xref: /openbmc/linux/arch/powerpc/platforms/cell/spufs/file.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * SPU file system -- file contents
3  *
4  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5  *
6  * Author: Arnd Bergmann <arndb@de.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #undef DEBUG
24 
25 #include <linux/fs.h>
26 #include <linux/ioctl.h>
27 #include <linux/export.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/seq_file.h>
32 #include <linux/slab.h>
33 
34 #include <asm/io.h>
35 #include <asm/time.h>
36 #include <asm/spu.h>
37 #include <asm/spu_info.h>
38 #include <linux/uaccess.h>
39 
40 #include "spufs.h"
41 #include "sputrace.h"
42 
43 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
44 
45 /* Simple attribute files */
46 struct spufs_attr {
47 	int (*get)(void *, u64 *);
48 	int (*set)(void *, u64);
49 	char get_buf[24];       /* enough to store a u64 and "\n\0" */
50 	char set_buf[24];
51 	void *data;
52 	const char *fmt;        /* format for read operation */
53 	struct mutex mutex;     /* protects access to these buffers */
54 };
55 
56 static int spufs_attr_open(struct inode *inode, struct file *file,
57 		int (*get)(void *, u64 *), int (*set)(void *, u64),
58 		const char *fmt)
59 {
60 	struct spufs_attr *attr;
61 
62 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
63 	if (!attr)
64 		return -ENOMEM;
65 
66 	attr->get = get;
67 	attr->set = set;
68 	attr->data = inode->i_private;
69 	attr->fmt = fmt;
70 	mutex_init(&attr->mutex);
71 	file->private_data = attr;
72 
73 	return nonseekable_open(inode, file);
74 }
75 
76 static int spufs_attr_release(struct inode *inode, struct file *file)
77 {
78        kfree(file->private_data);
79 	return 0;
80 }
81 
82 static ssize_t spufs_attr_read(struct file *file, char __user *buf,
83 		size_t len, loff_t *ppos)
84 {
85 	struct spufs_attr *attr;
86 	size_t size;
87 	ssize_t ret;
88 
89 	attr = file->private_data;
90 	if (!attr->get)
91 		return -EACCES;
92 
93 	ret = mutex_lock_interruptible(&attr->mutex);
94 	if (ret)
95 		return ret;
96 
97 	if (*ppos) {		/* continued read */
98 		size = strlen(attr->get_buf);
99 	} else {		/* first read */
100 		u64 val;
101 		ret = attr->get(attr->data, &val);
102 		if (ret)
103 			goto out;
104 
105 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
106 				 attr->fmt, (unsigned long long)val);
107 	}
108 
109 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
110 out:
111 	mutex_unlock(&attr->mutex);
112 	return ret;
113 }
114 
115 static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
116 		size_t len, loff_t *ppos)
117 {
118 	struct spufs_attr *attr;
119 	u64 val;
120 	size_t size;
121 	ssize_t ret;
122 
123 	attr = file->private_data;
124 	if (!attr->set)
125 		return -EACCES;
126 
127 	ret = mutex_lock_interruptible(&attr->mutex);
128 	if (ret)
129 		return ret;
130 
131 	ret = -EFAULT;
132 	size = min(sizeof(attr->set_buf) - 1, len);
133 	if (copy_from_user(attr->set_buf, buf, size))
134 		goto out;
135 
136 	ret = len; /* claim we got the whole input */
137 	attr->set_buf[size] = '\0';
138 	val = simple_strtol(attr->set_buf, NULL, 0);
139 	attr->set(attr->data, val);
140 out:
141 	mutex_unlock(&attr->mutex);
142 	return ret;
143 }
144 
145 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)	\
146 static int __fops ## _open(struct inode *inode, struct file *file)	\
147 {									\
148 	__simple_attr_check_format(__fmt, 0ull);			\
149 	return spufs_attr_open(inode, file, __get, __set, __fmt);	\
150 }									\
151 static const struct file_operations __fops = {				\
152 	.open	 = __fops ## _open,					\
153 	.release = spufs_attr_release,					\
154 	.read	 = spufs_attr_read,					\
155 	.write	 = spufs_attr_write,					\
156 	.llseek  = generic_file_llseek,					\
157 };
158 
159 
160 static int
161 spufs_mem_open(struct inode *inode, struct file *file)
162 {
163 	struct spufs_inode_info *i = SPUFS_I(inode);
164 	struct spu_context *ctx = i->i_ctx;
165 
166 	mutex_lock(&ctx->mapping_lock);
167 	file->private_data = ctx;
168 	if (!i->i_openers++)
169 		ctx->local_store = inode->i_mapping;
170 	mutex_unlock(&ctx->mapping_lock);
171 	return 0;
172 }
173 
174 static int
175 spufs_mem_release(struct inode *inode, struct file *file)
176 {
177 	struct spufs_inode_info *i = SPUFS_I(inode);
178 	struct spu_context *ctx = i->i_ctx;
179 
180 	mutex_lock(&ctx->mapping_lock);
181 	if (!--i->i_openers)
182 		ctx->local_store = NULL;
183 	mutex_unlock(&ctx->mapping_lock);
184 	return 0;
185 }
186 
187 static ssize_t
188 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
189 			size_t size, loff_t *pos)
190 {
191 	char *local_store = ctx->ops->get_ls(ctx);
192 	return simple_read_from_buffer(buffer, size, pos, local_store,
193 					LS_SIZE);
194 }
195 
196 static ssize_t
197 spufs_mem_read(struct file *file, char __user *buffer,
198 				size_t size, loff_t *pos)
199 {
200 	struct spu_context *ctx = file->private_data;
201 	ssize_t ret;
202 
203 	ret = spu_acquire(ctx);
204 	if (ret)
205 		return ret;
206 	ret = __spufs_mem_read(ctx, buffer, size, pos);
207 	spu_release(ctx);
208 
209 	return ret;
210 }
211 
212 static ssize_t
213 spufs_mem_write(struct file *file, const char __user *buffer,
214 					size_t size, loff_t *ppos)
215 {
216 	struct spu_context *ctx = file->private_data;
217 	char *local_store;
218 	loff_t pos = *ppos;
219 	int ret;
220 
221 	if (pos > LS_SIZE)
222 		return -EFBIG;
223 
224 	ret = spu_acquire(ctx);
225 	if (ret)
226 		return ret;
227 
228 	local_store = ctx->ops->get_ls(ctx);
229 	size = simple_write_to_buffer(local_store, LS_SIZE, ppos, buffer, size);
230 	spu_release(ctx);
231 
232 	return size;
233 }
234 
235 static vm_fault_t
236 spufs_mem_mmap_fault(struct vm_fault *vmf)
237 {
238 	struct vm_area_struct *vma = vmf->vma;
239 	struct spu_context *ctx	= vma->vm_file->private_data;
240 	unsigned long pfn, offset;
241 	vm_fault_t ret;
242 
243 	offset = vmf->pgoff << PAGE_SHIFT;
244 	if (offset >= LS_SIZE)
245 		return VM_FAULT_SIGBUS;
246 
247 	pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
248 			vmf->address, offset);
249 
250 	if (spu_acquire(ctx))
251 		return VM_FAULT_NOPAGE;
252 
253 	if (ctx->state == SPU_STATE_SAVED) {
254 		vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
255 		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
256 	} else {
257 		vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
258 		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
259 	}
260 	ret = vmf_insert_pfn(vma, vmf->address, pfn);
261 
262 	spu_release(ctx);
263 
264 	return ret;
265 }
266 
267 static int spufs_mem_mmap_access(struct vm_area_struct *vma,
268 				unsigned long address,
269 				void *buf, int len, int write)
270 {
271 	struct spu_context *ctx = vma->vm_file->private_data;
272 	unsigned long offset = address - vma->vm_start;
273 	char *local_store;
274 
275 	if (write && !(vma->vm_flags & VM_WRITE))
276 		return -EACCES;
277 	if (spu_acquire(ctx))
278 		return -EINTR;
279 	if ((offset + len) > vma->vm_end)
280 		len = vma->vm_end - offset;
281 	local_store = ctx->ops->get_ls(ctx);
282 	if (write)
283 		memcpy_toio(local_store + offset, buf, len);
284 	else
285 		memcpy_fromio(buf, local_store + offset, len);
286 	spu_release(ctx);
287 	return len;
288 }
289 
290 static const struct vm_operations_struct spufs_mem_mmap_vmops = {
291 	.fault = spufs_mem_mmap_fault,
292 	.access = spufs_mem_mmap_access,
293 };
294 
295 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
296 {
297 	if (!(vma->vm_flags & VM_SHARED))
298 		return -EINVAL;
299 
300 	vma->vm_flags |= VM_IO | VM_PFNMAP;
301 	vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
302 
303 	vma->vm_ops = &spufs_mem_mmap_vmops;
304 	return 0;
305 }
306 
307 static const struct file_operations spufs_mem_fops = {
308 	.open			= spufs_mem_open,
309 	.release		= spufs_mem_release,
310 	.read			= spufs_mem_read,
311 	.write			= spufs_mem_write,
312 	.llseek			= generic_file_llseek,
313 	.mmap			= spufs_mem_mmap,
314 };
315 
316 static vm_fault_t spufs_ps_fault(struct vm_fault *vmf,
317 				    unsigned long ps_offs,
318 				    unsigned long ps_size)
319 {
320 	struct spu_context *ctx = vmf->vma->vm_file->private_data;
321 	unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
322 	int err = 0;
323 	vm_fault_t ret = VM_FAULT_NOPAGE;
324 
325 	spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
326 
327 	if (offset >= ps_size)
328 		return VM_FAULT_SIGBUS;
329 
330 	if (fatal_signal_pending(current))
331 		return VM_FAULT_SIGBUS;
332 
333 	/*
334 	 * Because we release the mmap_sem, the context may be destroyed while
335 	 * we're in spu_wait. Grab an extra reference so it isn't destroyed
336 	 * in the meantime.
337 	 */
338 	get_spu_context(ctx);
339 
340 	/*
341 	 * We have to wait for context to be loaded before we have
342 	 * pages to hand out to the user, but we don't want to wait
343 	 * with the mmap_sem held.
344 	 * It is possible to drop the mmap_sem here, but then we need
345 	 * to return VM_FAULT_NOPAGE because the mappings may have
346 	 * hanged.
