
2518 
2519 		/*
2520 		 * If the record is greater than space available return
2521 		 * partial buffer (so far)
2522 		 */
2523 		if (width >= len)
2524 			break;
2525 
2526 		error = copy_to_user(buf + cnt, tbuf, width);
2527 		if (error)
2528 			break;
2529 		cnt += width;
2530 	}
2531 
2532 	return cnt == 0 ? error : cnt;
2533 }
2534 
2535 static unsigned int spufs_switch_log_poll(struct file *file, poll_table *wait)
2536 {
2537 	struct inode *inode = file->f_path.dentry->d_inode;
2538 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2539 	unsigned int mask = 0;
2540 
2541 	poll_wait(file, &ctx->switch_log->wait, wait);
2542 
2543 	if (spufs_switch_log_used(ctx) > 0)
2544 		mask |= POLLIN;
2545 
2546 	return mask;
2547 }
2548 
2549 static const struct file_operations spufs_switch_log_fops = {
2550 	.owner	= THIS_MODULE,
2551 	.open	= spufs_switch_log_open,
2552 	.read	= spufs_switch_log_read,
2553 	.poll	= spufs_switch_log_poll,
2554 };
2555 
2556 void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
2557 		u32 type, u32 val)
2558 {
2559 	if (!ctx->switch_log)
2560 		return;
2561 
2562 	spin_lock(&ctx->switch_log->lock);
2563 	if (spufs_switch_log_avail(ctx) > 1) {
2564 		struct switch_log_entry *p;
2565 
2566 		p = ctx->switch_log->log + ctx->switch_log->head;
2567 		ktime_get_ts(&p->tstamp);
2568 		p->timebase = get_tb();
2569 		p->spu_id = spu ? spu->number : -1;
2570 		p->type = type;
2571 		p->val = val;
2572 
2573 		ctx->switch_log->head =
2574 			(ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
2575 	}
2576 	spin_unlock(&ctx->switch_log->lock);
2577 
2578 	wake_up(&ctx->switch_log->wait);
2579 }
2580 
2581 static int spufs_show_ctx(struct seq_file *s, void *private)
2582 {
2583 	struct spu_context *ctx = s->private;
2584 	u64 mfc_control_RW;
2585 
2586 	mutex_lock(&ctx->state_mutex);
2587 	if (ctx->spu) {
2588 		struct spu *spu = ctx->spu;
2589 		struct spu_priv2 __iomem *priv2 = spu->priv2;
2590 
2591 		spin_lock_irq(&spu->register_lock);
2592 		mfc_control_RW = in_be64(&priv2->mfc_control_RW);
2593 		spin_unlock_irq(&spu->register_lock);
2594 	} else {
2595 		struct spu_state *csa = &ctx->csa;
2596 
2597 		mfc_control_RW = csa->priv2.mfc_control_RW;
2598 	}
2599 
2600 	seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
2601 		" %c %lx %lx %lx %lx %x %x\n",
2602 		ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
2603 		ctx->flags,
2604 		ctx->sched_flags,
2605 		ctx->prio,
2606 		ctx->time_slice,
2607 		ctx->spu ? ctx->spu->number : -1,
2608 		!list_empty(&ctx->rq) ? 'q' : ' ',
2609 		ctx->csa.class_0_pending,
2610 		ctx->csa.class_0_dar,
2611 		ctx->csa.class_1_dsisr,
2612 		mfc_control_RW,
2613 		ctx->ops->runcntl_read(ctx),
2614 		ctx->ops->status_read(ctx));
2615 
2616 	mutex_unlock(&ctx->state_mutex);
2617 
2618 	return 0;
2619 }
2620 
2621 static int spufs_ctx_open(struct inode *inode, struct file *file)
2622 {
2623 	return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
2624 }
2625 
2626 static const struct file_operations spufs_ctx_fops = {
2627 	.open           = spufs_ctx_open,
2628 	.read           = seq_read,
2629 	.llseek         = seq_lseek,
2630 	.release        = single_release,
2631 };
2632 
2633 struct spufs_tree_descr spufs_dir_contents[] = {
2634 	{ "capabilities", &spufs_caps_fops, 0444, },
2635 	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2636 	{ "regs", &spufs_regs_fops,  0666, sizeof(struct spu_reg128[128]), },
2637 	{ "mbox", &spufs_mbox_fops, 0444, },
2638 	{ "ibox", &spufs_ibox_fops, 0444, },
2639 	{ "wbox", &spufs_wbox_fops, 0222, },
2640 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2641 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2642 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2643 	{ "signal1", &spufs_signal1_fops, 0666, },