347 	 */
348 	if (spu_acquire(ctx))
349 		goto refault;
350 
351 	if (ctx->state == SPU_STATE_SAVED) {
352 		up_read(&current->mm->mmap_sem);
353 		spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
354 		err = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
355 		spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
356 		down_read(&current->mm->mmap_sem);
357 	} else {
358 		area = ctx->spu->problem_phys + ps_offs;
359 		ret = vmf_insert_pfn(vmf->vma, vmf->address,
360 				(area + offset) >> PAGE_SHIFT);
361 		spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
362 	}
363 
364 	if (!err)
365 		spu_release(ctx);
366 
367 refault:
368 	put_spu_context(ctx);
369 	return ret;
370 }
371 
372 #if SPUFS_MMAP_4K
373 static vm_fault_t spufs_cntl_mmap_fault(struct vm_fault *vmf)
374 {
375 	return spufs_ps_fault(vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
376 }
377 
378 static const struct vm_operations_struct spufs_cntl_mmap_vmops = {
379 	.fault = spufs_cntl_mmap_fault,
380 };
381 
382 /*
383  * mmap support for problem state control area [0x4000 - 0x4fff].
384  */
385 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
386 {
387 	if (!(vma->vm_flags & VM_SHARED))
388 		return -EINVAL;
389 
390 	vma->vm_flags |= VM_IO | VM_PFNMAP;
391 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
392 
393 	vma->vm_ops = &spufs_cntl_mmap_vmops;
394 	return 0;
395 }
396 #else /* SPUFS_MMAP_4K */
397 #define spufs_cntl_mmap NULL
398 #endif /* !SPUFS_MMAP_4K */
399 
400 static int spufs_cntl_get(void *data, u64 *val)
401 {
402 	struct spu_context *ctx = data;
403 	int ret;
404 
405 	ret = spu_acquire(ctx);
406 	if (ret)
407 		return ret;
408 	*val = ctx->ops->status_read(ctx);
409 	spu_release(ctx);
410 
411 	return 0;
412 }
413 
414 static int spufs_cntl_set(void *data, u64 val)
415 {
416 	struct spu_context *ctx = data;
417 	int ret;
418 
419 	ret = spu_acquire(ctx);
420 	if (ret)
421 		return ret;
422 	ctx->ops->runcntl_write(ctx, val);
423 	spu_release(ctx);
424 
425 	return 0;
426 }
427 
428 static int spufs_cntl_open(struct inode *inode, struct file *file)
429 {
430 	struct spufs_inode_info *i = SPUFS_I(inode);
431 	struct spu_context *ctx = i->i_ctx;
432 
433 	mutex_lock(&ctx->mapping_lock);
434 	file->private_data = ctx;
435 	if (!i->i_openers++)
436 		ctx->cntl = inode->i_mapping;
437 	mutex_unlock(&ctx->mapping_lock);
438 	return simple_attr_open(inode, file, spufs_cntl_get,
439 					spufs_cntl_set, "0x%08lx");
440 }
441 
442 static int
443 spufs_cntl_release(struct inode *inode, struct file *file)
444 {
445 	struct spufs_inode_info *i = SPUFS_I(inode);
446 	struct spu_context *ctx = i->i_ctx;
447 
448 	simple_attr_release(inode, file);
449 
450 	mutex_lock(&ctx->mapping_lock);
451 	if (!--i->i_openers)
452 		ctx->cntl = NULL;
453 	mutex_unlock(&ctx->mapping_lock);
454 	return 0;
455 }
456 
457 static const struct file_operations spufs_cntl_fops = {
458 	.open = spufs_cntl_open,
459 	.release = spufs_cntl_release,
460 	.read = simple_attr_read,
461 	.write = simple_attr_write,
462 	.llseek	= generic_file_llseek,
463 	.mmap = spufs_cntl_mmap,
464 };
465 
466 static int
467 spufs_regs_open(struct inode *inode, struct file *file)
468 {
469 	struct spufs_inode_info *i = SPUFS_I(inode);
470 	file->private_data = i->i_ctx;
471 	return 0;
472 }
473 
474 static ssize_t
475 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
476 			size_t size, loff_t *pos)
477 {
478 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
479 	return simple_read_from_buffer(buffer, size, pos,
480 				      lscsa->gprs, sizeof lscsa->gprs);
481 }
482 
483 static ssize_t
484 spufs_regs_read(struct file *file, char __user *buffer,
485 		size_t size, loff_t *pos)
486 {
487 	int ret;
488 	struct spu_context *ctx = file->private_data;
489 
490 	/* pre-check for file position: if we'd return EOF, there's no point
491 	 * causing a deschedule */
492 	if (*pos >= sizeof(ctx->csa.lscsa->gprs))
493 		return 0;
494 
495 	ret = spu_acquire_saved(ctx);
496 	if (ret)
497 		return ret;
498 	ret = __spufs_regs_read(ctx, buffer, size, pos);
499 	spu_release_saved(ctx);
500 	return ret;
501 }
502 
503 static ssize_t
504 spufs_regs_write(struct file *file, const char __user *buffer,
505 		 size_t size, loff_t *pos)
506 {
507 	struct spu_context *ctx = file->private_data;
508 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
509 	int ret;
510 
511 	if (*pos >= sizeof(lscsa->gprs))
512 		return -EFBIG;
513 
514 	ret = spu_acquire_saved(ctx);
515 	if (ret)
516 		return ret;
517 
518 	size = simple_write_to_buffer(lscsa->gprs, sizeof(lscsa->gprs), pos,
519 					buffer, size);
520 
521 	spu_release_saved(ctx);
522 	return size;
523 }
524 
525 static const struct file_operations spufs_regs_fops = {
526 	.open	 = spufs_regs_open,
527 	.read    = spufs_regs_read,
528 	.write   = spufs_regs_write,
529 	.llseek  = generic_file_llseek,
530 };
531 
532 static ssize_t
533 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
534 			size_t size, loff_t * pos)
535 {
536 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
537 	return simple_read_from_buffer(buffer, size, pos,
538 				      &lscsa->fpcr, sizeof(lscsa->fpcr));
539 }
540 
541 static ssize_t
542 spufs_fpcr_read(struct file *file, char __user * buffer,
543 		size_t size, loff_t * pos)
544 {
545 	int ret;
546 	struct spu_context *ctx = file->private_data;
547 
548 	ret = spu_acquire_saved(ctx);
549 	if (ret)
550 		return ret;
551 	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
552 	spu_release_saved(ctx);
553 	return ret;
554 }
555 
556 static ssize_t
557 spufs_fpcr_write(struct file *file, const char __user * buffer,
558 		 size_t size, loff_t * pos)
559 {
560 	struct spu_context *ctx = file->private_data;
561 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
562 	int ret;
563 
564 	if (*pos >= sizeof(lscsa->fpcr))
565 		return -EFBIG;
566 
567 	ret = spu_acquire_saved(ctx);
568 	if (ret)
569 		return ret;
570 
571 	size = simple_write_to_buffer(&lscsa->fpcr, sizeof(lscsa->fpcr), pos,
572 					buffer, size);
573 
574 	spu_release_saved(ctx);
575 	return size;
576 }
577 
578 static const struct file_operations spufs_fpcr_fops = {
579 	.open = spufs_regs_open,
580 	.read = spufs_fpcr_read,
581 	.write = spufs_fpcr_write,
582 	.llseek = generic_file_llseek,
583 };
584 
585 /* generic open function for all pipe-like files */
586 static int spufs_pipe_open(struct inode *inode, struct file *file)
587 {
588 	struct spufs_inode_info *i = SPUFS_I(inode);
589 	file->private_data = i->i_ctx;
590 
591 	return nonseekable_open(inode, file);
592 }
593 
594 /*
595  * Read as many bytes from the mailbox as possible, until
596  * one of the conditions becomes true:
597  *
598  * - no more data available in the mailbox
599  * - end of the user provided buffer
600  * - end of the mapped area
601  */
602 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
603 			size_t len, loff_t *pos)
604 {
605 	struct spu_context *ctx = file->private_data;
606 	u32 mbox_data, __user *udata;
607 	ssize_t count;
608 
609 	if (len < 4)
610 		return -EINVAL;
611 
612 	if (!access_ok(buf, len))
613 		return -EFAULT;
614 
615 	udata = (void __user *)buf;
616 
617 	count = spu_acquire(ctx);
618 	if (count)
619 		return count;
620 
621 	for (count = 0; (count + 4) <= len; count += 4, udata++) {
622 		int ret;
623 		ret = ctx->ops->mbox_read(ctx, &mbox_data);
624 		if (ret == 0)
625 			break;
626 
627 		/*
628 		 * at the end of the mapped area, we can fault
629 		 * but still need to return the data we have
630 		 * read successfully so far.
631 		 */
632 		ret = __put_user(mbox_data, udata);
633 		if (ret) {
634 			if (!count)
635 				count = -EFAULT;
636 			break;
637 		}
638 	}
639 	spu_release(ctx);
640 
641 	if (!count)
642 		count = -EAGAIN;
643 
644 	return count;
645 }
646 
647 static const struct file_operations spufs_mbox_fops = {
648 	.open	= spufs_pipe_open,
649 	.read	= spufs_mbox_read,
650 	.llseek	= no_llseek,
651 };
652 
653 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
654 			size_t len, loff_t *pos)
655 {
656 	struct spu_context *ctx = file->private_data;
657 	ssize_t ret;
658 	u32 mbox_stat;
659 
660 	if (len < 4)
661 		return -EINVAL;
662 
663 	ret = spu_acquire(ctx);
664 	if (ret)
665 		return ret;
666 
667 	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
668 
669 	spu_release(ctx);
670 
671 	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
672 		return -EFAULT;
673 
674 	return 4;
675 }
676 
677 static const struct file_operations spufs_mbox_stat_fops = {
678 	.open	= spufs_pipe_open,
679 	.read	= spufs_mbox_stat_read,
680 	.llseek = no_llseek,
681 };
682 
683 /* low-level ibox access function */
684 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
685 {
686 	return ctx->ops->ibox_read(ctx, data);
687 }
688 
689 /* interrupt-level ibox callback function. */
690 void spufs_ibox_callback(struct spu *spu)
691 {
692 	struct spu_context *ctx = spu->ctx;
693 
694 	if (ctx)
695 		wake_up_all(&ctx->ibox_wq);
696 }
697 
698 /*
699  * Read as many bytes from the interrupt mailbox as possible, until
700  * one of the conditions becomes true:
701  *
702  * - no more data available in the mailbox
703  * - end of the user provided buffer
704  * - end of the mapped area
705  *
706  * If the file is opened without O_NONBLOCK, we wait here until
707  * any data is available, but return when we have been able to
708  * read something.
709  */
710 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
711 			size_t len, loff_t *pos)
712 {
713 	struct spu_context *ctx = file->private_data;
714 	u32 ibox_data, __user *udata;
715 	ssize_t count;
716 
717 	if (len < 4)
718 		return -EINVAL;
719 
720 	if (!access_ok(buf, len))
721 		return -EFAULT;
722 
723 	udata = (void __user *)buf;
724 
725 	count = spu_acquire(ctx);
726 	if (count)
727 		goto out;
728 
729 	/* wait only for the first element */
730 	count = 0;
731 	if (file->f_flags & O_NONBLOCK) {
732 		if (!spu_ibox_read(ctx, &ibox_data)) {
733 			count = -EAGAIN;
734 			goto out_unlock;
735 		}
736 	} else {
737 		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
738 		if (count)
739 			goto out;
740 	}
741 
742 	/* if we can't write at all, return -EFAULT */
743 	count = __put_user(ibox_data, udata);
744 	if (count)
745 		goto out_unlock;
746 
747 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
748 		int ret;
749 		ret = ctx->ops->ibox_read(ctx, &ibox_data);
750 		if (ret == 0)
751 			break;
752 		/*
753 		 * at the end of the mapped area, we can fault
754 		 * but still need to return the data we have
755 		 * read successfully so far.
756 		 */
757 		ret = __put_user(ibox_data, udata);
758 		if (ret)
759 			break;
760 	}
761 
762 out_unlock:
763 	spu_release(ctx);
764 out:
765 	return count;
766 }
767 
768 static __poll_t spufs_ibox_poll(struct file *file, poll_table *wait)
769 {
770 	struct spu_context *ctx = file->private_data;
771 	__poll_t mask;
772 
773 	poll_wait(file, &ctx->ibox_wq, wait);
774 
775 	/*
776 	 * For now keep this uninterruptible and also ignore the rule
777 	 * that poll should not sleep.  Will be fixed later.
778 	 */
779 	mutex_lock(&ctx->state_mutex);
780 	mask = ctx->ops->mbox_stat_poll(ctx, EPOLLIN | EPOLLRDNORM);
781 	spu_release(ctx);
782 
783 	return mask;
784 }
785 
786 static const struct file_operations spufs_ibox_fops = {
787 	.open	= spufs_pipe_open,
788 	.read	= spufs_ibox_read,
789 	.poll	= spufs_ibox_poll,
790 	.llseek = no_llseek,
791 };
792 
793 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
794 			size_t len, loff_t *pos)
795 {
796 	struct spu_context *ctx = file->private_data;
797 	ssize_t ret;
798 	u32 ibox_stat;
799 
800 	if (len < 4)
801 		return -EINVAL;
802 
803 	ret = spu_acquire(ctx);
804 	if (ret)
805 		return ret;
806 	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
807 	spu_release(ctx);
808 
809 	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
810 		return -EFAULT;
811 
812 	return 4;
813 }
814 
815 static const struct file_operations spufs_ibox_stat_fops = {
816 	.open	= spufs_pipe_open,
817 	.read	= spufs_ibox_stat_read,
818 	.llseek = no_llseek,
819 };
820 
821 /* low-level mailbox write */
822 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
823 {
824 	return ctx->ops->wbox_write(ctx, data);
825 }
826 
827 /* interrupt-level wbox callback function. */
828 void spufs_wbox_callback(struct spu *spu)
829 {
830 	struct spu_context *ctx = spu->ctx;
831 
832 	if (ctx)
833 		wake_up_all(&ctx->wbox_wq);
834 }
835 
836 /*
837  * Write as many bytes to the interrupt mailbox as possible, until
838  * one of the conditions becomes true:
839  *
840  * - the mailbox is full
841  * - end of the user provided buffer
842  * - end of the mapped area
843  *
844  * If the file is opened without O_NONBLOCK, we wait here until
845  * space is available, but return when we have been able to
846  * write something.
847  */
848 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
849 			size_t len, loff_t *pos)
850 {
851 	struct spu_context *ctx = file->private_data;
852 	u32 wbox_data, __user *udata;
853 	ssize_t count;
854 
855 	if (len < 4)
856 		return -EINVAL;
857 
858 	udata = (void __user *)buf;
859 	if (!access_ok(buf, len))
860 		return -EFAULT;
861 
862 	if (__get_user(wbox_data, udata))
863 		return -EFAULT;
864 
865 	count = spu_acquire(ctx);
866 	if (count)
867 		goto out;
868 
869 	/*
870 	 * make sure we can at least write one element, by waiting
871 	 * in case of !O_NONBLOCK
872 	 */
873 	count = 0;
874 	if (file->f_flags & O_NONBLOCK) {
875 		if (!spu_wbox_write(ctx, wbox_data)) {
876 			count = -EAGAIN;
877 			goto out_unlock;
878 		}
879 	} else {
880 		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
881 		if (count)
882 			goto out;
883 	}
884 
885 
886 	/* write as much as possible */
887 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
888 		int ret;
889 		ret = __get_user(wbox_data, udata);
890 		if (ret)
891 			break;
892 
893 		ret = spu_wbox_write(ctx, wbox_data);
894 		if (ret == 0)
895 			break;
896 	}
897 
898 out_unlock:
899 	spu_release(ctx);
900 out:
901 	return count;
902 }
903 
904 static __poll_t spufs_wbox_poll(struct file *file, poll_table *wait)
905 {
906 	struct spu_context *ctx = file->private_data;
907 	__poll_t mask;
908 
909 	poll_wait(file, &ctx->wbox_wq, wait);
910 
911 	/*
912 	 * For now keep this uninterruptible and also ignore the rule
913 	 * that poll should not sleep.  Will be fixed later.
914 	 */
915 	mutex_lock(&ctx->state_mutex);
916 	mask = ctx->ops->mbox_stat_poll(ctx, EPOLLOUT | EPOLLWRNORM);
917 	spu_release(ctx);
918 
919 	return mask;
920 }
921 
922 static const struct file_operations spufs_wbox_fops = {
923 	.open	= spufs_pipe_open,
924 	.write	= spufs_wbox_write,
925 	.poll	= spufs_wbox_poll,
926 	.llseek = no_llseek,
927 };
928 
929 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
930 			size_t len, loff_t *pos)
931 {
932 	struct spu_context *ctx = file->private_data;
933 	ssize_t ret;
934 	u32 wbox_stat;
935 
936 	if (len < 4)
937 		return -EINVAL;
938 
939 	ret = spu_acquire(ctx);
940 	if (ret)
941 		return ret;
942 	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
943 	spu_release(ctx);
944 
945 	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
946 		return -EFAULT;
947 
948 	return 4;
949 }
950 
951 static const struct file_operations spufs_wbox_stat_fops = {
952 	.open	= spufs_pipe_open,
953 	.read	= spufs_wbox_stat_read,
954 	.llseek = no_llseek,
955 };
956 
957 static int spufs_signal1_open(struct inode *inode, struct file *file)
958 {
959 	struct spufs_inode_info *i = SPUFS_I(inode);
960 	struct spu_context *ctx = i->i_ctx;
961 
962 	mutex_lock(&ctx->mapping_lock);
963 	file->private_data = ctx;
964 	if (!i->i_openers++)
965 		ctx->signal1 = inode->i_mapping;
966 	mutex_unlock(&ctx->mapping_lock);
967 	return nonseekable_open(inode, file);
968 }
969 
970 static int
971 spufs_signal1_release(struct inode *inode, struct file *file)
972 {
973 	struct spufs_inode_info *i = SPUFS_I(inode);
974 	struct spu_context *ctx = i->i_ctx;
975 
976 	mutex_lock(&ctx->mapping_lock);
977 	if (!--i->i_openers)
978 		ctx->signal1 = NULL;
979 	mutex_unlock(&ctx->mapping_lock);
980 	return 0;
981 }
982 
983 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
984 			size_t len, loff_t *pos)
985 {
986 	int ret = 0;
987 	u32 data;
988 
989 	if (len < 4)
990 		return -EINVAL;
991 
992 	if (ctx->csa.spu_chnlcnt_RW[3]) {
993 		data = ctx->csa.spu_chnldata_RW[3];
994 		ret = 4;
995 	}
996 
997 	if (!ret)
998 		goto out;
999 
1000 	if (copy_to_user(buf, &data, 4))
1001 		return -EFAULT;
1002 
1003 out:
1004 	return ret;
1005 }
1006 
1007 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
1008 			size_t len, loff_t *pos)
1009 {
1010 	int ret;
1011 	struct spu_context *ctx = file->private_data;
1012 
1013 	ret = spu_acquire_saved(ctx);
1014 	if (ret)
1015 		return ret;
1016 	ret = __spufs_signal1_read(ctx, buf, len, pos);
1017 	spu_release_saved(ctx);
1018 
1019 	return ret;
1020 }
1021 
1022 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
1023 			size_t len, loff_t *pos)
1024 {
1025 	struct spu_context *ctx;
1026 	ssize_t ret;
1027 	u32 data;
1028 
1029 	ctx = file->private_data;
1030 
1031 	if (len < 4)
1032 		return -EINVAL;
1033 
1034 	if (copy_from_user(&data, buf, 4))
1035 		return -EFAULT;
1036 
1037 	ret = spu_acquire(ctx);
1038 	if (ret)
1039 		return ret;
1040 	ctx->ops->signal1_write(ctx, data);
1041 	spu_release(ctx);
1042 
1043 	return 4;
1044 }
1045 
1046 static vm_fault_t
1047 spufs_signal1_mmap_fault(struct vm_fault *vmf)
1048 {
1049 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1050 	return spufs_ps_fault(vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
1051 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1052 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1053 	 * signal 1 and 2 area
1054 	 */
1055 	return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1056 #else
1057 #error unsupported page size
1058 #endif
1059 }
1060 
1061 static const struct vm_operations_struct spufs_signal1_mmap_vmops = {
1062 	.fault = spufs_signal1_mmap_fault,
1063 };
1064 
1065 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1066 {
1067 	if (!(vma->vm_flags & VM_SHARED))
1068 		return -EINVAL;