2644 	{ "signal2", &spufs_signal2_fops, 0666, },
2645 	{ "signal1_type", &spufs_signal1_type, 0666, },
2646 	{ "signal2_type", &spufs_signal2_type, 0666, },
2647 	{ "cntl", &spufs_cntl_fops,  0666, },
2648 	{ "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2649 	{ "lslr", &spufs_lslr_ops, 0444, },
2650 	{ "mfc", &spufs_mfc_fops, 0666, },
2651 	{ "mss", &spufs_mss_fops, 0666, },
2652 	{ "npc", &spufs_npc_ops, 0666, },
2653 	{ "srr0", &spufs_srr0_ops, 0666, },
2654 	{ "decr", &spufs_decr_ops, 0666, },
2655 	{ "decr_status", &spufs_decr_status_ops, 0666, },
2656 	{ "event_mask", &spufs_event_mask_ops, 0666, },
2657 	{ "event_status", &spufs_event_status_ops, 0444, },
2658 	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2659 	{ "phys-id", &spufs_id_ops, 0666, },
2660 	{ "object-id", &spufs_object_id_ops, 0666, },
2661 	{ "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
2662 	{ "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
2663 	{ "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
2664 	{ "dma_info", &spufs_dma_info_fops, 0444,
2665 		sizeof(struct spu_dma_info), },
2666 	{ "proxydma_info", &spufs_proxydma_info_fops, 0444,
2667 		sizeof(struct spu_proxydma_info)},
2668 	{ "tid", &spufs_tid_fops, 0444, },
2669 	{ "stat", &spufs_stat_fops, 0444, },
2670 	{ "switch_log", &spufs_switch_log_fops, 0444 },
2671 	{},
2672 };
2673 
2674 struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2675 	{ "capabilities", &spufs_caps_fops, 0444, },
2676 	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2677 	{ "mbox", &spufs_mbox_fops, 0444, },
2678 	{ "ibox", &spufs_ibox_fops, 0444, },
2679 	{ "wbox", &spufs_wbox_fops, 0222, },
2680 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2681 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2682 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2683 	{ "signal1", &spufs_signal1_nosched_fops, 0222, },
2684 	{ "signal2", &spufs_signal2_nosched_fops, 0222, },
2685 	{ "signal1_type", &spufs_signal1_type, 0666, },
2686 	{ "signal2_type", &spufs_signal2_type, 0666, },
2687 	{ "mss", &spufs_mss_fops, 0666, },
2688 	{ "mfc", &spufs_mfc_fops, 0666, },
2689 	{ "cntl", &spufs_cntl_fops,  0666, },
2690 	{ "npc", &spufs_npc_ops, 0666, },
2691 	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2692 	{ "phys-id", &spufs_id_ops, 0666, },
2693 	{ "object-id", &spufs_object_id_ops, 0666, },
2694 	{ "tid", &spufs_tid_fops, 0444, },
2695 	{ "stat", &spufs_stat_fops, 0444, },
2696 	{},
2697 };
2698 
2699 struct spufs_tree_descr spufs_dir_debug_contents[] = {
2700 	{ ".ctx", &spufs_ctx_fops, 0444, },
2701 	{},
2702 };
2703 
2704 struct spufs_coredump_reader spufs_coredump_read[] = {
2705 	{ "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
2706 	{ "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2707 	{ "lslr", NULL, spufs_lslr_get, 19 },
2708 	{ "decr", NULL, spufs_decr_get, 19 },
2709 	{ "decr_status", NULL, spufs_decr_status_get, 19 },
2710 	{ "mem", __spufs_mem_read, NULL, LS_SIZE, },
2711 	{ "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2712 	{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
2713 	{ "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2714 	{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
2715 	{ "event_mask", NULL, spufs_event_mask_get, 19 },
2716 	{ "event_status", NULL, spufs_event_status_get, 19 },
2717 	{ "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
2718 	{ "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
2719 	{ "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
2720 	{ "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
2721 	{ "proxydma_info", __spufs_proxydma_info_read,
2722 			   NULL, sizeof(struct spu_proxydma_info)},
2723 	{ "object-id", NULL, spufs_object_id_get, 19 },
2724 	{ "npc", NULL, spufs_npc_get, 19 },
2725 	{ NULL },
2726 };
2727