1069 
1070 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1071 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1072 
1073 	vma->vm_ops = &spufs_signal1_mmap_vmops;
1074 	return 0;
1075 }
1076 
1077 static const struct file_operations spufs_signal1_fops = {
1078 	.open = spufs_signal1_open,
1079 	.release = spufs_signal1_release,
1080 	.read = spufs_signal1_read,
1081 	.write = spufs_signal1_write,
1082 	.mmap = spufs_signal1_mmap,
1083 	.llseek = no_llseek,
1084 };
1085 
1086 static const struct file_operations spufs_signal1_nosched_fops = {
1087 	.open = spufs_signal1_open,
1088 	.release = spufs_signal1_release,
1089 	.write = spufs_signal1_write,
1090 	.mmap = spufs_signal1_mmap,
1091 	.llseek = no_llseek,
1092 };
1093 
1094 static int spufs_signal2_open(struct inode *inode, struct file *file)
1095 {
1096 	struct spufs_inode_info *i = SPUFS_I(inode);
1097 	struct spu_context *ctx = i->i_ctx;
1098 
1099 	mutex_lock(&ctx->mapping_lock);
1100 	file->private_data = ctx;
1101 	if (!i->i_openers++)
1102 		ctx->signal2 = inode->i_mapping;
1103 	mutex_unlock(&ctx->mapping_lock);
1104 	return nonseekable_open(inode, file);
1105 }
1106 
1107 static int
1108 spufs_signal2_release(struct inode *inode, struct file *file)
1109 {
1110 	struct spufs_inode_info *i = SPUFS_I(inode);
1111 	struct spu_context *ctx = i->i_ctx;
1112 
1113 	mutex_lock(&ctx->mapping_lock);
1114 	if (!--i->i_openers)
1115 		ctx->signal2 = NULL;
1116 	mutex_unlock(&ctx->mapping_lock);
1117 	return 0;
1118 }
1119 
1120 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1121 			size_t len, loff_t *pos)
1122 {
1123 	int ret = 0;
1124 	u32 data;
1125 
1126 	if (len < 4)
1127 		return -EINVAL;
1128 
1129 	if (ctx->csa.spu_chnlcnt_RW[4]) {
1130 		data =  ctx->csa.spu_chnldata_RW[4];
1131 		ret = 4;
1132 	}
1133 
1134 	if (!ret)
1135 		goto out;
1136 
1137 	if (copy_to_user(buf, &data, 4))
1138 		return -EFAULT;
1139 
1140 out:
1141 	return ret;
1142 }
1143 
1144 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1145 			size_t len, loff_t *pos)
1146 {
1147 	struct spu_context *ctx = file->private_data;
1148 	int ret;
1149 
1150 	ret = spu_acquire_saved(ctx);
1151 	if (ret)
1152 		return ret;
1153 	ret = __spufs_signal2_read(ctx, buf, len, pos);
1154 	spu_release_saved(ctx);
1155 
1156 	return ret;
1157 }
1158 
1159 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1160 			size_t len, loff_t *pos)
1161 {
1162 	struct spu_context *ctx;
1163 	ssize_t ret;
1164 	u32 data;
1165 
1166 	ctx = file->private_data;
1167 
1168 	if (len < 4)
1169 		return -EINVAL;
1170 
1171 	if (copy_from_user(&data, buf, 4))
1172 		return -EFAULT;
1173 
1174 	ret = spu_acquire(ctx);
1175 	if (ret)
1176 		return ret;
1177 	ctx->ops->signal2_write(ctx, data);
1178 	spu_release(ctx);
1179 
1180 	return 4;
1181 }
1182 
1183 #if SPUFS_MMAP_4K
1184 static vm_fault_t
1185 spufs_signal2_mmap_fault(struct vm_fault *vmf)
1186 {
1187 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1188 	return spufs_ps_fault(vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
1189 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1190 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1191 	 * signal 1 and 2 area
1192 	 */
1193 	return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1194 #else
1195 #error unsupported page size
1196 #endif
1197 }
1198 
1199 static const struct vm_operations_struct spufs_signal2_mmap_vmops = {
1200 	.fault = spufs_signal2_mmap_fault,
1201 };
1202 
1203 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1204 {
1205 	if (!(vma->vm_flags & VM_SHARED))
1206 		return -EINVAL;
1207 
1208 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1209 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1210 
1211 	vma->vm_ops = &spufs_signal2_mmap_vmops;
1212 	return 0;
1213 }
1214 #else /* SPUFS_MMAP_4K */
1215 #define spufs_signal2_mmap NULL
1216 #endif /* !SPUFS_MMAP_4K */
1217 
1218 static const struct file_operations spufs_signal2_fops = {
1219 	.open = spufs_signal2_open,
1220 	.release = spufs_signal2_release,
1221 	.read = spufs_signal2_read,
1222 	.write = spufs_signal2_write,
1223 	.mmap = spufs_signal2_mmap,
1224 	.llseek = no_llseek,
1225 };
1226 
1227 static const struct file_operations spufs_signal2_nosched_fops = {
1228 	.open = spufs_signal2_open,
1229 	.release = spufs_signal2_release,
1230 	.write = spufs_signal2_write,
1231 	.mmap = spufs_signal2_mmap,
1232 	.llseek = no_llseek,
1233 };
1234 
1235 /*
1236  * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1237  * work of acquiring (or not) the SPU context before calling through
1238  * to the actual get routine. The set routine is called directly.
1239  */
1240 #define SPU_ATTR_NOACQUIRE	0
1241 #define SPU_ATTR_ACQUIRE	1
1242 #define SPU_ATTR_ACQUIRE_SAVED	2
1243 
1244 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)	\
1245 static int __##__get(void *data, u64 *val)				\
1246 {									\
1247 	struct spu_context *ctx = data;					\
1248 	int ret = 0;							\
1249 									\
1250 	if (__acquire == SPU_ATTR_ACQUIRE) {				\
1251 		ret = spu_acquire(ctx);					\
1252 		if (ret)						\
1253 			return ret;					\
1254 		*val = __get(ctx);					\
1255 		spu_release(ctx);					\
1256 	} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED)	{		\
1257 		ret = spu_acquire_saved(ctx);				\
1258 		if (ret)						\
1259 			return ret;					\
1260 		*val = __get(ctx);					\
1261 		spu_release_saved(ctx);					\
1262 	} else								\
1263 		*val = __get(ctx);					\
1264 									\
1265 	return 0;							\
1266 }									\
1267 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1268 
1269 static int spufs_signal1_type_set(void *data, u64 val)
1270 {
1271 	struct spu_context *ctx = data;
1272 	int ret;
1273 
1274 	ret = spu_acquire(ctx);
1275 	if (ret)
1276 		return ret;
1277 	ctx->ops->signal1_type_set(ctx, val);
1278 	spu_release(ctx);
1279 
1280 	return 0;
1281 }
1282 
1283 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1284 {
1285 	return ctx->ops->signal1_type_get(ctx);
1286 }
1287 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1288 		       spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1289 
1290 
1291 static int spufs_signal2_type_set(void *data, u64 val)
1292 {
1293 	struct spu_context *ctx = data;
1294 	int ret;
1295 
1296 	ret = spu_acquire(ctx);
1297 	if (ret)
1298 		return ret;
1299 	ctx->ops->signal2_type_set(ctx, val);
1300 	spu_release(ctx);
1301 
1302 	return 0;
1303 }
1304 
1305 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1306 {
1307 	return ctx->ops->signal2_type_get(ctx);
1308 }
1309 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1310 		       spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1311 
1312 #if SPUFS_MMAP_4K
1313 static vm_fault_t
1314 spufs_mss_mmap_fault(struct vm_fault *vmf)
1315 {
1316 	return spufs_ps_fault(vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1317 }
1318 
1319 static const struct vm_operations_struct spufs_mss_mmap_vmops = {
1320 	.fault = spufs_mss_mmap_fault,
1321 };
1322 
1323 /*
1324  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1325  */
1326 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1327 {
1328 	if (!(vma->vm_flags & VM_SHARED))
1329 		return -EINVAL;
1330 
1331 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1332 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1333 
1334 	vma->vm_ops = &spufs_mss_mmap_vmops;
1335 	return 0;
1336 }
1337 #else /* SPUFS_MMAP_4K */
1338 #define spufs_mss_mmap NULL
1339 #endif /* !SPUFS_MMAP_4K */
1340 
1341 static int spufs_mss_open(struct inode *inode, struct file *file)
1342 {
1343 	struct spufs_inode_info *i = SPUFS_I(inode);
1344 	struct spu_context *ctx = i->i_ctx;
1345 
1346 	file->private_data = i->i_ctx;
1347 
1348 	mutex_lock(&ctx->mapping_lock);
1349 	if (!i->i_openers++)
1350 		ctx->mss = inode->i_mapping;
1351 	mutex_unlock(&ctx->mapping_lock);
1352 	return nonseekable_open(inode, file);
1353 }
1354 
1355 static int
1356 spufs_mss_release(struct inode *inode, struct file *file)
1357 {
1358 	struct spufs_inode_info *i = SPUFS_I(inode);
1359 	struct spu_context *ctx = i->i_ctx;
1360 
1361 	mutex_lock(&ctx->mapping_lock);
1362 	if (!--i->i_openers)
1363 		ctx->mss = NULL;
1364 	mutex_unlock(&ctx->mapping_lock);
1365 	return 0;
1366 }
1367 
1368 static const struct file_operations spufs_mss_fops = {
1369 	.open	 = spufs_mss_open,
1370 	.release = spufs_mss_release,
1371 	.mmap	 = spufs_mss_mmap,
1372 	.llseek  = no_llseek,
1373 };
1374 
1375 static vm_fault_t
1376 spufs_psmap_mmap_fault(struct vm_fault *vmf)
1377 {
1378 	return spufs_ps_fault(vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1379 }
1380 
1381 static const struct vm_operations_struct spufs_psmap_mmap_vmops = {
1382 	.fault = spufs_psmap_mmap_fault,
1383 };
1384 
1385 /*
1386  * mmap support for full problem state area [0x00000 - 0x1ffff].
1387  */
1388 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1389 {
1390 	if (!(vma->vm_flags & VM_SHARED))
1391 		return -EINVAL;
1392 
1393 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1394 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1395 
1396 	vma->vm_ops = &spufs_psmap_mmap_vmops;
1397 	return 0;
1398 }
1399 
1400 static int spufs_psmap_open(struct inode *inode, struct file *file)
1401 {
1402 	struct spufs_inode_info *i = SPUFS_I(inode);
1403 	struct spu_context *ctx = i->i_ctx;
1404 
1405 	mutex_lock(&ctx->mapping_lock);
1406 	file->private_data = i->i_ctx;
1407 	if (!i->i_openers++)
1408 		ctx->psmap = inode->i_mapping;
1409 	mutex_unlock(&ctx->mapping_lock);
1410 	return nonseekable_open(inode, file);
1411 }
1412 
1413 static int
1414 spufs_psmap_release(struct inode *inode, struct file *file)
1415 {
1416 	struct spufs_inode_info *i = SPUFS_I(inode);
1417 	struct spu_context *ctx = i->i_ctx;
1418 
1419 	mutex_lock(&ctx->mapping_lock);
1420 	if (!--i->i_openers)
1421 		ctx->psmap = NULL;
1422 	mutex_unlock(&ctx->mapping_lock);
1423 	return 0;
1424 }
1425 
1426 static const struct file_operations spufs_psmap_fops = {
1427 	.open	 = spufs_psmap_open,
1428 	.release = spufs_psmap_release,
1429 	.mmap	 = spufs_psmap_mmap,
1430 	.llseek  = no_llseek,
1431 };
1432 
1433 
1434 #if SPUFS_MMAP_4K
1435 static vm_fault_t
1436 spufs_mfc_mmap_fault(struct vm_fault *vmf)
1437 {
1438 	return spufs_ps_fault(vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1439 }
1440 
1441 static const struct vm_operations_struct spufs_mfc_mmap_vmops = {
1442 	.fault = spufs_mfc_mmap_fault,
1443 };
1444 
1445 /*
1446  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1447  */
1448 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1449 {
1450 	if (!(vma->vm_flags & VM_SHARED))
1451 		return -EINVAL;
1452 
1453 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1454 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1455 
1456 	vma->vm_ops = &spufs_mfc_mmap_vmops;
1457 	return 0;
1458 }
1459 #else /* SPUFS_MMAP_4K */
1460 #define spufs_mfc_mmap NULL
1461 #endif /* !SPUFS_MMAP_4K */
1462 
1463 static int spufs_mfc_open(struct inode *inode, struct file *file)
1464 {
1465 	struct spufs_inode_info *i = SPUFS_I(inode);
1466 	struct spu_context *ctx = i->i_ctx;
1467 
1468 	/* we don't want to deal with DMA into other processes */
1469 	if (ctx->owner != current->mm)
1470 		return -EINVAL;
1471 
1472 	if (atomic_read(&inode->i_count) != 1)
1473 		return -EBUSY;
1474 
1475 	mutex_lock(&ctx->mapping_lock);
1476 	file->private_data = ctx;
1477 	if (!i->i_openers++)
1478 		ctx->mfc = inode->i_mapping;
1479 	mutex_unlock(&ctx->mapping_lock);
1480 	return nonseekable_open(inode, file);
1481 }
1482 
1483 static int
1484 spufs_mfc_release(struct inode *inode, struct file *file)
1485 {
1486 	struct spufs_inode_info *i = SPUFS_I(inode);
1487 	struct spu_context *ctx = i->i_ctx;
1488 
1489 	mutex_lock(&ctx->mapping_lock);
1490 	if (!--i->i_openers)
1491 		ctx->mfc = NULL;
1492 	mutex_unlock(&ctx->mapping_lock);
1493 	return 0;
1494 }
1495 
1496 /* interrupt-level mfc callback function. */
1497 void spufs_mfc_callback(struct spu *spu)
1498 {
1499 	struct spu_context *ctx = spu->ctx;
1500 
1501 	if (ctx)
1502 		wake_up_all(&ctx->mfc_wq);
1503 }
1504 
1505 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1506 {
1507 	/* See if there is one tag group is complete */
1508 	/* FIXME we need locking around tagwait */
1509 	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1510 	ctx->tagwait &= ~*status;
1511 	if (*status)
1512 		return 1;
1513 
1514 	/* enable interrupt waiting for any tag group,
1515 	   may silently fail if interrupts are already enabled */
1516 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1517 	return 0;
1518 }
1519 
1520 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1521 			size_t size, loff_t *pos)
1522 {
1523 	struct spu_context *ctx = file->private_data;
1524 	int ret = -EINVAL;
1525 	u32 status;
1526 
1527 	if (size != 4)
1528 		goto out;
1529 
1530 	ret = spu_acquire(ctx);
1531 	if (ret)
1532 		return ret;
1533 
1534 	ret = -EINVAL;
1535 	if (file->f_flags & O_NONBLOCK) {
1536 		status = ctx->ops->read_mfc_tagstatus(ctx);
1537 		if (!(status & ctx->tagwait))
1538 			ret = -EAGAIN;
1539 		else
1540 			/* XXX(hch): shouldn't we clear ret here? */
1541 			ctx->tagwait &= ~status;
1542 	} else {
1543 		ret = spufs_wait(ctx->mfc_wq,
1544 			   spufs_read_mfc_tagstatus(ctx, &status));
1545 		if (ret)
1546 			goto out;
1547 	}
1548 	spu_release(ctx);
1549 
1550 	ret = 4;
1551 	if (copy_to_user(buffer, &status, 4))
1552 		ret = -EFAULT;
1553 
1554 out:
1555 	return ret;
1556 }
1557 
1558 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1559 {
1560 	pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa,
1561 		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1562 
1563 	switch (cmd->cmd) {
1564 	case MFC_PUT_CMD:
1565 	case MFC_PUTF_CMD:
1566 	case MFC_PUTB_CMD:
1567 	case MFC_GET_CMD:
1568 	case MFC_GETF_CMD:
1569 	case MFC_GETB_CMD:
1570 		break;
1571 	default:
1572 		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1573 		return -EIO;
1574 	}
1575 
1576 	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1577 		pr_debug("invalid DMA alignment, ea %llx lsa %x\n",
1578 				cmd->ea, cmd->lsa);
1579 		return -EIO;
1580 	}
1581 
1582 	switch (cmd->size & 0xf) {
1583 	case 1:
1584 		break;
1585 	case 2:
1586 		if (cmd->lsa & 1)
1587 			goto error;
1588 		break;
1589 	case 4:
1590 		if (cmd->lsa & 3)
1591 			goto error;
1592 		break;
1593 	case 8:
1594 		if (cmd->lsa & 7)
1595 			goto error;
1596 		break;
1597 	case 0:
1598 		if (cmd->lsa & 15)
1599 			goto error;
1600 		break;
1601 	error:
1602 	default:
1603 		pr_debug("invalid DMA alignment %x for size %x\n",
1604 			cmd->lsa & 0xf, cmd->size);
1605 		return -EIO;
1606 	}
1607 
1608 	if (cmd->size > 16 * 1024) {
1609 		pr_debug("invalid DMA size %x\n", cmd->size);
1610 		return -EIO;
1611 	}
1612 
1613 	if (cmd->tag & 0xfff0) {
1614 		/* we reserve the higher tag numbers for kernel use */
1615 		pr_debug("invalid DMA tag\n");
1616 		return -EIO;
1617 	}
1618 
1619 	if (cmd->class) {
1620 		/* not supported in this version */
1621 		pr_debug("invalid DMA class\n");
1622 		return -EIO;
1623 	}
1624 
1625 	return 0;
1626 }
1627 
1628 static int spu_send_mfc_command(struct spu_context *ctx,
1629 				struct mfc_dma_command cmd,
1630 				int *error)
1631 {
1632 	*error = ctx->ops->send_mfc_command(ctx, &cmd);
1633 	if (*error == -EAGAIN) {
1634 		/* wait for any tag group to complete
1635 		   so we have space for the new command */
1636 		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1637 		/* try again, because the queue might be
1638 		   empty again */
1639 		*error = ctx->ops->send_mfc_command(ctx, &cmd);
1640 		if (*error == -EAGAIN)
1641 			return 0;
1642 	}
1643 	return 1;
1644 }
1645 
1646 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1647 			size_t size, loff_t *pos)
1648 {
1649 	struct spu_context *ctx = file->private_data;
1650 	struct mfc_dma_command cmd;
1651 	int ret = -EINVAL;
1652 
1653 	if (size != sizeof cmd)
1654 		goto out;
1655 
1656 	ret = -EFAULT;
1657 	if (copy_from_user(&cmd, buffer, sizeof cmd))
1658 		goto out;
1659 
1660 	ret = spufs_check_valid_dma(&cmd);
1661 	if (ret)
1662 		goto out;
1663 
1664 	ret = spu_acquire(ctx);
1665 	if (ret)
1666 		goto out;
1667 
1668 	ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1669 	if (ret)
1670 		goto out;
1671 
1672 	if (file->f_flags & O_NONBLOCK) {
1673 		ret = ctx->ops->send_mfc_command(ctx, &cmd);
1674 	} else {
1675 		int status;
1676 		ret = spufs_wait(ctx->mfc_wq,
1677 				 spu_send_mfc_command(ctx, cmd, &status));
1678 		if (ret)
1679 			goto out;
1680 		if (status)
1681 			ret = status;
1682 	}
1683 
1684 	if (ret)
1685 		goto out_unlock;
1686 
1687 	ctx->tagwait |= 1 << cmd.tag;
1688 	ret = size;
1689 
1690 out_unlock:
1691 	spu_release(ctx);
1692 out:
1693 	return ret;
1694 }
1695 
1696 static __poll_t spufs_mfc_poll(struct file *file,poll_table *wait)
1697 {
1698 	struct spu_context *ctx = file->private_data;
1699 	u32 free_elements, tagstatus;
1700 	__poll_t mask;
1701 
1702 	poll_wait(file, &ctx->mfc_wq, wait);
1703 
1704 	/*
1705 	 * For now keep this uninterruptible and also ignore the rule
1706 	 * that poll should not sleep.  Will be fixed later.
1707 	 */
1708 	mutex_lock(&ctx->state_mutex);
1709 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1710 	free_elements = ctx->ops->get_mfc_free_elements(ctx);
1711 	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1712 	spu_release(ctx);
1713 
1714 	mask = 0;
1715 	if (free_elements & 0xffff)
1716 		mask |= EPOLLOUT | EPOLLWRNORM;
1717 	if (tagstatus & ctx->tagwait)
1718 		mask |= EPOLLIN | EPOLLRDNORM;
1719 
1720 	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1721 		free_elements, tagstatus, ctx->tagwait);
1722 
1723 	return mask;
1724 }
1725 
1726 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1727 {
1728 	struct spu_context *ctx = file->private_data;
1729 	int ret;
1730 
1731 	ret = spu_acquire(ctx);
1732 	if (ret)
1733 		goto out;
1734 #if 0
1735 /* this currently hangs */
1736 	ret = spufs_wait(ctx->mfc_wq,
1737 			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1738 	if (ret)
1739 		goto out;
1740 	ret = spufs_wait(ctx->mfc_wq,
1741 			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1742 	if (ret)
1743 		goto out;
1744 #else
1745 	ret = 0;
1746 #endif
1747 	spu_release(ctx);
1748 out:
1749 	return ret;
1750 }
1751 
1752 static int spufs_mfc_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1753 {
1754 	struct inode *inode = file_inode(file);
1755 	int err = file_write_and_wait_range(file, start, end);
1756 	if (!err) {
1757 		inode_lock(inode);
1758 		err = spufs_mfc_flush(file, NULL);
1759 		inode_unlock(inode);
1760 	}
1761 	return err;
1762 }
1763 
1764 static const struct file_operations spufs_mfc_fops = {
1765 	.open	 = spufs_mfc_open,
1766 	.release = spufs_mfc_release,
1767 	.read	 = spufs_mfc_read,
1768 	.write	 = spufs_mfc_write,
1769 	.poll	 = spufs_mfc_poll,
1770 	.flush	 = spufs_mfc_flush,
1771 	.fsync	 = spufs_mfc_fsync,
1772 	.mmap	 = spufs_mfc_mmap,
1773 	.llseek  = no_llseek,
1774 };
1775 
1776 static int spufs_npc_set(void *data, u64 val)
1777 {
1778 	struct spu_context *ctx = data;
1779 	int ret;
1780 
1781 	ret = spu_acquire(ctx);
1782 	if (ret)
1783 		return ret;
1784 	ctx->ops->npc_write(ctx, val);
1785 	spu_release(ctx);
1786 
1787 	return 0;
1788 }
1789 
1790 static u64 spufs_npc_get(struct spu_context *ctx)
1791 {
1792 	return ctx->ops->npc_read(ctx);
1793 }
1794 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1795 		       "0x%llx\n", SPU_ATTR_ACQUIRE);
1796 
1797 static int spufs_decr_set(void *data, u64 val)
1798 {
1799 	struct spu_context *ctx = data;
1800 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1801 	int ret;
1802 
1803 	ret = spu_acquire_saved(ctx);
1804 	if (ret)
1805 		return ret;
1806 	lscsa->decr.slot[0] = (u32) val;
1807 	spu_release_saved(ctx);
1808 
1809 	return 0;
1810 }
1811 
1812 static u64 spufs_decr_get(struct spu_context *ctx)
1813 {
1814 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1815 	return lscsa->decr.slot[0];
1816 }
1817 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1818 		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1819 
1820 static int spufs_decr_status_set(void *data, u64 val)
1821 {
1822 	struct spu_context *ctx = data;
1823 	int ret;
1824 
1825 	ret = spu_acquire_saved(ctx);
1826 	if (ret)
1827 		return ret;
1828 	if (val)
1829 		ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1830 	else
1831 		ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1832 	spu_release_saved(ctx);
1833 
1834 	return 0;
1835 }
1836 
1837 static u64 spufs_decr_status_get(struct spu_context *ctx)
1838 {
1839 	if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1840 		return SPU_DECR_STATUS_RUNNING;
1841 	else
1842 		return 0;
1843 }
1844 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1845 		       spufs_decr_status_set, "0x%llx\n",
1846 		       SPU_ATTR_ACQUIRE_SAVED);
1847 
1848 static int spufs_event_mask_set(void *data, u64 val)
1849 {
1850 	struct spu_context *ctx = data;
1851 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1852 	int ret;
1853 
1854 	ret = spu_acquire_saved(ctx);
1855 	if (ret)
1856 		return ret;
1857 	lscsa->event_mask.slot[0] = (u32) val;
1858 	spu_release_saved(ctx);
1859 
1860 	return 0;
1861 }
1862 
1863 static u64 spufs_event_mask_get(struct spu_context *ctx)
1864 {
1865 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1866 	return lscsa->event_mask.slot[0];
1867 }
1868 
1869 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1870 		       spufs_event_mask_set, "0x%llx\n",
1871 		       SPU_ATTR_ACQUIRE_SAVED);
1872 
1873 static u64 spufs_event_status_get(struct spu_context *ctx)
1874 {
1875 	struct spu_state *state = &ctx->csa;
1876 	u64 stat;
1877 	stat = state->spu_chnlcnt_RW[0];
1878 	if (stat)
1879 		return state->spu_chnldata_RW[0];
1880 	return 0;
1881 }
1882 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1883 		       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1884 
1885 static int spufs_srr0_set(void *data, u64 val)
1886 {
1887 	struct spu_context *ctx = data;
1888 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1889 	int ret;
1890 
1891 	ret = spu_acquire_saved(ctx);
1892 	if (ret)
1893 		return ret;
1894 	lscsa->srr0.slot[0] = (u32) val;
1895 	spu_release_saved(ctx);
1896 
1897 	return 0;
1898 }
1899 
1900 static u64 spufs_srr0_get(struct spu_context *ctx)
1901 {
1902 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1903 	return lscsa->srr0.slot[0];
1904 }
1905 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1906 		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1907 
1908 static u64 spufs_id_get(struct spu_context *ctx)
1909 {
1910 	u64 num;
1911 
1912 	if (ctx->state == SPU_STATE_RUNNABLE)
1913 		num = ctx->spu->number;
1914 	else
1915 		num = (unsigned int)-1;
1916 
1917 	return num;
1918 }
1919 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
1920 		       SPU_ATTR_ACQUIRE)
1921 
1922 static u64 spufs_object_id_get(struct spu_context *ctx)
1923 {
1924 	/* FIXME: Should there really be no locking here? */
1925 	return ctx->object_id;
1926 }
1927 
1928 static int spufs_object_id_set(void *data, u64 id)
1929 {
1930 	struct spu_context *ctx = data;
1931 	ctx->object_id = id;
1932 
1933 	return 0;
1934 }
1935 
1936 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
1937 		       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
1938 
1939 static u64 spufs_lslr_get(struct spu_context *ctx)
1940 {
1941 	return ctx->csa.priv2.spu_lslr_RW;
1942 }
1943 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
1944 		       SPU_ATTR_ACQUIRE_SAVED);
1945 
1946 static int spufs_info_open(struct inode *inode, struct file *file)
1947 {
1948 	struct spufs_inode_info *i = SPUFS_I(inode);
1949 	struct spu_context *ctx = i->i_ctx;
1950 	file->private_data = ctx;
1951 	return 0;
1952 }
1953 
1954 static int spufs_caps_show(struct seq_file *s, void *private)
1955 {
1956 	struct spu_context *ctx = s->private;
1957 
1958 	if (!(ctx->flags & SPU_CREATE_NOSCHED))
1959 		seq_puts(s, "sched\n");
1960 	if (!(ctx->flags & SPU_CREATE_ISOLATE))
1961 		seq_puts(s, "step\n");
1962 	return 0;
1963 }
1964 
1965 static int spufs_caps_open(struct inode *inode, struct file *file)
1966 {
1967 	return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
1968 }
1969 
1970 static const struct file_operations spufs_caps_fops = {
1971 	.open		= spufs_caps_open,
1972 	.read		= seq_read,
1973 	.llseek		= seq_lseek,
1974 	.release	= single_release,
1975 };
1976 
1977 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
1978 			char __user *buf, size_t len, loff_t *pos)
1979 {
1980 	u32 data;
1981 
1982 	/* EOF if there's no entry in the mbox */
1983 	if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
1984 		return 0;
1985 
1986 	data = ctx->csa.prob.pu_mb_R;
1987 
1988 	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
1989 }
1990 
1991 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
1992 				   size_t len, loff_t *pos)
1993 {
1994 	int ret;
1995 	struct spu_context *ctx = file->private_data;
1996 
1997 	if (!access_ok(buf, len))
1998 		return -EFAULT;
1999 
2000 	ret = spu_acquire_saved(ctx);
2001 	if (ret)
2002 		return ret;
2003 	spin_lock(&ctx->csa.register_lock);
2004 	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2005 	spin_unlock(&ctx->csa.register_lock);
2006 	spu_release_saved(ctx);
2007 
2008 	return ret;
2009 }
2010 
2011 static const struct file_operations spufs_mbox_info_fops = {
2012 	.open = spufs_info_open,
2013 	.read = spufs_mbox_info_read,
2014 	.llseek  = generic_file_llseek,
2015 };
2016 
2017 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
2018 				char __user *buf, size_t len, loff_t *pos)
2019 {
2020 	u32 data;
2021 
2022 	/* EOF if there's no entry in the ibox */
2023 	if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
2024 		return 0;
2025 
2026 	data = ctx->csa.priv2.puint_mb_R;
2027 
2028 	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2029 }
2030 
2031 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
2032 				   size_t len, loff_t *pos)
2033 {
2034 	struct spu_context *ctx = file->private_data;
2035 	int ret;
2036 
2037 	if (!access_ok(buf, len))
2038 		return -EFAULT;
2039 
2040 	ret = spu_acquire_saved(ctx);
2041 	if (ret)
2042 		return ret;
2043 	spin_lock(&ctx->csa.register_lock);
2044 	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2045 	spin_unlock(&ctx->csa.register_lock);
2046 	spu_release_saved(ctx);
2047 
2048 	return ret;
2049 }
2050 
2051 static const struct file_operations spufs_ibox_info_fops = {
2052 	.open = spufs_info_open,
2053 	.read = spufs_ibox_info_read,
2054 	.llseek  = generic_file_llseek,
2055 };
2056 
2057 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
2058 			char __user *buf, size_t len, loff_t *pos)
2059 {
2060 	int i, cnt;
2061 	u32 data[4];
2062 	u32 wbox_stat;
2063 
2064 	wbox_stat = ctx->csa.prob.mb_stat_R;
2065 	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
2066 	for (i = 0; i < cnt; i++) {
2067 		data[i] = ctx->csa.spu_mailbox_data[i];
2068 	}
2069 
2070 	return simple_read_from_buffer(buf, len, pos, &data,
2071 				cnt * sizeof(u32));
2072 }
2073 
2074 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2075 				   size_t len, loff_t *pos)
2076 {
2077 	struct spu_context *ctx = file->private_data;
2078 	int ret;
2079 
2080 	if (!access_ok(buf, len))
2081 		return -EFAULT;
2082 
2083 	ret = spu_acquire_saved(ctx);
2084 	if (ret)
2085 		return ret;
2086 	spin_lock(&ctx->csa.register_lock);
2087 	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2088 	spin_unlock(&ctx->csa.register_lock);
2089 	spu_release_saved(ctx);
2090 
2091 	return ret;
2092 }
2093 
2094 static const struct file_operations spufs_wbox_info_fops = {
2095 	.open = spufs_info_open,
2096 	.read = spufs_wbox_info_read,
2097 	.llseek  = generic_file_llseek,
2098 };
2099 
2100 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
2101 			char __user *buf, size_t len, loff_t *pos)
2102 {
2103 	struct spu_dma_info info;
2104 	struct mfc_cq_sr *qp, *spuqp;
2105 	int i;
2106 
2107 	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2108 	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2109 	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
2110 	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2111 	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2112 	for (i = 0; i < 16; i++) {
2113 		qp = &info.dma_info_command_data[i];
2114 		spuqp = &ctx->csa.priv2.spuq[i];
2115 
2116 		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2117 		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2118 		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2119 		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2120 	}
2121 
2122 	return simple_read_from_buffer(buf, len, pos, &info,
2123 				sizeof info);
2124 }
2125 
2126 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2127 			      size_t len, loff_t *pos)
2128 {
2129 	struct spu_context *ctx = file->private_data;
2130 	int ret;
2131 
2132 	if (!access_ok(buf, len))
2133 		return -EFAULT;
2134 
2135 	ret = spu_acquire_saved(ctx);
2136 	if (ret)
2137 		return ret;
2138 	spin_lock(&ctx->csa.register_lock);
2139 	ret = __spufs_dma_info_read(ctx, buf, len, pos);
2140 	spin_unlock(&ctx->csa.register_lock);
2141 	spu_release_saved(ctx);
2142 
2143 	return ret;
2144 }
2145 
2146 static const struct file_operations spufs_dma_info_fops = {
2147 	.open = spufs_info_open,
2148 	.read = spufs_dma_info_read,
2149 	.llseek = no_llseek,
2150 };
2151 
2152 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
2153 			char __user *buf, size_t len, loff_t *pos)
2154 {
2155 	struct spu_proxydma_info info;
2156 	struct mfc_cq_sr *qp, *puqp;
2157 	int ret = sizeof info;
2158 	int i;
2159 
2160 	if (len < ret)
2161 		return -EINVAL;
2162 
2163 	if (!access_ok(buf, len))
2164 		return -EFAULT;
2165 
2166 	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2167 	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2168 	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2169 	for (i = 0; i < 8; i++) {
2170 		qp = &info.proxydma_info_command_data[i];
2171 		puqp = &ctx->csa.priv2.puq[i];
2172 
2173 		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2174 		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2175 		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2176 		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2177 	}
2178 
2179 	return simple_read_from_buffer(buf, len, pos, &info,
2180 				sizeof info);
2181 }
2182 
2183 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2184 				   size_t len, loff_t *pos)
2185 {
2186 	struct spu_context *ctx = file->private_data;
2187 	int ret;
2188 
2189 	ret = spu_acquire_saved(ctx);
2190 	if (ret)
2191 		return ret;
2192 	spin_lock(&ctx->csa.register_lock);
2193 	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2194 	spin_unlock(&ctx->csa.register_lock);
2195 	spu_release_saved(ctx);
2196 
2197 	return ret;
2198 }
2199 
2200 static const struct file_operations spufs_proxydma_info_fops = {
2201 	.open = spufs_info_open,
2202 	.read = spufs_proxydma_info_read,
2203 	.llseek = no_llseek,
2204 };
2205 
2206 static int spufs_show_tid(struct seq_file *s, void *private)
2207 {
2208 	struct spu_context *ctx = s->private;
2209 
2210 	seq_printf(s, "%d\n", ctx->tid);
2211 	return 0;
2212 }
2213 
2214 static int spufs_tid_open(struct inode *inode, struct file *file)
2215 {
2216 	return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2217 }
2218 
2219 static const struct file_operations spufs_tid_fops = {
2220 	.open		= spufs_tid_open,
2221 	.read		= seq_read,
2222 	.llseek		= seq_lseek,
2223 	.release	= single_release,
2224 };
2225 
2226 static const char *ctx_state_names[] = {
2227 	"user", "system", "iowait", "loaded"
2228 };
2229 
2230 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2231 		enum spu_utilization_state state)
2232 {
2233 	unsigned long long time = ctx->stats.times[state];
2234 
2235 	/*
2236 	 * In general, utilization statistics are updated by the controlling
2237 	 * thread as the spu context moves through various well defined
2238 	 * state transitions, but if the context is lazily loaded its
2239 	 * utilization statistics are not updated as the controlling thread
2240 	 * is not tightly coupled with the execution of the spu context.  We
2241 	 * calculate and apply the time delta from the last recorded state
2242 	 * of the spu context.
2243 	 */
2244 	if (ctx->spu && ctx->stats.util_state == state) {
2245 		time += ktime_get_ns() - ctx->stats.tstamp;
2246 	}
2247 
2248 	return time / NSEC_PER_MSEC;
2249 }
2250 
2251 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2252 {
2253 	unsigned long long slb_flts = ctx->stats.slb_flt;
2254 
2255 	if (ctx->state == SPU_STATE_RUNNABLE) {
2256 		slb_flts += (ctx->spu->stats.slb_flt -
2257 			     ctx->stats.slb_flt_base);
2258 	}
2259 
2260 	return slb_flts;
2261 }
2262 
2263 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2264 {
2265 	unsigned long long class2_intrs = ctx->stats.class2_intr;
2266 
2267 	if (ctx->state == SPU_STATE_RUNNABLE) {
2268 		class2_intrs += (ctx->spu->stats.class2_intr -
2269 				 ctx->stats.class2_intr_base);
2270 	}
2271 
2272 	return class2_intrs;
2273 }
2274 
2275 
2276 static int spufs_show_stat(struct seq_file *s, void *private)
2277 {
2278 	struct spu_context *ctx = s->private;
2279 	int ret;
2280 
2281 	ret = spu_acquire(ctx);
2282 	if (ret)
2283 		return ret;
2284 
2285 	seq_printf(s, "%s %llu %llu %llu %llu "
2286 		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2287 		ctx_state_names[ctx->stats.util_state],
2288 		spufs_acct_time(ctx, SPU_UTIL_USER),
2289 		spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2290 		spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2291 		spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2292 		ctx->stats.vol_ctx_switch,
2293 		ctx->stats.invol_ctx_switch,
2294 		spufs_slb_flts(ctx),
2295 		ctx->stats.hash_flt,
2296 		ctx->stats.min_flt,
2297 		ctx->stats.maj_flt,
2298 		spufs_class2_intrs(ctx),
2299 		ctx->stats.libassist);
2300 	spu_release(ctx);
2301 	return 0;
2302 }
2303 
2304 static int spufs_stat_open(struct inode *inode, struct file *file)
2305 {
2306 	return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2307 }
2308 
2309 static const struct file_operations spufs_stat_fops = {
2310 	.open		= spufs_stat_open,
2311 	.read		= seq_read,
2312 	.llseek		= seq_lseek,
2313 	.release	= single_release,
2314 };
2315 
2316 static inline int spufs_switch_log_used(struct spu_context *ctx)
2317 {
2318 	return (ctx->switch_log->head - ctx->switch_log->tail) %
2319 		SWITCH_LOG_BUFSIZE;
2320 }
2321 
2322 static inline int spufs_switch_log_avail(struct spu_context *ctx)
2323 {
2324 	return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
2325 }
2326 
2327 static int spufs_switch_log_open(struct inode *inode, struct file *file)
2328 {
2329 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2330 	int rc;
2331 
2332 	rc = spu_acquire(ctx);
2333 	if (rc)
2334 		return rc;
2335 
2336 	if (ctx->switch_log) {
2337 		rc = -EBUSY;
2338 		goto out;
2339 	}
2340 
2341 	ctx->switch_log = kmalloc(struct_size(ctx->switch_log, log,
2342 				  SWITCH_LOG_BUFSIZE), GFP_KERNEL);
2343 
2344 	if (!ctx->switch_log) {
2345 		rc = -ENOMEM;
2346 		goto out;
2347 	}
2348 
2349 	ctx->switch_log->head = ctx->switch_log->tail = 0;
2350 	init_waitqueue_head(&ctx->switch_log->wait);
2351 	rc = 0;
2352 
2353 out:
2354 	spu_release(ctx);
2355 	return rc;
2356 }
2357 
2358 static int spufs_switch_log_release(struct inode *inode, struct file *file)
2359 {
2360 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2361 	int rc;
2362 
2363 	rc = spu_acquire(ctx);
2364 	if (rc)
2365 		return rc;
2366 
2367 	kfree(ctx->switch_log);
2368 	ctx->switch_log = NULL;
2369 	spu_release(ctx);
2370 
2371 	return 0;
2372 }
2373 
2374 static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
2375 {
2376 	struct switch_log_entry *p;
2377 
2378 	p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;
2379 
2380 	return snprintf(tbuf, n, "%llu.%09u %d %u %u %llu\n",
2381 			(unsigned long long) p->tstamp.tv_sec,
2382 			(unsigned int) p->tstamp.tv_nsec,
2383 			p->spu_id,
2384 			(unsigned int) p->type,
2385 			(unsigned int) p->val,
2386 			(unsigned long long) p->timebase);
2387 }
2388 
2389 static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
2390 			     size_t len, loff_t *ppos)
2391 {
2392 	struct inode *inode = file_inode(file);
2393 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2394 	int error = 0, cnt = 0;
2395 
2396 	if (!buf)
2397 		return -EINVAL;
2398 
2399 	error = spu_acquire(ctx);
2400 	if (error)
2401 		return error;
2402 
2403 	while (cnt < len) {
2404 		char tbuf[128];
2405 		int width;
2406 
2407 		if (spufs_switch_log_used(ctx) == 0) {
2408 			if (cnt > 0) {
2409 				/* If there's data ready to go, we can
2410 				 * just return straight away */
2411 				break;
2412 
2413 			} else if (file->f_flags & O_NONBLOCK) {
2414 				error = -EAGAIN;
2415 				break;
2416 
2417 			} else {
2418 				/* spufs_wait will drop the mutex and
2419 				 * re-acquire, but since we're in read(), the
2420 				 * file cannot be _released (and so
2421 				 * ctx->switch_log is stable).
2422 				 */
2423 				error = spufs_wait(ctx->switch_log->wait,
2424 						spufs_switch_log_used(ctx) > 0);
2425 
2426 				/* On error, spufs_wait returns without the
2427 				 * state mutex held */
2428 				if (error)
2429 					return error;
2430 
2431 				/* We may have had entries read from underneath
2432 				 * us while we dropped the mutex in spufs_wait,
2433 				 * so re-check */
2434 				if (spufs_switch_log_used(ctx) == 0)
2435 					continue;
2436 			}
2437 		}
2438 
2439 		width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2440 		if (width < len)
2441 			ctx->switch_log->tail =
2442 				(ctx->switch_log->tail + 1) %
2443 				 SWITCH_LOG_BUFSIZE;
2444 		else
2445 			/* If the record is greater than space available return
2446 			 * partial buffer (so far) */
2447 			break;
2448 
2449 		error = copy_to_user(buf + cnt, tbuf, width);
2450 		if (error)
2451 			break;
2452 		cnt += width;
2453 	}
2454 
2455 	spu_release(ctx);
2456 
2457 	return cnt == 0 ? error : cnt;
2458 }
2459 
2460 static __poll_t spufs_switch_log_poll(struct file *file, poll_table *wait)
2461 {
2462 	struct inode *inode = file_inode(file);
2463 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2464 	__poll_t mask = 0;
2465 	int rc;
2466 
2467 	poll_wait(file, &ctx->switch_log->wait, wait);
2468 
2469 	rc = spu_acquire(ctx);
2470 	if (rc)
2471 		return rc;
2472 
2473 	if (spufs_switch_log_used(ctx) > 0)
2474 		mask |= EPOLLIN;
2475 
2476 	spu_release(ctx);
2477 
2478 	return mask;
2479 }
2480 
2481 static const struct file_operations spufs_switch_log_fops = {
2482 	.open		= spufs_switch_log_open,
2483 	.read		= spufs_switch_log_read,
2484 	.poll		= spufs_switch_log_poll,
2485 	.release	= spufs_switch_log_release,
2486 	.llseek		= no_llseek,
2487 };
2488 
2489 /**
2490  * Log a context switch event to a switch log reader.
2491  *
2492  * Must be called with ctx->state_mutex held.
2493  */
2494 void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
2495 		u32 type, u32 val)
2496 {
2497 	if (!ctx->switch_log)
2498 		return;
2499 
2500 	if (spufs_switch_log_avail(ctx) > 1) {
2501 		struct switch_log_entry *p;
2502 
2503 		p = ctx->switch_log->log + ctx->switch_log->head;
2504 		ktime_get_ts64(&p->tstamp);
2505 		p->timebase = get_tb();
2506 		p->spu_id = spu ? spu->number : -1;
2507 		p->type = type;
2508 		p->val = val;
2509 
2510 		ctx->switch_log->head =
2511 			(ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
2512 	}
2513 
2514 	wake_up(&ctx->switch_log->wait);
2515 }
2516 
2517 static int spufs_show_ctx(struct seq_file *s, void *private)
2518 {
2519 	struct spu_context *ctx = s->private;
2520 	u64 mfc_control_RW;
2521 
2522 	mutex_lock(&ctx->state_mutex);
2523 	if (ctx->spu) {
2524 		struct spu *spu = ctx->spu;
2525 		struct spu_priv2 __iomem *priv2 = spu->priv2;
2526 
2527 		spin_lock_irq(&spu->register_lock);
2528 		mfc_control_RW = in_be64(&priv2->mfc_control_RW);
2529 		spin_unlock_irq(&spu->register_lock);
2530 	} else {
2531 		struct spu_state *csa = &ctx->csa;
2532 
2533 		mfc_control_RW = csa->priv2.mfc_control_RW;
2534 	}
2535 
2536 	seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
2537 		" %c %llx %llx %llx %llx %x %x\n",
2538 		ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
2539 		ctx->flags,
2540 		ctx->sched_flags,
2541 		ctx->prio,
2542 		ctx->time_slice,
2543 		ctx->spu ? ctx->spu->number : -1,
2544 		!list_empty(&ctx->rq) ? 'q' : ' ',
2545 		ctx->csa.class_0_pending,
2546 		ctx->csa.class_0_dar,
2547 		ctx->csa.class_1_dsisr,
2548 		mfc_control_RW,
2549 		ctx->ops->runcntl_read(ctx),
2550 		ctx->ops->status_read(ctx));
2551 
2552 	mutex_unlock(&ctx->state_mutex);
2553 
2554 	return 0;
2555 }
2556 
2557 static int spufs_ctx_open(struct inode *inode, struct file *file)
2558 {
2559 	return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
2560 }
2561 
2562 static const struct file_operations spufs_ctx_fops = {
2563 	.open           = spufs_ctx_open,
2564 	.read           = seq_read,
2565 	.llseek         = seq_lseek,
2566 	.release        = single_release,
2567 };
2568 
2569 const struct spufs_tree_descr spufs_dir_contents[] = {
2570 	{ "capabilities", &spufs_caps_fops, 0444, },
2571 	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2572 	{ "regs", &spufs_regs_fops,  0666, sizeof(struct spu_reg128[128]), },
2573 	{ "mbox", &spufs_mbox_fops, 0444, },
2574 	{ "ibox", &spufs_ibox_fops, 0444, },
2575 	{ "wbox", &spufs_wbox_fops, 0222, },
2576 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2577 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2578 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2579 	{ "signal1", &spufs_signal1_fops, 0666, },
2580 	{ "signal2", &spufs_signal2_fops, 0666, },
2581 	{ "signal1_type", &spufs_signal1_type, 0666, },
2582 	{ "signal2_type", &spufs_signal2_type, 0666, },
2583 	{ "cntl", &spufs_cntl_fops,  0666, },
2584 	{ "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2585 	{ "lslr", &spufs_lslr_ops, 0444, },
2586 	{ "mfc", &spufs_mfc_fops, 0666, },
2587 	{ "mss", &spufs_mss_fops, 0666, },
2588 	{ "npc", &spufs_npc_ops, 0666, },
2589 	{ "srr0", &spufs_srr0_ops, 0666, },
2590 	{ "decr", &spufs_decr_ops, 0666, },
2591 	{ "decr_status", &spufs_decr_status_ops, 0666, },
2592 	{ "event_mask", &spufs_event_mask_ops, 0666, },
2593 	{ "event_status", &spufs_event_status_ops, 0444, },
2594 	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2595 	{ "phys-id", &spufs_id_ops, 0666, },
2596 	{ "object-id", &spufs_object_id_ops, 0666, },
2597 	{ "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
2598 	{ "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
2599 	{ "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
2600 	{ "dma_info", &spufs_dma_info_fops, 0444,
2601 		sizeof(struct spu_dma_info), },
2602 	{ "proxydma_info", &spufs_proxydma_info_fops, 0444,
2603 		sizeof(struct spu_proxydma_info)},
2604 	{ "tid", &spufs_tid_fops, 0444, },
2605 	{ "stat", &spufs_stat_fops, 0444, },
2606 	{ "switch_log", &spufs_switch_log_fops, 0444 },
2607 	{},
2608 };
2609 
2610 const struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2611 	{ "capabilities", &spufs_caps_fops, 0444, },
2612 	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2613 	{ "mbox", &spufs_mbox_fops, 0444, },
2614 	{ "ibox", &spufs_ibox_fops, 0444, },
2615 	{ "wbox", &spufs_wbox_fops, 0222, },
2616 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2617 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2618 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2619 	{ "signal1", &spufs_signal1_nosched_fops, 0222, },
2620 	{ "signal2", &spufs_signal2_nosched_fops, 0222, },
2621 	{ "signal1_type", &spufs_signal1_type, 0666, },
2622 	{ "signal2_type", &spufs_signal2_type, 0666, },
2623 	{ "mss", &spufs_mss_fops, 0666, },
2624 	{ "mfc", &spufs_mfc_fops, 0666, },
2625 	{ "cntl", &spufs_cntl_fops,  0666, },
2626 	{ "npc", &spufs_npc_ops, 0666, },
2627 	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2628 	{ "phys-id", &spufs_id_ops, 0666, },
2629 	{ "object-id", &spufs_object_id_ops, 0666, },
2630 	{ "tid", &spufs_tid_fops, 0444, },
2631 	{ "stat", &spufs_stat_fops, 0444, },
2632 	{},
2633 };
2634 
2635 const struct spufs_tree_descr spufs_dir_debug_contents[] = {
2636 	{ ".ctx", &spufs_ctx_fops, 0444, },
2637 	{},
2638 };
2639 
2640 const struct spufs_coredump_reader spufs_coredump_read[] = {
2641 	{ "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
2642 	{ "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2643 	{ "lslr", NULL, spufs_lslr_get, 19 },
2644 	{ "decr", NULL, spufs_decr_get, 19 },
2645 	{ "decr_status", NULL, spufs_decr_status_get, 19 },
2646 	{ "mem", __spufs_mem_read, NULL, LS_SIZE, },
2647 	{ "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2648 	{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
2649 	{ "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2650 	{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
2651 	{ "event_mask", NULL, spufs_event_mask_get, 19 },
2652 	{ "event_status", NULL, spufs_event_status_get, 19 },
2653 	{ "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
2654 	{ "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
2655 	{ "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
2656 	{ "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
2657 	{ "proxydma_info", __spufs_proxydma_info_read,
2658 			   NULL, sizeof(struct spu_proxydma_info)},
2659 	{ "object-id", NULL, spufs_object_id_get, 19 },
2660 	{ "npc", NULL, spufs_npc_get, 19 },
2661 	{ NULL },
2662 };
2663